
1

A rainbow framework for coded caching and its
applications

Min Xu, Zixiang Xu, Gennian Ge and Min-Qian Liu

Abstract—The centralized coded caching focuses on reducing
the network burden in peak times in a wireless network system.
In this paper, motivated by the study of the only rainbow 3-
term arithmetic progressions set, we propose a combinatorial
framework for constructing coded caching schemes. This frame-
work builds bridges between coded caching schemes and lots
of combinatorial objects due to the freedom of the choices of
families and binary operations. We prove that any scheme based
on a placement delivery array (PDA) can be represented by a
rainbow scheme under this framework and lots of other known
schemes can also be included in this framework. Moreover, we
also present a new coded caching scheme with linear subpack-
etization and near constant rate using the only rainbow 3-term
arithmetic progressions set. Finally, we modify the framework to
be applicable to the coded caching problem in Device-to-Device
(D2D) networks and the distributed computing problem.

Index Terms—Coded caching scheme, D2D caching, combina-
torial framework, only rainbow arithmetic progressions set.

I. INTRODUCTION

In recent years, with the increasing popularity of content-
centric wireless communication systems such as 5G, wireless
data traffic has become a major challenge in our daily lives.
The exponential growth in demand for video content is a
significant driving factor for this increase. Moreover, the high
temporal variability of network traffic results in communica-
tion systems that are congested during peak-traffic times but
underutilized during off-peak times. One solution to reduce
peak traffic is to take advantage of memories distributed across
the network to duplicate content. This process, called caching,
is performed during off-peak times when network resources
are abundant. During peak-traffic times, user demands can be
served from these caches, thereby reducing network conges-
tion. Coded caching, which makes use of the coding method,
can further reduce the transmission.

Coded caching schemes typically involve two phases: the
placement phase at off peak times and the delivery phase at

This project was supported by the National Key Research and De-
velopment Program of China under Grant 2020YFA0712100 and Grant
2018YFA0704703, the National Natural Science Foundation of China under
Grant 11971325, Grant 12131001, Grant 12371260 and Grant 12231014,
Beijing Scholars Program, the Institute for Basic Science (IBS-R029-C4),
and National Ten Thousand Talents Program.

M. Xu (minxu0716@qq.com) and M. Liu (mqliu@nankai.edu.cn)
are with NITFID, LPMC & KLMDASR, School of Statistics and Data
Science, Nankai University,Tianjin 300071, China.

Z. Xu (zxxu8023@qq.com) is with Extremal Combinatorics and Prob-
ability Group, Institute for Basic Science, Daejeon, South Korea. This work
was started when Z. Xu is a Ph.D student in Capital Normal University.

G. Ge (gnge@zju.edu.cn) is with the School of Mathematical Sciences,
Capital Normal University, Beijing 100048, China.

peak times after receiving the demands from active users. In
a centralized coded caching system, there is a central server
which has access to a library of N independent files with the
same size and K users each of which has a cache with size of
M files, where M < N . The server and users are connected
by an error-free shared link, that is, all messages sent by the
server can be received by all users without error. We refer
the bits of messages transmitted during the delivery phase as
communication load and the rate of a caching scheme is the
communication load normalized by the size of files.

The study of designing caching schemes that take advantage
of coding was initiated by Maddah-Ali and Niesen [24]. In
their groundbreaking work, they proposed a centralized coded
caching scheme, that involves designing an appropriate content
placement and delivery strategy. Although their proposed
scheme was proved to be near-optimal, there is a practical
disadvantage, that is, the scheme requires each file to be
divided into F packets, where F grows exponentially with the
number of users K. This is referred to as the subpacketization
level. A higher subpacketization level implies that the size
of files stored by the central server will be large for even
moderate number of users, since each file must be split into
F pieces and higher indexing overheads are needed to identify
the subfiles. Subsequently, a critical aspect of designing cen-
tralized coded caching schemes has been focused on reducing
the subpacketizations while keeping the rate of the scheme
low.

Recently, several interesting methods were used to construct
coded caching schemes with low subpacketization levels [1],
[3]–[10], [21], [26], [30], [32], [33], [35], [36], [43], [44], [46],
[51]. In particular, Yan, Cheng, Tang and Chen [44] repre-
sented the placement delivery array (PDA) framework and the
coded caching scheme they proposed has significantly lower
subpacketizations than that of the Maddah-Ali and Niesen
scheme in [24]. In [30], Shangguan, Zhang and Ge established
a connection between coded caching schemes and 3-partite 3-
uniform (6, 3)-free hypergraphs and constructed coded caching
schemes with constant rate and subpacketizations increasing
sub-exponentially with the number of users. This connection
was further expanded upon in terms of strong edge colorings
of bipartite graphs by Yan, Tang, Chen and Cheng [46]. In
[33], Shanmugam, Tulino and Dimakis showed coded caching
with linear subpacketizations and near constant rate is possible
using Ruzsa-Szemerédi graphs. There are also some other
combinatorial approaches such as linear block codes [35],
[36], line graphs of bipartite graphs [6]–[8], [10], [21] and
combinatorial designs [1].

In [24], the authors showed that the delivery phase of the

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

2

coded caching problem can be viewed as an index coding
problem with fixed content placement and demands. Index
coding methods are commonly used to evaluate the perfor-
mance of caching and construct schemes with optimal rate
for fixed caching ratio M/N [18], [38], [40]. Achieving the
optimal rate typically requires high subpacketization levels, as
seen in [24]. In this paper, we propose a combinatorial scheme
with a fixed subpacketization level, and leverage the idea of
local coloring in the index coding problem to further reduce
the rate of scheme. Additionally, our scheme is applicable to
D2D networks, where coded caching has been explored in
[14]–[16], [29], [48]. In D2D coded caching problem [14],
the cache placement phase is identical to that of traditional
caching. During the delivery phase, after a user requests a file,
the server becomes inactive, and the users exchange subfiles
they possess to enable each user to decode its requested file
based on its own cache and the information transmitted by
other users. A scheme which is order optimal within a constant
factor when the memory size is large is proposed in [14].
Similar with [24], the scheme also suffers from the high level
of subpacketization. In [50], Zhang, Yang and Ji consider a
design framework with optimal rate and less subpacketization.
In [39], Wang, Cheng, Yan and Tang modified the PDA scheme
to D2D networks.

The coded caching problem has been extended to several
practical settings over the years, enhancing its applicability.
For instance, decentralized schemes proposed in [25] eliminate
the need for a central server in the system. Additionally,
schemes have been proposed in [12], [49] to handle non-
uniform file popularity. The coded caching problem has also
been studied in other network scenarios, such as online
coded caching [28], [45], hierarchical coded caching [19], and
multiple access [12], [17] or servers [34]. These extensions
are motivated by practical scenarios where traditional coded
caching schemes may not be sufficient or suitable.

The objective of this paper is to present a novel coded
caching scheme with a linear subpacketization level. As we
have mentioned above, utilizing various combinatorial struc-
tures to construct caching schemes is an effective approach.
Many of these known schemes seamlessly fit within the PDA
framework. Our objective is to explore the specific properties
requisite for a combinatorial structure to serve as a foundation
for constructing an effective caching scheme. In this paper, we
employ coloring as our key combinatorial tool. Assuming the
presence of a coded caching scheme with symmetric uncoded
placement, that is, each user caches subfiles directly instead
of caching functions of subfiles, and if a user caches j-th
segment of one file, it caches the j-th segment of all files.
Subsequently, we analyze this scheme from the perspective of
coloring as outlined below. First, we treat the users and the
subpacketizations as two sets. Then, the subfiles, which are
sent in the delivery phase, can be labeled by the elements in
the product of these two sets. For instance, if user i requires
file Wdi

and does not cache the subfile W
(j)
di

, which is the
j-th segment of Wdi

, then W
(j)
di

will appear in the delivery
phase, and it is labeled by the pair (i, j). Note that in the
delivery phase of a coded caching scheme, the combinations

of subfiles are sent instead of the original subfiles. We map
the elements in the product set to the same color if the subfiles
labeled by them are sent in the same combination. After the
coloring procedure, the uncolored elements are related to the
placement phase. In detail, if (i, j) is an uncolored element
in the product set, we will know that user i caches the j-th
segment of all files. From this perspective, we observe that if
the set of colored elements has a special structure, which is
referred as the only rainbow σ-type set in Section III, we can
modify the coloring function such that the decodability of the
caching scheme can be ensured. Our proposed scheme is based
on a combinatorial concept called only rainbow arithmetic
progressions sets, which will be defined in Section II. To
describe our construction, we introduce a new framework that
we call the rainbow framework. This framework allows us to
describe many existing coded caching schemes in a common
manner. Furthermore, we find that this framework is also
applicable to the constructions of D2D coded caching schemes
as well as coded distributed computing schemes.

Our contribution can be concluded as follows.

1) First, for K ≤ N , we propose a combinatorial frame-
work to yield centralized coded caching schemes with
uncoded placement. In this framework, we first construct
two collections which represent the set of users and the
set of subpacketizations respectively. Then, we choose a
binary operation on these two sets and define a coloring
function on the resulting set after this binary operation.
After coloring selected elements in the resulting set
with specific rules, we show that the uncolored elements
can encode storage actions while elements receiving the
same color encode delivery actions (XORs), which leads
to a simple but very useful relationship between the
coded caching scheme and these elements. Furthermore,
we employ this novel idea to conduct a review of several
existing works and explore potential ways to enhance the
performance of these schemes.

2) Next, we study the problem of constructing centralized
coded caching schemes with low subpacketization level
based on only rainbow 3-term arithmetic progressions
sets, which are proposed by Pach and Tomon [27]. We
present a coded caching scheme with linear subpacke-
tization and near constant rate. Moreover, we propose
a new delivery scheme based on some results in index
coding problem, which can further reduce the transmis-
sion load.

3) At last, we apply the rainbow framework to D2D coded
caching problem, and proposed a scheme which can
be viewed as a D2D placement and delivery array.
Moreover, this scheme is also applicable to the coded
distributed computing (CDC) problem, as there is a close
connection between D2D caching and CDC schemes.

The rest of this paper is organized as follows. In Section II,
we introduce the models of traditional coded caching, coded
caching in the D2D networks and the coded distributed com-
puting, as well as the coloring problem and index coding
problem which are the main tools of our new schemes.
Motivated by the study of only rainbow arithmetic progres-

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

3

sions sets, we propose a generalized rainbow framework in
Section III. Surprisingly, we find out that any PDA scheme
can be represented in the rainbow framework, and present
several examples in Section IV. In Section V, we derive a
combinatorial scheme with new parameters based on the only
rainbow 3-term arithmetic progressions set. Next, we modify
the rainbow framework to be applicable to the D2D coded
caching problem and the distributed computing problem in
Section VI. At last, we conclude our main results and propose
some open problems in Section VII.

II. PRELIMINARY

In this paper, for simplicity, for positive integers n, a and b
with a < b, we use [n] to denote the set {1, 2, . . . , n} and we
use [a : b] to denote the set {a, a+1, . . . , b}. We introduce the
models of problems which will be investigated in this paper
and main tools to construct our schemes in this section.

A. Coded caching

The first problem we study is the coded caching problem,
which was first investigated by Maddah-Ali and Niesen in
2014 [24]. In this kind of problem, there is a central server
with a library of N files {W1,W2, . . . ,WN}, each file can
be partitioned into F subfiles with equal size. Suppose in this
system there are K users, each of which has a cache with
size of M files and requires one file in the library. Suppose
user i requires file Wdi , denote the demand vector as d =
(d1, . . . , dK). Before the users sending their demands d to the
server, the server fills up all the caches. When the server knows
the users’ demands, it sends Xd according to the users’ caches
and their demands d. The server and the users are connected
by an error-free shared link, that is, every message sent by the
server can be seen by all users. The transmission rate or just
rate of this system is defined as

R = max
d∈NK

|Xd|
F

.

Denote the minimum rate for fixed cache size M as R∗. The
main purpose of coded caching is to design the placement of
subfiles such that the transmission rate R for any possible user
demand vector is as small as possible. In this paper we focus
on the caching schemes with uncoded placement, that is, each
user caches subfiles directly instead of caching functions of
subfiles. We use Ru and R∗

u to denote the transmission rate
and the minimum rate of coded caching scheme in this case.
We always assume that N ≥ K in this paper.

In [24], a cut-set bound for R∗ was given as follows,

R∗ ≥ max
s∈{1,...,min{N,K}}

(
s− s

⌊N/s⌋
M

)
.

In addition, they proposed a scheme with a rate given by

R = K

(
1− M

N

)
· 1

1 + KM
N

,

which has been shown to be optimal under the uncoded
placement strategy [37]. Although the rate is optimal, the
subpaketization is F = exp(K), which increases the com-
plexity of the scheme and implies larger file size since each

N filesserver

Shared link

K users

caches Size M

Fig. 1. Coded caching system

file should be split into F pieces, which is exponential in K.
Various works about reducing the subpaketizations F while
keeping rate R low have been done [1], [3]–[10], [21], [26],
[30], [32], [33], [35], [36], [43], [44], [46], [51]. The most
general scheme among these works is the placement delivery
array (PDA) [44], which can be defined as follows.

Definition II.1. Given positive integers K,F,M,N with
FM/N being an integer, a PDA is an array of size F ×K,
denoted as P = (pj,k)F×K , which is composed of a specific
symbol ∗ and a set of S integers S = {1, 2, . . . , S}. Moreover,
the following constrains are required:

1) The symbol ∗ appears FM/N times in each column;
2) Each integer occurs at least once in the array;
3) For any two distinct entries pj1,k1

and pj2,k2
, pj1,k1

=
pj2,k2

= s is an integer only if j1 ̸= j2, k1 ̸= k2 and
pj1,k2 = pj2,k1 = ∗.

Example II.1. The following matrix represents a PDA with
K = 4, F = 4, M

N = 1
2 and |S| = 4.
∗ 3 1 ∗
∗ ∗ 2 3
1 ∗ ∗ 4
2 4 ∗ ∗


It is convenient to use this array to represent the placement

and the delivery phase of a coded caching scheme, that is,
the columns represent users and the rows represent subpacke-
tizations. If pj,k = ∗, then user k caches the j-th segment of
each file during the placement phase. If pj,k = s, then in the
s-th round of delivery, the j-th segment of file Wdk

is sent
with other subfiles labeled by s. Moreover, the connections
between the coded caching schemes and other combinatorial
objects were studied in recent years. In [30], the connection of
(6, 3)-free hypergraphs and PDA schemes implies that if the
rate is a constant, the subpacketization level cannot be linear
with K. Constructing a scheme with better performance is still
an interesting problem.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

4

B. Device-to-Device coded caching and Coded distributed
computing

The Device-to-Device (D2D) coded caching problem was
originally proposed by Ji, Caire and Molisch in [14]. The
model of D2D caching problem is similar to coded caching.
This problem shares many similarities with the coded caching
problem. In the D2D caching problem, there is a server that is
connected to K users through an error-free link. The users
are also connected to each other through noiseless device-
to-device communication links. The server has access to a
library of N files {W1, · · · ,WN}, each file can be split into
F subfiles. Each user has a cache of size M . D2D caching
system is similar with the server based caching system during
the placement phase, that is, the server fills the users’ caches
without knowing the users’ demands. During the delivery
phase, each user k ∈ [K] makes a request for a file Wdk

,
denote the demand vector as d = {d1, · · · , dk}. The server
is inactive and each user k sends Xk,d to other users. After
receiving all messages from other users, all users can decode
the required files. The transmission rate for D2D caching
problem is defined as

Rd2d := max
d

∑
k∈[K]

|Xk,d|
F

,

and we denote the minimum transmission rate as R∗
d2d.

In [14], a converse bound obtained by the method of index
coding was given as follows,

R∗
d2d ≥ max

l∈{1,2,··· ,min{N,K}}

(
l − l

⌊N
l ⌋

)
.

The authors [14] also introduced a scheme that achieves order
optimality within a constant factor for large memory sizes.
However, similar to [24], this scheme also suffers from high
subpacketization levels. To address this issue, Zhang, Yang,
and Ji proposed a design framework with optimal rates and
less subpacketization in [50]. Additionally, Wang, Cheng, Yan,
and Tang modified the PDA scheme for D2D networks in [39].
This D2D placement delivery array can be defined as follows.

Definition II.2. For positive integers K,F,Z, S, an F × K
array P = (pj,k), j ∈ [F], k ∈ [K], composed of [S]∪ {∗}, is
called a (K,F,Z, S) D2D placement delivery array (DPDA)
if the following conditions hold.

1) The symbol ∗ appears Z times in each column;
2) Each integer in [S] occurs at least once in the array;
3) For any two distinct entries pj1,k1 and pj2,k2 , pj1,k1 =

pj2,k2 = s is an integer only if j1 ̸= j2, k1 ̸= k2 and
pj1,k2

= pj2,k1
= ∗.

4) There exists a mapping φ from [S] to [K] such that if
pj,k = s, then pj,φ(s) = ∗

Definition II.2, specifically Condition (4), implies that for
any s ∈ [S], there is a user that caches all subfiles labeled
by s. In a recent work of Li and Chang [22], they propose
new constructions of DPDA. As an example, we provide an
explanation for how D2D caching works.

Example II.2. Suppose that there are N = 3 files denoted as
{W1,W2,W3}, and K = 3 users each of which has a cache

with size M = 2, we can split each file into F = 6 pieces with
equal size, denoted as {W i

n : i ∈ [6]}. During the placement
phase, user 1 caches {W i

n : n ∈ [3], i ∈ {1, 2, 3, 4}},
user 2 caches {W i

n : n ∈ [3], i ∈ {3, 4, 5, 6}} and user 3
caches {W i

n : n ∈ [3], i ∈ {1, 2, 5, 6}}. During the delivery
phase, without loss of generality, we assume user k requires
file Wk, k ∈ [3], that is, the demand vector d = (1, 2, 3).
Then the user 1 sends X1,d = W 3

3

⊕
W 1

2 , the user 2 sends
X2,d =W 6

1

⊕
W 4

3 and the user 3 sends X3,d =W 5
1

⊕
W 2

2 .
The decodablity of each user can be checked easily. The rate
of this scheme is 1

2 .

Furthermore, there is another problem in distributed sys-
tems known as coded distributed computing (CDC), which is
closely related to D2D caching [13]. One of the most popular
distributed computing frameworks is called MapReduce, which
was introduced by Dean and Ghemawat in 2008 [11]. In the
MapReduce framework, there is a master node responsible
for computing Q many functions ϕ1, . . . , ϕQ on N files
W1, . . . ,WN with the help of K worker nodes that can store
files and perform computations. We assume that all files have
the same size, and each function can be decomposed into map
functions and reduce functions as

ϕj(W1, . . . ,WN) = fj(gj1(W1), . . . , gjN (WN)),

where {gjn : j ∈ [Q], n ∈ [N]} are map functions and {fj :
j ∈ [Q]} are reduce functions. We set vjn := gjn(Wn) ∈ FT

2

to be the intermediate value of the computing task.
The MapReduce model contains three phases: map, shuffle

and reduce. In the map phase, the master node assigns N files
to K distributed worker nodes. Each worker node stores a
subset of files Mk ⊂ {Wi, i ∈ [N]}. The computation load r
is the average number of worker nodes storing each file, i.e.

r =

∑
k∈[K] |Mk|

N
.

Worker node k computes {vjn : j ∈ [Q], n ∈ Mk}, which
means the node computes intermediate values based on the
files it has. In the shuffle phase, all worker nodes need to
communicate with each other to get the files they do not have.
Each worker node will be assigned Q/K functions Mk =
{ϕk1

, . . . , ϕkQ/K
}. To finish the computation tasks, each node

will send a function of intermediate values it has to other nodes
based on the function assignment. We use Xk to denote the
message sent by node k and |Xk| is the size of Xk. Then, the
communication load L is defined as

L =

∑
k∈[K] |Xk|
QNT

.

In the reduce phase, after receiving all messages from other
nodes, worker node k can get all intermediate values to finish
the computation. We use an example of word counting to
illustrate the Mapreduce model as follows.

Example II.3. Consider the problem of counting Q = 3
specific words such as {“and′′, “the′′, “of ′′} in a book with
N = 6 chapters denoted as {Wn : n ∈ [6]}. In this
case, ϕj , j = 1, 2, 3 correspond to the counts of words
“and”, “the”,“of” respectively and gjn, j ∈ {1, 2, 3}, n ∈ [6]

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

5

corresponds to the counts of words in each chapter. Suppose
there are K = 3 worker nodes, each of which can store
4 chapters of the book. For instance, worker node 1 stores
M1 = {Wn : n ∈ {1, 2, 3, 4}}, worker node 2 stores
M2 = {Wn : n ∈ {3, 4, 5, 6}} and worker node 3 stores
M3 = {Wn : n ∈ {1, 2, 5, 6}}. Therefore, the computation
load r = 3×4

6 = 2. In the map phase, each node computes
gjn, j = 1, 2, 3 on its assigned subfiles Mi. In the reduce
phase, each node is assigned to find the overall count in the
book of one specific word, e.g., suppose worker node 1 need
to count the word “and” in the book. It is not difficult to find
that

ϕ1(W1,W2, . . . ,W6) = f1(g11(W1), g12(W2), . . . , g16(W6)),

where f1 is the sum function of the counts of “and” on each
chapter. After the map phase, worker node 1 already knows the
number of “and” and two other words in W1,W2,W3,W4.
In order to obtain enough information for the reduce phase,
worker node 1 needs the value g15(W5), g16(W6). In the shuf-
fle phase, the three nodes exchange their information as fol-
lows. The node 1 sends g21(W1)+g33(W3), the node 2 sends
g16(W6)+g34(W4) and the node 3 sends g15(W5)+g22(W2).
Then each node can decode the information it needs to finish
the computation. The communication load in this scheme is
L = 3

6 = 1
2 .

It is obvious that the CDC scheme in Example II.3 is
equivalent to the D2D caching scheme in Example II.2. In
general, in CDC problem, if Q = K, then the CDC scheme
with N files, K worker nodes and computation load r is
equivalent to the D2D caching scheme with K files each
of which is split into F = N pieces, K users and cache
size M = r. Li, Maddah-Ali, Yu and Avestimehr [23]
studied the tradeoff between L and r and proposed a scheme
attaining the optimal tradeoff. The scheme requires that the
number of files N grows exponentially with K. Therefore,
reducing the number of files is also an important goal in
CDC problem. Yan, Wigger, Yang and Tang [47] used PDA
to construct a distributed computing scheme which has a
larger communication load and a smaller number of files.
Almost at the same time, Konstantinos and Ramamoorthy [20]
used another combinatorial object to construct a scheme with
L = 1

r−1 (1−
r
K) and N = Poly(K).

C. Index coding

Index coding is a topic that is closely related to coded
caching and information theory. The problem deals with the
challenge of broadcasting messages to users who have some
prior knowledge, or side information. In the index coding
problem, a sender aims to communicate N independent mes-
sages to K users over a noiseless channel. Each user k ∈ [K]
demands a set of messages indexed by Dj ⊆ [N] and owns a
set of messages Sj ⊆ [N] as side information. It is assumed
that Sj ∩Dj = ∅, and that Dj ̸= ∅ and Sj ̸= [N]. The goal
of the index coding problem is to determine the minimum
number of bits of messages that the sender needs to send to
satisfy the demands of all the users.

In particular, when the set Dj contains only one element,
the index coding problem can be represented using a directed
graph known as the interference graph Gd. The interference
graph Gd consists of n vertices, where each vertex xi corre-
sponds to user i who requires message xi. We refer xj as side
information of user i since user i will use these messages it
has to decode the desired message. In coded caching problems,
we can similarly call the subfiles cached by a user as the side
information it has. For this specific index coding problem,
there exists a scheme with a transmission rate R = χl(Ḡd), as
described in [31], where χl(Ḡd) is the local chromatic number
of the complementary graph Ḡd. In the directed graph Ḡd, the
closed out-neighborhood of a given vertex i is denoted as:

N+(i) = {j ∈ V (Ḡd) : (i, j) ∈ E(Ḡd)} ∪ {i}.

Here, V (Ḡd) denotes the set of vertices in the complemen-
tary graph Ḡd, and E(Ḡd) denotes the set of edges in Ḡd.

Definition II.3 ([31]). The local chromatic number of a
directed graph Ḡd is the maximum number of colors in any
out-neighborhood minimized over all proper colorings of the
undirected graph obtained by ignoring the orientation of the
edges in Ḡd, i.e.

χl(Ḡd) = min
c

max
i∈V

|c(N+(i))|,

where c runs over all proper colorings of the undirected graph.

Next, we explain the index coding problem and the scheme
using local chromatic number as follows.

Example II.4. Consider the index coding problem described
by the directed graph Gd, and the complementary graph Ḡd

in Figure 2. There are 5 users and 5 messages. The user i
demands xi and owns xi+2, xi+3, xi+4 for each i ∈ [5]. From
the definition of local chromatic number, we have χl(Ḡd) = 2.
Then the sender can send(

1 0 1
0 1 1

)x1 + x4
x2 + x5
x3

 =

(
x1 + x4 + x3
x2 + x5 + x3

)
.

It is easy to check that each user can decode the message it
demands.

D. Only rainbow arithmetic progressions set

A k-term arithmetic progression in [n] is a sequence
a1, a2, . . . , ak such that ai − ai−1,∀i ∈ {2, . . . , k} is a
constant. For instance, 1, 3, 5, 7 is a 4-term arithmetic progres-
sion. We start with the definition of only rainbow arithmetic
progressions set. For convenience, we usually write k-term
arithmetic progressions as k-APs.

Definition II.4 (Only rainbow k-APs set). Let A be a subset of
[n], and ϕ be a coloring function which colors every element
of A. Say A is an only rainbow k-APs set if all k-APs in A
are rainbow, that is, for any given k-AP in A, the elements of
this k-AP receive distinct colors.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

6

𝑥1

𝑥2

𝑥3 𝑥4

𝑥5

Fig. 2. Example of index coding with local coloring.

Example II.5. Let n = 8, A = {2, 3, 4, 6, 7, 8} ⊆ [8], and ϕ
be a coloring function over A defined as follows:

ϕ(x) =

 a, x = 2, 8,
b, x = 3, 7,
c, x = 4, 6.

Then, it is easy to check that the elements of any 3-AP in A
receive distinct colors.

How many colors do we need to make sure that every k-AP
is rainbow, that is, all of its elements receive distinct colors?
For example, if k = 3, then at least n

2 colors are needed.
Instead of coloring the whole set [n], very recently, Pach and
Tomon [27] considered the problem on dense subsets of [n].
They gave a surprising result that much fewer colors suffice if
we do not insist on coloring all elements in [n]. More precisely,
they showed the following result for k = 3.

Theorem II.1 ([27]). Let C be a sufficiently large integer and
n = Cd for some positive integer d. There is a set A ⊆ [n]
with |A| ⩾ n − nα and a coloring of A with nβ colors such
that every 3-AP in A is rainbow, where α = 1 − 1

18C6 logC

and β = logC(10C
16
C log2 C).

For convenience, we call set A an (α, β)-only rainbow
3-APs set if A satisfies the properties in Theorem II.1.
Moreover, Theorem II.1 can be extended to longer arithmetic
progressions easily. For more details, we refer the readers to
Concluding remarks in [27].

III. GENERALIZED RAINBOW FRAMEWORK

We will describe a combinatorial framework for coded
caching schemes with uncoded placement when K ≤ N . Let
A and B be two collections with K = |A| and F = |B|.
Let

⊎
be a certain binary operation, for example, the binary

operation
⊎

can be a simple addition operation or a set union
operation. Then we define the set C as

C = A
⊎

B = {a
⊎
b : a ∈ A, b ∈ B}.

Suppose Ĉ is a subset of C. For a carefully selected property
σ, we call any subset in C with property σ as a σ-type

structure. Consider a coloring function ϕ defined on Ĉ, a subset
S of Ĉ is called rainbow if no two distinct elements in S
receive the same color. We call Ĉ only rainbow σ-type set
if every σ-type structure in Ĉ is rainbow under the coloring
function ϕ. Moreover, we need another coloring function
Φ : {(a, b) : a ∈ A, b ∈ B, a

⊎
b ∈ Ĉ} 7→ {c1, c2, . . . , cl},

which is based on ϕ. For example, when A = B = [m] and
the binary operation is addition, the σ-type structure can be
3-term arithmetic progressions.

In our framework, when we design a coloring function Φ
to color every pair (a, b) with a single color, the following
condition is required.

Condition III.1. For any sets A,B, the binary operation
⊎

and the selected subset Ĉ ⊆ C, the σ-type structure, the color-
ing functions ϕ and Φ should satisfy that if Φ(a, b) = Φ(a′, b′),
then a

⊎
b′, a′

⊎
b /∈ Ĉ.

Definition III.1. Let A,B be two sets with size K and F
respectively. Let

⊎
be a binary operation, C = A

⊎
B and

Ĉ ⊆ C. Suppose there exists a triple (σ, ϕ,Φ) such that under
the coloring function ϕ, every σ-type structure in Ĉ is rainbow,
and Condition III.1 is satisfied. Then we can obtain a coded
caching scheme with N files and K users, where the users
are labeled by the elements in A and the files are denoted as
{Wn : n ∈ [N]}. Suppose each file has a size of B bits, and
user a has a cache with a capacity of Ma ·B bits, where

Ma

N
=

|{b : a
⊎
b /∈ Ĉ}|

F
.

The placement and delivery phase can be described as follows:
1) Placement phase: For each file Wn, split it to F subfiles

with equal size and label them with elements in B, i.e.,
Wn = {W (b)

n : b ∈ B}. For uncolored elements a
⊎
b in

A
⊎

B, user a caches the b-th packet of all files in the
library, that is, {W (b)

n : n ∈ [N], b ∈ B, a
⊎
b /∈ Ĉ}.

2) Delivery phase: For any demand vector
d = (da1

, . . . , dak
), the delivery is based on

the coloring function Φ. Suppose there are s
elements (a1, b1), (a2, b2), . . . , (as, bs) receiving
the same color c from Φ, then we denote the following
XOR multiplexing of packets as Wc

Wc =
⊕

1⩽i⩽s

W
(bi)
dai

.

For each uncached pair (a, b), define a constant

m(a, b) = #{Φ(a′, b′) : a′ = a or b′
⊎
a ∈ Ĉ},

and m = max{{m(a, b) : a
⊎
b ∈ Ĉ} ∪ {|Φ| − 1}}. Let

P be an m × |Φ| maximum distance separable (MDS)
matrix. During the delivery phase, the server sends

Xd = P · (Wc1 ,Wc2 , . . . ,Wc|Φ|)
T .

Thus, the delivery phase consists of m packet transmis-
sions.

The main motivation of above framework is as follows. The
sets A and B represent the users and the subpacketizations,
respectively. We use Ĉ to describe the placement phase, that

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

7

is, if a
⊎
b /∈ Ĉ, the user a caches subfiles {W (b)

n : n ∈
[N]}. The coloring function Φ tells us which symbols can
be sent together. If each symbol appears at most once in the
delivery phase, from the decodability of the caching scheme,
we can derive Condition III.1. Finally, we further reduce the
rate combining some ideas from the index coding.

Theorem III.1. The scheme in Definition III.1 is decodable.

Proof: Denote the demand vector as d = (da1
, . . . , daK

), for
any user ai, we need to show that user ai can decode the
subfile W

(b)
dai

for all b ∈ B such that ai
⊎
b ∈ Ĉ from Xd.

Without loss of generality, we can assume that Φ(ai, b) = c1,
by Condition III.1, we know that the user ai can decode W (b)

dai

from Wc1 since user ai caches {W (b′)
n : n ∈ [N], ai

⊎
b′ /∈ Ĉ}.

For the pair (ai, b), define a set

S(ai, b) := {Φ(a′, b′) : a′ = ai or b
′
⊎
ai ∈ Ĉ}.

Suppose that the size of S(ai, b) is m′ ≤ m, where m is
defined in Definition III.1, let S(ai, b) = {c1, c2, . . . , cm′}.
The central server sends Xd = P · (Wc1 , . . . ,Wcl)

T , where
P = (p1, p2, . . . , pl) is an m× l MDS array and pi is the i-th
column of P . After receiving Xd, the user ai can delete all
subfiles it has and obtain

(p1, p2, . . . , pm′)(W
(b)
dai
,W ′

c2 , . . . ,W
′
cm′)

T ,

where W ′
cj is obtained by deleting some redundant com-

ponents in Wcj . Since for any color c /∈ S(ai, b), the
user ai caches all the subfiles in Wc and for any color
c ∈ S(ai, b)\{c1}, there exists at least one pair (a′, b′) such
that the user ai does not cache. Because P is an MDS array,
any m columns of P are linearly independent and m′ ≤ m,
then the user ai can decode W (b)

dai
. ■

Remark III.1. In the delivery phase, we define a constant
m and find an m × |Φ| MDS array. To make sure that such
an array exists over F2 (which is always considered in coded
caching problem), m cannot be smaller than |Φ|−1. However,
if we assume that the computation between subfiles is over Fq

for sufficiently large q, then we don’t need m ≥ |Φ|−1, which
means we can further reduce the transmission rate. From
Definition II.3, it is obvious that the constant m in the delivery
scheme is the local chromatic number of the corresponding
index coding problem.

Fix a ∈ A, denote Za as the number of b ∈ B such that
a
⊎
b ∈ Ĉ. In particular, if each user has the same cache size,

i.e. Za = Z for all a ∈ A, we have the following result.

Corollary III.1. The generalized rainbow framework provides
a coded caching scheme with (K = |A|, F = |B|, MN = 1 −
Z
F , R = m

|B|).

To better illustrate the scheme, we present an example as
follows.

Example III.1. Let A = [4], B = {12, 23, 34, 41} and
the binary operation be set union operation ∪. Therefore,
C = A∪B and assume Ĉ = {123, 124, 134, 234}. The coloring
function ϕ on Ĉ satisfies the rainbow property such that any

three elements in Ĉ receive distinct colors, which implies there
are exactly 4 colors. Using ϕ, we can define the coloring
function Φ over all the pairs (a, b) such that Φ(a, b) = ϕ(a∪b).

During the delivery phase, we need to count a special
number before sending messages. For any pair (a, b) ∈ A×B
such that a ∪ b ∈ Ĉ, define m(a, b) = #{Φ(a′, b′) : a′ =
a or b′ ∪ a ∈ Ĉ} and m = max{(a,b):a∪b∈Ĉ}m(a, b). In this
example, m = 3. Next, find a 3× 4 MDS array such as

P =

1 0 0 1
0 1 0 1
0 0 1 1

 ,

and define the sum of subfiles corresponding to the same color
ci as

Wci =
⊕

Φ(Ai∪Bi)=ci

W
(bi)
dai

.

Then we send

P · (Wc1 ,Wc2 ,Wc3 ,Wc4)
T .

More precisely, suppose ϕ(123) = c1, ϕ(124) = c2, ϕ(134) =
c3, ϕ(234) = c4, then we send

W
(23)
d1

⊕
W

(12)
d3

⊕
W

(34)
d2

⊕
W

(23)
d4

,

W
(14)
d2

⊕
W

(12)
d4

⊕
W

(34)
d2

⊕
W

(23)
d4

,

W
(34)
d1

⊕
W

(14)
d3

⊕
W

(34)
d2

⊕
W

(23)
d4

.

We can check that each user can decode all the subfiles he
requires from the transmission.

The scheme defined in Definition III.1 is a valid coded
caching scheme even for heterogeneous cache size. Note
that Condition III.1 implies that if the central server sends
messages according to colors, i.e., Xd = (Wc1 , . . . ,Wcl), it
is a PDA scheme with heterogeneous cache size. The MDS
array P can be used to further compress the transmission since
for each user, there are at most m colors c such that the user
does not cache all the components of Wc.

Remark III.2. In fact, if we take advantage of the coloring
function Φ to color every pair (a, b) with a single color, and
the central server sends by colors, then Condition III.1 is
necessary. Since each uncached pair (a, b) is sent only once,
the user a needs to decode it from the transmission implies that
any other subfile W (b′)

da′ combined with W (b)
da

must be already
cached by the user a. In this case, the generalized scheme
defined above is equivalent to combining a PDA scheme with
a local coloring. However, if the coloring function Φ is a
multi-coloring function, that is, it can color some pair (a, b)
with multiple colors, this scheme may perform better than the
PDA scheme. In this case, Condition III.1 is not necessary.
We provide an example to show that if Φ is a multi-coloring
function, then our framework is able to cover some caching
schemes which can not be covered by the simple combination
of PDA schemes and local coloring method.

In the following example, we write {a1, a2, . . . , as} as
a1a2 · · · as for ease and we use [i : j]6 to denote the set
{i, i+ 1, i+ 2, . . . , j} mod 6.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

8

Example III.2. Let A = {12, 23, 34, 45, 56, 61},B =
{1234, 2345, 3456, 4561, 5612, 6123}. Let

⊎
be the set union

operation. Then we can see that C is the union of cyclic sets
with size 4, 5, 6. Next we choose Ĉ as follows:

Ĉ = {12345, 23456, 34561, 45612, 56123, 61234, 123456}
= {[i : i+ 4]6 : i ∈ [6]} ∪ {123456}.

Let ϕ be a coloring function such that for any [i : i+4]6, if
C ∈ Ĉ contains it, then C should receive a unique color, i.e.,

ϕ(C) =

{
ci, C = [i : i+ 4]6,
{c1, c2, c3, c4, c5, c6}, C = 123456.

And Φ is defined as

Φ(a, b) =


ϕ(a ∪ b), if |a ∪ b| = 5,
{c1, c3, c5}, if |a ∪ b| = 6 and

a = {k, k + 1}, k odd,
{c2, c4, c6}, if |a ∪ b| = 6 and

a = {k, k + 1}, k even.

The coded caching scheme can be described as follows: The
set A consists of K = 6 users and each file in {Wn, n ∈
[N], N ≥ 6} can be partitioned into F = 6 subfiles, that is,
Wn = {W [i:i+3]6

n : i ∈ [6]}. During the placement phase, the
user a caches W b

n if a ⊆ b, that is,

User 12 caches {W 5612
n ,W 6123

n ,W 1234
n : n ∈ [N]};

User 23 caches {W 6123
n ,W 1234

n ,W 2345
n : n ∈ [N]};

User 34 caches {W 1234
n ,W 2345

n ,W 3456
n : n ∈ [N]};

User 45 caches {W 2345
n ,W 3456

n ,W 4561
n : n ∈ [N]};

User 56 caches {W 3456
n ,W 4561

n ,W 5612
n : n ∈ [N]};

User 61 caches {W 4561
n ,W 5612

n ,W 6123
n : n ∈ [N]}.

During the delivery phase, suppose the demand of user {i, i+
1} is file i, the central server can send by colors, that is,

W 2345
1

⊕
W 1234

4

⊕
W 3456

1

⊕
W 5612

3

⊕
W 1234

5 ;

W 3456
2

⊕
W 2345

5

⊕
W 4561

2

⊕
W 6123

4

⊕
W 2345

6 ;

W 4561
3

⊕
W 3456

6

⊕
W 3456

1

⊕
W 5612

3

⊕
W 1234

5 ;

W 5612
4

⊕
W 4561

1

⊕
W 4561

2

⊕
W 6123

4

⊕
W 2345

6 ;

W 6123
5

⊕
W 5612

2

⊕
W 3456

1

⊕
W 5612

3

⊕
W 1234

5 ;

W 1234
6

⊕
W 6123

3

⊕
W 4561

2

⊕
W 6123

4

⊕
W 2345

6 .

The decodability of above scheme can be easily checked.
For example, user 12 needs W 2345

1 ,W 3456
1 and W 4561

1 . After
eliminating the subfiles cached by user 12, we will obtain


1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0

 ·



W 2345
1

W 3456
1

W 4561
1

W 3456
2

W 4561
2

W 4561
3

W 2345
5

W 2345
6

W 3456
6


.

Since the first three columns are linearly independent with the
other six columns, the user 12 can decode the three subfiles he
wants. The decodability of other users can be shown similarly.

Note that if we use PDA scheme for the caching problem
in Example III.2, there are at least 8 transmissions. Suppose
we use local coloring as well, from Definition III.1, there are
at least 7 transmissions since the MDS array over F2 with 8
columns contains at least 7 rows. Therefore, the above scheme
cannot be represented by PDA or the combination of PDA and
local coloring.

The main idea of Example III.2 comes from another method
in the index coding problem named as interference alignment.
We call a set of subfiles in the transmission as interferences for
one user if the user does not require these subfiles and does not
cache them. To be specific, in above example, the interferences
for user 12 are W 3456

2 ,W 4561
2 ,W 4561

3 ,W 2345
5 ,W 2345

6 ,W 3456
6 .

The interference alignment method is to make the coefficient
space of interferences independent with the coefficient space of
the demand files for each user. This method can be transformed
into the constrains for the coloring function Φ. To see this, we
need some notations.

For a pair (a, b), a
⊎
b ∈ Ĉ and a coloring function Φ

with l colors, denote the color set assigned to (a, b) by Φ
as C(a, b), that is, C(a, b) = Φ(a, b) ⊆ {c1, . . . , cl}. An
indicator vector v(a, b) = (v1, v2, . . . , vl) corresponding to
the color set C(a, b) is a binary vector with length l, where
vi = 1 if ci ∈ C(a, b) and vi = 0 otherwise.

From above analysis, if Φ can map some pairs (a, b) with
multiple colors, we can assume the following condition holds.

Condition III.2. For any sets A,B, the binary operation⊎
and the selected subset Ĉ ⊆ C, the σ-type structure, the

coloring functions ϕ and Φ should satisfy that for any a ∈ A,
{v(a, b) : b ∈ B, a

⊎
b ∈ Ĉ} is a set of linearly independent

vectors and {v(a, b) : b ∈ B, a
⊎
b ∈ Ĉ} is linearly indepen-

dent with the vector set {v(a′, b) : a
⊎
b ∈ Ĉ, a′

⊎
b ∈ Ĉ}.

Remark III.3. Given user set A and packets set B, the first
task in our generalized rainbow framework is to define the
suitable binary operation

⊎
, and then the most important

thing is to give the appropriate σ-type structure and coloring
functions ϕ,Φ. From above analysis, the above conditions are
restricted to Φ. The σ-type structure and coloring function
such that every σ-type structure is rainbow can be chosen
widely. This might bring some new ideas in constructing coded
caching schemes. Trivially, we can color every element of Ĉ
with different colors, which implies that arbitrary structure in
Ĉ is rainbow.

IV. EXISTING SCHEMES UNDER RAINBOW FRAMEWORK

In this section, we will highlight several existing works on
coded caching schemes via different ideas and combinatorial
objects. However, as we have discussed in Remark III.3, in our
generalized rainbow framework, many existing schemes are
equipped with the trivial coloring function. Hence we represent
some of them and discuss the way to improve the existing
schemes.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

9

A. All PDA schemes are rainbow schemes

For a bipartite graph, a strong edge coloring function is a
coloring function such that any two edges which have the same
color are not adjacent and can not be connected by another
edge. The relationship between PDA schemes and strong edge
coloring of a bipartite graph is studied in [46]. The following
result is known.

Theorem IV.1 ([46]). Any F×K array P is a PDA if and only
if its corresponding edge colored bipartite graph G(F ∪K, E)
satisfies

1) the vertex in K has a constant degree;
2) the corresponding coloring is a strong edge coloring.

Given a bipartite graph G with vertex set F ∪ K and edge
set E . Then, in our new framework, let A = K, B = F and
the binary operation be the Cartesian product, i.e.

C = A× B = {(a, b) : a ∈ A, b ∈ B}.

Note that C is the set of all possible edges in G. Choose Ĉ = E ,
and define a coloring function ϕ on Ĉ such that

1) If (a1, b1), (a2, b2) ∈ Ĉ and a1 = a2 or b1 = b2 then
ϕ((a1, b1)) ̸= ϕ((a2, b2)).

2) If (a1, b1), (a2, b2), (a3, b3) ∈ Ĉ and |{a1, a2, a3}| ≤ 2,
|{b1, b2, b3}| ≤ 2 then (a1, b1), (a2, b2) and (a3, b3) are
rainbow.

In fact, any strong edge coloring function satisfies above
conditions. It is easy to check that the first condition means
that any two edges with the same color are not adjacent and
the second condition is equivalent to that any two edges with
the same color cannot be connected by another edge. Then we
can select the coloring function Φ in the rainbow framework
exactly equal to ϕ. If we do not consider the constant m and
send subfiles according to their colors directly, we obtain a
PDA scheme. From above analysis, we know that any PDA
scheme can be represented by a rainbow scheme under the
rainbow framework.

Remark IV.1. In the delivery phase, if we take m into con-
sideration, then the transmission rate can be further reduced
since m ≤ |Φ|.

B. Construction from the union of disjoint subsets

The first construction from [30] regards users and packets as
disjoint subsets of the ground set, respectively. More precisely,
they set(

K,F,
M

N
,R

)
=

((
n

a

)
,

(
n

b

)
,

(
n
b

)
−
(
n−a
b

)(
n
b

) ,

(
n

a+b

)(
n
b

))
.

In particular, for a = 2, n = λa for constant λ > 1, this con-
struction achieves R = λ2 with F = O(K− 1

4 · 2
√
2KH(λ−1)),

where H(x) = −x log2 x−(1−x) log2 (1− x) for 0 < x < 1
is the binary entropy function. Moreover, it is easy to check
R and M

N are both constant and F grows sub-exponentially
with K under such parameters. This can actually be achieved
by subset version of rainbow schemes as follows.

Definition IV.1. Let A =
(
[n]
a

)
be a collection of all a-

element subsets of [n] and B =
(
[n]
b

)
be a collection of all

b-element subsets of [n]. Set the binary operation
⊎

as set
union operation

⋃
. Suppose that a and b are positive integers

with a < b, and n is large enough, then it is easy to see that

C = A
⊎

B =

(
[n]

b

)⋃(
[n]

b+ 1

)⋃
. . .

⋃(
[n]

a+ b

)
.

Let Ĉ ⊆ C be the collection of all (a + b)-element subsets of
[n], i.e. Ĉ =

(
[n]
a+b

)
. It is easy to see |Ĉ| = |C|−o(|C|). We then

color every element in Ĉ using the proper coloring function
Φ, and leave the elements in C \ Ĉ uncolored.

1) Placement phase: For uncolored elements A
⋃
B in

A
⊎

B, user A caches the B-th packet of all files in
the library.

2) Delivery phase: The delivery is based on the col-
oring function Φ. Suppose there are s elements
A1

⋃
B1, A2

⋃
B2, . . . , As

⋃
Bs receiving the same

color from Φ, then the server broadcasts the following
XOR multiplexing of packets⊕

1⩽i⩽s

W
(Bi)
dAi

.

The delivery phase consists of |Φ| packet transmissions,
where |Φ| is the number of colors in Φ.

It remains to discuss the properties of the proper coloring
function Φ. Let A1, A2 ∈ A and B1, B2 ∈ B. Using the proof
of Theorem V.1, neither of the following will happen.

• A1

⋃
B1 and A1

⋃
B2 cannot receive the same color

from Φ. Also, A2

⋃
B1 and A2

⋃
B2 cannot receive the

same color from Φ.
• If A1

⋃
B1 and A2

⋃
B2 receive the same color from Φ,

then both of A1

⋃
B2 and A2

⋃
B1 are uncolored.

To satisfy the above conditions, we can design the coloring
functions with the following properties.

Lemma IV.1. Let Φ be the coloring function of elements in
Ĉ =

(
[n]
a+b

)
with the following properties:

• If C1, C2 ∈ Ĉ and |C1

⋂
C2| ⩾ a, then Φ(C1) ̸= Φ(C2).

• If C1, C2, C3 ∈ Ĉ and Ci ⊆ Cj

⋃
Ck for i ̸= j ̸= k, then

C1, C2 and C3 receive distinct colors.
Then Φ can be used in the above set system version of rainbow
scheme.

Remark IV.2. However, there is only a trivial coloring
function Φ yet, that is, we color each element in Ĉ =

(
[n]
a+b

)
via different colors. This trivial coloring function achieves the
scheme of [30]. Hence, any proper coloring function with
fewer than

(
n

a+b

)
colors will improve this construction.

C. Ali-Niesen scheme

As far as we know, Ali-Niesen scheme [24] is the first
coded caching scheme that kickstarted the research of coded
caching in general. Recall the parameters in Maddah Ali-
Niesen scheme as(

K,F,
M

N
,R

)
=

(
K,

(
K
KM
N

)
,
M

N
,
K(1− M

N)
KM
N + 1

)
.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

10

Using the generalized rainbow scheme, we can set A = [n]
and B =

(
[n]
t

)
, where t = KM

N . Using the similar analysis,
it suffices to design the coloring functions with properties as
follows.

Lemma IV.2. Let t = KM
N and Φ be the coloring function of

elements in Ĉ =
(
[n]
t+1

)
such that

• If C1, C2 ∈ Ĉ and C1

⋂
C2 ̸= ∅, then Φ(C1) ̸= Φ(C2).

• If C1, C2, C3 ∈ Ĉ and Ci ⊆ Cj

⋃
Ck for i ̸= j ̸= k, then

C1, C2, C3 receive distinct colors.

Then Φ can be used in the Ali-Niesen type rainbow scheme.

D. Tang-Ramamoorthy scheme

In the Tang-Ramamoorthy scheme [35], the subpacketiza-
tion is exponentially smaller than that of the previous scheme
but with some minor loss in rate (up to a constant factor).
However, F = ef(

N
M)·K for some function f(·). We show

an example which can also be achieved by our generalized
rainbow scheme. Assume that there exists a generator matrix
G of an (n, k) linear block code over field Fq which has the
following properties:

1) Divisibility: (k + 1) | n,
2) Rank property: For every contiguous set of k + 1

columns, every subset of k-columns on this k+1 subset
has full rank.

Then we can obtain qk codewords of length n.
We use A to denote all the pairs (a, a′), where a ∈ [n] and

a′ ∈ {0, 1, . . . , q−1}. Each codeword b1b2 . . . bn corresponds
to the set {(1, b1), (2, b2), . . . , (n, bn)}. Therefore, all of the
qk codewords correspond to qk sets, which form the family
B.

Definition IV.2. Let A and B be the families defined above.
Let

⊎
be the set union operation

⋃
and C = A∪B. It is easy to

show that for any C ∈ C, C contains exactly n or n+1 pairs.
Let Ĉ ⊆ C be the collection of elements in C which contains
exactly n+1 pairs. It is easy to see |Ĉ| = |C|−o(|C|). We then
color every element using the proper coloring function, and
leave the elements in C \ Ĉ uncolored. The placement phase
and delivery phase are the same as those in Definition III.1.

Now, we give a coloring function when n = k + 1. Any
{C1, . . . , Ck+1} ⊆ Ĉ satisfying

|Ci ∩ Cj | = n, for any i ̸= j ∈ [k + 1], (1)

forms a color class. Next we explain such a coloring function
in detail.

For each sequence s1s2 . . . sn which is not a codeword,
its corresponding set {(1, s1), . . . , (n, sn)} /∈ B. Due to the
rank property, for each j ∈ [n], there is a unique codeword
b1b2 . . . bn such that bi = si for all i ∈ [n] \ {j}. Therefore,
for j ∈ [n], there is a unique element Bj in B such that
{(k, sk)|k ∈ [n] \ j} ⊆ Bj . We color Bj ∪ (j, sj) ∈ Ĉ for
every j ∈ [k + 1] with the same color, thus the condition (1)
is satisfied, where the set of n common pairs corresponds to
the sequence s1s2 . . . sn.

Example IV.1. Suppose q = 2, k = 2, n = k + 1 = 3, we
have K = 6, F = 4. The generator matrix G of (3, 2) block
code is [

1 0 1
0 1 1

]
.

Then A = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}, B =
{B1, B2, B3, B4}, where

B1 = {(1, 0), (2, 0), (3, 0)},
B2 = {(1, 0), (2, 1), (3, 1)},
B3 = {(1, 1), (2, 0), (3, 1)},
B4 = {(1, 1), (2, 1), (3, 0)}.

Using the procedure above, we can color the elements in Ĉ
with 4 colors.

c1 = {{(1, 1), (1, 0), (2, 0), (3, 0)},
{(2, 0), (1, 1), (2, 1), (3, 0)},
{(3, 0), (1, 1), (2, 0), (3, 1)}};

c2 = {{(2, 1), (1, 0), (2, 0), (3, 0)},
{(1, 0), (1, 1), (2, 1), (3, 0)},
{(3, 0), (1, 0), (2, 1), (3, 1)}};

c3 = {{(3, 1), (1, 0), (2, 0), (3, 0)},
{(1, 0), (1, 1), (2, 0), (3, 1)},
{(2, 0), (1, 0), (2, 1), (3, 1)}};

c4 = {{(3, 1), (1, 1), (2, 1), (3, 0)},
{(1, 1), (1, 0), (2, 1), (3, 1)},
{(2, 1), (1, 1), (2, 0), (3, 1)}}.

Finally, it achieves a (K,F, MN , R) = (6, 4, 12 , 1) centralized
coded caching scheme.

V. NEW RAINBOW SCHEMES FOR CODED CACHING

A. New rainbow schemes

In this section, we introduce our new scheme for the central-
ized coded caching problem under the rainbow framework in
the previous section. Suppose there are K users served through
a noiseless broadcast channel by an agent who has access to
N distinct files from a library. Every user is equipped with
a local cache of size M. The key problem is to design the
placement phase where the user caches file packets from the
library under the cache constraint and the delivery phase where
the user reveals his own demand so that all demands should
be satisfied with at most R file transmissions.

Let W = {W1,W2, . . . ,WN} be a library of N files. Let
(W

(1)
i ,W

(2)
i , . . . ,W

(F)
i) ∈ FF×1 be a vector of length F

over some field F representing file Wi. Then we recall the
(R,K,M,N,F) centralized coded caching scheme as follows.

Definition V.1. Every file Wi in the library is divided into F
packets for 1 ⩽ i ⩽ N. An (R,K,M,N,F) centralized coded
caching scheme consists of:

1) A family of subsets {Wi,j}i∈[N],j∈[K], where Wi,j ⊆
[K] is the set of user caches where the i-th packet of
file j is stored. Moreover, each user can cache at most
MF file packets in placement phase.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

11

2) A set of user demands d = (d1, d2, . . . , dK) arising
from the library, where di ∈ [N] is the index of the
requested file of the user k. The transmission function
ϕ(Wd1

,Wd2
, . . . ,WdK

) → FRF for some field F such
that every user s can decode their demanded files Wds

via ϕ and the cache content available.
3) For any demand pattern among the users arising from

the library, the total number of file transmission can be
at most R.

Definition V.2 (Rainbow coded caching scheme). Let K = m
be an integer. Let A ⊆ [2m] be an (α, β)-only rainbow 3-
APs set. More precisely, A ⊆ [2m] is a set of size at least
2m−(2m)α, and let χ be a coloring of A with at most (2m)β

colors such that every 3-AP in A is rainbow. Let A1 = A2 =
[m], we consider the following sum set

A1 +A2 = {x+ y : x ∈ A1, y ∈ A2}.

We then color the pairs (x, y) ∈ A1 ×A2 as

Ψ((x, y)) =

{
uncolored, x+ y /∈ A,
(x− y, χ(x+ y)), x+ y ∈ A.

Then we describe the placement phase and delivery phase with
assistance of the above colored sum set. In this scheme, every
file in the library is split into F = K packets.

1) Placement phase: For uncolored elements x+y in A1+
A2, user x caches the y-th packet of all files in the
library.

2) Delivery phase: The delivery is based on the color-
ing function Ψ. Suppose that there are s elements
x1 + y1, x2 + y2, . . . , xs + ys receiving the same color
from Ψ, then the server broadcasts the following XOR
multiplexing of packets⊕

1⩽i⩽s

W
(yi)
dxi

.

The delivery phase consists of |Ψ| packet transmissions,
where |Ψ| is the number of colors in Ψ.

Remark V.1. Note that in this new scheme, we omit the
constant m defined in the framework and send messages
according to their colors directly. In this scheme, A1 and A2

stand for the sets of users and subfiles. The arithmetic sum
of x and y determines the placement phase and the coloring
function Φ determines the delivery phase.

Next we show that our rainbow scheme is a centralized
coded caching scheme.

Theorem V.1. The (K,α, β,Ψ) rainbow scheme is an (R =
|Ψ|
F ,K,M,N, F = K) coded caching scheme.

Proof. In our rainbow scheme, the number of packets per file
F is equal to the number of users K. Our first task is to verify
that the cache constraint of every user is satisfied. Note that
for every user x ∈ [m], there are at most (2m)α elements
b ∈ [2m] \ A, such that x + y = b. This indicates that each
user caches at most (2m)αN ⩽MF file packets.

Next we will show that our rainbow scheme satisfies any
kind of user demands d = (d1, d2, . . . , dK) arising from the

library, where di ∈ [N] is the index of the requested file of
the user i. After coloring each element of sum set A1 + A2

using function Ψ, we consider some color class Cj consisting
of cj elements

x1 + y1, x2 + y2, . . . , xcj + ycj ,

and the corresponding XOR transmission consisting of cj
packets: ⊕

1⩽i⩽cj

W
(yi)
dxi

.

Then we analyze the decoding algorithm for each user. For a
user x ∈ [m] requesting a certain file Wdx

, he has cached the
set of packets {Ws,dx : s+ x is uncolored} in the placement
phase. Hence, to decode the requested file Wdx , it suffices
to obtain the uncached packets. We just need to show the
following result.

Claim 1. Let Cj be some color class consisting of cj elements

x1 + y1, x2 + y2, . . . , xcj + ycj .

Then for each 1 ⩽ s, t ⩽ cj , xs + yt ∈ A if and only if s = t.

Proof of Claim 1. Trivially, xs + yt ∈ A if s = t by the
definition. On the other hand, if s ̸= t, suppose xs + yt ∈ A,
the element xs + yt will receive a color from function Ψ.
Without loss of generality, let Ψ(xs+ ys) = ψ(xt+ yt) = Ψ1

and ψ(xs + yt) = Ψ2. Let ∆ = xs − ys = xt − yt, then we
can write xs + yt as

xs + yt =
(2xs −∆) + (2yt +∆)

2
=

(xs + ys) + (xt + yt)

2
.

Note that xs + ys, xs + yt and xt + yt form a 3-AP in A.
However, xs + ys and xt + yt are in the same color class,
which implies χ(xs + ys) = χ(xt + yt) by the definition of
Ψ. That is impossible since every 3-AP in A is rainbow, then
the claim follows.

By Claim 1, it holds that user xs knows all the packets
{W (yi)

dxi
: 1 ⩽ i ⩽ cj , i ̸= s} in his cache at the placement

phase. Then the unknown packets can be easily obtained by
substraction operation. Every user will recover his requested
file by this decoding algorithm, therefore the rainbow scheme
works. Finally, it is easy to see that the number of colors
used by Ψ is at most (2m)1+β . This completes the proof of
Theorem V.1.

Next we give an example to show the practicality of our
coded caching scheme.

Example V.1. Suppose K = F = 4, we color the elements in
{1, 2, . . . , 8} as follows.

Θ(x) =


uncolored, x = 1, 5,
a, x = 2, 8,
b, x = 3, 7,
c, x = 4, 6.

Using the function Ψ in Definition V.2, we present a table as
follows. As we can see in Table I, every uncolored pair (x, y)
represents a caching action in the placement phase and every
color class corresponds to a transmission in delivery phase.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

12

TABLE I
K = F = 4 RAINBOW CODED CACHING SCHEME

K
F

1 2 3 4

1 (0, a) (−1, b) (−2, c) uncolored
2 (1, b) (0, c) uncolored (−2, c)
3 (2, c) uncolored (0, c) (−1, b)
4 uncolored (2, c) (1, b) (0, a)

Finally, it achieves a (K,F, MN , R) = (4, 4, 14 , 6) centralized
coded caching scheme.

Obviously, the limitation showed in [30] indicates the fol-
lowing result.

Theorem V.2. The only rainbow 3-APs set with n− nα ele-
ments and only O(1) colors does not exist for any 0 < α < 1.

B. Schemes taking m into consideration

Note that in the above rainbow scheme, we first color
the non-cached subfiles such that special structure in Ĉ is
rainbow and then deliver messages depending on their colors.
If different colors can be sent together, then the transmission
load can be further reduced. In Example III.1, making use
of the results of the index coding problem, we calculate a
constant m, and use an m × |Φ| MDS matrix to combine
different colors.

Remark V.2. In Example III.1, if we deliver the subfiles
according to different colors, we have to send messages at
4 times. But if we use the new delivery scheme, we only need
to send messages at 3 times and for each time, the subfiles
corresponding to 2 colors are used.

For general case, let A = [n] and B ⊂
(
[n]
t

)
. Set the

operator as set union ∪. Then C = A ∪ B contains some t-
tuples and (t+1)-tuples of [n]. Define Ĉ = C ∩

(
[n]
t+1

)
, and the

coloring function ϕ over Ĉ must satisfy the following rainbow
conditions.

• If C1, C2 ∈ Ĉ and C1

⋂
C2 ̸= ∅, then Φ(C1) ̸= Φ(C2).

• If C1, C2, C3 ∈ Ĉ and Ci ⊆ Cj

⋃
Ck for i ̸= j ̸= k, then

C1, C2 and C3 receive different colors.
The coloring function Φ over {(A,B) : A∪B ∈ Ĉ} is defined
as

Φ(A,B) = ϕ(A ∪B).

Suppose that (A1, B1), (A2, B2), . . . , (As, Bs) are assigned
with the same color c, which implies that Ai∪Bj /∈ Ĉ,∀i ̸= j.
Thus user Ai can decode W (Bi)

dAi
from Wc =

⊕
j∈[s]W

(Bj)
dAj

.

For each pair (A,B) with A ∪B ∈ Ĉ, define a constant

m(A,B) = #{Φ(A′ ∪B′) : A′ = A or B′ ∪A ∈ Ĉ},

where (A′, B′) = (A,B) is allowed. Then define

m = max{{m(A,B) : A ∪B ∈ Ĉ} ∪ {|Φ| − 1}}.

Let P be an m× |Φ| MDS matrix,

P =
(
p1 p2 . . . pΦ

)
.

During the delivery phase, the server sends

P · (Wc1 ,Wc2 , . . . ,Wc|Φ|)
T .

Based on the above construction, we have the following
theorem.

Theorem V.3. The rainbow framework with new delivery
scheme described above is an (R = m

F ,K = |A|, F =
|B|,M,N) coded caching scheme.

Proof: It suffices to prove the solvability for each user Ai.
From the definition of Ĉ, we know that user Ai caches the
subfile Bj if Ai ∪Bj /∈ Ĉ, and Ai can decode the subfile Bj ,
which is not cached by the user, from Wc1 if Φ(Ai, Bj) = c1.
From the definition of m(Ai, Bj), it is not difficult to see that
every subfile W (Bn)

dAm
with Am ∪ Bn ∈ Ĉ which is cached by

user Ai is not contained in the set

{(A′, B′) : A′ = Ai or B
′ ∪Ai ∈ Ĉ}.

Thus, for user Ai, after deleting the subfiles he has cached,
we have

(p1, p2, . . . , pm(Ai,Bj)) · (Wc1 ,Wc2 , . . . ,Wcm(Ai,Bj)
)T .

Since P is an MDS matrix and m ≥ m(Ai, Bj), user Ai can
decode Wc1 and further decode W (Bj)

dAi
. The similar approach

can be used for any (Ai, Bj), thus the solvability of the new
delivery scheme is proved. ■

C. Comparison with previous constructions

In Table II, we compare our scheme with some existing
schemes with low subpacketization level.

Most schemes contained in Table II are PDA scheme.
It is hard to compare these schemes due to the different
parameters. The proposed scheme based on the only rainbow
3-AP progressions set is also a PDA scheme. The scheme
shown in Example III.1 and discussed in this section combines
the PDA scheme with local coloring. If we restrict M

N = n−2
n ,

then the optimal rate achieved by PDA schemes would be 1.
In our framework, the rate can be smaller.

VI. APPLICATIONS TO D2D CODED CACHING

In this section, we present the application of our rainbow
framework in the Device-to-Device coded caching problem.
We start with an illustrative example.

Example VI.1. Let A = [4],B = {12, 23, 34, 41}. Suppose
there are 4 files {Wn : n ∈ [4]}. Each file can be partition
into 4 pieces, that is, Wn = {WB

n : B ∈ B} and there are
4 users {Ki : i ∈ A}. During the placement phase, the user
Ki caches WB

n if i ∈ B. For example, the user K1 caches
subfiles W 12

n ,W 41
n for all n ∈ [4]. During the delivery phase,

suppose the user Ki makes a request of file Wi for all i ∈ [4],
then the transmissions are as follows.

1) K1 sends W 41
2

⊕
W 12

4 ;
2) K2 sends W 23

1

⊕
W 12

3 ;
3) K3 sends W 34

2

⊕
W 23

4 ;
4) K4 sends W 34

1

⊕
W 41

3 .

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

13

Parameters The Number of users K Subpacketization F Caching ratio M
N

Transmission rate R

0 < δ < 1 and c1, c2 are constant [33] K K 2K−c1δ exp(− c2
δ

) Kδ

n, a, b ∈ N+ with n > a+ b [30]
(n
b

) (n
a

)
1−

(
n−b
a

)
(
n
a

)
(

n
a+b

)
(
n
a

)

a, b,m, λ ∈ N+, a, b < m, λ < min{a, b} [46]
(m
a

) (m
b

)
1−

(
a
λ

)(
m−a
b−λ

)
(
m
b

)
(

m
a+b−2λ

)(
a+b−2λ

a−λ

)
(
m
b

)

n,w ∈ N+, w < n [52] 2n
∑w

i=0

(n
i

)
1−

(
n
w

)
∑w

i=0

(
n
i

)
(
n
w

)
2n−w∑w

i=0

(
n
i

)

r, k, z ∈ N+ [2] 2rk 2rk 1− r+1
2r

+ rz
2rk

k2+k2r−krz
2rk

n0, w, p0 ∈ N+ [42] pn0
0 pn0

0 1−
(
n0
w

)
(p0−1)w

p
n0
0

(
n0
w

)
(p0−1)w

p
n0−w
0

m ∈ N+, α = 1− o(1), β = o(1) m m 2m− (2m)α
(2m)1+β

m

n ∈ N+, Example III.1 n n n−2
n

n−1
n

TABLE II
COMPARISON WITH SOME EXISTING SCHEMES

It is easy to check that each user can decode all the subfiles
it needs. For instance, K1 can decode W 23

1 from the message
sent by K2, since W 12

3 is already known. In this example, the
transmission rate Rd2d = 4

4 = 1.

Note that in the rainbow scheme for coded caching shown
in Example III.1, the transmissions should be

W 23
1

⊕
W 12

3

⊕
W 34

2

⊕
W 23

4 ,

W 14
2

⊕
W 12

4

⊕
W 34

2

⊕
W 23

4 ,

W 34
1

⊕
W 14

3

⊕
W 34

2

⊕
W 23

4 .

We can partition each transmission into 2 parts, each part can
be sent by only one user. Therefore, we obtain the delivery
phase in Example VI.1.

We modify the rainbow framework in Section III to be
applicable to D2D coded caching problem as follows.

Definition VI.1. Let K = |A|, F = |B|, define C = A
⊎
B.

Let the σ-type structure, Ĉ, and the coloring functions ϕ and Φ
be the same as those given in Definition III.1. Then we describe
the D2D caching scheme with assistance of the above colored
subset Ĉ.

1) Placement phase: The user a caches {W b
n : a

⊎
b /∈ Ĉ}.

2) Delivery phase: The communication between nodes is
based on the coloring function Φ. Denote the transmis-
sion in Definition III.1 as

P · (Wc1 ,Wc2 , . . . ,Wc|Φ|)
T = P · V,

where P is an m × |Φ| MDS array, and Wci is the
XOR sum of all the subfiles assigned color ci. Suppose
P · V can be decomposed into a linear combination of
W ′

1,W
′
2, . . . ,W

′
m′ , where each W ′

i can be contained in

the cache of one user i. Then the final transmission is
that node i sends W ′

i for i ∈ [m′].

In fact, the framework in Definition VI.1 is equivalent to the
caching scheme using the PDA for the D2D network (DPDA).
Since the condition in the delivery phase of Definition VI.1
is equivalent to the condition (4) in Definition II.2. The
framework is rather abstract, we present a specific scheme
as follows.

Definition VI.2. Let n ≥ 4 be a positive integer, K = F = n.
Let A = [n], B = {[i : i+ n− 3] mod n : i ∈ [n]}, C = A∪
B = {a∪ b : a ∈ A, b ∈ B} and Ĉ = C ∩

(
[n]
n−1

)
. The coloring

function ϕ over Ĉ maps all elements to different colors, that is,
ϕ(c), c ∈ Ĉ are distinct. Let the coloring function Φ : A×B 7→
{1, 2, . . . , |Φ|} satisfy Φ(a, b) = ϕ(a∪b). Then the scheme can
be described as follows:

1) Placement phase: there are N ≥ K files
{W1, . . . ,WN} and each file can be split to n
pieces, that is, Wn = {W b

n : b ∈ B} for any n ∈ [N].
The user i caches {W b

n : b ∈ B, i ∈ b}.
2) Delivery phase: suppose the demand vector d =

(d1, d2, . . . , dk) the user i+ 1 sends⊕
k∪b=[i:i+n−2]

W b
dk
.

Theorem VI.1. The scheme in Definition VI.2 is a D2D coded
caching scheme with F = K = n, MN = n−2

n , Rd2d = 1.

Proof: We need to check that in above scheme, each user can
decode the subfiles it does not own, that is, for the user a, we
need to show that for any b ∈ B such that a /∈ b, then the
user a can decode W b

da
from the transmissions of other users.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

14

Parameters The Number of users K Subpacketization F Caching ratio M
N

Transmission rate R

t,K ∈ N+, t < K [14] K t
(K
t

)
t
K

K
t
− 1

integer q ≥ 2 [41] q2 qq 1
q

q

m, q, z ∈ N+, z < q [39] mq + q (m+ 1)⌊ q−1
q−z

⌋2qm − ⌊ q−1
q−z

⌋qm z
q

(m+1)(q−z)

(m+1)⌊ q−1
q−z

⌋−1

m, q, z, b ∈ N+, z < q, b ≤ m [39]
(m
b

)
qb

(m
b

)
⌊ q−1
q−z

⌋2bqm − ⌊ q−1
q−z

⌋bqm 1− (q−z
q

)b

(
m
b

)
(q−z)b(

m
b

)
⌊ q−1
q−z

⌋b−1

n ∈ N+, n ≥ 2 n n n−2
n

1

TABLE III
COMPARISON WITH SOME EXISTING SCHEMES

First, the user a has file Wb if a ∈ b. In the delivery phase,
worker node a can decode W b

da
from

⊕
k∪m=[i:i+n−2]W

m
dk

sent by worker node i+ 1 if a ∪ b = [i : i+ n− 2], since⊕
k∪m=[i:i+n−2]

Wm
dk

=
⊕

k∪m=[i:i+n−2],(k,m) ̸=(a,b)

Wm
dk

⊕
W b

da
,

and k∪m = a∪b implies that a ∈ m, that is, the user a owns
Wm

dk
. Therefore, the a can decode all subfiles it requires. ■

We compare the D2D caching scheme in Definition VI.2
with previous schemes in Table III. In addition, as discussed in
[13], the D2D coded caching scheme can also be transformed
to CDC scheme directly.

VII. CONCLUSION

In this paper, we investigate the coded caching problem
with uncoded placement. Motivated by the study of only
rainbow 3-APs sets, we propose a generalized combinatorial
framework, which can be applied in D2D networks as well.
We observe that any PDA scheme can be represented by a
rainbow scheme under our framework, and several existing
works can also be included in the framework. Our rainbow
framework builds bridges between combinatorial objects and
coded caching problems. For any given A, B and the binary
operation

⊎
, we can obtain a coded caching scheme by

selecting a suitable σ-type structure and the coloring function.
The freedom of choosing the structure and coloring function
enables us to connect more combinatorial objects with coded
caching. Moreover, using the idea of the index coding problem,
our framework can further reduce the transmission load and
obtain some schemes which cannot be represented by a PDA.
In addition, if we select the coloring function such that some
pairs (a, b) with a ∪ b ∈ Ĉ receive multiple colors, then the
framework can also contain some examples that cannot be
covered by the combination of PDA and local coloring method
in index coding.

Next, based on the study of the only rainbow 3-term
arithmetic progressions set, we offer a coded caching scheme
with linear subpacketization and near constant rate. For several
existing works, we propose the corresponding coloring models

and we do hope it will be helpful to solve the following
problem by designing proper coloring function.

Question VII.1. Let M
N and R be both constants, prove or

disprove the existence of centralized coded caching schemes
such that F grows polynomially with K.

At last, we investigate the application of this rainbow
framework in the D2D coded caching. With an additional con-
dition, the framework is equivalent to the D2D placement and
delivery array, which is a critical tool to construct D2D caching
schemes with uncoded placement. Due to the connection be-
tween D2D coded caching and distributed computing, a CDC
scheme with F files corresponds to a D2D caching scheme
with F subpacketizations. Therefore, a similar question can
be asked as following.

Question VII.2. Let r be a constant. Suppose N cannot be
divided by

(
K
r+1

)
or is small than exp(K), construct schemes

which can attain the optimal or suboptimal communication
load L.

REFERENCES

[1] S. Agrawal, K. V. S. Sree, and P. Krishnan, “Coded caching based on
combinatorial designs,” in IEEE International Symposium on Informa-
tion Theory, ISIT 2019, Paris, France, July 7-12, 2019, 2019, pp. 1227–
1231.

[2] V. R. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Lifting constructions
of pdas for coded caching with linear subpacketization,” IEEE Transac-
tions on Communications, vol. 70, no. 12, pp. 7817–7829, 2022.

[3] V. Aravind, P. K. Sarvepalli, and A. Thangaraj, “Lifting constructions of
pdas for coded caching with linear subpacketization,” IEEE Transactions
on Communications, vol. 70, no. 12, pp. 7817–7829, 2022.

[4] M. Cheng, J. Jiang, X. Tang, and Q. Yan, “Some variant of known
coded caching schemes with good performance,” IEEE Transactions on
Communications, vol. 68, no. 3, pp. 1370–1377, 2019.

[5] M. Cheng, J. Wang, X. Zhong, and Q. Wang, “A framework of
constructing placement delivery arrays for centralized coded caching,”
IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7121–
7131, 2021.

[6] H. H. S. Chittoor and P. Krishnan, “Low subpacketization coded caching
via projective geometry for broadcast and d2d networks,” in 2019 IEEE
Global Communications Conference (GLOBECOM), 2019, pp. 1–6.

[7] ——, “Projective geometry based coded caching schemes with subexpo-
nential and linear subpacketizations,” in 19th International Symposium
on Communications and Information Technologies, ISCIT 2019, Ho Chi
Minh City, Vietnam, September 25-27, 2019, 2019, pp. 537–542.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

15

[8] H. H. S. Chittoor, P. Krishnan, K. V. S. Sree, and B. Mamillapalli,
“Subexponential and linear subpacketization coded caching via projec-
tive geometry,” IEEE Trans. Inform. Theory, vol. 67, no. 9, pp. 6193–
6222, 2021.

[9] H. H. S. Chittoor, P. Krishnan, K. S. Sree, and B. Mamillapalli,
“Subexponential and linear subpacketization coded caching via projec-
tive geometry,” IEEE Transactions on Information Theory, vol. 67, no. 9,
pp. 6193–6222, 2021.

[10] H. H. S. Chittoor, B. MVN, and P. Krishnan, “Coded caching via
projective geometry: A new low subpacketization scheme,” in IEEE
International Symposium on Information Theory, ISIT 2019, Paris,
France, July 7-12, 2019, 2019, pp. 682–686.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[12] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Transactions on Information
Theory, vol. 63, no. 5, pp. 3108–3141, 2017.

[13] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Device-to-device coded-
caching with distinct cache sizes,” IEEE Transactions on Communica-
tions, vol. 68, no. 5, pp. 2748–2762, 2020.

[14] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless d2d networks,” IEEE Transactions on Information Theory,
vol. 62, no. 2, pp. 849–869, 2016.

[15] ——, “Wireless device-to-device caching networks: Basic principles and
system performance,” IEEE Journal on Selected Areas in Communica-
tions, vol. 34, no. 1, pp. 176–189, 2016.

[16] M. Ji, R.-R. Chen, G. Caire, and A. F. Molisch, “Fundamental limits of
distributed caching in multihop d2d wireless networks,” in 2017 IEEE
International Symposium on Information Theory (ISIT), 2017, pp. 2950–
2954.

[17] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Caching in combination
networks,” in 2015 49th Asilomar Conference on Signals, Systems and
Computers. IEEE, 2015, pp. 1269–1273.

[18] ——, “Order-optimal rate of caching and coded multicasting with
random demands,” IEEE Transactions on Information Theory, vol. 63,
no. 6, pp. 3923–3949, 2017.

[19] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Transactions on Information The-
ory, vol. 62, no. 6, pp. 3212–3229, 2016.

[20] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-
ing up distributed computing,” IEEE/ACM Transactions on Networking,
vol. 28, no. 4, pp. 1657–1670, 2020.

[21] P. Krishnan, “Coded caching via line graphs of bipartite graphs,” in IEEE
Information Theory Workshop, ITW 2018, Guangzhou, China, November
25-29, 2018, 2018, pp. 1–5.

[22] J. Li and Y. Chang, “New constructions of d2d placement delivery
arrays,” IEEE Communications Letters, vol. 27, no. 1, pp. 85–89, 2023.

[23] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, 2018.

[24] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[25] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp.
1029–1040, 2015.

[26] J. Michel and Q. Wang, “Placement delivery arrays from combinations of
strong edge colorings,” IEEE Transactions on Communications, vol. 68,
no. 10, pp. 5953–5964, 2020.

[27] J. Pach and I. Tomon, “Colorings with only rainbow arithmetic pro-
gressions,” Acta Mathematica Hungarica, vol. 161, no. 2, pp. 507–515,
2020.

[28] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp.
836–845, 2016.

[29] A. Shabani, S. P. Shariatpanahi, V. Shah-Mansouri, and A. Khonsari,
“Mobility increases throughput of wireless device-to-device networks
with coded caching,” in 2016 IEEE International Conference on Com-
munications (ICC), 2016, pp. 1–6.

[30] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Transactions on
Information Theory, vol. 64, no. 8, pp. 5755–5766, 2018.

[31] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring
and index coding,” 2013 IEEE International Symposium on Information
Theory, pp. 1152–1156, 2013.

[32] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Transactions on Information Theory, vol. 62, no. 10, pp. 5524–5537,
2016.

[33] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using ruzsa-szeméredi graphs,”
in 2017 IEEE International Symposium on Information Theory, ISIT
2017, Aachen, Germany, June 25-30, 2017, 2017, pp. 1237–1241.

[34] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, vol. 62,
no. 12, pp. 7253–7271, 2016.

[35] L. Tang and A. Ramamoorthy, “Low subpacketization schemes for coded
caching,” in 2017 IEEE International Symposium on Information Theory
(ISIT), 2017, pp. 2790–2794.

[36] ——, “Coded caching schemes with reduced subpacketization from
linear block codes,” IEEE Transactions on Information Theory, vol. 64,
no. 4, pp. 3099–3120, 2018.

[37] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in 2016 IEEE Information Theory Workshop (ITW),
2016, pp. 161–165.

[38] ——, “An index coding approach to caching with uncoded cache
placement,” IEEE Transactions on Information Theory, vol. 66, no. 3,
pp. 1318–1332, 2020.

[39] J. Wang, M. Cheng, Q. Yan, and X. Tang, “Placement delivery array
design for coded caching scheme in d2d networks,” IEEE Transactions
on Communications, vol. 67, no. 5, pp. 3388–3395, 2019.

[40] Y.-P. Wei and S. Ulukus, “Coded caching with multiple file requests,”
in 2017 55th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2017, pp. 437–442.

[41] N. Woolsey, R.-R. Chen, and M. Ji, “Towards finite file packetizations
in wireless device-to-device caching networks,” IEEE Transactions on
Communications, vol. 68, no. 9, pp. 5283–5298, 2020.

[42] X. Wu, M. Cheng, L. Chen, C. Li, and Z. Shi, “Design of coded caching
schemes with linear subpacketizations based on injective arc coloring of
regular digraphs,” IEEE Transactions on Communications, vol. 71, no. 5,
pp. 2549–2562, 2023.

[43] X. Wu, M. Cheng, C. Li, and L. Chen, “Design of coded caching
schemes through proper orthogonal arrays,” in 2022 IEEE International
Symposium on Information Theory (ISIT), 2022, pp. 1306–1311.

[44] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, no. 9, pp. 5821–5833, 2017.

[45] Q. Yan, U. Parampalli, X. Tang, and Q. Chen, “Online coded caching
with random access,” IEEE Communications Letters, vol. 21, no. 3, pp.
552–555, 2017.

[46] Q. Yan, X. Tang, Q. Chen, and M. Cheng, “Placement delivery array
design through strong edge coloring of bipartite graphs,” IEEE Commu-
nications Letters, vol. 22, no. 2, pp. 236–239, 2018.

[47] Q. Yan, M. Wigger, S. Yang, and X. Tang, “A fundamental storage-
communication tradeoff for distributed computing with straggling
nodes,” IEEE Transactions on Communications, vol. 68, no. 12, pp.
7311–7327, 2020.

[48] o̧. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality of d2d
coded caching with uncoded cache placement and one-shot delivery,”
IEEE Transactions on Communications, vol. 67, no. 12, pp. 8179–8192,
2019.

[49] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” IEEE Transactions on Information Theory,
vol. 64, no. 1, pp. 349–366, 2018.

[50] X. Zhang, X. T. Yang, and M. Ji, “A new design framework on d2d
coded caching with optimal rate and less subpacketizations,” in 2020
IEEE International Symposium on Information Theory (ISIT), 2020, pp.
1699–1704.

[51] X. Zhong, M. Cheng, and R. Wei, “Coded caching schemes with linear
subpacketizations,” IEEE Transactions on Communications, vol. 69,
no. 6, pp. 3628–3637, 2021.

[52] ——, “Coded caching schemes with linear subpacketizations,” IEEE
Transactions on Communications, vol. 69, no. 6, pp. 3628–3637, 2021.

Min Xu received the B.S. degree in mathematics from Wuhan University,
Wuhan, Hubei, China, in 2014. He is currently pursuing the Ph.D. degree
with Nankai University, Tianjin, China. His research interests include combi-
natorics and network information theory.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

16

Zixiang Xu received his B.S. degree in mathematics from Zhejiang University,
Hangzhou, Zhejiang, P. R. China, in 2016, and received his Ph.D. degree in
mathematics from Capital Normal University, Beijing, P. R. China, in 2022. He
is currently a postdoctoral fellow at Extremal Combinatorics and Probability
Group of Institute for Basic Science, Daejeon, South Korea. His research
interests include extremal combinatorics, coding theory and discrete geometry.

Gennian Ge received the M.S. and Ph.D. degrees in mathematics from Suzhou
University, Suzhou, Jiangsu, P. R. China, in 1993 and 1996, respectively.
After that, he became a member of Suzhou University. He was a postdoctoral
fellow in the Department of Computer Science at Concordia University,
Montreal, QC, Canada, from September 2001 to August 2002, and a visiting
assistant professor in the Department of Computer Science at the University
of Vermont, Burlington, Vermont, USA, from September 2002 to February
2004. He was a full professor in the Department of Mathematics at Zhejiang
University, Hangzhou, Zhejiang, P. R. China, from March 2004 to February
2013. Currently, he is a full professor in the School of Mathematical
Sciences at Capital Normal University, Beijing, P. R. China. His research
interests include combinatorics, coding theory, information security, and their
interactions.

Dr. Ge is on the Editorial Board of Journal of Combinatorial Theory,
Series A, IEEE Transactions on Information Theory, Designs Codes and
Cryptography, Journal of Combinatorial Designs, Journal of Algebraic Com-
binatorics, Science China Mathematics, Applied Mathematics−A Journal of
Chinese Universities. He received the 2006 Hall Medal from the Institute of
Combinatorics and its Applications.

Min-Qian Liu received the B.S. and Ph.D. degrees in Statistics from Nankai
University, Tianjin, P. R. China, in 1993 and 1999, respectively. He was
an assistant professor from July 1998 to June 2001 and then an associate
professor from June 2001 to August 2002 in the School of Management
at Tianjin University, Tianjin, P. R. China. He was an associate professor
in the Department of Statistics at Nankai University from August 2002 to
December 2004, and a full professor at Nankai University since December
2004. Currently, he is a distinguished professor in the School of Statistics and
Data Science at Nankai University. His research interests include design and
analysis of experiments, design and modeling of computer experiments, and
big data analysis.

Dr. Liu is on the Editorial Boards of Communications in Statistics – Theory
and Methods, Communications in Statistics – Simulation and Computation,
Journal of Statistical Theory and Practice, Journal of Applied Statistics and
Management, Statistics and Decision, and Journal of Statistics.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3352020

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 17,2024 at 01:42:03 UTC from IEEE Xplore. Restrictions apply.

