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Abstract
Fourier-cosine models, rooted in the discrete cosine transformation, are widely used
in numerous applications in science and engineering. Because the selection of design
points where data are collected greatly affects the modeling process, we study the
choice of fractional factorial designs for fitting Fourier-cosine models. We propose a
new type of generalized resolution and provide a framework for the construction of
fractional factorial designswith themaximumgeneralized resolution.The construction
applies level permutations to regular designs with a novel nonlinear transformation.
A series of theoretical results are developed to characterize the properties of the
level-permuted designs. Based on the theory, we further provide efficient methods
for constructing designs with high resolutions without any computer search. Exam-
ples are given to show the advantages of the constructed designs over existing ones.

Keywords Discrete cosine transformation · Generalized wordlength pattern ·
Level permutation · Maximum resolution · Orthogonal array · Regular design

1 Introduction

TheFourier-cosinemodeling (also called cosinemodeling)method and its correspond-
ing cosine expansion have been widely used for modeling or expanding a function.
Vapnik (1998) proposed fitting a posterior probability by a truncated cosine model to
map the output of support vectormachines to someprobabilities.Uenohara andKanade
(1998) proved that the eigenvalues of the vector inner product matrix of uniformly
rotated images can be represented with a cosine series. Spurr et al. (2001) used the
cosine expansion for the determination of solutions to the radiative transfer equation.
Fang and Oosterlee (2008, 2009) developed an option pricing method by representing

B Lin Wang
linwang@purdue.edu

1 Department of Statistics, Purdue University, West Lafayette, USA

2 Department of Statistics, University of California, Los Angeles, Los Angeles, USA

3 School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00184-022-00881-2&domain=pdf
http://orcid.org/0000-0003-0888-6232


374 L. Wang et al.

the probability density function of the log-asset price in terms of its cosine expansion.
Ruijter and Oosterlee (2012) further proposed to use two-dimensional cosine expan-
sion for pricing financial options. Expanding grid data with cosine series is equivalent
to conducting discrete cosine transform (DCT) Ahmed et al. (1974) on the data. The
DCT is a good approximation to Karhunen-Loeve transform, which is optimal in the
sense that it completely decorrelates the data in the transformed domain. Therefore,
any truncated cosine expansion has the minimum mean squared error (Rao and Yip
2014). Buckley (1994) showed that the solution to a penalizedminimummean squared
error problem for grid data also has a cosine series form. Butler (2001) argued that
a second-order cosine model is a good simulation model for computer experiments,
because it provides a good approximation to a second-order polynomial model and at
the same time provides a link with spatial processes.

When the observations are collected from a subset of grid points, the choice of
design points is crucial as it can greatly affect the precision of parameter estimations.
While much attention was paid to the application of cosine models, there is little
work on the choice of design points. Butler (2001) and Yin and Liu (2013) considered
constructing Latin hypercube designs for fitting second-order cosine models, where
the number of levels for each factor is restricted to be the same as the number of design
points.

In this paper, we study the construction of fractional factorial designs for fitting
cosine models. Factorial designs provide the capability of studying complex factorial
effects and interactions, a capability that Latin hypercube designs do not possess.
Fractional factorial designs have been widely studied under the minimum aberration
and maximum resolution criteria and their various generalizations for ANOVA and
polynomial models; see Tang and Deng (1999), Xu and Wu (2001), Cheng and Ye
(2004), Xu et al. (2009), Huang et al. (2012), Cheng (2014) and Xu (2015) for major
developments and references. Here we propose a new type of generalized wordlength
pattern, called the γ -wordlength pattern, and its related γ -resolution to select designs
for cosine models. Designs with high γ -resolution not only perform well for cosine
models, but remarkably also outperform available designs for polynomial models.

Wepropose to construct high γ -resolution designs via level permutations for regular
designs. Both polynomial and cosine models have a special feature that level permu-
tation of any factor can alter a design’s geometrical structure and statistical properties.
This enables us to improve the property of regular designs via level permutations, but
the huge number of possible permutations substantially complicates the task. Using
a naive enumeration, for a design with m q-level factors, one needs to account for
all the (q!)m possible level permutations, making it a formidable task to choose the
best permutation even for moderate m and q. Cheng and Wu (2001), Ye et al. (2007)
and Tang and Xu (2014) restricted the search within linear permutations to improve
properties of regular designs. Wang et al. (2018) considered the so called Williams
transformation in addition to linear permutations for good lattice point designs. We
provide a special nonlinear level permutation and develop a general theory on the
obtained designs. Using the theory, we propose highly efficient constructions that
require no computer search for generating designs. The obtained designs have better
properties than regular designs and linearly permuted regular designs.
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The rest of this paper is organized as follows. Section 2 introduces notation and
backgrounds. Section 3 defines the γ -resolution and provides preliminary results.
Section 4provides the nonlinear level permutation and its nice properties for generating
designs for cosine models. Section 5 presents main theoretical results and construction
methods. Section 6 considers the application of the constructed designs. Section 7 gives
concluding remarks. We defer all proofs to the “Appendix”.

2 Notation and backgrounds

Let Zq = {0, 1, . . . , q − 1}. For a vector u = (u1, . . . , um) ∈ Zm
q , let ‖u‖0 be the

number of its nonzero elements and ‖u‖1 = ∑m
j=1 u j . A design with N points, m

factors andq levels, is an N×mmatrix D = (xi j ) over Zq , where each row represents a
design point and each column represents a factor. An orthogonal array (OA) of strength
t is a design in which all possible level combinations for any t factors appear equally
often. OAs include both regular and nonregular fractional factorial designs. They are
widely used in physical and computer experiments; see Hedayat et al. (1999).

Let q be a prime. A regular qm−p design is an OAwithm− p independent columns,
denoted as x1, . . . , xm−p , which form a full factorial design, and p dependent columns,
denoted as xm−p+1, . . . , xm , which can be specified by p linear equations:

⎧
⎨

⎩

xm−p+1 = c11x1+ · · · +c1,m−pxm−p + b1,
· · · · · · · · ·

xm = cp1x1+ · · · +cp,m−pxm−p + bp,
(1)

where ci j and bi are constants in Zq for i = 1, . . . , p and j = 1, . . . ,m − p.
Denote C = (ci j ) and b = (b1, . . . , bp)′. The matrix G = [Im−p,C ′] is called the
generator matrix, where Im−p is the (m − p) × (m − p) identity matrix. The linear
space generated by row vectors of matrix [C, (q−1)Ip] is called the defining contrast
subgroup, denoted by L . Each vector (row) in u ∈ L is called a word with wordlength
‖u‖0. For any given C , different choices of b lead to different fractions. All fractions
share the same defining contrast subgroup. The one with b = (0, . . . , 0)′ is called the
principal fraction and other fractions are its cosets. One fraction can be obtained from
another by linearly permuting the levels of factors (that is, replacing a column x of
the design to x + z (mod q) for some z ∈ Zq ).

If D is the principal fraction of a regular qm−p design, linearly permuting each
column x to x+ (q−1)/2 generates a mirror-symmetric fraction (Tang and Xu 2014).
An N ×m design D over Zq is called mirror-symmetric if (q − 1)J − D is the same
design as D, where J is an N ×m matrix of ones. In spite of the common application
of principal fractions in designing experiments (see Mukerjee and Wu 2006; Wu and
Hamada 2009), Tang and Xu (2014) showed that mirror-symmetric fractions are better
than principal fractions for fitting polynomial models.

123



376 L. Wang et al.

3 The �-resolution

For an N × m design D = (xi j ) over Zq with observations yi , i = 1, . . . , N , a
first-order cosine model can be expressed as

yi = μ0 + √
2

m∑

j=1

μ j cos

{
π(xi j + 0.5)

q

}

+ εi , (2)

and a second-order cosine model is of the form

yi = μ0+
√
2

m∑

j=1

μ j cos

{
π(xi j + 0.5)

q

}

+ √
2

m∑

j=1

μ j j cos

{
2π(xi j + 0.5)

q

}

+ 2
m−1∑

j=1

m∑

k= j+1

μ jk cos

{
π(xi j + 0.5)

q

}

cos

{
π(xik + 0.5)

q

}

+ εi , (3)

where εi ∼ N (0, σ 2). Note that the first-order terms in (2) and (3) complete only half
a cycle from x = 0 to x = q − 1. Consequently, the terms are different from the
trigonometric functions usually included in Fourier models such as in Riccomagno
et al. (1997) and Xie et al. (2007). Generally, a full cosine model can be expressed in
the following matrix form

Y = X0θ0 + X1θ1 + · · · + XK θK + ε,

where Y = (y1, . . . , yN )′, K = m(q − 1), and for k = 0, 1, . . . , K , Xk is an N × lk
matrix with the (i, u)-th element (Xk)iu = 2‖u‖0/2 ∏m

j=1 cos(u jπ(xi j + 0.5)/q) for
i = 1, . . . , N and u ∈ Zm

q with ‖u‖1 = k, lk is the number of u ∈ Zm
q such that

‖u‖1 = k, θk is an lk × 1 vector of the kth-order frequencies in the frequency domain,
and ε ∼ N (0, σ 2 IN ).

The higher-order frequencies in a cosinemodel have dramatically smaller variances
or spectral densities than lower-order frequencies (Rao and Yip 2014), so they are
typically cut off to obtain a truncated model or expansion for easy interpretation.
When doing so, we expect that the omitted frequencies bring the minimum bias to the
obtained truncated model. To measure such bias, we define the γ -wordlength pattern
for an N × m design D = (xi j ) over Zq as (γ1(D), . . . , γK (D)), where

γk(D) = N−2
∑

‖u‖1=k

2‖u‖0
∣
∣
∣
∣
∣
∣

N∑

i=1

m∏

j=1

cos(u jπ(xi j + 0.5)/q)

∣
∣
∣
∣
∣
∣

2

for k = 1, . . . , K , where K = m(q−1), ‖u‖1 = ∑m
j=1 u j , and ‖u‖0 is the number of

its nonzero elements. Then γk measures the aliasing between two frequencies whose
orders sum up to k. A zero γk(D) implies no aliasing between j th- and (k− j)th-order
frequencies for all j with 0 ≤ j ≤ k. Define the γ -resolution of a design D to be the
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smallest number k > 0 such that γk(D) �= 0. Then for any desired design size, our
goal is to find a design with maximum γ -resolution.

Because OAs are widely used in practice, we provide a preliminary result for OAs
regarding the γ -resolution.

Lemma 1 Suppose D is an OA with strength t, then γk(D) = 0 for k = 1, . . . , t .

Lemma 1 shows that the γ -resolution of an OA with strength t is at least t + 1,
so that increasing the strength of OAs generate designs with higher γ -resolution.
However, this way tends to generate designs with large run sizes, which is undesirable
in designing experiments. A natural concern is whether it is possible to improve the
performance of an OA, say reducing its γt+1 value to zero, without increasing the run
size. Let us first see an illustrative example.

Example 1 Let D be the principal fraction of a regular 53−1 design with x3 = x1 + x2,
D1 = D+2J (mod 5), which means D1 is obtained from D by linearly permuting the
levels (0, 1, 2, 3, 4) to (2, 3, 4, 0, 1) over Z5, and D2 be the design obtained from D by
permuting levels (0, 1, 2, 3, 4) to (2, 4, 3, 1, 0). Each of the three designs is an OA of
strength 2 and has γ1 = γ2 = 0 by Lemma 1. It can be verified that γ3(D) = 0.1278
so that the γ -resolution of D is 3, γ3(D1) = 0 and γ4(D1) = 0.96 so that the γ -
resolution of D1 is 4, while γ3(D2) = γ4(D2) = γ5(D2) = 0 and γ6(D2) = 2 so
that the γ -resolution of D2 is 6. Design D2 is much better than D and D1. Under the
second-order model in (3), the estimates of the parameters are correlated for D and
D1 but are uncorrelated for D2.

Example 1 shows that permuting levels of a regular design can improve its perfor-
mance without increasing its run size. Except for the linear level permutation proposed
by Tang and Xu (2014), which leads to D1 in Example 1, a nonlinear permutation,
for example the permutation for D2 in Example 1, may lead to a better design with
a more significant improvement. We study this nonlinear permutation in detail in the
next section.

4 A level permutation

Let q be an odd prime. Define

ϕ(x) =
⎧
⎨

⎩

2x + (q − 1)/2, for 0 ≤ x < q/4;
−2x + (3q − 1)/2, for q/4 < x < 3q/4;
2x − (3q + 1)/2, for 3q/4 < x < q.

(4)

Then ϕ defines a permutation for all x ∈ Zq . For example, for q = 3, ϕ linearly
permute the levels (0, 1, 2) to (1, 2, 0) over Z3; for q = 5, ϕ is the permutation
used for D2 in Example 1. For q ≥ 5, ϕ is nonlinear. Figure 1 shows the cases for
q = 5 and 7. The permutation is well defined because for x1, x2 ∈ Zq and x1 �= x2,
ϕ(x1) �= ϕ(x2). In fact, for instance, if 0 ≤ x1 < q/4, q/4 < x2 < 3q/4 and
ϕ(x1) = ϕ(x2), then q = 2(x1 + x2), which contradicts with the fact that q is odd. It
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Fig. 1 The permutation ϕ(x) in (4) for q = 5 and 7

is easy to see that the permutation has the property

ϕ(x) + ϕ(q − x) = q − 1 (mod q). (5)

Note that ϕ is in fact a piece-wise linear transformation, similar to the Williams
transformation applied to the construction of Latin hypercube designs in Butler (2001)
and Wang et al. (2018). However, ϕ is directly ready to use on regular designs and
significantly improves their properties. Below is an important result on ϕ. For a D =
(xi j ), denote ϕ(D) = (ϕ(xi j )), the design obtained from D by permuting the levels
with ϕ for all factors.

Theorem 1 Let q be an odd prime. If D is the principal fraction of a regular qm−p

design, ϕ(D) is mirror-symmetric.

Theorem 1 is important because we have the following property for mirror-
symmetric designs.

Theorem 2 A design D is mirror-symmetric if and only if γk(D) = 0 for all odd k > 0.

Theorems 1 and 2 guarantee that odd-order frequencies are not aliased with any
even-order frequencies for ϕ(D) if D is a principal fraction. Specifically, linear fre-
quencies are not aliased with any even-order frequencies. In the next section, we will
further discuss theoretical properties of ϕ(D).

5 Theoretical results

We consider the construction of the maximum γ -resolution design among the class
of all possible ϕ(D) where D is a regular qm−p design defined in (1). If D is an OA
of strength t , so is ϕ(D), then, by Lemma 1, γk(ϕ(D)) = 0 for k = 1, . . . , t . So we
consider the choice of C in the generator matrix and the vector b for determining D so
that the strength of D and then the γ -resolution of ϕ(D) are maximized. An exhaus-
tive search for both C and b seems infeasible considering the number of candidates,
q p(m−p) for C and q p for b, which can be super large for even moderate q and m, and
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the high complexity of the computation of γt+1(ϕ(D)) (or further, γt+2(ϕ(D))) for
a single design. We provide a series of theoretical results and construction methods
in this section so that no computer search is required for generating the maximum
γ -resolution designs. First, we have the following result showing that it suffices to set
b = 0 and restrict our search within principal fractions.

Theorem 3 Let q be an odd prime, D be a principal qm−p regular design with strength
t and D1 be one of its cosets.

(i) If t is even,γt+1(ϕ(D)) = 0. Further,γt+2(ϕ(D1)) = 0 impliesγt+2(ϕ(D)) = 0.
(ii) If t is odd, γt+1(ϕ(D1)) = 0 implies γt+1(ϕ(D)) = 0. Further, γt+2(ϕ(D)) = 0.

By Theorem 3, if any regular design permuted with ϕ has zero γt+1 or γt+2, so
does its principal fraction. So principal fractions seem to derive designs with at least
the same performance as their cosets.

Example 2 Let D be the principal fraction of a regular 53−1 design with x3 = x1 + x2
and D1 be its coset with x3 = x1 + x2 + 1. Because both D and D1 have strength
t = 2, γ1 = γ2 = 0 for both ϕ(D) and ϕ(D1). By Theorem 3(i), γ3(ϕ(D)) = 0,
while it can be verified that γ3(ϕ(D1)) = 0.452 �= 0. Further, γ4(ϕ(D1)) = 0 and
this implies that γ4(ϕ(D)) = 0 by Theorem 3(i).

Example 2 shows that the γ -resolution of ϕ(D)with D being a principal fraction is
typically higher than that of ϕ(D) with D being a coset. Also, recall the nice property
that γk(ϕ(D)) = 0 for all odd k if D is a principal fraction (Theorems 1 and 2). For
these reasons, we shall restrict our search within principal fractions and focus on the
choice ofC . The effect ofC on the γ -resolution of ϕ(D) is illustrated by the following
example.

Example 3 Let D be the principal fraction of a regular 53−1 designwith x3 = 2x1+2x2.
It is straightforward to verify that γ1(ϕ(D)) = γ2(ϕ(D)) = γ3(ϕ(D)) = 0 and
γ4(ϕ(D)) = 0.5 so that the γ -resolution of this ϕ(D) is 4. Recall that for the principal
fraction, also denoted by D, of a regular 53−1 design with x3 = x1 + x2 in Example 1,
we have γ1(ϕ(D)) = · · · = γ5(ϕ(D)) = 0 and the γ -resolution of this ϕ(D) is 6. The
two principal fractions differ merely in the generators of dependent columns while
have significantly different γ -resolution.

We next provide explicit formulas for computing γt+1 and γt+2 for principal frac-
tions. For d = 1, . . . ,m, let Nd be the number of words u ∈ L of length d with
all components of u being 0, 1, or q − 1 (for example, u = (1, 1, 4, 0) for a 5-level
design), and Md be the number of words u ∈ L of length d with exactly one com-
ponent being 2 or q − 2 and all other components being 0, 1 or q − 1 (for example,
u = (1, 2, 0, 4) for a 5-level design).

Theorem 4 Let q be an odd prime and D be the principle fraction of a regular qm−p

design with strength t.

(i) If t is even, γt+1(ϕ(D)) = 0 and γt+2(ϕ(D)) = 2−(t+1)Nt+2 + 2−t Mt+1.

(ii) If t is odd, γt+1(ϕ(D)) = 2−t Nt+1 and γt+2(ϕ(D)) = 0.
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Theorem 4 provides a simple and fast computation of γt+1(ϕ(D)) and γt+2(ϕ(D)).
For any possible t , we only need to compute either γt+1(ϕ(D)) or γt+2(ϕ(D)), and
the computation only involves the counting of some words. The following example
illustrate the use of Theorem 4.

Example 4 Let D be a regular 54−2 design with x3 = x1 + x2 and x4 = x1 + 2x2, so
that

C =
(
1 1
1 2

)

,

the strength of D is t = 2, and the defining contrast subgroup is

L =

⎛

⎜
⎜
⎝

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
0 4 3 2 1 1 0 4 3 2 2 1 0 4 3 3 2 1 0 4 4 3 2 1 0
0 0 0 0 0 4 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1

⎞

⎟
⎟
⎠

′

.

Then M3 = 4 and N4 = 0. By Theorem 4(i), γ3(ϕ(D)) = 0 and γ4(ϕ(D)) =
N4/8 + M3/4 = 1.

Based on the above theoretical results, we propose two efficient methods for gen-
erating high γ -resolution designs among the class of ϕ(D). By Theorem 3, we only
consider D to be a principal fraction so that each dependent column is generated by
c1x1 + · · · + cm−pxm−p with c1, . . . , cm−p ∈ Zq . These generators are determined
so that the strength, t , of D is first maximized and then γt+1(ϕ(D)) or γt+2(ϕ(D))

could be zero, where γt+1(ϕ(D)) and γt+2(ϕ(D)) are considered or computed with
Theorem 4.

We first provide a simple construction from regular qm−p designs with q ≥ 5 and
p = 1. For convenience, let 0n (and 1n) be the n × 1 vector of zeros (and ones). If m
is odd, C = 1′

m−1 generates a principal fraction D with strength t = m − 1, which
is the maximum possible strength. For design D, L = {0′

m, u, . . . , (q − 1)u} where
u = (1′

m−1, q − 1), and Nt+2 = Mt+1 = 0. Thus γt+2(ϕ(D)) = 0. From Theorem 4,
ϕ(D) has γ -resolution at least m + 3. For example, see the design D2 in Example 1.
If m is even, we can choose C = (1′

m−2, 2). Then C generates a principal fraction D
with resolution t = m − 1, L = {0′

m, u, . . . , (q − 1)u} where u = (1′
m−2, 2, q − 1),

and Nt+1 = 0. Thus γt+1(ϕ(D)) = 0. From Theorem 4, ϕ(D) has γ -resolution at
least m + 2.

Theorem 5 Suppose D is the principal fraction of a regular qm−1 design with a gen-
erator matrix G = [Im−1,C ′], where q ≥ 5 is an odd prime.

(i) If m is odd and C = 1′
m−1, the γ -resolution of ϕ(D) is at least m + 3.

(ii) If m is even and C = (1′
m−2, 2), the γ -resolution of ϕ(D) is at least m + 2.

Recall that given a principal fraction D, D̃ = D + ((q − 1)/2)J (mod q) obtained
via linear level permutation ismirror-symmetric (Tang andXu 2014). Suppose D is the
principal fraction of a regular qm−1 design specified in Theorem 5. Table 1 compares
the γ -resolutions of designs D, D̃ and ϕ(D) for q = 5, 7, 11 and m = 3, 4, 5. It is
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Table 1 The γ -resolutions for three types of qm−1 designs

(q,m) (5,3) (5,4) (5,5) (7,3) (7,4) (7,5) (11,3) (11,4) (11,5)

D 3 4 5 3 4 5 3 4 5

D̃ 4 4 6 4 4 6 4 4 6

ϕ(D) 6 6 8 6 8 10 6 10 10

easy to see that ϕ(D) performs much better than the corresponding D̃ and D. Note
that Theorem 5 does not hold for q = 3. This is because for three-level designs,
Nt+1 = Mt+1 and neither of them can be zero. Therefore, when q = 3, ϕ(D) and D̃
has the same possible maximum γ -resolution, which is m + 1 for odd m and m for
even m.

We now provide a general method for generating high γ -resolution designs among
the class of ϕ(D). We first illustrate the method with designs of q2 runs and then
provide a general result. Denote D as a regular design with q2 runs, then D has two
independent columns x1 and x2. We still only consider D to be a principal fraction
so that each dependent column is generated by c1x1 + c2x2 with c1, c2 ∈ Zq . If D
has m ≤ q + 1 columns (that is, less than q − 1 dependent columns), the maximum
possible strength of D is t = 2, and the columns of D can be generated by sequentially
choosing columns of G2 as generators, where

G2 =
(
1 0 1 1 · · · 1
0 1 1 2 · · · q − 1

)

.

By Theorem 4(i), these designs derive ϕ(D) with γ1 = γ2 = γ3 = 0, that is, the
γ -resolution of ϕ(D) is at least 4. For m > q + 1, the maximum possible strength of
D is t = 1. Define

G = [G2, 2G2, . . . , ((q − 1)/2)G2].

For a regular design D with G as its generator matrix, N2 = 0. By Theorem 4(ii),
γ2(ϕ(D)) = 0. Therefore, sequentially choosing columns of G generates the regular
design D such that γ2(ϕ(D)) = 0 and the γ -resolution of ϕ(D) is at least 4.

Using this method, we catalogue a list of 5-level designs ϕ(D) with 25 runs and
up to 12 columns. Table 2 shows that the γ -resolution of ϕ(D) is always larger than
that of D and is larger than that of D̃ for m > 6. Specifically, for m = 3, . . . , 6, the
γ -resolutions of ϕ(D) and D̃ are the same and they are both larger than that of D. For
m = 7, . . . , 12, the γ -resolutions of D and D̃ decrease to 2, which means that linear
frequencies would be aliased with each other if either of these two designs is used for
a cosine model, while the γ -resolution of ϕ(D) stays at 4, making linear frequencies
uncorrelated if ϕ(D) is used. In addition, linear frequencies are uncorrelated with
second-order frequencies with ϕ(D). The 7-level designs with 49 runs listed in Table 3
show the same trend. Note that the maximum possible γ -resolution is 4 for 25-run
designs with m ≥ 6 factors and 49-run designs with m ≥ 9 factors, which is achieved
by ϕ(D).
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Table 2 The γ -resolutions for
three types of 25-run designs
with m = 3, . . . , 12 columns

m 3 4 5 6 7 8 9 10 11 12

D 3 3 3 3 2 2 2 2 2 2

D̃ 4 4 4 4 2 2 2 2 2 2

ϕ(D) 6 4 4 4 4 4 4 4 4 4

Table 3 The γ -resolutions for
three types of 49-run designs
with m = 3, . . . , 24 columns

m 3 4 5 6 7 8 9 10 11 12· · · 24
D 3 3 3 3 3 3 2 2 2 2

D̃ 4 4 4 4 4 4 2 2 2 2

ϕ(D) 6 4 4 4 4 4 4 4 4 4

Generally, for k ≥ 3, we recursively define the generator matrix Gk of a saturated
regular design with qk runs and strength t ≥ 2 as follows:

Gk =
(
Gk−1 0k−1 Gk−1 Gk−1 · · · Gk−1
0′
ν 1 1′

ν 2 · 1′
ν · · · (q − 1) · 1′

ν

)

,

where ν = (qk−1 − 1)/(q − 1). Note that Gk has k rows and (qk − 1)/(q − 1)
columns, and the columns of Gk are arranged in the Yates order. We can move the
column (0′

k−1, 1)
′ forward so that the first k columns of Gk form an identity matrix.

Denote

G = [Gm−p, 2Gm−p, . . . , ((q − 1)/2)Gm−p]. (6)

Then G has m − p rows and (qm−p − 1)/2 columns. Based on the above discussion,
we have the following general result.

Theorem 6 Suppose D is the principal fraction of a regular qm−p design generated
by G in (6). Then ϕ(D) has (qm−p − 1)/2 columns and its γ -resolution is at least 4.

It should be noted that designs constructed using Theorem 6 have the maximum
possible number of columns that a design with γ -resolution 4 can have. So Theorem 6
generates designs that can accommodate the maximum number of factors.

6 Applications

Consider applying two 53−1 mirror-symmetric designs D̃ and ϕ(D) in Table 1 to study
three five-level quantitative factors with the second-order cosine model

y = β0 +
3∑

j=1

f1(x j )β j +
3∑

j=1

f2(x j )β j j +
2∑

j=1

3∑

k= j+1

f1(x j ) f1(xk)β jk + ε, (7)
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Table 4 Information matrices M ′M/25 for D̃ and ϕ(D) under a second-order cosine model

D̃ ϕ(D)

1 0 0 0 0 −0.566 1 0 0 0 0 0

0 1 0 0 −0.566 0 0 1 0 0 0 0

0 0 1 0.566 0 0 0 0 1 0 0 0

0 0 0.566 1 −0.4 −0.4 0 0 0 1 0 0

0 −0.566 0 −0.4 1 0.4 0 0 0 0 1 0

−0.566 0 0 −0.4 0.4 1 0 0 0 0 0 1

where fu(x) = √
2 cos(uπ(x + 0.5)/5) for u = 1, 2, x1, x2, x3 ∈ Z5 are levels for

the three factors, β0, β j , β j j , and β jk are the intercept, linear, quadratic and bilinear
terms, respectively, and ε ∼ N (0, σ 2). Since both designs have γ1 = γ2 = γ3 = 0, the
intercept and all of the linear terms can be estimated independently. For either design,
let M denote the model matrix corresponding to the 3 quadratic and 3 bilinear terms:
β11, β22, β33, β12, β13 and β23. Table 4 shows the information matrix M ′M/25 for
both designs. The covariance matrix of the estimates of parameters for these terms is
σ 2(M ′M)−1. For each quadratic term (β11, β22 and β33), the variance of the estimate
is 0.0734σ 2 for D̃ vs. 0.04σ 2 for ϕ(D), and for each bilinear term (β12, β13 and β23),
the variance of the estimate is 0.1042σ 2 for D̃ vs. 0.04σ 2 for ϕ(D). The estimates
are correlated for D̃ while they are uncorrelated for ϕ(D). The orthogonality of ϕ(D)

greatly improves the accuracy of the estimates. In addition, the above discussion on
second-order models assumes that all third- or higher-order terms are negligible. It is
possible, however, that some third-order terms are not negligible. Designϕ(D) ensures
that all of the estimates for themodel are not contaminated by nonnegligible third-order
terms (as γ5(ϕ(D)) = 0), so the estimates are robust against model uncertainty.

Now consider fitting data with a traditional second-order polynomial model by
replacing f1(x) and f2(x) in (7) with p1(x) = √

2(x−2)/2 and p2(x) = √
5/14((x−

2)2 −2). The intercept and all of the linear terms can also be estimated independently.
Still let M be the model matrix corresponding to the 3 quadratic and 3 bilinear terms.
The information matrices for the designs D̃ and ϕ(D) are shown in Table 5. It is easy
to verify that for each quadratic term, the variance of the estimate is 0.0583σ 2 for
D̃ vs. 0.0404σ 2 for ϕ(D), and for each bilinear term, the variance of the estimate is
0.0803σ 2 for D̃ vs. 0.0409σ 2 for ϕ(D). Furthermore, the correlations between the
estimates are smaller for ϕ(D) than D̃. Therefore, ϕ(D) is also better than D̃ for fitting
a polynomial model, although ϕ(D) is constructed for the cosine model in (7).

The good performance of ϕ(D) for polynomial models does not occur by chance.
In fact, the relationship between the cosine and polynomial models is highlighted by
the inner products

∫ q−0.5

−0.5
−p1(x) f1(x)dx = 0.993

{∫ q−0.5

−0.5
p1(x)

2dx

} 1
2
{∫ q−0.5

−0.5
f1(x)

2dx

} 1
2

,
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∫ q−0.5

−0.5
p2(x) f2(x)dx = 0.961

{∫ q−0.5

−0.5
p2(x)

2dx

} 1
2
{∫ q−0.5

−0.5
f2(x)

2dx

} 1
2

,

for general orthonormal polynomials p1(x) = c1[x−(q−1)/2] and p2(x) = c2[(x−
(q−1)/2)2−(q2−1)/12], where c1 and c2 are constants, and fu(x) = √

2 cos(uπ(x+
0.5)/q) for u = 1, 2. The integral interval is set to (−0.5, q − 0.5) because it covers
the set Zq = {0, . . . , q − 1} and takes (q − 1)/2 as the middle point. The above
equations indicate that the leading terms of cosine and polynomial models are very
close. This consistency brings about the general good performance of the constructed
designs in this paper for polynomial models.

7 Concluding remarks

In this paper, we study the choice of fractional factorial designs for Fourier-cosine
models and propose the γ -resolution. We provide a nonlinear level permutation and
obtain a series of theoretical results for constructing high γ -resolution design via per-
muting levels for regular designs. Using the theory, we further provide highly efficient
methods for constructing designswithout any computer search. The constructionmeth-
ods are simple but provide much better designs than available ones for Fourier-cosine
modeling. In addition, the obtained designs also perform well for fitting polynomial
models.

The present work leads to an open issue which concerns a comprehensive study of
nonregular designswith themaximum γ -resolution.While this is likely to be very hard
in general, one may consider some nonlinear permutations like ϕ on regular designs
and develop theories for these resulting designs. Any future work about this issue will
be illuminating.
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Appendix: Proofs

Proof of Lemma 1 The result is obvious by noting that

N∑

i=1

m∏

j=1

cos(u jπ(xi j + 0.5)/q) =
m∏

j=1

{
N∑

i=1

cos(u jπ(xi j + 0.5)/q)

}

= 0

for ‖u‖1 ≤ t if D = (xi j ) is an OA of strength t . 
�
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Proof of Theorem 1 Suppose D is a principal fraction defined in (1) with b1 = · · · =
bp = 0. It is obvious that for any point x = (x1, . . . , xm) ∈ D, q − xm−p+i =
ci1(q − x1) + · · · + ci,m−p(q − xm−p) (mod q) for i = 1, . . . , p, thus q − x ∈ D.
Therefore, q J − D is the same design as D.

From (5), we know that ϕ(D) = (q − 1)J − ϕ(q J − D), then ϕ(D) and (q −
1)J − ϕ(D) are the same design, that is, ϕ(D) is mirror-symmetric. 
�
Proof of Theorem 2 Let f0(x) = 1 and fu(x) = √

2 cos(uπ(x + 0.5)/q) for u =
1, . . . , q − 1, then { f0(x), f1(x), . . . , fq−1(x)} forms a set of orthonormal contrasts

∑

x∈Zq
fu(x) fv(x) =

{
0, if u �= v;
q, if u = v,

and

fu(q − 1 − x) =
{− fu(x), if u odd;
fu(x), if u even.

The proof of Theorem 2 is similar to the proof of Theorem 2 of Tang and Xu (2014).

�

To prove Theorem 3, we need some notation and the following Lemma 2. For a
regular design D defined in (1), each word u = (u1, . . . , um) ∈ L corresponds to a
number in Zq , denoted by bu , such that u1x1 + · · · + umxm + bu = 0. For example,
suppose D is a regular 53−1 design with x3 = x1+ x2 +1, then u = (1, 1, 4) is a word
and bu = 1 because x1 + x2 +4x3 +1 = 0. For d = 1, . . . ,m, let Hd be a subset of L
containing all words u of length d with u j = 0, 1, or q − 1 for j = 1, . . . ,m, Wd a
subset of L containing all words u of length d with exactly one j0 ∈ {1, . . . ,m} such
that u j0 = 2 or q − 2, and u j = 0, 1 or q − 1 for all j �= j0, j = 1, . . . ,m. For any
b ∈ Zq , let Nd,b and Md,b be the number of words u in Hd and Wd respectively such
that u1x1 +· · ·+ umxm + b = 0. For b = 1, . . . , q − 1, if bu = b then bq−u = q − b,
thus Nd,b = Nd,q−b and Md,b = Md,q−b. Note that Nd and Md are the number of

words in Hd and Wd , respectively, so that
∑q−1

b=0 Nd,b = Nd and
∑q−1

b=0 Md,b = Md .

Lemma 2 Let q be an odd prime and D be a regular qm−p design defined in (1) with
strength t.

(i) If t is even, then

γt+1(ϕ(D)) = 2−(t−1)
(q−1)/2∑

b=1

Nt+1,b sin
2(2πb/q), and

γt+2(ϕ(D)) = 2−(t+1)Nt+2,0 + 2−t Mt+1,0 + 2−t

(q−1)/2∑

b=1

(Nt+2,b + 2Mt+1,b) cos
2(2πb/q).
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(ii) If t is odd, then

γt+1(ϕ(D)) = 2−t Nt+1,0 + 2−(t−1)
(q−1)/2∑

b=1

Nt+1,b cos
2(2πb/q), and

γt+2(ϕ(D)) = 2−t
(q−1)/2∑

b=1

(Nt+2,b + 2Mt+1,b) sin
2(2πb/q).

Proof of Lemma 2 From (4), it is easy to see that for u = 1, . . . , q − 1,

cos(uπ(ϕ(x) + 0.5)/q) =
{

(−1)(u+1)/2 sin(2πux/q), for odd u;
(−1)u/2 cos(2πux/q), for even u.

Denote tu(x) = √
2 sin(2πux/q) for odd u, tu(x) = √

2 cos(2πux/q) for even
positive u, and t0(x) = 1, then we have

γk(ϕ(D)) = N−2
∑

‖u‖1=k

∣
∣
∣
∣
∣
∣

N∑

i=1

m∏

j=1

tu j (xi j )

∣
∣
∣
∣
∣
∣

2

for k = 1, . . . , K . (8)

Denote D = (xk j ) and eu(x) = exp(iθux) where θ = 2π/q. For odd u, tu(x) =√
2 sin(θux) = √

2(eu(x) − eq−u(x))/2i ; for even u > 0, tu(x) = √
2 cos(θux) =√

2(eu(x) + eq−u(x))/2 . Since D is a regular design, if u = (u1, . . . , um) is a word,
∑N

k=1
∏m

j=1 eu j (xk j ) = N exp(−iθbu); otherwise,
∑N

k=1
∏m

j=1 eu j (xk j ) = 0. Since
D has strength t , then for any l ≤ t , 0 ≤ j1 < · · · < jl ≤ m and u1, . . . , ul ∈ Zq ,∑N

k=1 tu1(xk j1) · · · tul (xk jl ) = 0. From (8),

γt+1(ϕ(D)) = N−2
∑

‖u‖1=t+1

∣
∣
∣
∣
∣
∣

N∑

k=1

m∏

j=1

tu j (xk j )

∣
∣
∣
∣
∣
∣

2

= N−2
∑

1≤ j1<···< jt+1≤m

∣
∣
∣
∣
∣

N∑

k=1

t1(xk j1) · · · t1(xk jt+1)

∣
∣
∣
∣
∣

2

= N−22−(t+1)
∑

1≤ j1<···< jt+1≤m

∣
∣
∣
∣
∣
∣
∣

∑

u∈H j1 ··· jt+1
t+1

N∑

k=1

(−1)ζ(u)
m∏

j=1

eu j (xk j )

∣
∣
∣
∣
∣
∣
∣

2

(9)

where ζ(u) is the number of elements of u = (u1, . . . , um) satisfying u j = q − 1

for j = 1, . . . ,m, and for given 1 ≤ j1 < · · · < jt+1 ≤ m, H j1··· jt+1
t+1 = {u =

(u1, . . . , um) ∈ Ht+1 : u j = 0 for j �= j1, . . . , jt+1}. For any 1 ≤ j1 < · · · <

jt+1 ≤ m, we conclude that H j1··· jt+1
t+1 contains exactly two words, denoted by v and
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(q − 1)v. Otherwise, suppose u ∈ H j1··· jt+1
t+1 , u �= v or (q − 1)v, then v + u is a word

and 0 < ‖v +u‖0 ≤ t , which contradicts with the fact that the strength of D is t . Note
that b(q−1)v = q − bv and ζ(v) + ζ((q − 1)v) = t + 1. Thus

∣
∣
∣
∣
∣
∣
∣

∑

u∈H j1··· jt+1
t+1

N∑

k=1

(−1)ζ(u)
m∏

j=1

eu j (xk j )

∣
∣
∣
∣
∣
∣
∣
=

{
N |exp(iθbv) − exp(−iθbv)| , if t is even;
N |exp(iθbv) + exp(−iθbv)| , if t is odd.

=
{
2N |sin(θbv)| , if t is even;
2N |cos(θbv)| , if t is odd.

There are Nt+1,0/2 choices of j1, . . . , jt+1 such that bv = 0, and Nt+1,b choices
of j1, . . . , jt+1 for bv = 1, . . . , q − 1. Then from (9), if t is even, γt+1(ϕ(D)) =
2−(t−1) ∑(q−1)/2

b=1 Nt+1,b sin2(2πb/q), and if t is odd, γt+1(ϕ(D)) = 2−t Nt+1,0 +
2−(t−1) ∑(q−1)/2

b=1 Nt+1,b cos2(2πb/q).

Now consider γt+2(ϕ(D)). From (8) and also because D has strength t , we have
γt+2(ϕ(D)) = N−2 ∑

‖u‖1=t+2 | ∑N
i=1

∏m
j=1 tu j (xi j )|2 = E1 + E2, where

E1 = N−2
∑

1≤ j1<···< jt+2≤m

∣
∣
∣
∣
∣

N∑

k=1

t1(xk j1) · · · t1(xk jt+2)

∣
∣
∣
∣
∣

2

, and

E2 = N−2
∑

1≤ j1<···< jt≤m

∑

jt+1 �= j1,..., jt

∣
∣
∣
∣
∣

N∑

k=1

t1(xk j1) · · · t1(xk jt )t2(xk jt+1)

∣
∣
∣
∣
∣

2

.

Similar to the discussion for γt+1(ϕ(D)), for E1, we have

E1 =
⎧
⎨

⎩

2−(t+1)Nt+2,0 + 2−t ∑(q−1)/2
k=1 Nt+2,k cos2(2πk/q), if t is even;

2−t ∑(q−1)/2
k=1 Nt+2,k sin2(2πk/q), if t is odd.

For E2, we have

E2 = N−22−(t+1)
∑

1≤ j1<···< jt≤m

∑

jt+1 �= j1,..., jt

∣
∣
∣
∣
∣
∣
∣

∑

u∈W j1 ··· jt+1
t+1

N∑

k=1

(−1)ζ(u)
m∏

j=1

eu j (xk j )

∣
∣
∣
∣
∣
∣
∣

2

,

(10)

where W j1··· jt+1
t+1 = {u = (u1, . . . , um) ∈ Wt+1 : u jt+1 = 2 or q − 2, u j = 0 for j �=

j1, . . . , jt+1}.We can also conclude thatW j1··· jt+1
t+1 contains exactly twowords, denoted

by w and (q − 1)w. Otherwise, there will be a word of length less than t + 1. Note
that ζ(w) + ζ((q − 1)w) = t . We have
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∣
∣
∣
∣
∣
∣
∣

∑

u∈W j1 ··· jt+1
t+1

N∑

k=1

(−1)ζ(u)
m∏

j=1

eu j (xk j )

∣
∣
∣
∣
∣
∣
∣
=

{
2N |cos(θbw)| , if t is even;
2N |sin(θbw)| , if t is odd.

Then from (10),

E2 =
{
2−t Mt+1,0 + 2−(t−1) ∑(q−1)/2

b=1 Mt+1,b cos2(2πb/q), if t is even;

2−(t−1) ∑(q−1)/2
b=1 Mt+1,b sin2(2πb/q), if t is odd.

This completes the proof of Lemma 2. 
�
Proof of Theorem 3 (i) If t is even, t+1 is odd. By Theorems 1 and 2, γt+1(ϕ(D)) =

0. Further, if γt+2(ϕ(D1)) = 0, then by Lemma 2, D1 has Nt+2,b = Mt+1,b = 0
for b = 0, . . . , q − 1 so Nt+2 = Mt+1 = 0. Note that D1 and D have the
same Nt+2 and Mt+1, so D also has Nt+2 = Mt+1 = 0. Therefore, D also has
Nt+2,b = Mt+1,b = 0 for b = 0, . . . , q − 1. By Lemma 2, γt+2(ϕ(D)) = 0.

(ii) The proof is similar to part (i) and omitted.

�

Proof of Theorem 4 By Theorems 1 and 2, γt+1(ϕ(D)) = 0 if t is even and
γt+2(ϕ(D)) = 0 if t is odd. For a principal fraction D0, bu = 0 for all u ∈ L where L
is the defining contrast subgroup of D0. So for d = 1, . . . ,m, Nd,b = Md,b = 0 for
b �= 0, Nd,0 = Nd and Md,0 = Md . Then Theorem 4 follows from Lemma 2. 
�
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