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Abstract
Mappable nearly orthogonal arrays were recently proposed as a new class of space-
filling designs for computer experiments. Inspired by mappable nearly orthogonal
arrays, we propose several new classes of space-filling designs. The corresponding
construction methods are provided. The resulting designs are more space-filling than
mappable nearly orthogonal arrays while accommodating a large number of factors.
In addition to the space-filling properties, the column orthogonality is also desir-
able for designs of computer experiments. Among the new constructed designs, one
class is column-orthogonal, and the other two classes, providing many new column-
orthogonal designs, are nearly column-orthogonal in the sense that each column is
column-orthogonal to a large proportion of the other columns. The constructed designs
are good choices for computer experiments due to their attractive space-filling proper-
ties and column orthogonality. The proposed construction methods are flexible in the
choices of an orthogonal array and/or a strong orthogonal array and their usefulness is
appealing. Many newly constructed space-filling designs are tabulated. The expansive
replacement method and the generalized doubling play key roles in the constructions.

Keywords Computer experiment · Expansive replacement method · Generalized
doubling · Orthogonal array · Stratification

1 Introduction

Computer experiments are powerful tools to investigate the complex phenomena and
systems in engineering and sciences. Space-filling designs are most commonly used in
computer experiments (Santner et al. 2018; Fang et al. 2006). An appealing approach
to find space-filling designs is based on an algorithmic search using a distance (John-
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son et al. 1990) or discrepancy criterion (Fang et al. 2018). Although this method is
flexible in the selections of an algorithmic criterion as well as the numbers of runs
and/or factors, it often becomes ineffective for searching large designs. Amore fruitful
approach is to utilize some systematic methods to construct designs that are space-
filling in low-dimensional projections. Such designs went back to Latin hypercubes
(McKay et al. 1979), randomized orthogonal arrays (OAs) (Owen 1992) andOA-based
Latin hypercubes (Tang 1993).

Recently, He and Tang (2013) introduced the concept of strong orthogonal arrays
(SOAs) for computer experiments. Compared with an OA of strength t , an SOA
of strength t enjoys better space-filling properties in less than t dimensions while
retaining the same space-filling properties in t dimensions. To enjoy attractive space-
filling properties of SOAs, its strength should be larger than two. He and Tang (2014)
examined the characterization of SOAs of strength 3. Given the number of factors,
SOAs of strength 3 require a large number of runs. He et al. (2018) proposed a new
class of arrays, called SOAs of strength 2+, which are more economical than SOAs
of strength 3 while retaining the two-dimensional space-filling property of the latter.
Mukerjee et al. (2014) proposed mappable nearly orthogonal arrays (MNOAs) to seek
for attractive low-dimensional space-filling properties as well as a large number of
factors. For more recent work about SOAs andMNOAs, see Liu and Liu (2015), Zhou
and Tang (2019), Shi and Tang (2019, 2020), Li et al. (2021, 2022), Wang et al. (2022)
and Liu et al. (2023).

Motivated by the idea of MNOAs, we present in this paper several new classes
of space-filling designs (i.e., Type-I, Type-II and Type-III MNOAs) and provide
corresponding construction methods. The resulting designs are useful for computer
experiments because they enjoy more space-filling properties than MNOAs while
accommodating a large number of factors. In addition to the space-filling properties,
the proposed designs possess the property of column orthogonality, which is also
desirable for designs of computer experiments. Among the three types of MNOAs,
the Type-II MNOAs are column-orthogonal, and the other two types, i.e., Type-I
and Type-III MNOAs are nearly column-orthogonal in the sense that each column is
column-orthogonal to a large proportion of the other columns. Besides, two theoretical
results show that Type-I and Type-III MNOAs provide many new column-orthogonal
designs. Having the attractive space-filling properties and column orthogonality, the
constructed designs are good choices for computer experiments.

The rest of this paper is organized as follows. Section 2 provides some definitions
and preliminaries. Section 3 investigates some construction methods for constructing
several new classes of space-filling designs, along with the additional property of
column orthogonality. Section 4 contains some concluding remarks. All the proofs are
deferred to the Appendix.

2 Definitions and preliminaries

Let D(n, sm) denote a balanced design with n runs, m factors, and s levels from
{0, 1, . . . , s − 1} where the s levels appear equally often for each factor. If n = s,
then a D(n, sm) becomes a Latin hypercube, denoted by LH(n,m). The centered
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design is a design whose s levels are equally spaced and labeled as the set �(s) =
{−(s−1)/2,−(s−3)/2, . . . , (s−3)/2, (s−1)/2}. For example,�(2) = {−1/2, 1/2}
and �(3) = {−1, 0, 1}. A D(n, sm) is called column-orthogonal if the inner product
of any two columns of the centered design is zero.

An n × m matrix with entries from {0, 1, . . . , s j − 1} in the j th column is an
OA of n runs, m factors and strength t if, in any n × t subarray, all possible level
combinations occur equally often. We denote such an array by OA(n,m, s1 × · · · ×
sm, t).When s1 = · · · = sm = s, the array is symmetric anddenotedbyOA(n,m, s, t).
In particular for anOA(n,m, s, t)with t = 2,weoftenuse a simple notationOA(n, sm)

instead. For an OA(n, sm), we have n = λs2 for some integer λ ≥ 1. We also use
OA(λs2, sm) in the rest of the paper.We call the orthogonality for anOA combinatorial
orthogonality. Obviously, combinatorial orthogonality implies column orthogonality,
but this is not necessarily true for the inverse. An n × m matrix with entries from
{0, 1, . . . , st −1} is called an SOAof n runs,m factors, st levels and strength t , denoted
by SOA(n,m, st , t), if any subarray of g columns for any g with 1 ≤ g ≤ t can be
collapsed into an OA(n, g, su1 × · · · × sug , g) for any positive integers u1, . . . , ug
with u1 + · · · + ug = t , where collapsing st levels into su j levels is according to
�x/st−u j � for x = 0, 1, . . . , st − 1, and �x� is the largest integer not exceeding x .
Consequently, any SOA(n,m, s3, 3) can achieve stratifications on s2 × s and s × s2

grids in two dimensions and on s × s × s grids in three dimensions. For more details
about SOAs, we refer to He and Tang (2013; 2014).

Example 1 Consider the SOA(8, 3, 8, 3):

⎛
⎝
0 2 3 1 6 4 5 7
0 3 6 5 2 1 4 7
0 6 2 4 3 5 1 7

⎞
⎠

T

,

where T denotes the transpose of a matrix. This array has the following properties: (i)
the array can be collapsed into an OA(8, 3, 2, 3) when collapsing eight levels into two
levels according to 0, 1, 2, 3 → 0; 4, 5, 6, 7 → 1; (ii) any array of two columns can
be collapsed into an OA(8, 2, 4 × 2, 2) or an OA(8, 2, 2 × 4, 2) when the levels of
one factor are collapsed into four levels according to 0, 1 → 0; 2, 3 → 1; 4, 5 → 2;
6, 7 → 3 and the levels of the other factor are collapsed into two levels; (iii) any array
of one column is an OA(8, 1, 8, 1).

An n × m matrix with entries from {0, 1, . . . , s2 − 1} is called an SOA of
strength 2+ with n runs and m factors of s2 levels, denoted by SOA(n,m, s2, 2+),
if any subarray of two columns can be collapsed into an OA(n, 2, s2 × s, 2) and an
OA(n, 2, s × s2, 2). An SOA(n,m, s2, 2+) enjoys the same two-dimensional space-
filling property as an SOA(n,m, s3, 3), while the former can accommodate more
factors.Ann×mmatrixwith entries from {0, 1, . . . , s3−1} is called anSOAof strength
2∗, denoted by SOA(n,m, s3, 2∗), if any subarray of two columns can be collapsed
into an OA(n, 2, s2 × s, 2) and an OA(n, 2, s × s2, 2). According to the definitions of
SOA(n,m, s2, 2+) and SOA(n,m, s3, 2∗), their main difference lies in the number of
levels, i.e., the former has s2 levels, while the latter has s3 levels. We denote a column-
orthogonal SOA(n,m, st , r) by an OSOA(n,m, st , r) with (t, r) = (3, 3), (2, 2+)
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and (3, 2∗) here. From the definitions, all the OSOA(n,m, st , r)’s with distinct t and
r have n = λ1s3 for some integer λ1 ≥ 1.

An n × m1m2 array with entries from {0, 1, . . . , s − 1} is an MNOA, denoted by
MNOA(n, m2

m1 , s, p) where s = pt with t ≥ 2, if it can be partitioned into m1
disjoint groups each of m2 columns, and satisfies that any two columns from different
groups achieve a stratification on an s × s grid and any two columns from the same
group achieve a stratification on a p × p grid.

Chen and Cheng (2006) studied the method of doubling for constructing two-level
fractional factorial designs. Let X be a D(n, 2m), the double of X is the 2n × 2m

design

(
X X
X 1 + X

)
, where 1+ X is the matrix obtained from X by adding 1 to each

entry of X (modulo 2). Generally, when design X is a D(n, sm), define the generalized
double of X to be

GD(X) =

⎛
⎜⎜⎜⎝

X X
X 1 + X
...

...

X s − 1 + X

⎞
⎟⎟⎟⎠ , (1)

where u + X is the matrix by adding u to all the entries of X (modulo s) for u =
1, . . . , s − 1. For convenience of constructions, divide GD(X) into two parts, and
denote them as

GDI(X) = (XT , . . . , XT )T and GDII(X) = (XT , 1 + XT , . . . , s − 1 + XT )T ,

(2)

respectively. The GDI(X) and GDII(X) are very useful for constructing space-filling
designs in the next section.

3 Constructionmethods

This section provides somemethods for constructing three new classes of space-filling
designs (i.e., Type-I, Type-II and Type-III MNOAs). A common characteristic of the
constructions is that they are based on the expansive replacement method (Hedayat
et al. 1999). This method is used for the construction of OAs, while we here use the
method to construct a space-filling design D(n, pm1m2) as stated below and denoted
by C .

Let A be a D(n, sm1) and B be a D(s, pm2). In each column of A, replace the uth
level by the (u + 1)th row of B for u = 0, 1, . . . , s − 1. The resulting matrix C must
be a D(n, pm1m2), and write

C = (C1, ...,Cm1), (3)

where Ci = (ci1, . . . , cim2) is the i th group of m2 columns obtained by replacing the
levels of the i th column of A by the rows of B. An illustrative example is given below.
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Table 1 Design A, D(16, 45) 1 2 3 4 5

0 0 0 0 0

1 0 1 1 1

2 0 2 2 2

3 0 3 3 3

0 1 1 2 3

1 1 0 3 2

2 1 3 0 1

3 1 2 1 0

0 2 2 3 1

1 2 3 2 0

2 2 0 1 3

3 2 1 0 2

0 3 3 1 2

1 3 2 0 3

2 3 1 3 0

3 3 0 2 1

Table 2 Design B, D(4, 43) 1 2 3

0 2 3

1 1 0

2 3 1

3 0 2

Example 2 Let A be a D(16, 45) and B be a D(4, 43), as shown in Tables 1 and 2.
Based on the expansive replacement method, we can obtain a design C by replacing
the uth level of A by the (u+1)th row of B for u = 0, 1, 2, 3. ThenC = (C1, . . . ,C5)

is a D(16, 415), as given in Table 3. Obviously, design C is an MNOA(16, 35, 4, 2).

3.1 Type-I MNOAs

This subsection considers the construction of (column-orthogonal) Type-I MNOAs.
We first give the following definition. Throughout this paper, we use the notation λ

and sometimes the notation λ1, where λ ≥ 1 and λ1 ≥ 1 are two integers.

Definition 1 An n ×m1m2 array with entries from {0, 1, . . . , s − 1} is called a Type-
I MNOA, denoted by MNOAI(n,m2

m1 , s, p) with s = λ1 p3, where λ1 ≥ 1 is an
integer, if it can be partitioned into m1 disjoint groups each of m2 columns, and
satisfies the following properties:

(a) any two columns from different groups are column-orthogonal;
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Table 3 Design C , D(16, 415) C1 C2 C3 C4 C5

0 2 3 0 2 3 0 2 3 0 2 3 0 2 3

1 1 0 0 2 3 1 1 0 1 1 0 1 1 0

2 3 1 0 2 3 2 3 1 2 3 1 2 3 1

3 0 2 0 2 3 3 0 2 3 0 2 3 0 2

0 2 3 1 1 0 1 1 0 2 3 1 3 0 2

1 1 0 1 1 0 0 2 3 3 0 2 2 3 1

2 3 1 1 1 0 3 0 2 0 2 3 1 1 0

3 0 2 1 1 0 2 3 1 1 1 0 0 2 3

0 2 3 2 3 1 2 3 1 3 0 2 1 1 0

1 1 0 2 3 1 3 0 2 2 3 1 0 2 3

2 3 1 2 3 1 0 2 3 1 1 0 3 0 2

3 0 2 2 3 1 1 1 0 0 2 3 2 3 1

0 2 3 3 0 2 3 0 2 1 1 0 2 3 1

1 1 0 3 0 2 2 3 1 0 2 3 3 0 2

2 3 1 3 0 2 1 1 0 3 0 2 0 2 3

3 0 2 3 0 2 0 2 3 2 3 1 1 1 0

(b) any two columns from different groups achieve a stratification on an s × s grid;
(c) any two columns from the same group achieve stratifications on p2× p and p× p2

grids.

FromDefinition 1(b), in anMNOAI(n,m2
m1 , s, p), any two columns fromdifferent

groups form an OA with s levels and then have combinatorial orthogonality; so each
column is also column-orthogonal to a large proportion of the other columns. This
implies that the measure of the degree of such stratifications and orthogonality among
columns can be calculated as

π = (m1 − 1)m2/(m1m2 − 1), (4)

which is very high and close to 1 asm1 gets large. In the next two subsections, one can
also use π in (4) to evaluate the column orthogonality and/or stratifications between
groups for Type-II and Type-III MNOAs.

We now present the construction of an MNOAI(λs2,m2
m1 , s, p), where λ ≥ 1 is

an integer.

Construction 1

Step 1. Take A to be an OA(λs2, sm1), where λ ≥ 1 is an integer.
Step 2. Based on an SOA(s,m2, p2, 2+)where s = λ1 p3, where λ1 ≥ 1 is an integer,

take B to be an LH(s,m2) obtained by, for each column, replacing the λ1 p
entries for level j by any permutation of jλ1 p, jλ1 p+1, . . . , ( j +1)λ1 p−1
for j = 0, . . . , p2 − 1.

Step 3. Obtain a D(λs2, sm1m2), say D, using the A and B in Steps 1 and 2 via the
expansive replacement method.
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Construction 1 is a simple variant of the construction method given by Mukerjee
et al. (2014), i.e., the array B becomes an SOA-based Latin hypercube. This change,
though simple, leads to a better within-group stratification property, at a price of a
smaller factor-to-run ratio. We have the following result.

Theorem 1 Given anOA(λs2, sm1) and anSOA(s,m2, p2, 2+)with s = λ1 p3, where
λ ≥ 1 and λ1 ≥ 1 are two integers, the design D in Step 3 of Construction 1 is an
MNOAI(λs2, m2

m1 , s, p).

Theorem 1 shows that we can obtain a Type-I MNOA when the number of levels
for an OA is equal to the run size for an SOA of strength 2+. An illustrative example
is presented as follows.

Example 3 Given anOA(256, 1617) and anSOA(16, 10, 4, 2+), Construction 1 allows
for the construction of an MNOAI(256, 1017, 16, 2). All 170 columns are partitioned
into 17 disjoint groups each of 10 columns such that any two columns from distinct
groups achieve a stratification on a 16 × 16 grid and any two columns from the same
group achieve stratifications on 4 × 2 and 2 × 4 grids. With m1 = 17 and m2 = 10
in (4), we have the degree of stratifications on 16 × 16 grids of π = 0.947. This
implies that the property of stratifications in two dimensions is almost the same as
that of the OA(256, 1617). Compared with this OA of 17 columns, the newly con-
structed MNOAI(256, 1017, 16, 2) has 153 more columns. Compared with MNOAs,
the MNOAI(256, 1017, 16, 2) is a compromise between the MNOA(256, 1517, 16, 2)
and MNOA(256, 517, 16, 4) in Mukerjee et al. (2014).

Table 4 provides some new Type-I MNOAs using Theorem 1 based on the existing
OAs fromHedayat et al. (1999) and SOAs of strength 2+ fromHe et al. (2018). Type-I
MNOAs have the attractive two-dimensional space-filling property while accommo-
dating a substantially large number of factors. For instance, taking an OA(512, 1633)
and an SOA(16, 10, 4, 2+) in Theorem 1 gives an MNOAI(512, 1033, 16, 2) with
π = 0.973, which has 330 factors. If we take an OA(1024, 3233) and an
SOA(32, 22, 4, 2+), we obtain anMNOAI(1024, 2233, 32, 2)with π = 0.971, which
can accommodate up to 726 factors. More Type-I MNOAs are listed in Table 4.

We now construct a column-orthogonal Type-I MNOAwhen the OSOA of strength
2∗ from Li et al. (2022) is used. More specifically, by using an OSOA(s,m2, p3, 2∗)

with s = p3 as B and still using an OA(λs2, sm1) as A, we have the next result based
on Construction 1.

Theorem 2 Let A be anOA(λs2, sm1) and B be anOSOA(s,m2, p3, 2∗)with s = p3.
Then a column-orthogonal MNOAI(λs2, m2

m1 , s, p) can be constructed from the A
and B via Construction 1.

Theorem 2 allows Type-I MNOAs with the additional column orthogonality to
be constructed. Similar to Tables 4 and 5 lists some new column-orthogonal Type-I
MNOAs by Theorem 2 based on suitable choices of OAs for practical use.

Example 4 If we take A to be an OA(729, 2728) and B to be an OSOA(27, 4, 27, 2∗)

in Theorem 2, we can obtain a column-orthogonal MNOAI(729, 428, 27, 3) with π =

123



364 W. Li et al.

Table 4 Some Type-I MNOAs

p OA(λs2, sm1 ) SOA(s,m2, p
2, 2+) Type-I MNOA π

2 OA(64, 89) SOA(8, 3, 4, 2+) MNOAI(64, 39, 8, 2) 0.923

2 OA(128, 817) SOA(8, 3, 4, 2+) MNOAI(128, 317, 8, 2) 0.960

2 OA(576, 822) SOA(8, 3, 4, 2+) MNOAI(576, 322, 8, 2) 0.969

2 OA(256, 1617) SOA(16, 10, 4, 2+) MNOAI(256, 1017, 16, 2) 0.947

2 OA(512, 1633) SOA(16, 10, 4, 2+) MNOAI(512, 1033, 16, 2) 0.973

2 OA(1024, 3233) SOA(32, 22, 4, 2+) MNOAI(1024, 2233, 32, 2) 0.971

2 OA(2048, 3265) SOA(32, 22, 4, 2+) MNOAI(2048, 2265, 32, 2) 0.985

3 OA(729, 2728) SOA(27, 6, 9, 2+) MNOAI(729, 628, 27, 3) 0.970

3 OA(1458, 2755) SOA(27, 6, 9, 2+) MNOAI(1458, 655, 27, 3) 0.985

4 OA(4096, 6465) SOA(64, 8, 16, 2+) MNOAI(4096, 865, 64, 4) 0.987

4 OA(8192, 64129) SOA(64, 8, 16, 2+) MNOAI(8192, 8129, 64, 4) 0.993

5 OA(15625, 125126) SOA(125, 10, 25, 2+) MNOAI(15625, 10126, 125, 5) 0.993

Table 5 Some column-orthogonal Type-I MNOAs

p OA(λs2, sm1 ) OSOA(s,m2, p
3, 2∗) Type-I MNOA π

3 OA(729, 2728) OSOA(27, 4, 27, 2∗) MNOAI(729, 428, 27, 3) 0.973

3 OA(1458, 2755) OSOA(27, 4, 27, 2∗) MNOAI(1458, 455, 27, 3) 0.986

4 OA(4096, 6465) OSOA(64, 4, 64, 2∗) MNOAI(4096, 465, 64, 4) 0.988

4 OA(8192, 64129) OSOA(64, 4, 64, 2∗) MNOAI(8192, 4129, 64, 4) 0.994

5 OA(15625, 125126) OSOA(125, 6, 125, 2∗) MNOAI(15625, 6126, 125, 5) 0.993

0.973. Thus, the new constructed column-orthogonal MNOAI (729, 428, 27, 3) can
accommodate 112 columns while having the attractive two-dimensional space-filling
properties.

FromTheorems 1 and 2, we know that s = λ1 p3 for some integer λ1, which implies
that the minimum run size (λs2) of a Type-I MNOA is λp6 via taking λ1 = 1. In the
next subsection, we will discuss the construction of a new class of MNOA with run
size λp5 less than λp6.

3.2 Type-II MNOAs

This subsection is devoted to the construction of Type-II MNOAs. Such designs can
be obtained via a sequence of steps including the expansive replacement method,
generalized doubling, column rearrangement and rotation approach (Sun and Tang
2017b). The resulting designs possess good stratification properties and the column
orthogonality. Moreover, these designs are supplementary to Type-I MNOAs in terms
of run sizes.
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Definition 2 An n×m1m2 arraywith entries from {0, 1, . . . , p3−1} is called a Type-II
MNOA, denoted byMNOAII(n,m2

m1 , p3, p), if it can be partitioned intom1 disjoint
groups each of m2 columns, and satisfies the following properties:

(a) the whole array is column-orthogonal;
(b) any two columns from different groups achieve a stratification on a p2 × p2 grid;
(c) any two columns from the same group achieve stratifications on p2× p and p× p2

grids.

Compared with Definition 1, (i) Definition 2(a) is new; (ii) Definition 2(b) shows
that any two columns from different groups achieve a stratification on a p2 × p2 grid
instead of a (λ1 p3)× (λ1 p3) grid; (iii) Definition 2(c) is the same. A measure defined
similarly to π in (4) can be used to evaluate the degree of the stratification property of
Definition 2(b). ByDefinition 2, Type-IIMNOAs enjoy the attractive two-dimensional
space-filling property and column orthogonality.

We now examine how to construct Type-II MNOAs via a series of steps given
below.

Construction 2

Step 1 By applying the expansive replacement method with A being an OA(λs2, sm1)

and B being an OA(s, pm2) with s = λ1 p2, where λ ≥ 1 and λ1 ≥ 1 are two
integers, we obtain a design C which is an OA(λs2, pm1m2).

Step 2 The generalized double of C in (1) is an array of size λps2 × m1m2. Let
E = GDI(C) and F = GDII(C), where s in (2) corresponds to p in F .
According to the grouping of the columns of C in (3), write

E = (E1, . . . , Em1) and F = (F1, . . . , Fm1),

where Ei = (ei1, ei2, . . . , eim2) and Fi = ( fi1, fi2, . . . , fim2) for i =
1, . . . ,m1.

Step 3 Let g = (0T
λs2

, 1T
λs2

, . . . , (p−1)T
λs2

)T , where vt is the t×1 vector of all entries
v’s (v = 0, 1, . . . , p − 1). Let Gi = (ei1, fi2, . . . , ei(m2−1), fim2 , eim2 , fi1),
and arrange the 2m1m2 + 2 columns among (E, F, g, 1λps2) as

G1; . . . ;Gm1; g, 1λps2 ,

whereGi is actually obtained by shifting the elements of ( fi1, ei1, fi2, ei2, . . . ,
fim2 , eim2). From the list above, we take four columns at a time to obtain
q = �(2m1m2 + 2)/4� sets of four columns. Because of this, there are no
leftover columns if m1m2 is odd, and the two columns g and 1λps2 are unse-
lected otherwise, i.e., the selected columns for the construction are the list
G1; . . . ;Gm1; g, 1λps2 for an odd m1m2 and the list G1; . . . ;Gm1 for an
even m1m2. This is the only difference. Those selected columns will be used
for the further construction with no difference. For simplicity, we refer the
reader to consider the case of even m1m2. Let such q sets of four columns be
G(1),G(2), . . . ,G(q). For each j , let Hj = G( j) − (p − 1)/2 be the centered
design of G( j).
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Step 4 Define

D∗ = (H1U , . . . , HqU ), U =
(

p2 p 1 0
−1 0 p2 p

)T

. (5)

We see that any column d∗ of D∗ has the form: d∗ = ep2 + e′ p ± e′′ with e
being a column of E∗ = E− (p−1)/2, where we call e the leading column of
d∗. By noting that the grouping of E∗ = (E∗

1 , . . . , E
∗
m1

) is the same as that of
E = (E1, . . . , Em1), we now arrange the firstm1m2 columns in D∗ according
to the order of their leading columns in the groups E∗

1 , . . . , E
∗
m1
, and denote

these new groups as D∗
1 , . . . , D

∗
m1
.

Step 5 For each i , let Di = D∗
i + (p3 −1)/2,which transforms the levels of D∗ from

�(s3) into {0, 1, . . . , s3 − 1}. Define

D = (D1, . . . , Dm1), (6)

where Di = (di1, . . . , dim2) corresponds to D∗
i and represents the i th group

of m2 columns for i = 1, . . . ,m1.

For an odd m1m2 in Construction 2, the last column of Hq is actually unimportant
at all. In other words, the all-ones column in the list G1; . . . ;Gm1; g, 1λps2 can be
replaced by anything since it is unused in the construction of D. For design D in (6),
we have the following result.

Theorem 3 Given an OA(λs2, sm1) and an OA(s, pm2) with s = λ1 p2, where λ ≥ 1
and λ1 ≥ 1 are two integers, the design D in (6) is anMNOAII(λps2,m2

m1, p3, p).

TheType-IIMNOAsgiven inTheorem3are similar in spirit to the designs presented
by Sun and Tang (2017a), i.e., they are a class of column-orthogonal designs that have
the MNOA structure. Theorem 3 provides a rich class of column-orthogonal designs
with attractive space-filling properties. Taking λ1 = 1 in Theorem 3, we see that the
run size of an MNOAII(λps2, m2

m1 , p3, p) is a multiple of p5 while the run size of
a Type-I MNOA is a multiple of p6. Taking p = 2 as an example, a Type-II MNOA
can have the run size of 32, while the minimum run size of a Type-I MNOA is 64. So
Type-II MNOAs are supplementary to Type-I MNOAs in terms of run sizes. Table 6
shows some new Type-II MNOAs obtained by Theorem 3.

Compared with an OSOA(n,m, p2, 2+) obtained from Zhou and Tang (2019), a
Type-II MNOA not only retains the stratifications on p2 × p and p × p2 grids and
column orthogonality but also enjoys the additional properties as follows: (i) the Type-
II MNOA achieves finer stratifications in any one dimension than the OSOA, i.e., the
former has p3 levels while the latter only has p2 levels; (ii) the Type-II MNOA enjoys
better two-dimensional space-filling property because it also achieves stratifications
on p2 × p2 grids in two dimensions with a high ratio.

Example 5 Applying an OA(16, 45) and an OA(4, 23) as A and B respectively in
Construction 2 leads to an MNOAII(32, 35, 8, 2), as shown in Table 7. The detailed
steps are given below.
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Table 6 Some Type-II MNOAs

p OA(λs2, sm1 ) OA(s, pm2 ) Type-II MNOA π

2 OA(16, 45) OA(4, 23) MNOAII(32, 35, 8, 2) 0.857

3 OA(81, 910) OA(9, 34) MNOAII(243, 410, 27, 3) 0.923

3 OA(162, 919) OA(9, 34) MNOAII(486, 419, 27, 3) 0.960

4 OA(256, 1617) OA(16, 45) MNOAII(1024, 517, 64, 4) 0.952

4 OA(512, 1633) OA(16, 45) MNOAII(2048, 533, 64, 4) 0.976

5 OA(625, 2526) OA(25, 56) MNOAII(3125, 626, 125, 5) 0.968

Step 1 By applying the expansive replacement methodwith A and B above, we obtain
a design C = (C1, . . . ,C5) which is an OA(16, 215).

Step 2 Let E = (CT ,CT )T and F = (CT , 1 + CT )T (modulo 2), which are two
arrays of size 32× 15. According to the grouping of the columns of C above,
write

E = (E1, . . . , E5) and F = (F1, . . . , F5),

where Ei = (ei1, ei2, ei3) and Fi = ( fi1, fi2, fi3) for i = 1, . . . , 5.
Step 3 Let Gi = (ei1, fi2, ei2, fi3, ei3, fi1), and arrange the 32 columns among

(E, F, g, 132) as

G1; . . . ;G5; g, 132,

whereGi is actually obtained by shifting the elements of ( fi1, ei1, fi2, ei2, fi3,
ei3), g = (0, . . . , 0, 1, . . . , 1)T with each of 0 and 1 repeating 16 times,
and 132 is a column vector of all ones. From the list above, we take four
columns at a time to obtain eight sets of four columns. Let such eight sets be
G(1),G(2), . . . ,G(8), and further let Hj = G( j) − 1/2 for each j .

Step 4 Define

D∗ = (H1U , . . . , H8U ), U =
(

4 2 1 0
−1 0 4 2

)T

.

We now arrange the first 15 columns in D∗ according to the order of their
leading columns in the groups E∗

1 , . . . , E
∗
5 with E∗

i = Ei − 1/2, and denote
these new groups as D∗

1 , . . . , D
∗
5 .

Step 5 For each i , let Di = D∗
i + 7/2, which transforms the levels of D∗

from �(8) into {0, 1, . . . , 7}. Then design D = (D1, . . . , D5) becomes an
MNOAII(32, 35, 8, 2), where Di = (di1, di2, di3) for i = 1, . . . , 5.

The stratification properties of the MNOAII(32, 35, 8, 2) can be seen intuitively in
Fig. 1, where d j stands for the j th column of the design. The whole design is
column-orthogonal. All 15 columns are partitioned into 5 disjoint groups (denoted
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Table 7 The
MNOAII(32, 35, 8, 2) in
Example 5

D1 D2 D3 D4 D5

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

0 1 0 3 7 4 3 7 4 2 7 4 3 7 5

0 1 1 5 3 7 4 2 7 4 3 7 4 2 7

0 1 1 7 4 2 7 4 3 7 4 2 7 4 3

3 7 4 0 0 1 3 7 5 4 3 7 7 4 3

3 7 4 2 7 4 0 1 1 7 4 2 4 2 7

3 7 5 4 3 7 7 4 2 1 0 1 3 7 5

3 7 5 6 4 2 4 2 6 2 7 4 0 1 1

4 2 6 0 0 1 4 2 7 6 4 2 3 7 5

4 2 6 2 7 4 7 4 3 5 3 7 0 1 1

4 2 7 4 3 7 0 1 0 3 7 4 7 4 3

4 2 7 6 4 2 3 7 4 0 0 1 4 2 7

7 4 2 1 0 1 7 4 2 3 7 4 4 2 7

7 4 2 3 7 4 4 2 6 0 0 1 7 4 3

7 4 3 5 3 7 3 7 5 6 4 2 0 1 1

7 4 3 7 4 2 0 1 1 5 3 7 3 7 5

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

2 3 2 1 5 6 1 5 6 0 5 6 1 5 6

2 3 3 7 1 5 6 0 5 6 1 5 6 0 4

2 3 3 5 6 0 5 6 1 5 6 0 5 6 0

1 5 6 2 2 3 1 5 7 6 1 5 5 6 0

1 5 6 0 5 6 2 3 3 5 6 0 6 0 4

1 5 7 6 1 5 5 6 0 3 2 3 1 5 6

1 5 7 4 6 0 6 0 4 0 5 6 2 3 2

6 0 4 2 2 3 6 0 5 4 6 0 1 5 6

6 0 4 0 5 6 5 6 1 7 1 5 2 3 2

6 0 5 6 1 5 2 3 2 1 5 6 5 6 0

6 0 5 4 6 0 1 5 6 2 2 3 6 0 4

5 6 0 3 2 3 5 6 0 1 5 6 6 0 4

5 6 0 1 5 6 6 0 4 2 2 3 5 6 0

5 6 1 7 1 5 1 5 7 4 6 0 2 3 2

5 6 1 5 6 0 2 3 3 7 1 5 1 5 6

by D1, . . . , D5) each of 3 columns such that any two columns (e.g., (d1, d4)) from
distinct groups achieve a stratification on a 4×4 grid in 90 out of 105 two dimensions
and any two columns (e.g., (d1, d2)) from the same group achieve stratifications on
4× 2 and 2× 4 grids in the remaining 15 two dimensions, where d1 and d2 belong to
group D1 and d4 and d5 belong to group D2. We now compare Type-II MNOAs and
designs in Sun andTang (2017a). Take theMNOAII(32, 35, 8, 2) and theOD(32, 1616)
in Sun and Tang (2017a) as an example. The former has fewer factors (only by one),
but enjoys a better space-filling property, although these two designs do not have the
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Fig. 1 Bivariate projections of the columns (d1, d2, d4, d5) of the MNOAII(32, 35, 8, 2) in Example 5

same number of levels. In general, Type-II MNOAs are of p3 levels, and the designs
in Sun and Tang (2017a) are of p4 levels.

The SOA(32, 9, 8, 3) in Example 1 from Shi and Tang (2020) can achieve strat-
ifications on 4 × 4 grids in all two dimensions. Compared with such a design, the
MNOAII(32, 35, 8, 2) enjoys almost the same two-dimensional space-filling prop-
erty, while the newly constructed design has much more factors (15 against 9) and the
column orthogonality.

3.3 Type-III MNOAs

This subsection presents a method for constructing Type-III MNOAs using the expan-
sive replacement method. The proposed construction method is new and allows the
constructed Type-III MNOAs to enjoy the attractive space-filling property and column
orthogonality between groups. Note that Type-I and Type-II MNOAs are proposed
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by improving the within-group stratification property, while the Type-III MNOAs
improve the between-group stratification property, which provide an alternative class
of space-filling designs.

Definition 3 An n×m1m2 array with entries from {0, 1, . . . , s2 −1} is called a Type-
III MNOA, denoted by MNOAIII(n,m2

m1 , s2, p) with s = λ1 p2, where λ1 ≥ 1 is
an integer, if it can be partitioned into m1 disjoint groups each of m2 columns, and
satisfies the following properties:

(a) any two columns from different groups are column-orthogonal;
(b) any two columns from different groups achieve stratifications on s2 × s and s× s2

grids;
(c) any two columns from the same group achieve a stratification on a p × p grid.

Compared with Definitions 1 and 2, (i) Definition 3(a) keeps the column orthogo-
nality between groups; (ii) Definition 3(b) shows that any two columns from different
groups achieve stratifications on (λ21 p

4) × (λ1 p2) and (λ1 p2) × (λ21 p
4) grids instead

of a (λ1 p3) × (λ1 p3) grid in Definition 1(b) and a p2 × p2 grid in Definition 2(b),
respectively; (iii) Definition 3(c) shows that any two columns from the same group
achieve a stratification on a p × p grid instead of p2 × p and p × p2 grids. By Defi-
nition 3, an MNOAIII(n,m2

m1 , s2, p) is a design such that any two columns form an
OSOA(n, 2, s2, 2+) if they are from different groups, and can be collapsed into an
OA(n, p2) if they are from the same group. Thus such a design enjoys much better
space-filling property than an OA with p levels. The measure π defined in (4) can
be used to evaluate the degree of both column orthogonality of Definition 3(a) and
stratifications of Definition 3(b).

We now present the construction of a Type-III MNOA. The detailed construction
is given by the following steps.

Construction 3

Step 1 Let X be an OA(λs2, sm1), where λ ≥ 1 is an integer. Take A to be theGDI(X)

and GDII(X) in the generalized double of X in (1), respectively.
Step 2 Based on an OA(s, pm2) with s = λ1 p2, where λ1 ≥ 1 is an integer, take B

to be an LH(s,m2) obtained by, for each column, replacing the s/p entries
for level j by any permutation of js/p, js/p + 1, . . . , ( j + 1)s/p − 1 for
j = 0, . . . , p − 1 (Tang 1993, OA-based Latin hypercube).

Step 3 Obtain two designs C (1) and C (2) via the expansive replacement method using
the two A’s and B above. According to the grouping of the columns of C in
(3), write

C (k) = (C (k)
1 , . . . ,C (k)

m1
),

where C (k)
i = (c(k)

i1 , c(k)
i2 , . . . , c(k)

im2
) for k = 1, 2.

Step 4 Define

D = sC (1) + C (2), (7)

123



Space-filling designs 371

and write D = (D1, . . . , Dm1)where Di = (di1, di2, . . . , dim2) represents the
i th group of m2 columns for i = 1, . . . ,m1.

For design D in (7), we have the following result.

Theorem 4 Given an OA(λs2, sm1) and an OA(s, pm2) with s = λ1 p2, where λ ≥ 1
and λ1 ≥ 1 are two integers, the design D in (7) is anMNOAIII(λs3,m2

m1 , s2, p).

Theorem 4 shows that Type-III MNOAs can be regarded as an extension of OSOAs
of strength 2+. Specifically, an MNOAIII(λs3,m2

m1 , s2, p) with m2 = 1 becomes an
OSOA(λs3,m1, s2, 2+). However,m2 will be larger than 1 inmany cases. This allows
Type-III MNOAs with a considerably larger number of factors to be constructed while
enjoying almost the same column orthogonality and two-dimensional stratifications
as OSOAs of strength 2+.

Theorem 4 provides a series of Type-III MNOAs with the attractive space-filling
properties. Sun and Tang (2017a) constructed a design in which any two columns
achieve a stratification on a p2 × p2 grid if they are from different groups, and on a
p × p grid if they are from the same group, whereas, for a Type-III MNOA, any two
columns from different groups achieve stratifications on s2 × s and s × s2 grids with
s = λ1 p2 and retain the same stratifications within a group as the design from Sun
and Tang (2017a). This implies that the proposed designs have the better space-filling
property. An illustrative example is as follows.

Example 6 We present the detailed steps of constructing an MNOAIII(64, 35, 16, 2)
according to Construction 3.

Step 1 Let X be an OA(16, 45). Take A to be (XT , XT , XT , XT )T and (XT , 1 +
XT , 2 + XT , 3 + XT )T (modulo 4), respectively.

Step 2 Take B to be an LH(4, 3) obtained by, for each column of an OA(4, 23),
replacing the two entries for level j by any permutation of 2 j and 2 j + 1 for
j = 0, 1.

Step 3 Utilizing the two A’s and B above, we can generate two designs C (1) and
C (2) via the expansive replacement method. According to the grouping of the
columns of C in (3), write

C (1) = (C (1)
1 , . . . ,C (1)

5 ) and C (2) = (C (2)
1 , . . . ,C (2)

5 ),

where C (1)
i = (c(1)

i1 , c(1)
i2 , c(1)

i3 ) and C (2)
i = (c(2)

i1 , c(2)
i2 , c(2)

i3 ).
Step 4 Design D = 4C (1) + C (2) becomes an MNOAIII(64, 35, 16, 2), as shown in

Table 8, where D = (D1, . . . , D5) has 5 disjoint groups of 3 columns each.

For such a design, we have that any two columns from different groups achieve strat-
ifications on 16 × 4 and 4 × 16 grids in 90 out of 105 two dimensions, and any two
columns from the same group achieve a stratification on a 2× 2 grid in the remaining
15 two dimensions.

Compared with an OSOA(64, 5, 16, 2+) given in Zhou and Tang (2019), design
D in Example 6 gains more factors (15 against 5) with almost the same column
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Table 8 The MNOAIII(64, 35, 16, 2) in Example 6

D1 D2 D3 D4 D5

0 10 15 0 10 15 0 10 15 0 10 15 0 10 15

5 5 0 0 10 15 5 5 0 5 5 0 5 5 0

10 15 5 0 10 15 10 15 5 10 15 5 10 15 5

15 0 10 0 10 15 15 0 10 15 0 10 15 0 10

0 10 15 5 5 0 5 5 0 10 15 5 15 0 10

5 5 0 5 5 0 0 10 15 15 0 10 10 15 5

10 15 5 5 5 0 15 0 10 0 10 15 5 5 0

15 0 10 5 5 0 10 15 5 5 5 0 0 10 15

0 10 15 10 15 5 10 15 5 15 0 10 5 5 0

5 5 0 10 15 5 15 0 10 10 15 5 0 10 15

10 15 5 10 15 5 0 10 15 5 5 0 15 0 10

15 0 10 10 15 5 5 5 0 0 10 15 10 15 5

0 10 15 15 0 10 15 0 10 5 5 0 10 15 5

5 5 0 15 0 10 10 15 5 0 10 15 15 0 10

10 15 5 15 0 10 5 5 0 15 0 10 0 10 15

15 0 10 15 0 10 0 10 15 10 15 5 5 5 0

1 9 12 1 9 12 1 9 12 1 9 12 1 9 12

6 7 1 1 9 12 6 7 1 6 7 1 6 7 1

11 12 6 1 9 12 11 12 6 11 12 6 11 12 6

12 2 11 1 9 12 12 2 11 12 2 11 12 2 11

1 9 12 6 7 1 6 7 1 11 12 6 12 2 11

6 7 1 6 7 1 1 9 12 12 2 11 11 12 6

11 12 6 6 7 1 12 2 11 1 9 12 6 7 1

12 2 11 6 7 1 11 12 6 6 7 1 1 9 12

1 9 12 11 12 6 11 12 6 12 2 11 6 7 1

6 7 1 11 12 6 12 2 11 11 12 6 1 9 12

11 12 6 11 12 6 1 9 12 6 7 1 12 2 11

12 2 11 11 12 6 6 7 1 1 9 12 11 12 6

1 9 12 12 2 11 12 2 11 6 7 1 11 12 6

6 7 1 12 2 11 11 12 6 1 9 12 12 2 11

11 12 6 12 2 11 6 7 1 12 2 11 1 9 12

12 2 11 12 2 11 1 9 12 11 12 6 6 7 1

2 11 13 2 11 13 2 11 13 2 11 13 2 11 13

7 4 2 2 11 13 7 4 2 7 4 2 7 4 2

8 14 7 2 11 13 8 14 7 8 14 7 8 14 7

13 1 8 2 11 13 13 1 8 13 1 8 13 1 8

2 11 13 7 4 2 7 4 2 8 14 7 13 1 8

7 4 2 7 4 2 2 11 13 13 1 8 8 14 7

8 14 7 7 4 2 13 1 8 2 11 13 7 4 2

13 1 8 7 4 2 8 14 7 7 4 2 2 11 13
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Table 8 continued

D1 D2 D3 D4 D5

2 11 13 8 14 7 8 14 7 13 1 8 7 4 2

7 4 2 8 14 7 13 1 8 8 14 7 2 11 13

8 14 7 8 14 7 2 11 13 7 4 2 13 1 8

13 1 8 8 14 7 7 4 2 2 11 13 8 14 7

2 11 13 13 1 8 13 1 8 7 4 2 8 14 7

7 4 2 13 1 8 8 14 7 2 11 13 13 1 8

8 14 7 13 1 8 7 4 2 13 1 8 2 11 13

13 1 8 13 1 8 2 11 13 8 14 7 7 4 2

3 8 14 3 8 14 3 8 14 3 8 14 3 8 14

4 6 3 3 8 14 4 6 3 4 6 3 4 6 3

9 13 4 3 8 14 9 13 4 9 13 4 9 13 4

14 3 9 3 8 14 14 3 9 14 3 9 14 3 9

3 8 14 4 6 3 4 6 3 9 13 4 14 3 9

4 6 3 4 6 3 3 8 14 14 3 9 9 13 4

9 13 4 4 6 3 14 3 9 3 8 14 4 6 3

14 3 9 4 6 3 9 13 4 4 6 3 3 8 14

3 8 14 9 13 4 9 13 4 14 3 9 4 6 3

4 6 3 9 13 4 14 3 9 9 13 4 3 8 14

9 13 4 9 13 4 3 8 14 4 6 3 14 3 9

14 3 9 9 13 4 4 6 3 3 8 14 9 13 4

3 8 14 14 3 9 14 3 9 4 6 3 9 13 4

4 6 3 14 3 9 9 13 4 3 8 14 14 3 9

9 13 4 14 3 9 4 6 3 14 3 9 3 8 14

14 3 9 14 3 9 3 8 14 9 13 4 4 6 3

orthogonality and two-dimensional stratifications. In particular, if each group of design
D has one factor, then design D becomes an OSOA(64, 5, 16, 2+). In addition, a
D(64, 1648) from Sun and Tang (2017a) is a design of 64 runs for 48 factors that has 8
groups each of 6 factors such that any two columns achieve a stratification on a 4× 4
grid if they are from different groups, and on a 2 × 2 grid if they are from the same
group. Compared with such a design, the D in Example 6 enjoys better space-filling
property, although the former has relatively more factors. Thus, the Type-III MNOAs
provide a preferable choice of designs for computer experiments.

Similar to Example 6, Table 9 lists some new Type-IIIMNOAs by Theorem 4 based
on suitable choices of OAs for practical use.

In the rest of this section, we provide a construction of column-orthogonal Type-III
MNOAs when taking B to be a column-orthogonal Latin hypercube based on an OA.
This can be done as follows. Suppose that m2 is an even integer and s = p2, and let
G = (G1, . . . ,Gm2/2) be a centered OA(s, pm2) with each G j having two columns.
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Table 9 Some Type-III MNOAs

p OA(λs2, sm1 ) OA(s, pm2 ) Type-III MNOA π

2 OA(16, 45) OA(4, 23) MNOAIII(64, 35, 16, 2) 0.857

2 OA(32, 49) OA(4, 23) MNOAIII(128, 39, 16, 2) 0.923

2 OA(64, 421) OA(4, 23) MNOAIII(256, 321, 16, 2) 0.968

2 OA(256, 485) OA(4, 23) MNOAIII(1024, 385, 16, 2) 0.992

2 OA(1024, 4341) OA(4, 23) MNOAIII(4096, 3341, 16, 2) 0.998

2 OA(64, 89) OA(8, 27) MNOAIII(512, 79, 64, 2) 0.903

2 OA(128, 817) OA(8, 27) MNOAIII(1024, 717, 64, 2) 0.949

2 OA(512, 873) OA(8, 27) MNOAIII(4096, 773, 64, 2) 0.988

2 OA(144, 127) OA(12, 211) MNOAIII(1728, 117, 144, 2) 0.868

2 OA(288, 1212) OA(12, 211) MNOAIII(3456, 1112, 144, 2) 0.924

2 OA(256, 1617) OA(16, 215) MNOAIII(4096, 1517, 256, 2) 0.945

3 OA(81, 910) OA(9, 34) MNOAIII(729, 410, 81, 3) 0.923

3 OA(162, 919) OA(9, 34) MNOAIII(1458, 419, 81, 3) 0.960

3 OA(729, 991) OA(9, 34) MNOAIII(6561, 491, 81, 3) 0.992

4 OA(256, 1617) OA(16, 45) MNOAIII(4096, 517, 256, 4) 0.952

4 OA(512, 1633) OA(16, 45) MNOAIII(8192, 533, 256, 4) 0.976

5 OA(625, 2526) OA(25, 56) MNOAIII(15625, 626, 625, 5) 0.968

Define B = (G1V , . . . ,Gm2/2V ) + (p2 − 1)/2, where

V =
(
p −1
1 p

)
.

From Lin et al. (2009), the design B is a column-orthogonal Latin hypercube with s
runs and m2 factors. Based on Construction 3 by using this design B while still using
an OA(λs2, sm1) as X , we can establish the following result.

Theorem 5 Given anOA(λs2, sm1) and anOA(s, pm2)with m2 being an even integer
and s = p2, a column-orthogonal MNOAIII(λs3,m2

m1 , s2, p) can be constructed
from the above X and B via Construction 3.

Theorem 5 is a special but interesting result of Theorem 4 when design B is a
column-orthogonal Latin hypercube based on an OA, and it guarantees the column
orthogonality of the resulting Type-III MNOAs. Similar to Table 9 and based on
suitable choices of OAs, Table 10 presents some new column-orthogonal Type-III
MNOAs by Theorem 5 for practical use.

Example 7 If we take an OA(81, 910) and an OA(9, 34), we can obtain a column-
orthogonal MNOAIII (729, 410, 81, 3) with π = 0.923. Taking an OA(64, 421)
and an OA(4, 22) gives a column-orthogonal MNOAIII (256, 221, 16, 2) with π =
0.976. Similarly, taking an OA(16, 45) and an OA(4, 22) gives a column-orthogonal
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Table 10 Some column-orthogonal Type-III MNOAs

p OA(λs2, sm1 ) OA(s, pm2 ) Type-III MNOA π

2 OA(16, 45) OA(4, 22) MNOAIII(64, 25, 16, 2) 0.889

2 OA(32, 49) OA(4, 22) MNOAIII(128, 29, 16, 2) 0.941

2 OA(64, 421) OA(4, 22) MNOAIII(256, 221, 16, 2) 0.976

2 OA(256, 485) OA(4, 22) MNOAIII(1024, 285, 16, 2) 0.994

2 OA(1024, 4341) OA(4, 22) MNOAIII(4096, 2341, 16, 2) 0.999

3 OA(81, 910) OA(9, 34) MNOAIII(729, 410, 81, 3) 0.923

3 OA(162, 919) OA(9, 34) MNOAIII(1458, 419, 81, 3) 0.960

3 OA(729, 991) OA(9, 34) MNOAIII(6561, 491, 81, 3) 0.992

4 OA(256, 1617) OA(16, 44) MNOAIII(4096, 417, 256, 4) 0.955

4 OA(512, 1633) OA(16, 44) MNOAIII(8192, 433, 256, 4) 0.977

5 OA(625, 2526) OA(25, 56) MNOAIII(15625, 626, 625, 5) 0.968

MNOAIII(64, 25, 16, 2) with π = 0.889. Compared with the strong group-
orthogonal array SGOA(64, 20, 16, 2) (Wang et al. 2022), the column-orthogonal
MNOAIII(64, 25, 16, 2) achieves the comparable two-dimensional stratifications
while possessing the additional property of column orthogonality, though the latter
has less columns (10 against 20). So the orthogonal Type-III MNOAs can be regarded
as an alternative class of space-filling designs.

4 Concluding remarks

This paper is devoted to some methods for constructing three new classes of space-
filling designs (i.e., Type-I, Type-II and Type-III MNOAs) for computer experiments.
These space-filling designs are constructed via the expansive replacement method
based on orthogonal arrays and strong orthogonal arrays. The resulting designs enjoy
attractive space-filling properties and can accommodate a large number of factors.
Interestingly, the newly constructed MNOAs enjoy near or exact column orthogonal-
ity, which is also desirable for designs of computer experiments. These designs can be
regarded as a marriage between mappable nearly orthogonal arrays and strong orthog-
onal arrays, which are very popular for computer experiments in recent developments.

Although the MNOAIII(64, 35, 16, 2) has less factors than the strong group-
orthogonal array SGOA(64, 20, 16, 2) (Wang et al. 2022), the proposed Type-III
MNOAs tends to be useful. First, the proposed method for Type-III MNOAs is mean-
ingful because it motivates the construction of column-orthogonal Type-III MNOAs
as shown in Theorem 5, while the SGOAs are not column-orthogonal. In addition, we
note that Type-I and Type-II MNOAs are proposed by improving the within-group
stratification property, while the Type-III MNOAs improve the between-group strati-
fication property, which provide an alternative class of space-filling designs. We will
further study orthogonal Type-III MNOAs with much more factors in the future.
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Appendix: Proofs of theorems

Proof of Theorem 1 From Construction 1, we have that A is an OA(λs2, sm1) and B
is an LH(s,m2) based on an SOA(s,m2, p2, 2+). Due to the expansive replacement
method, any twocolumns from the samegroup for Dmust be twocolumnsof a repeated
B up to a row permutation, implying that D satisfies Definition 1(c) according to the
definition of the SOA(s,m2, p2, 2+). Let (d1, d2) be any two columns from different
groups for D. According to the expansive replacement method, (d1, d2) must be two
columns of an OA(λs2, sm1) up to a level permutation. Since any level permutation
of an OA does not change its strength, (d1, d2) is an OA with s levels. Therefore, D
satisfies Definitions 1(a) and 1(b). This completes the proof. 	

Proof of Theorem 2 We only need to prove that the resulting design, say D, from The-
orem 2 is column-orthogonal as its stratifications follow from Theorem 1. As B is
column-orthogonal, then any two columns from the same group for D is column-
orthogonal due to the expansive replacement method. According to the proof of
Theorem 1, any two columns from different groups for D is an OA with s levels,
and then is also column-orthogonal. This completes the proof. 	

In order to prove Theorem 3, we first give Lemmas 1, 2 and 3. From Step 1 of
Construction 2, we have the following result.

Lemma 1 (Sun and Tang 2017a) Any four columns, derived by taking two columns
from one group Ci1 and two columns from another group Ci2 with i1 �= i2, must form
an OA(λs2, 4, p, 4).

According to the specific structures of E and F in Step 2 of Construction 2, we
have the following result.

Lemma 2 Any three columns, derived by taking two columns from E and one column
from F, must form an OA(λps2, 3, p, 3).

Lemma 2 allows many three-column arrays whose columns come from E and F to
have strength three, and then allows the constructed D in (6) to have the stratification
property of Definition 2(c).

Note that any linear level permutation of C in Step 2 of Construction 2 does not
change its strength such that u+C in F has the same strength asC for u = 1, . . . , p−1.
From Lemma 1, a direct result is given below.

Lemma 3 Any four columns, derived by taking two columns from one group Ei1 and
two columns from another group Fi2 with i1 �= i2, must form an OA(λps2, 4, p, 4).
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Lemma 3 allows many four-column arrays whose columns come from E and F to
have strength four, and then allows design D in (6) to have the stratification property
of Definition 2(b).

Proof of Theorem 3 From (5), we have D∗ = HR, where H = (H1, . . . , Hq) and
R = diag{U , . . . ,U } with U repeating q times. By Lemma 2, we see that (E, F) is
an orthogonal array of strength 2, implying that H is column-orthogonal. By noting
thatU is also column-orthogonal, we have D∗T D∗ = (HR)T H R = RT (HT H)R =
c1RT R = c2 I2q , where c1 and c2 are two constants, and I2q is the identity matrix of
order 2q. This shows that D∗ in (5) is column-orthogonal, so is D in (6).

Before showing the stratifications of D, we first consider two mappings h1(x) and
h2(x). Note that any column d of D has the following form:

d = bp2 + b′ p ± b′′, (8)

where (b, b′, b′′) up to a column permutation is (eik, fik′ , e jl), where k′ = k + 1 if
k ≤ m2 − 1 and k′ = 1 if k = m2. Consider the mapping

h1(x) =
⌊
{x + (p3 − 1)/2}/p

⌋
− (p2 − 1)/2 with x ∈ �(p3),

which collapses the p3 levels in �(p3) into the p2 levels in �(p2). We need to show
that h1(d) = bp + b′, which means that the column d becomes the column bp + b′
after the mapping h1(x) is applied to each entry of d. By letting r = b + (p − 1)/2,
r ′ = b′ + (p − 1)/2 and r ′′ = ±b′′ + (p − 1)/2, we have

h1(d) =
⌊
{bp2 + b′ p ± b′′ + (p3 − 1)/2}/p

⌋
− (p2 − 1)/2

=
⌊
(rp2 + r ′ p + r ′′)/p

⌋
− (p2 − 1)/2.

Since all entries of (b, b′,±b′′) are in �(p), all entries of (r , r ′, r ′′) must take values
from {0, 1, . . . , p − 1}. We then have h1(d) = rp + r ′ − (p2 − 1)/2 = bp + b′. We
next consider the mapping

h2(x) =
⌊
{x + (p3 − 1)/2}/p2

⌋
− (p − 1)/2 with x ∈ �(p3),

which collapses the p3 levels in�(p3) into the p levels in�(p). By the above similar
discussion, we have h2(d) = b.

We now prove the stratifications of D in Definition 2(b). Consider two columns d1
and d2 of D as in (8), and write them as

d1 = b1 p
2 + b′

1 p ± b′′
1 and d2 = b2 p

2 + b′
2 p ± b′′

2 .

Let us show that the array (d1, d2) can be collapsed into an OA(λps2, 2, p2, 2), that
is to say, (h1(d1), h1(d2)) = (b1 p + b′

1, b2 p + b′
2) is an OA(λps2, 2, p2, 2). In fact,

this is true by noting the following two facts: (i) from Lemma 3, (b1, b2, b2, b′
2) is

123



378 W. Li et al.

an OA(λps2, 4, p, 4); (ii) p3x1 + p2x2 + px3 + x4 establishes a one-to-one corre-
spondence between the p4 pairs (x1, x2, x3, x4) with x1, x2, x3, x4 ∈ �(p) and the
p4 levels in �(p4). This shows that D satisfies Definition 2(b).

Next, we prove the stratifications of D in Definition 2(c). Let us show that the array
(d1, d2) can be collapsed into anOA(λps2, 2, p2 × p, 2) and anOA(λps2, 2, p × p2,
2), that is to say, (h1(d1), h2(d2)) = (b1 p+b′

1, b2) and (h2(d1), h1(d2)) = (b1, b2 p+
b′
2) are an OA(λps2, 2, p2 × p, 2) and an OA(λps2, 2, p × p2, 2), respectively. In
fact, this is true by noting the following two facts: (i) from Lemma 2, (b1, b′

1, b2)
and (b1, b2, b′

2) are two OA(λps2, 3, p, 3)’s; (ii) px1 + x2 establishes a one-to-one
correspondence between the p2 pairs (x1, x2) with x1, x2 ∈ �(p) and the p2 levels
in �(p2). This shows that D satisfies Definition 2(c). This completes the proof. 	

Proof of Theorem 4 From the structures of C (1) and C (2), we have that the array
(c(1)

k j , c(1)
i j , c(2)

i j ) is a repeated full factorial and is hence an OA(λs3, 3, s, 3) for any

k �= i . From the expansive replacement method, c(1)
kl can be obtained by permuting

levels in c(1)
k j for l �= j . Because of this, the array (c(1)

kl , c(1)
i j , c(2)

i j ) with l �= j is also an

OA(λs3, 3, s, 3). Then we have that the array (c(1)
kl , c(1)

i j , c(2)
i j ) has strength 3 for any

k �= i . According to Theorem 4 of Zhou and Tang (2019), Definitions 3(a) and 3(b)
can be verified for design D in (7). Since B is an LH(s,m2) based on an OA(s, pm2),
any two columns from the same group for D can be collapsed into an OA(λs3, p2),
implying that D satisfies Definition 3(c). This completes the proof. 	

Proof of Theorem 5 We only need to prove that the resulting design, say D, from Theo-
rem 5 is column-orthogonal as its stratifications follow fromTheorem 4. FromLemma
6.27 of Hedayat et al. (1999) and the definition of X , we see that (GDI(X), GDII(X))

in Step 1 of Construction 3 is an OA(λs3, s2m1). As B is column-orthogonal, then
(C (1),C (2)) is column-orthogonal according to the proof of Theorem 2, and the inner
product of any two columns from the centered (C (1),C (2)) equals zero. From (7), let
(di , d j ) be any two columns from the centered D, then we have di = sc(1)

i + c(2)
i and

d j = sc(1)
j + c(2)

j , where c(1)
i , c(2)

i , c(1)
j and c(2)

j are from the centered (C (1),C (2)),

implying that dTi d j = 0 due to the column orthogonality of (C (1),C (2)). This com-
pletes the proof. 	
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