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Computer experiments with branching and nested factors are a common class of

computer experiments, but it is challenging to construct designs for this type of

experiments. In this paper, we define a special type of design called branching

orthogonal Latin hypercube design (BOLHD). Such a design has an appealing structure,

that is, no matter at each level of a branching factor or the level-combination of

branching factors, the corresponding design points of nested factors form an

orthogonal Latin hypercube design (OLHD). This structure makes it a good choice for

designing computer experiments with branching and nested factors. We propose

several deterministic construction methods when branching factors have the same

number of levels. Based on sliced Latin hypercube designs (SLHDs), the proposed

methods are easy to operate. Some construction results are tabulated for practical use.
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1 | INTRODUCTION

Computer experiments are widely used for the design and development of products (Fang et al. 2006). Scientists are increasingly using experi-

ments on computer simulators to help understand physical systems. In many experiments, some of the factors exist only within the level of

another factor. Such factors are often called nested factors. A factor within which other factors are nested is called a branching factor. Other fac-

tors which are common to all levels of the branching factors are called shared factors. To better illustrate branching and nested factors, we refer

to the example of printed circuit board manufacturing from Hung et al. (2009). Suppose that we want to test two surface preparation methods:

mechanical scrubbing and chemical treatment. Mechanical scrubbing can be optimized by changing the pressure scrubbing, and chemical treat-

ment can be optimized by changing the micro-etching rate. The surface preparation method here is a branching factor, and the pressure and

microetching rate are nested factors.

Hung et al. (2009) mentioned that because nested factors differ for different levels of the branching factor, there is a need for one-

dimensional balance for the nested factors within each level of the branching factor to capture the branching-by-nested interaction effects. Latin

hypercube designs (LHDs) are commonly used in computer experiments (McKay et al. 1979). A desirable property of an LHD is its one-

dimensional balance, that is, when an N-point design is projected onto any factor, there will be N different levels for that factor. Hence, Hung

et al. (2009) incorporated LHD into the design with branching and nested factors and proposed a corresponding design called branching Latin

hypercube design (BLHD). Goos and Jones (2019) discussed the modelling of data from experiments with branching and nested factors as well as

the optimal design of such experiments. Chen et al. (2019) considered the case where branching factors and nested factors are both qualitative

and proposed two-layer sliced Latin hypercube designs (SLHDs) to suit such situations. Chen et al. (2021) proposed the level-collapsing method

to construct BLHDs having a sliced structure in the part for the shared factors.

In this paper, a more detailed case is considered, that is, when there are multiple branching factors, the hidden models under each level-

combination of branching factors may be different because the corresponding nested factors differ for different level combinations of branching

factors. Thus, we need a one-dimensional balance for the nested factors within each level combination of the branching factors. In addition,

orthogonality is also an important property of a design, which can guarantee the independence of estimates of linear effects when a first-order

model is fitted. Specifically, we need a design which can ensure that

Received: 31 October 2021 Accepted: 15 December 2021

DOI: 10.1002/sta4.447

Stat. 2022;11:e447. wileyonlinelibrary.com/journal/sta4 © 2021 John Wiley & Sons, Ltd. 1 of 10

https://doi.org/10.1002/sta4.447

 20491573, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.447 by N

ankai U
niversity, W

iley O
nline L

ibrary on [20/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-2271-4798
mailto:jfyang@nankai.edu.cn
https://doi.org/10.1002/sta4.447
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.447
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.447&domain=pdf&date_stamp=2022-05-01


(1) both the modelling of nested factors at a certain level of a branching factor alone and the modelling of nested factors at a level combination

of branching factors can result in good parameter estimations, that is, the design is robust to the models;

(2) the design is orthogonal to ensure that significant factors can be identified.

To find designs with the aforementioned properties, we define a special type of design called branching orthogonal Latin hypercube design

(BOLHD), which satisfies the following: (i) For each level of a branching factor, the corresponding design of nested factors is orthogonal and

achieves maximum uniformity in any one-dimensional projection; (ii) for each level-combination of the branching factors, the corresponding

design of nested factors is orthogonal and achieves maximum uniformity in any one-dimensional projection; (iii) the part of design for the

shared factors is an OLHD, and for each level combination of branching factors, the corresponding design of shared factors is orthogonal to the

design of nested factors and achieves maximum uniformity in any one-dimensional projection. These good properties can make (1) and (2) hold.

It is worth mentioning that the proposed design is like a design between the marginally coupled design (MCD) proposed by Deng et al. (2015)

and SLHD proposed by Qian (2012), but it is neither an MCD nor an SLHD. Note that the design of the nested factors in the proposed design

is not, and need not to be, an LHD as a whole, since the nested factors represent different meanings for different levels of the branching

factor.

The rest of this paper is organized as follows. Section 2 introduces some basic definitions and notation. Further, we give the structure of the

proposed design and provide the definition of BOLHD. Section 3 provides the construction of BOLHDs with two branching factors. Section 4

provides the construction of BOLHDs with multiple branching factors and lists some of the construction results for practical use. Some concluding

remarks are given in Section 5.

2 | NOTATION AND DESIGN STRUCTURE

An n � p LHD is a matrix of n rows and p columns in which each column is a permutation of n equally spaced levels. For convenience, we take the

n levels to be �(n � 1)/2, � (n � 3)/2, … , (n � 3)/2, (n � 1)/2. Qian (2012) defined an n � q SLHD with n = mv runs and v slices, denoted by

SLHD(n, q, v), to be an n � q LHD that can be divided into v smaller LHDs of m levels. The m levels of each slice correspond to the m equally spa-

ced intervals {[� n/2 + ( j � 1)v, � n/2 + jv] : 1≤j≤m}. For an integer s and a vector f¼ðf1,…, fnÞT , let s∗ f ¼ðsf1,…,sfnÞT and

s⊕ f¼ðsþ f1,…,sþ fnÞT . For two vectors u¼ðu1,…,unÞT and w¼ðw1,…,wnÞT , let u⊕w¼ u1þw1,…,u1þwn,…,unþw1,…,unþwnð ÞT , and define

the correlation coefficient between u and w as

corrðu,wÞ¼
Xn

i¼1
ui��uð Þ wi�wð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ui��uð Þ2

Xn

i¼1
wi�wð Þ2

q ,

where �u¼Pn
i¼1ui=n and w¼Pn

i¼1wi=n. Two columns are said to be orthogonal if their correlation coefficient is zero. An LHD is called an

OLHD if any two columns are orthogonal. An SLHD is called orthogonal if any two columns of each slice are orthogonal. For convenience, we

denote an orthogonal SLHD(n, q, v) by SOLHD(n, q, v). For a design D, let D(i, :), D(: , j) and D(i, j) be its ith row, jth column and (i, j)th entry,

respectively.

We assume that there are q branching factors, denoted by z¼ z1,…,zqð ÞT , and for each branching factor zu, the mu nested factors are denoted

by vzu ¼ vzu1 ,…,v
zu
mu

� �T
,1≤ u≤ q. We further assume that, in addition to the branching and nested factors, there are t shared quantitative factors,

denoted by x¼ x1,…,xtð ÞT . Let v¼ vz1ð ÞT ,…, vzqð ÞT
� �T

then, w¼ zT ,vT ,xT
� �T

represents all of the p factors involved in the experiment, where

p¼ qþPq
u¼1muþ t. Then, an N-run BLHD can be denoted by W¼ w1,…,wNð ÞT .

Our basic idea is to incorporate the structure of SLHD into the structure of BLHD to ensure a one-dimensional balance for the nested factors

within each level-combination of the branching factors. To better demonstrate the structure of the newly proposed design, let us see a simple

example. Suppose there are two branching factors, called z1, z2, with s levels and mi nested factors at each level of zi. The nested factors are differ-

ent at different levels of each branching factor. More generally, we also assume there are t quantitative shared factors. For the simplest case

where each branching factor has two levels (s¼2), Table B1 shows the structure of the proposed design. For comparison, Table B2 shows the

BLHD constructed by Hung et al. (2009). It can be seen that, compared to the BLHD, the proposed design can not only achieve a one-dimensional

balance for the nested factors within each level of each branching factor but also achieve a one-dimensional balance for the nested factors within

each level-combination of the branching factors. Table B3 shows the structure of the proposed designs with two branching factors each of $s$

levels.

It is well known that orthogonality is critical to a design, which can guarantee the independence of estimates of linear effects when a first-

order model is fitted. So, at the end of this section, on the basis of the structure of SLHD-based BLHD, we will introduce a new type of BLHD

called branching orthogonal Latin hypercube design (BOLHD). The specific definition is as follows.

2 of 10 WEI ET AL.
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Definition 1. A BLHD is called a BOLHD if

(1) for each level of each branching factor, the corresponding design points of nested factors form an OLHD;

(2) for each level-combination of branching factors, the corresponding design points of nested factors form an OLHD;

(3) the part of design for the shared factors is an OLHD, and for each level-combination of branching factors, the corresponding design

points of shared factors form a small LHD which is orthogonal to the design of nested factors.

This definition incorporates the three properties described in the introduction. An N-run BOLHD with q branching factors (each branching

factor corresponds to mi nested factors, i¼1,…,q) and t shared factors can be expressed in terms of BOLHD(N, q, (m1,… ,mq), t). For convenience

of presentation, we divide the structure of a BOLHD into three parts: part D1 corresponding to branching factors, part D2 corresponding to nested

factors and part D3 corresponding to shared factors. Next, we will show how to construct BOLHDs with branching factors having the same num-

ber of levels.

3 | CONSTRUCTION OF BOLHDS WITH TWO BRANCHING FACTORS

To better understand our construction method, we start with the simplest case with only two branching factors. This section provides two algo-

rithms for constructing BOLHDs when there are two branching factors each of s levels. Because branching factors are qualitative factors, we can

choose a full factorial design as D1, that is,

D1 ¼
1 … 1 … s … s

1 … s … 1 … s

� �T

,

where the first column of D1 is for z1 and the second column is for z2. This section mainly gives the construction methods for D2 and D3. For

details, Section 3.1 gives the construction algorithm for BOLHDs with no shared factors, while Section 3.2 considers the case with shared factors,

which is more general and the corresponding algorithm is more complex.

3.1 | BOLHDs with two branching factors and no shared factors

This is the simplest case, but it gives an intuitive explanation of our construction methods. Because there is no shared factor and D1 has been

given, this section mainly discusses how to construct D2. See Algorithm 1 for details.

Algorithm 1.

Step 1 Let L¼ðLT1,…,LTs Þ
T
be an SOLHD(N= ns,m1+m2, s), where Li is the i th slice of L for i¼1,…,s. For i¼1,…,s, let ai and bi be the

first m1 and last m2 columns of Li, respectively.

Step 2 For the i th level of z1, let Ai ¼ aT0 _þði�1Þþ1,…,a
T
ðs�1Þ _þði�1Þþ1

� �T
and Bi ¼ bT0 _þði�1Þþ1,…,b

T
ðs�1Þ _þði�1Þþ1

� �T
, i¼1,…,s, where _þ repre-

sents the modulo s addition operation, that is, for two integers x and y, x _þy¼ðxþyÞ mod s.

Step 3 Stack the Ai and Bi obtained in Step 3 row by row to obtain A¼ðAT
1,…,AT

s Þ
T
and B¼ðBT

1,…,B
T
s Þ

T
, where A corresponds to the

design for vz11 ,…,v
z1
m1

and B corresponds to the design for vz21 ,…,vz2m2
.

Step 4 Let D2 ¼ðA,BÞ. Then, combine D1�1n and D2 column by column to get the final design S = (D1�1n,D2), where � represents

the Kronecker product and 1n is an n�1 vector with all elements unity.

Note that at different levels of z1 or z2, the designs for the corresponding nested factors are just different in the order of slices and they are

essentially the same SOLHD. This is feasible since we assume that the nested factors represent different meanings at different levels of a

branching factor.

Theorem 1. The design S constructed by Algorithm 1 is a BOLHD(N = ns2, 2, (m1, m2)).

Proof. We need to prove that design S satisfies (1) and (2) in Definition 1. For (1), we note that, for any fixed level of each

branching factor, the design of nested factors is just obtained by simply changing the order of slices of L, which preserves the

orthogonality and one-dimensional space-filling properties of L. Next, we prove that the design S satisfies (2). According to

Steps 2 and 3 of Algorithm 1, for any fixed level combination of z1 and z2, the design of nested factors corresponds to a

ODS WITH BRANCHING AND NESTED FACTORS 3 of 10
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certain ðai0 ,bi0 Þ with i0� {1,… , s}. So the result follows by noting that ai0 and bi0 are the first m1 and last m2 columns of Li0 ,

respectively.

Example 1. Suppose that s¼2, t¼0, m1 ¼m2 ¼2. We consider getting D2 using the following SOLHD(16, 4, 2) constructed by

Algorithm 1 in Yang et al. (2016),

L¼ LT1,L
T
2

� �T ¼
0:5 2:5 4:5 6:5 �0:5 �2:5 �4:5 �6:5 1:5 3:5 5:5 7:5 �1:5 �3:5 �5:5 �7:5

2:5 �0:5 6:5 �4:5 �2:5 0:5 �6:5 4:5 3:5 �1:5 7:5 �5:5 �3:5 1:5 �7:5 5:5

�6:5 �4:5 2:5 0:5 6:5 4:5 �2:5 �0:5 �7:5 �5:5 3:5 1:5 7:5 5:5 �3:5 �1:5

4:5 �6:5 �0:5 2:5 �4:5 6:5 0:5 �2:5 5:5 �7:5 �1:5 3:5 �5:5 7:5 1:5 �3:5

0
BBBBB@

1
CCCCCA

T

:

According to Algorithm 1, we choose the first two columns and last two columns of Li as ai and bi, i¼1,2. Then, we can obtain A1 ¼ðaT1,aT2Þ
T
,

B1 ¼ðbT1,bT2Þ
T
, A2 ¼ðaT2,aT1Þ

T
, and B2 ¼ðbT2,bT1Þ

T
. Further, we have

D2 ¼
A1 B1

A2 B2

� �
¼ a1 a2 a2 a1

b1 b2 b2 b1

� �T

:

Combining D1 � 18 and D2 column by column, we can get the BOLHD(32, 2, (2, 2)) as S¼ D1�18,D2ð Þ, where

D1 ¼
1 1 2 2

1 2 1 2

� �T

:

We briefly verify the orthogonality of the design S. It is easy to verify that for the i th level of z1 (the same is true for z2), the corresponding design

of nested factors Ai is an OLHD, i¼1,2. Simple calculation shows that ða1,b1ÞT � ða1,b1Þ¼ ða2,b2ÞT � ða2,b2Þ¼ I4�4, where In�m denotes an n�m

identity matrix, which means that for each level combination of branching factors, the corresponding design of nested factors is orthogonal.

3.2 | BOLHDs with two branching factors and t shared factors

This section considers the construction of BOLHDs with two branching factors and t shared factors. The construction of the design for nested

factors is the same as in Algorithm 1. So we mainly focus on the construction of the design for shared factors. Algorithm 2 gives the construction

details.

Algorithm 2.

Step 1 Let P¼ðPT1,…,PTs Þ
T
and E be an SOLHD(N= ns, k, s) and an OLHD(s, t) respectively, where k=m1+m2+ t and t≤s.

Step 2 Let L¼ðLT1,…,LTs Þ
T
and Q¼ðQT

1,…,QT
s Þ

T
be the first m1+m2 and last t columns of P, respectively, then L is an SOLHD(N= ns,-

m1+m2, s) and Q is an SOLHD(N= ns, t, s).

Step 3 Construct design D2 for nested factors using L by Algorithm 1.

Step 4 On the basis of Q, construct s matrices denoted by Ci ¼ðcTi,1,…,cTi,sÞ
T
, i¼1,…,s. The j th column of Ci is obtained by

Cið: , jÞ¼ Eði, jÞ⊕ s∗Qð: , jÞð Þ, j¼1,…,t:

Step 5 For the i th level of z1, let Ti ¼ðcTi,0 _þði�1Þþ1,…,cTi,ðs�1Þ _þði�1Þþ1Þ
T
, i¼1,…,s.

Step 6 Stack the s arrays row by row, and obtain D3 ¼ðTT
1,…,T

T
s Þ

T
.

Step 7 Combine D1�1n, D2 and D3 column by column to get the final design S¼ðD1 �1n,D2,D3Þ.

Theorem 2. The design S constructed by Algorithm 2 is a BOLHD(N = ns2, s, (m1, m2), t).

The proof of Theorem 2 is shown in the appendix. The constraint t≤s in Step 1 of Algorithm 2 is necessary, because there is no OLHD(s, t)

with s < t. In fact, the design D3 constructed in Algorithm 2 is a two-layer SOLHD proposed by Chen et al. (2019).

4 of 10 WEI ET AL.
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Example 2. Suppose that s¼2, t¼1, m1 ¼2 and m2 ¼1. Let P be the SOLHD(16, 4, 2) shown in Example 1. According to Algorithm

1, we choose the first three columns of P as L and the last column as Q. We choose the first two columns and last column of Li as ai

and bi, i¼1,2. Then, we can get D2 as

D2 ¼
A1 B1

A2 B2

� �
¼ a1 a2 a2 a1

b1 b2 b2 b1

� �T

,

where

A1 ¼
0:5 2:5 4:5 6:5 �0:5 �2:5 �4:5 �6:5

2:5 �0:5 6:5 �4:5 �2:5 0:5 �6:5 4:5

 !T

, A2 ¼
1:5 3:5 5:5 7:5 �1:5 �3:5 �5:5 �7:5

3:5 �1:5 7:5 �5:5 �3:5 1:5 �7:5 5:5

 !T

,

B1 ¼ �6:5 �4:5 2:5 0:5 6:5 4:5 �2:5 �0:5ð ÞT , B2 ¼ �7:5 �5:5 3:5 1:5 7:5 5:5 �3:5 �1:5ð ÞT :

Further, by letting E¼ð�0:5,0:5ÞT , we can obtain D3 using Algorithm 2 as D3 ¼ T1,T2ð ÞT ¼ c1,1,c1,2,c2,2,c2,1ð ÞT , where

c1,1 ¼ 8:5 �13:5 �1:5 4:5 �9:5 12:5 0:5 �5:5ð ÞT , c1,2 ¼ 10:5 �15:5 �3:5 6:5 �11:5 14:5 2:5 �7:5ð ÞT ,
c2,2 ¼ 11:5 �14:5 �2:5 7:5 �10:5 15:5 3:5 �6:5ð ÞT , c2,1 ¼ 9:5 �12:5 �0:5 5:5 �8:5 13:5 1:5 �4:5ð ÞT :

Combining D1 � 18 (shown in Example 1), D2 and D3 column by column, we can get the BOLHD (32, 2, (2, 1), 1) as S¼ D1�18,D2,D3ð Þ.
Just the same as in Example 1, we can verify the orthogonality of design S. It is easy to verify that for the i th level of z1 (the

same is true for z2), the corresponding design of nested factors Ai is an OLHD, i¼1,2. Through simple calculations, we can get that

ða1,b1ÞT � ða1,b1Þ¼ ða2,b2ÞT � ða2,b2Þ¼ I3�3, meaning that for each level combination of branching factors, the corresponding design

of nested factors is orthogonal, and ða1,b1ÞT �c1,1 ¼ða2,b2ÞT �c1,2 ¼ða2,b2ÞT �c2,2 ¼ða1,b1ÞT �c2,1 ¼ð0,0,0ÞT , meaning that for each

level combination of branching factors, the corresponding design points of D3 is orthogonal to the design of nested factors.

4 | BOLHDS WITH MULTIPLE BRANCHING FACTORS

From the construction results in Section 3, we know that, in the case of two branching factors, we can get a BOLHD by rearranging the slices of

an SOLHD and stacking them together row by row. This section will extend this idea further to the case of q branching factors each of s levels,

q > 2. Still the same as in Section 3, we arrange a full factorial experiment for branching factors, that is,

D1 ¼

1 1 … 1 … s

1 1 … 1 … s

..

. ..
.

… ..
.

… ..
.

1 2 … s … s

0
BBBB@

1
CCCCA

T

,

where the ith column of D1 corresponds to zi, i¼1,…,q. This section mainly focuses on the construction of D2 and D3. Section 4.1 considers the

construction of BOLHDs without shared factors, and Section 4.2 considers the case with shared factors, which is slightly more complex and more

general.

4.1 | BOLHDs with q branching factors and no shared factors

This section considers the construction of BOLHDs with q branching factors and no shared factors. For convenience, we first make a top-down

order of s q � 1 slices of an SOLHD, denoted as A¼ð1,2,…,sq�1ÞT . Then, we focus on the index vector A. The basic idea of constructing D2 is to

rearrange the slices of the SOLHD according to the index vector ℬ which is a sequential rearrangement of the indices in A. Finally, we can get a

BOLHD by combining D1 and D2. Algorithm 3 shows the details. To facilitate the description of the algorithm, we first define a mapping function

ϕ as shown in Definition 2.

Definition 2. Suppose that X = diag{Z, Z, … , Z} is an s k � s k block diagonal matrix, where Z is an s k � 1 � s k � 1 matrix. We define

the mapping function ϕ: X ! Y as

ODS WITH BRANCHING AND NESTED FACTORS 5 of 10
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X¼

Z 0 … 0

0 Z … 0

..

. ..
. . .

. ..
.

0 0 … Z

0
BBB@

1
CCCA

sk�sk

ϕ
!

Y¼

0 Z … 0

..

. ..
. . .

. ..
.

0 0 … Z

Z 0 … 0

0
BBB@

1
CCCA

sk�sk

:

Algorithm 3.

Step 1 Let L¼ðLT1,…,LTsq�1 ÞT be an SOLHD(N= s q� 1n, r, s q�1), r¼Σq
i¼1mi. The index vector of these slices is denoted by

A¼ð1,2,…,sq�1ÞT .
Step 2 For c¼1, let E1 be an s� s identity matrix and define F1 ¼ϕðE1Þ. For 1 < c≤q�1, define Ec as

Ec ¼

Fc�1 0 … 0

0 Fc�1 … 0

..

. ..
. . .

. ..
.

0 0 … Fc�1

0
BBBB@

1
CCCCA

sc�sc

and Fc ¼ϕðEcÞ.
Step 3 For l¼1, let A1 ¼A¼ð1,2,…,sq�1ÞT . For 1 < l≤s, define Al as Al ¼ Fq�1�Al�1:

Step 4 For l¼1,…,s, generate design Gl by arranging slices of L according to the index vector Al and get G¼ðGT
1,…,GT

s Þ
T
.

Step 5 For i¼1,…,q, select mi columns from design G without repetition denoted by Ki, where Ki corresponds to the design for vzi1 ,…,v
zi
mi
.

Step 6 Let D2 ¼ðK1,…,KqÞ. Then, combine D1�1n and D2 column by column to get the final design S¼ðD1 �1n,D2Þ.

Theorem 3. The design S constructed by Algorithm 3 is a BOLHD(N = nsq, q, (m1, m2, … , mq)).

4.2 | BOLHDs with q branching factors and t shared factors

This section considers the construction of BOLHDs with q branching factors and t shared factors. As in Section 3.2, we refer to the construction

method of two-layer SOLHDs in Chen et al. (2019) to give the construction of the part of design for the shared factors. See Algorithm 4 for details.

Algorithm 4.

Step 1 Let P¼ðPT1,…,PTsq�1 ÞT and E be an SOLHD(N= s q� 1n, r, s q�1) and an OLHD(s, t), respectively, where r¼Σq
i¼1miþ t and t≤s.

The index vector of these slices is denoted as A¼ð1,2,…,sq�1ÞT .
Step 2 Do the same thing as Steps 2 and 3 in Algorithm 3, and we get a series of index vectors Ai, i¼1,…,s.

Step 3 Let L¼ðLT1,…,LTsq�1 ÞT and Q¼ðQT
1,…,QT

sq�1 ÞT be the first Σq
i¼1mi and last t columns of P, respectively, then, L is an SOL-

HDðN¼ sq�1n,Σq
i¼1mi ,sq�1Þ, and Q is an SOLHD(N= s q�1n, t, s q� 1).

Step 4 Construct design D2 for nested factors using L following Steps 4–6 of Algorithm 3.

Step 5 For i¼1,…,s, generate the array Ai by arranging slices of Q according to the index vector Ai.

Step 6 For i¼1,…,s, obtain Ti by Tið: , jÞ¼ Eði, jÞ⊕ s∗Aið: , jÞð Þ, j¼1,…,t:

Step 7 Stack the s arrays obtained in Step 7 row by row, and obtain D3 ¼ðTT
1,…,TT

s Þ
T
.

Step 8 Combine D1�1n, D2 and D3 column by column to get the final design S¼ðD1 �1n,D2,D3Þ.

Theorem 4. The design S constructed by Algorithm 4 is a BOLHD(N = nsq, q, (m1, m2, … , mq), t).

Example 3. Suppose that s¼2, t¼1, m1 ¼m2 ¼m3 ¼1. Let P¼ðPT1,PT2,PT3,PT4Þ
T
be the SOLHD(32, 4, 4) (shown in the appendix) con-

structed by Algorithm 1 in Yang et al. (2016). According to Algorithm 4, we choose the first three columns of P as L¼ðLT1,LT2,LT3,LT4Þ
T

and the last column as Q¼ðQT
1,Q

T
2,Q

T
3,Q

T
4Þ

T
. Then, we can get

G1 ¼ðLT1,LT2,LT3,LT4Þ
T
,G2 ¼ðLT4,LT3,LT2,LT1Þ

T
,A1 ¼ðQT

1,Q
T
2,Q

T
3,Q

T
4Þ

T
, andA2 ¼ðQT

4,Q
T
3,Q

T
2,Q

T
1Þ

T
:

We choose the i th column of G¼ GT
1,G

T
2

� �T
as Ki, i¼1,2,3. Then, we can get D2 as D2 ¼ðK1,K2,K3Þ: Further, by letting E¼ð�0:5,0:5ÞT , we can

obtain D3 as D3 ¼ðTT
1,T

T
2Þ

T
(shown in the appendix), where T1 ¼2∗A1�0:5 and T2 ¼2∗A2þ0:5.
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Combining D1 � 18, D2 and D3 column by column, we can get the BOLHD(64, 3, (1, 1, 1), 1) as S¼ D1 �18,D2,D3ð Þ, where

D1 ¼
1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2

0
B@

1
CA

T

:

In fact, Algorithms 3 and 4 are direct generalizations of Algorithms 1 and 2, respectively. They are all based on the same idea, that is, switching

the sequence of slices of an SOLHD to get the BOLHD. Next, we will list some BOLHDs that can be constructed using Algorithms 3 and 4.

4.3 | Some construction results

In the above sections, we have considered how to construct BOLHDs. This section lists some BOLHD (N, q, (m1, m2, … , mq), t)'s that can be

constructed by above algorithms. According to the algorithms, to build a BOLHD, we first need an SOLHD and an OLHD. According to the results of

Yang et al. (2016), all SOLHD(2r + 1s, 2r, s)'s are available, where s≥2, r≥1. Also, we have a collection of small OLHDs according to Lin et al. (2010)

(see Table B4). Based on these results, we can construct many BOLHDs. Some parameters of the constructed BOLHDs are listed in Tables B5

and B6.

Table B5 lists some BOLHD (N, q, (m1, m2, … , mq))'s obtainable by Algorithm 3 when there is no shared factor, where q represents the number

of branching factors, s represents the number of levels of each branching factor, max{Σq
i¼1mig represents the maximum number of nested factors

that can be allowed and N represents the number of runs.

When there are shared factors in the BOLHDs to be constructed, the number of experiments will increase relatively. Table B6 lists some small

size BOLHD (N, q, (m1, m2, … , mq), t)'s obtainable by Algorithm 4, where q, s, max{Σq
i¼1mig and N have the same meanings as in Table B5, and

t represents the number of shared factors.

5 | CONCLUDING REMARKS

In this paper, we define a new type of design called BOLHD for computer experiments with branching and nested factors. Compared with the

BLHDs proposed by Hung et al. (2009), the BOLHDs can guarantee one-dimensional balance and orthogonality for the nested factors no matter

at each level of a branching factor or each level combination of branching factors. These good properties can ensure that (1) both the modelling

of nested factors at a certain level of a branching factor alone and the modelling of nested factors at a level combination of branching factors can

result good parameter estimations; (2) significant factors can be identified. Furthermore, we propose some algorithms for constructing BOLHDs

when branching factors have the same number of levels. One advantage of these algorithms is that no computer search is required.

There are some issues worth further discussion. One issue is that this paper only considers the case that branching factors have the same

number of levels. When the numbers of levels are not the same, the construction will be more complex. To solve this problem, we can start with

the simplest case which assumes that there is a multiple relationship between the numbers of levels of different branching factors. Another issue

is that the designs we constructed require more experimental runs due to better properties. How to construct designs with fewer runs and the

properties of a BOLHD at the same time deserves further studies.
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APPENDIX A: PROOF OF THEOREM 2

For the construction of the design for nested factors, Algorithms 2 and 1 are the same, so here, we only need to prove that D satisfies (3) in

Definition 1, that is, (a) D3 is an OLHD, and (b) for each level-combination of branching factors, the corresponding design points of D3 form an

LHD which is orthogonal to the design of nested factors.

First, we prove that D3 is an OLHD. According to Algorithm 2, Ti is obtained by row permutation of Ci, i¼1,…,s, and row permutation does

not change the orthogonality and one-dimensional space-filling property. So for simplicity, we only need to prove that D0
3 ¼ðCT

1,…,CT
s Þ

T
is an

OLHD. To prove that D0
3 is an LHD, without loss of generality, we only consider the jth column D0

3ð: , jÞ for any j¼1,…,t. It is obvious that D0
3ð: , jÞ

is a permutation on fC1ð: , jÞ,…,Csð: , jÞg¼f�ðN�1Þs
2 � s�1

2 ,…, �ðN�1Þs
2 þ s�1

2 ,…, ðN�1Þs
2 � s�1

2 ,…, ðN�1Þs
2 þ s�1

2 g=f�Ns�1
2 ,…, Ns�1

2 g. This shows that D0
3 is an

LHD. To prove that D0
3 is orthogonal, without loss of generality, we need to consider the orthogonality of any two columns of D0

3, say the first

two columns, denoted by d1 and d2. The objective is to show corrðd1,d2Þ¼0. Assume that they are generated by the first two columns e1 and e2

from E and the first two columns q1 and q2 from Q, respectively, where ei ¼ðe1i ,…,esiÞT , and qi ¼ðq1i,…,qNiÞT for i¼1,2. Then,

d1 ¼ e11þ sq11,…,e11þ sqN1,…,es1þ sq11,…,es1þ sqN1ð ÞT ,
d2 ¼ e12þ sq12,…,e12þ sqN2,…,es2þ sq12,…,es2þ sqN2ð ÞT :

Since corrðe1,e2Þ¼0 and corrðq1,q2Þ¼0, that is,

Xs
i¼1

ei1��e1ð Þ ei2��e2ð Þ¼0,
XN
j¼1

qj1�q1
� �

qj2�q2
� �¼0,

where �e1 ¼ 1
s

Ps
i¼1ei1 and �e2, q1, q2 are similarly defined, then the numerator of corr(d1, d2) equals

Xs
i¼1

XN
j¼1

ei1þ sqj1
� �� �e1þ sq1ð Þ� �

ei2þ sqj2
� �� �e2þ sq2ð Þ� �

¼
Xs
i¼1

XN
j¼1

ei1��e1ð Þþ s qj1�q1
� �� �

ei2��e2ð Þþ s qj2�q2
� �� �

¼
Xs
i¼1

XN
j¼1

ei1��e1ð Þ ei2��e2ð Þþ s
Xs
i¼1

XN
j¼1

ei1��e1ð Þ qj2�q2
� �

þ s
Xs
i¼1

XN
j¼1

qj1�q1
� �

ei2��e2ð Þþ s2
Xs
i¼1

XN
j¼1

qj1�q1
� �

qj2�q2
� �

¼ 0:

Thus, corrðd1,d2Þ¼0. This shows that D0
3 is orthogonal.
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Next, we prove that D3 satisfies (b). According to Algorithm 2, for any fixed level-combination of z1 and z2, the design for nested factors cor-

responds to a certain ðai0 ,bi0 Þ, and the design for shared factors corresponds to a certain ck0,i0 with k0, i0� {1,… , s}. First, we need to prove that

ck0,i0 is an LHD, which is obvious because the structure of ck0,i0 follows the structure of Qi0 for i0� {1,… , s}. Then, we need to prove that any col-

umn from ck0,i0 is orthogonal to any column from ðai0 ,bi0 Þ. Without loss of generality, let i0 ¼ k0 ¼1, and we prove that the first column of c1, 1 den-

oted by g1 ¼ðg11,…,gn1ÞT is orthogonal to the first column of ða1,b1Þ¼ L1 denoted by l1 ¼ðl11,…, ln1ÞT . According to Step

4, g1 ¼ e11þ sq11,…,e11þ sqn1ð ÞT ¼ e11 ∗1þ s∗c1, where c1 ¼ðq11,…,qn1ÞT is the first column in the first slice Q1 of Q. Since L and Q are all from

the SOLHD P, it is clear that corrðc1, l1Þ¼0, that is,

Xn
i¼1

qi1�c1ð Þ li1� l1
� �¼0,

where c1 ¼ 1
n

Pn
i¼1qi1 and l1 is defined similarly, then, the numerator of corr(g1, l1) equals

Xn
i¼1

gi1�g1ð Þ li1� l1
� �

¼
Xn
i¼1

e11þ sqi1�ðe11þ sc1Þð Þ l1i� l1
� �

¼ s
Xn
i¼1

qi1�c1ð Þ li1� l1
� �

¼ 0:

Thus, corrðc1, l1Þ¼0. This completes the proof of (b).

APPENDIX B: THE P AND D3 IN EXAMPLE 3

P¼ðPT1,PT2,PT3,PT4Þ
T
, where

P1 ¼

0:5 4:5 8:5 12:5 �0:5 �4:5 �8:5 �12:5

4:5 �0:5 12:5 �8:5 �4:5 0:5 �12:5 8:5

�12:5 �8:5 4:5 0:5 12:5 8:5 �4:5 �0:5

8:5 �12:5 �0:5 4:5 �8:5 12:5 0:5 �4:5

0
BBBBB@

1
CCCCCA

T

,P2 ¼

1:5 5:5 9:5 13:5 �1:5 �5:5 �9:5 �13:5

5:5 �1:5 13:5 �9:5 �5:5 1:5 �13:5 9:5

�13:5 �9:5 5:5 1:5 13:5 9:5 �5:5 �1:5

9:5 �13:5 �1:5 5:5 �9:5 13:5 1:5 �5:5

0
BBBBB@

1
CCCCCA

T

,

P3 ¼

2:5 6:5 10:5 14:5 �2:5 �6:5 �10:5 �14:5

6:5 �2:5 14:5 �10:5 �6:5 2:5 �14:5 10:5

�14:5 �10:5 6:5 2:5 14:5 10:5 �6:5 �2:5

10:5 �14:5 �2:5 6:5 �10:5 14:5 2:5 �6:5

0
BBBBB@

1
CCCCCA

T

,P4 ¼

3:5 7:5 11:5 15:5 �3:5 �7:5 �11:5 �15:5

7:5 �3:5 15:5 �11:5 �7:5 3:5 �15:5 11:5

�15:5 �11:5 7:5 3:5 15:5 11:5 �7:5 �3:5

11:5 �15:5 �3:5 7:5 �11:5 15:5 3:5 �7:5

0
BBBBB@

1
CCCCCA

T

:

D3 ¼ðTT
1,T

T
2Þ

T
, where

T1 ¼ 16:5�25:5�1:58:5�17:524:50:5�9:518:5�27:5�3:510:5�19:526:52:5�11:5ð
20:5�29:5�5:512:5�21:528:54:5�13:522:5�31:5�7:514:5�23:530:56:5�15:5ÞT ,

T2 ¼ 23:5�30:5�6:515:5�22:531:57:5�14:521:5�28:5�4:513:5�20:529:55:5�12:5ð
19:5�26:5�2:511:5�18:527:53:5�10:517:5�24:5�0:59:5�16:525:51:5�8:5ÞT :

TABLE B1 An SLHD-based BLHD with two branching factors each of two levels

Run z1 z2 vz11 …vz1m1
vz21 …vz2m2

x1…xt

1 1 1 SLHD(n1,m1,2) SLHD(n2,m2,2) first slice SLHD(N,t,4)

..

.
1 2 SLHD(n2,m2,2) first slice

..

.
2 1 SLHD(n1,m1,2) SLHD(n2,m2,2) second slice

N 2 2 SLHD(n2,m2,2) second slice
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TABLE B2 A BLHD with two branching factors each of two levels

Run z1 z2 vz11 …vz1m1
vz21 …vz2m2

x1…xt

1 1 1 LHD(n1,m1) LHD(n2,m2) first half LHD(N,t)

..

.
1 2 LHD(n2,m2) first half

..

.
2 1 LHD(n1,m1) LHD(n2,m2) second half

N 2 2 LHD(n2,m2) second half

TABLE B3 SLHD-based BLHD with two branching factors each of s levels

Run z1 z2 vz11 …vz1m1
vz21 …vz2m2

x1…xt

1 1 1 SLHD1ðn,m1,sÞ's slice 1 SLHD1ðn,m2,sÞ's slice 1 SLHDðN, t,s2Þ
..
. ..

. ..
. ..

. ..
.

s 1 s SLHD1ðn,m1,sÞ's slice s SLHDsðn,m2,sÞ's slice 1

..

. ..
. ..

. ..
. ..

.

N s s SLHDsðn,m1,sÞ's slice s SLHDsðn,m2,sÞ's slice s

TABLE B4 The maximum number of columns m in OLHD ðn,mÞ for 1≤ n≤21
n 2 3 4 5 7 8 9 11 12 13 15 16 17 19 20 21

m 1 1 2 2 3 4 5 7 6 6 6 12 6 6 6 6

TABLE B5 Some BOLHD ðN,q,ðm1,m2, :::,mqÞÞ's obtainable by Algorithm 3

q 2 2 2 3 2 3 4 2 3 4 3

s 2 2 2 2 3 2 2 3 3 2 3

max{Σq
i¼1mig 2 4 8 4 4 8 4 8 4 8 8

N 16 32 64 64 72 128 128 144 216 256 432

TABLE B6 Some BOLHD ðN,q,ðm1,m2, :::,mqÞ,tÞ 's obtainable by Algorithm 4

q 2 2 3 2 2 3 2 3 2 3 2 2 3

s 2 2 2 3 4 2 3 3 4 3 7 8 4

max{Σq
i¼1mig 3 7 3 3 2 7 7 3 6 7 5 4 6

t 1 1 1 1 2 1 1 1 2 1 3 4 2

N 32 64 64 72 128 128 144 216 256 432 784 1024 1024
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