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1 | INTRODUCTION

Computer experiments are widely used for the design and development of products (Fang et al. 2006). Scientists are increasingly using experi-
ments on computer simulators to help understand physical systems. In many experiments, some of the factors exist only within the level of
another factor. Such factors are often called nested factors. A factor within which other factors are nested is called a branching factor. Other fac-
tors which are common to all levels of the branching factors are called shared factors. To better illustrate branching and nested factors, we refer
to the example of printed circuit board manufacturing from Hung et al. (2009). Suppose that we want to test two surface preparation methods:
mechanical scrubbing and chemical treatment. Mechanical scrubbing can be optimized by changing the pressure scrubbing, and chemical treat-
ment can be optimized by changing the micro-etching rate. The surface preparation method here is a branching factor, and the pressure and
microetching rate are nested factors.

Hung et al. (2009) mentioned that because nested factors differ for different levels of the branching factor, there is a need for one-
dimensional balance for the nested factors within each level of the branching factor to capture the branching-by-nested interaction effects. Latin
hypercube designs (LHDs) are commonly used in computer experiments (McKay et al. 1979). A desirable property of an LHD is its one-
dimensional balance, that is, when an N-point design is projected onto any factor, there will be N different levels for that factor. Hence, Hung
et al. (2009) incorporated LHD into the design with branching and nested factors and proposed a corresponding design called branching Latin
hypercube design (BLHD). Goos and Jones (2019) discussed the modelling of data from experiments with branching and nested factors as well as
the optimal design of such experiments. Chen et al. (2019) considered the case where branching factors and nested factors are both qualitative
and proposed two-layer sliced Latin hypercube designs (SLHDs) to suit such situations. Chen et al. (2021) proposed the level-collapsing method
to construct BLHDs having a sliced structure in the part for the shared factors.

In this paper, a more detailed case is considered, that is, when there are multiple branching factors, the hidden models under each level-
combination of branching factors may be different because the corresponding nested factors differ for different level combinations of branching
factors. Thus, we need a one-dimensional balance for the nested factors within each level combination of the branching factors. In addition,
orthogonality is also an important property of a design, which can guarantee the independence of estimates of linear effects when a first-order

model is fitted. Specifically, we need a design which can ensure that

Stat. 2022;11:e447. wileyonlinelibrary.com/journal/sta4 © 2021 John Wiley & Sons, Ltd. | 1 of 10
https://doi.org/10.1002/sta4.447

85UB017 SUOWILLIOD 3AIERID 3o dde 3y} Aq pauRA0h 38 S3OILe YO ‘8SN JO S3IN1 10} A1) BUIIUO AB]IAA UO (SUORIPUOD-PUR-SWIBHLI0D" A3 | 1M AReiq1BU1|UO//SANY) SUORIPUOD PUe SWid | 8U} 835 *[2202/2T/0Z] Uo Ariqiauliuo /i ‘AIseAIUN BYUBN AQ i #RIS/200T OT/I0p/LI00 A8 | im AReiq 1 puljuo//Sdny WOy papeo|umoq ‘T ‘2202 ‘€LST60C


https://orcid.org/0000-0002-2271-4798
mailto:jfyang@nankai.edu.cn
https://doi.org/10.1002/sta4.447
http://wileyonlinelibrary.com/journal/sta4
https://doi.org/10.1002/sta4.447
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsta4.447&domain=pdf&date_stamp=2022-05-01

2of 10 Wl LEY WEI ET AL.

(1) both the modelling of nested factors at a certain level of a branching factor alone and the modelling of nested factors at a level combination
of branching factors can result in good parameter estimations, that is, the design is robust to the models;

(2) the design is orthogonal to ensure that significant factors can be identified.

To find designs with the aforementioned properties, we define a special type of design called branching orthogonal Latin hypercube design
(BOLHD), which satisfies the following: (i) For each level of a branching factor, the corresponding design of nested factors is orthogonal and
achieves maximum uniformity in any one-dimensional projection; (ii) for each level-combination of the branching factors, the corresponding
design of nested factors is orthogonal and achieves maximum uniformity in any one-dimensional projection; (iii) the part of design for the
shared factors is an OLHD, and for each level combination of branching factors, the corresponding design of shared factors is orthogonal to the
design of nested factors and achieves maximum uniformity in any one-dimensional projection. These good properties can make (1) and (2) hold.
It is worth mentioning that the proposed design is like a design between the marginally coupled design (MCD) proposed by Deng et al. (2015)
and SLHD proposed by Qian (2012), but it is neither an MCD nor an SLHD. Note that the design of the nested factors in the proposed design
is not, and need not to be, an LHD as a whole, since the nested factors represent different meanings for different levels of the branching
factor.

The rest of this paper is organized as follows. Section 2 introduces some basic definitions and notation. Further, we give the structure of the
proposed design and provide the definition of BOLHD. Section 3 provides the construction of BOLHDs with two branching factors. Section 4
provides the construction of BOLHDs with multiple branching factors and lists some of the construction results for practical use. Some concluding
remarks are given in Section 5.

2 | NOTATION AND DESIGN STRUCTURE

Ann x p LHD is a matrix of n rows and p columns in which each column is a permutation of n equally spaced levels. For convenience, we take the
n levels to be —(n — 1)/2, — (n — 3)/2, ..., (n — 3)/2, (n — 1)/2. Qian (2012) defined an n x q SLHD with n = mv runs and v slices, denoted by
SLHD(n, g, v), to be an n x q LHD that can be divided into v smaller LHDs of m levels. The m levels of each slice correspond to the m equally spa-
ced intervals {[—n/2+(j— 1)v, — n/2 +jv]: 1sjsm}. For an integer s and a vector f= (fl,...,f,,)T, let sxf= (sfl,..‘,sf,,)T and
s@®f=(s+f1,...5+ fn)T. For two vectors u= (ul,...,u,,)T and w= (wl,...,wn)T, let u®W = (U1 +W1,...,U1 +Wp,...,Up +W1,...,Un + w,,)T, and define

the correlation coefficient between u and w as

Yo = w)wi—w)

corr(u,w) = )

Ly - w?

where a=>"1 ,ui/n and W=7 w;/n. Two columns are said to be orthogonal if their correlation coefficient is zero. An LHD is called an
OLHD if any two columns are orthogonal. An SLHD is called orthogonal if any two columns of each slice are orthogonal. For convenience, we
denote an orthogonal SLHD(n,q,v) by SOLHD(n,q,v). For a design D, let D(i,:), D(:,j) and D(i,j) be its ith row, jth column and (i,j)th entry,
respectively.

We assume that there are g branching factors, denoted by z= (21,...,zq)T, and for each branching factor z,, the m, nested factors are denoted
by v& = (vzi“,...,vﬁgu T,l <u<q. We further assume that, in addition to the branching and nested factors, there are t shared quantitative factors,
denoted by x:(xl,...,xt)T. Let v= <(vzl)T,..., (vza)T>T then, w= (zT,vT,xT)T represents all of the p factors involved in the experiment, where
p=q+Y%_,my,+t. Then, an N-run BLHD can be denoted by W = (wy, ..., wy)".

Our basic idea is to incorporate the structure of SLHD into the structure of BLHD to ensure a one-dimensional balance for the nested factors
within each level-combination of the branching factors. To better demonstrate the structure of the newly proposed design, let us see a simple
example. Suppose there are two branching factors, called z4, z,, with s levels and m; nested factors at each level of z. The nested factors are differ-
ent at different levels of each branching factor. More generally, we also assume there are t quantitative shared factors. For the simplest case
where each branching factor has two levels (s =2), Table B1 shows the structure of the proposed design. For comparison, Table B2 shows the
BLHD constructed by Hung et al. (2009). It can be seen that, compared to the BLHD, the proposed design can not only achieve a one-dimensional
balance for the nested factors within each level of each branching factor but also achieve a one-dimensional balance for the nested factors within
each level-combination of the branching factors. Table B3 shows the structure of the proposed designs with two branching factors each of $s$
levels.

It is well known that orthogonality is critical to a design, which can guarantee the independence of estimates of linear effects when a first-
order model is fitted. So, at the end of this section, on the basis of the structure of SLHD-based BLHD, we will introduce a new type of BLHD
called branching orthogonal Latin hypercube design (BOLHD). The specific definition is as follows.
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Definition 1. A BLHD is called a BOLHD if

(1) for each level of each branching factor, the corresponding design points of nested factors form an OLHD;

(2) for each level-combination of branching factors, the corresponding design points of nested factors form an OLHD;

(3) the part of design for the shared factors is an OLHD, and for each level-combination of branching factors, the corresponding design
points of shared factors form a small LHD which is orthogonal to the design of nested factors.

This definition incorporates the three properties described in the introduction. An N-run BOLHD with g branching factors (each branching
factor corresponds to m; nested factors, i=1,...,q) and t shared factors can be expressed in terms of BOLHD(N, g, (my, ..., m,), t). For convenience
of presentation, we divide the structure of a BOLHD into three parts: part D, corresponding to branching factors, part D, corresponding to nested

factors and part D3 corresponding to shared factors. Next, we will show how to construct BOLHDs with branching factors having the same num-
ber of levels.

3 | CONSTRUCTION OF BOLHDS WITH TWO BRANCHING FACTORS

To better understand our construction method, we start with the simplest case with only two branching factors. This section provides two algo-
rithms for constructing BOLHDs when there are two branching factors each of s levels. Because branching factors are qualitative factors, we can

1 e 1 oo 5 - s\
D= ;
1 e s e 1 e s

where the first column of D, is for z; and the second column is for z,. This section mainly gives the construction methods for D, and Ds. For

choose a full factorial design as Dy, that is,

details, Section 3.1 gives the construction algorithm for BOLHDs with no shared factors, while Section 3.2 considers the case with shared factors,

which is more general and the corresponding algorithm is more complex.

3.1 | BOLHDs with two branching factors and no shared factors

This is the simplest case, but it gives an intuitive explanation of our construction methods. Because there is no shared factor and D, has been

given, this section mainly discusses how to construct D,. See Algorithm 1 for details.

Algorithm 1.

Step 1 LetL= (LI,...,LST)T be an SOLHD(N = ns,my 4+ mo, s), where L; is the i th slice of L fori=1,...,s. Fori=1,...,s, let a; and b; be the
first m4 and last m, columns of L;, respectively.

Step 2 For the i th level of zy, let A; = (“54(,;1)“’--~v°’(T571)+'(.>1)+1>T and B = (b&(,_ml,...,b(Ts_1>+-(i_1)+1)T, i=1,..,s, where 4 repre-
sents the modulo s addition operation, that is, for two integers x and y, x+y = (x+y) mod s.

Step 3 Stack the A; and B; obtained in Step 3 row by row to obtain A= (AT,...,AST)T and B= (BT,...,BST)T, where A corresponds to the
design for vil,...,vfnl1 and B corresponds to the design for vzf,...,vfnzz.

Step 4 Let D, = (A,B). Then, combine D1 ® 1, and D, column by column to get the final design S = (D1 ® 1,, D,), where ® represents
the Kronecker product and 1,,is an n x 1 vector with all elements unity.

Note that at different levels of z, or z,, the designs for the corresponding nested factors are just different in the order of slices and they are
essentially the same SOLHD. This is feasible since we assume that the nested factors represent different meanings at different levels of a

branching factor.
Theorem 1. The design S constructed by Algorithm 1 is a BOLHD(N = ns?, 2, (my, my)).

Proof. We need to prove that design S satisfies (1) and (2) in Definition 1. For (1), we note that, for any fixed level of each
branching factor, the design of nested factors is just obtained by simply changing the order of slices of L, which preserves the
orthogonality and one-dimensional space-filling properties of L. Next, we prove that the design S satisfies (2). According to

Steps 2 and 3 of Algorithm 1, for any fixed level combination of z; and z,, the design of nested factors corresponds to a
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certain (aj,,b;,) with ipe{l,...,s}. So the result follows by noting that a;, and b;, are the first m; and last m, columns of L,

respectively.

Example 1. Suppose that s=2, t=0, m; =m, =2. We consider getting D, using the following SOLHD(16, 4, 2) constructed by
Algorithm 1 in Yang et al. (2016),

05 25 45 65 -05-25 -45 -65 15 35 55 75 -15 -35 —55 —75\"
25 -05 65 —-45 -25 05 -65 45 35 -15 75 -55-35 15 -75 55
-65 -45 25 05 65 45 -25 -05-75 -55 35 15 75 55 -35 -15
45 -65 -05 25 —-45 65 05 -25 55 -75-15 35 =55 75 15 -35

;
L=(LyLy) =

T T)TY

According to Algorithm 1, we choose the first two columns and last two columns of L; as a; and b;, i=1,2. Then, we can obtain A; =(a;,a;

Bi= (b[,bz)T, A, = (ag,aI)T, and B, = (b;,b{)T. Further, we have

A1 By ai a; a; a1\
D, = - .
Ay By by by by by

Combining D; ® 1g and D, column by column, we can get the BOLHD(32, 2, (2, 2)) as S= (D1 ® 1g,D,), where

1122\
Dy = .
1212

We briefly verify the orthogonality of the design S. It is easy to verify that for the i th level of z; (the same is true for z,), the corresponding design
of nested factors A; is an OLHD, i=1,2. Simple calculation shows that (al,bl)T-(ai,bl) = (az,bz)T~(a2,b2) =lgy4, Where |,, ., denotes an n x m

identity matrix, which means that for each level combination of branching factors, the corresponding design of nested factors is orthogonal.

3.2 | BOLHDs with two branching factors and t shared factors

This section considers the construction of BOLHDs with two branching factors and t shared factors. The construction of the design for nested
factors is the same as in Algorithm 1. So we mainly focus on the construction of the design for shared factors. Algorithm 2 gives the construction
details.

Algorithm 2.

Step 1 Let P= (P{,...,PST)T and E be an SOLHD(N = ns, k, s) and an OLHD(s, t) respectively, where k=m; +m, +t and tss.

Step 2 Let L= (LI,...,LST)T and Q=( I,.,.,QST)T be the first m; +m, and last t columns of P, respectively, then L is an SOLHD(N = ns,-
mq +my,s) and Q is an SOLHD(N = ns, t, s).

Step 3 Construct design D, for nested factors using L by Algorithm 1.

T)T, i=1,..,s. The j th column of C; is obtained by

Step 4 On the basis of Q, construct s matrices denoted by C,‘:(CL,...,CLS
Gi(:.J) =E(i.j) ® (s Q(:.j), i =1,...t.
Step 5 For the i th level of zy, let T; = (CiTo+'(i71)+1'""CiT(sfi)+'(i71)+1)T' i=

Step 6 Stack the s arrays row by row, and obtain D3 = (TI,...,TI) .

1,...,s.

Step 7 Combine Dy ® 1,, D, and D3 column by column to get the final design S= (D1 ® 1,,D2,D3).

Theorem 2. The design S constructed by Algorithm 2 is a BOLHD(N = ns?, s, (m, my), t).

The proof of Theorem 2 is shown in the appendix. The constraint t<s in Step 1 of Algorithm 2 is necessary, because there is no OLHD(s, t)

with s < t. In fact, the design D3 constructed in Algorithm 2 is a two-layer SOLHD proposed by Chen et al. (2019).
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Example 2. Suppose that s=2,t=1, m; =2 and m, = 1. Let P be the SOLHD(16, 4, 2) shown in Example 1. According to Algorithm
1, we choose the first three columns of P as L and the last column as Q. We choose the first two columns and last column of L; as g;

and b;, i=1,2. Then, we can get D, as
(Al Bl) (01 a ap al)T
D, = = ,
Ay B, by by by by

where

25 -05 65 -45 -25 05 —65 45 35 -1575 -55 -3515 -7555
By= (—6.5 —4.5 2.5 0.5 6.5 45 —2.5 —0.5), B, =(-7.5 =55 35 1.5 7.5 55 —3.5 —1.5)".

A (OAS 25 4565 -05 -25 -45 —6.5>T (1.5 35 5575 -15 -35 =55 —7.5>T
1= » A2 =

Further, by letting E = (70.5,0‘5)T, we can obtain D3 using Algorithm 2 as D3 = (T1,T2)T = (c1,1,c1,2,czyz,cz,1)T, where

c11= (85 —135 —15 45 —9.5 125 0.5 —55)", c¢1o= (105 —155 —3.5 6.5 —11.5 145 25 —7.5)7,
2= (115 —14.5 —2.5 7.5 —105 15.5 35 —6.5)", cp1= (9.5 —125 —05 55 —85 135 1.5 —4.5)".

Combining D1 ® 1g (shown in Example 1), D, and D3 column by column, we can get the BOLHD (32, 2, (2, 1), 1) as S= (D1 ® 1g,D2,D3).
Just the same as in Example 1, we can verify the orthogonality of design S. It is easy to verify that for the i th level of z, (the
same is true for z,), the corresponding design of nested factors A; is an OLHD, i=1,2. Through simple calculations, we can get that
(a1,b1)" - (a1,b1) = (a2,b2)" - (a2,b2) = I3, meaning that for each level combination of branching factors, the corresponding design
of nested factors is orthogonal, and (ai,bl)T‘cM = (az,bz)rcl,z: (az,bz)T~c2,2 :(al,bl)T~cz,1 :(O,O,O)T, meaning that for each
level combination of branching factors, the corresponding design points of D5 is orthogonal to the design of nested factors.

4 | BOLHDS WITH MULTIPLE BRANCHING FACTORS

From the construction results in Section 3, we know that, in the case of two branching factors, we can get a BOLHD by rearranging the slices of
an SOLHD and stacking them together row by row. This section will extend this idea further to the case of g branching factors each of s levels,

q > 2. Still the same as in Section 3, we arrange a full factorial experiment for branching factors, that is,

1 ..s\"
.S

Di= . ,
12 .5 s

where the ith column of D, corresponds to z;, i=1,...,g. This section mainly focuses on the construction of D, and D3. Section 4.1 considers the
construction of BOLHDs without shared factors, and Section 4.2 considers the case with shared factors, which is slightly more complex and more

general.

4.1 | BOLHDs with g branching factors and no shared factors

This section considers the construction of BOLHDs with g branching factors and no shared factors. For convenience, we first make a top-down
order of s9~ * slices of an SOLHD, denoted as A= (1,2,...,5“*1)T. Then, we focus on the index vector A. The basic idea of constructing D, is to
rearrange the slices of the SOLHD according to the index vector B which is a sequential rearrangement of the indices in .A. Finally, we can get a
BOLHD by combining D, and D,. Algorithm 3 shows the details. To facilitate the description of the algorithm, we first define a mapping function

¢ as shown in Definition 2.

Definition 2. Suppose that X = diag{Z, Z, ..., Z} is an sk x sk block diagonal matrix, where Z is an sk=1 % s¥= 1 matrix. We define

the mapping function ¢: X — Y as
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zZ 0 0 0 z 0
0z 0 :
X= ) ¢ Y=
: — 0 z
00 Z ) gkysk Z 0 0/ ckysk

Algorithm 3.

Step 1 Let L= (LI,...,L;H)T be an SOLHD(N=s9"1n,r,s9° 1), r:Z?Zlmi. The index vector of these slices is denoted by
A=(1,2,..51)

Step 2 Forc=1, let E; be an s x s identity matrix and define F1 = ¢(E1). For 1 <c<q— 1, define E. as

Fer O .o O
0 Feq.. O
E =
0 0 . Foi)ew

and F. =¢(E,).
Step 3Forl=1,let Ay=A= (1,2,..,,5“*1)T. For 1<Izs, define Ajas A/ =Fq_1-Aj_1.
Step 4 For =1, ...,s, generate design G, by arranging slices of L according to the index vector A, and get G= (GI,...,GST)T.
Step 5 Fori=1,...,q, select m; columns from design G without repetition denoted by K;, where K; corresponds to the design for vzlvf,'1
Step 6 Let D, = (K4,...,Kq). Then, combine D; ® 1, and D, column by column to get the final design S = (D1 ® 1,,D7).

Theorem 3. The design S constructed by Algorithm 3 is a BOLHD(N = ns%, g, (m4, mp, ..., mg)).

4.2 | BOLHDs with q branching factors and t shared factors

This section considers the construction of BOLHDs with g branching factors and t shared factors. As in Section 3.2, we refer to the construction

method of two-layer SOLHDs in Chen et al. (2019) to give the construction of the part of design for the shared factors. See Algorithm 4 for details.

Algorithm 4.

Step 1 Let P= (PL...,PSTH)T and E be an SOLHD(N=59"n,r,s9~ %) and an OLHD(s, t), respectively, where r:2?21m5+t and tss.
The index vector of these slices is denoted as A = (1,2,...,5"’1)T.

Step 2 Do the same thing as Steps 2 and 3 in Algorithm 3, and we get a series of index vectors A;, i=1,...,s.

Step 3Let L= (LI,...,LSTE,,i)T and Q=( I,...,QSTH)T be the first =1 ;m; and last t columns of P, respectively, then, L is an SOL-
HD(N=s9"1n,57 ,m;,s?!), and Qis an SOLHD(N=5s9"n,t,s9~ %),

Step 4 Construct design D, for nested factors using L following Steps 4-6 of Algorithm 3.

Step 5 Fori=1,...,s, generate the array A; by arranging slices of Q according to the index vector A;.

Step 6 Fori=1,...,;s, obtain T; by T;(:,j) = E(i.,j) ® (s *Ai(:,))),i=1,....t.

Step 7 Stack the s arrays obtained in Step 7 row by row, and obtain D3 = (TI,...,TST)T.

Step 8 Combine D1 ® 1,,, D, and D3 column by column to get the final design S= (D1 ® 1,,D;,D3).

Theorem 4. The design S constructed by Algorithm 4 is a BOLHD(N = ns9, g, (m4, mp, ..., mg), t).

Example 3. Supposethats=2,t=1,mi=my=mz=1.LetP= (PI,P;P;PZ)T be the SOLHD(32, 4, 4) (shown in the appendix) con-
structed by Algorithm 1 in Yang et al. (2016). According to Algorithm 4, we choose the first three columns of P as L = (LI,L;L;LZ)T
and the last column as Q= (Q!,Q1,QL.Ql)". Then, we can get

T T T T
Gy = (L]0, L5, L0 ,Go = (L], L5, L0,LT) A1 = (Q1,Q),Q5,Q)) , andA; = (Q},Q5,Q.Q)) .

.
We choose the i th column of G = <GIG£> as K;, i=1,2,3. Then, we can get D, as D, = (K1,K2,K3). Further, by letting E= (70.5,0.5)T, we can
obtain D3 as D3 = (TI,T;)T (shown in the appendix), where Ty =2%A; —0.5and T, =2%A, +0.5.
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Combining D4 ® 1g, D, and D3 column by column, we can get the BOLHD(64, 3, (1, 1, 1), 1) as S= (D1 ® 15,D2,D3), where

11112222\"7
Di=(11221122
12121212

In fact, Algorithms 3 and 4 are direct generalizations of Algorithms 1 and 2, respectively. They are all based on the same idea, that is, switching
the sequence of slices of an SOLHD to get the BOLHD. Next, we will list some BOLHDs that can be constructed using Algorithms 3 and 4.

4.3 | Some construction results

In the above sections, we have considered how to construct BOLHDs. This section lists some BOLHD (N, g, (m4, my, ..., my), t)'s that can be
constructed by above algorithms. According to the algorithms, to build a BOLHD, we first need an SOLHD and an OLHD. According to the results of
Yang et al. (2016), all SOLHD(2" * 1s, 2", s)'s are available, where 522, r21. Also, we have a collection of small OLHDs according to Lin et al. (2010)
(see Table B4). Based on these results, we can construct many BOLHDs. Some parameters of the constructed BOLHDs are listed in Tables B5
and Bé6.

Table B5 lists some BOLHD (N, g, (mq, my, ..., mg))'s obtainable by Algorithm 3 when there is no shared factor, where g represents the number
of branching factors, s represents the number of levels of each branching factor, max{E?zlm;} represents the maximum number of nested factors
that can be allowed and N represents the number of runs.

When there are shared factors in the BOLHDs to be constructed, the number of experiments will increase relatively. Table Bé lists some small
size BOLHD (N, g, (my, m, ..., my), t)'s obtainable by Algorithm 4, where g, s, max{Z?fim;} and N have the same meanings as in Table B5, and

t represents the number of shared factors.

5 | CONCLUDING REMARKS

In this paper, we define a new type of design called BOLHD for computer experiments with branching and nested factors. Compared with the
BLHDs proposed by Hung et al. (2009), the BOLHDs can guarantee one-dimensional balance and orthogonality for the nested factors no matter
at each level of a branching factor or each level combination of branching factors. These good properties can ensure that (1) both the modelling
of nested factors at a certain level of a branching factor alone and the modelling of nested factors at a level combination of branching factors can
result good parameter estimations; (2) significant factors can be identified. Furthermore, we propose some algorithms for constructing BOLHDs
when branching factors have the same number of levels. One advantage of these algorithms is that no computer search is required.

There are some issues worth further discussion. One issue is that this paper only considers the case that branching factors have the same
number of levels. When the numbers of levels are not the same, the construction will be more complex. To solve this problem, we can start with
the simplest case which assumes that there is a multiple relationship between the numbers of levels of different branching factors. Another issue
is that the designs we constructed require more experimental runs due to better properties. How to construct designs with fewer runs and the

properties of a BOLHD at the same time deserves further studies.
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APPENDIX A: PROOF OF THEOREM 2

For the construction of the design for nested factors, Algorithms 2 and 1 are the same, so here, we only need to prove that D satisfies (3) in
Definition 1, that is, (a) D3 is an OLHD, and (b) for each level-combination of branching factors, the corresponding design points of D5 form an
LHD which is orthogonal to the design of nested factors.

First, we prove that D3 is an OLHD. According to Algorithm 2, T; is obtained by row permutation of C;, i=1,...,s, and row permutation does
not change the orthogonality and one-dimensional space-filling property. So for simplicity, we only need to prove that D; = (CT,..,,CST)T is an
OLHD. To prove that Dj is an LHD, without loss of generality, we only consider the jth column Dj(: j) for any j=1,...,t. It is obvious that Dj(: ,j)
is a permutation on {Ci(:,f),.., Cs(c )} = {0 oot | “W s s (WLs_so1 (s sty Ned | Nso13 This shows that Dj is an

LHD. To prove that Dj is orthogonal, without Ioss of generallty, we need to consider the orthogonality of any two columns of D7, say the first

two columns, denoted by d; and d,. The objective is to show corr(ds,dy) =0. Assume that they are generated by the first two columns e; and e,

from E and the first two columns g4 and g, from Q, respectively, where e; = (e1i,...,es;)T, and g; = (qli,...,qu)T fori=1,2. Then,

;
d1 = (e11+5911,-.,€11 +5AN1,--€51 + 5011, --,€51 +5An1)

;
dy = (€12 +5G12,..-,€12 +5AN2; -1 852 +5G12,-.-,852 +SAN2) -

Since corr(eq,e2) =0 and corr(q4,q,) =0, that is,

s N

Z(eil—éi) ep—ey) O,Z a1 —d1)(ap —d2) =0,

i=1 =1

where e :%Z,-Szie,vl and e, g4, g, are similarly defined, then the numerator of corr(d,, d,) equals

N
Z ((eix+saj1) — (1 +5d1)) ((ei2 +5a52) — (2 +502))

i1 j=1
s N

= Z((ei1—él)+5(%’1—51))((ei2—éz)+S(Q,'z—52))
i1 j=1
s N s N

= ZZ(en—éi)(eiz—ez +s Z e —e1) (a2 —q2)
i1 j=1 i=1 j=1

s N s N

+ 5> > (G —d1) (e —e2)+5 (41— 1) (a2 —a2)
i=1 j=1 i=1 j=1

= 0.

Thus, corr(dy,dz) =0. This shows that Dy is orthogonal.
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Next, we prove that Dj satisfies (b). According to Algorithm 2, for any fixed level-combination of z; and z,, the design for nested factors cor-
responds to a certain (aj,,b;,), and the design for shared factors corresponds to a certain ¢y, ;, with ko,ip €{1,...,s}. First, we need to prove that
Cio)io 15 @an LHD, which is obvious because the structure of ¢, ;, follows the structure of Q;, for ip €{1,...,s}. Then, we need to prove that any col-
umn from ¢, j, is orthogonal to any column from (a;,,b;, ). Without loss of generality, let io =ko =1, and we prove that the first column of ¢4 ; den-
oted by g;= (gu,...,gnl)T is orthogonal to the first column of (aj,b;)=L; denoted by I|= (I11,...,I,,1)T. According to Step
4, g1 =(e11+5411,...€11 +sqn1)T =eq *1+5s%cqy, where c; = (qu,...,q,,l)T is the first column in the first slice Q4 of Q. Since L and Q are all from
the SOLHD P, it is clear that corr(cq,l1) =0, that is,

n

> (@n—a)(la—h) =0,

i=1

where ¢4 :%Zi”:iqm and I; is defined similarly, then, the numerator of corr(gy, /1) equals

n

Z(gil ~31)(la—1)

i=1

(e11+5a1 — (€11 +5C1)) (li — 1)

Il
.Mz

T
s P

= s> (gn—c1)(li—T)
ey
= 0.

Thus, corr(cq,l1) = 0. This completes the proof of (b).

APPENDIX B: THE P AND D3 IN EXAMPLE 3

p=(PL.PL.PI.P)T, where

0.5 4.5 85 125 —05 —45 -85 —125\" 15 55 95 135 —1.5 —-55 —-95 —135\"
4.5 -0.5 125 -85 —-45 05 -125 85 55 -15 135 -95 -55 15 -135 95
Pr= -125 -85 45 05 125 85 -45 -05 2= -135 -95 55 15 135 95 -55 -15 '
8.5 —-125 -0.5 45 -85 125 05 —4.5 9.5 -135 -15 55 -95 135 15 -5.5
2.5 6.5 105 145 -25 —65 —10.5 —14.5\" 3.5 7.5 115 155 -35 -7.5 —11.5 —155\"
Py 6.5 -25 145 -105 -65 25 —-145 105 P 7.5 -3.5 155 -115 -75 35 -155 115
-145 -10.5 6.5 25 145 105 -65 -25 -155 -115 75 35 155 115 -75 -35
105 -145 -25 6.5 -10.5 145 25 -6.5 115 -155 -35 75 -11.5 155 35 -75
D;= (T{,T;)T, where
T, =(16.5-25.5-1.58.5-17.524.50.5-9.518.5-27.5-3.510.5-19.526.52.5-11.5
20.5-29.5-5.512.5—21.528.54.5—13.522.5—31.5—7.514.5—23.530.56.5—15.5)",
T, =(23.5-30.5-6.515.5-22.531.57.5—-14.521.5-28.5-4.513.5-20.529.55.5-12.5
19.5-26.5-2.511.5—18.527.53.5—10.517.5—24.5-0.59.5—16.525.51.5—-8.5)".
TABLE B1 An SLHD-based BLHD with two branching factors each of two levels
Run z; Z vi.va VLV X1..X¢
1 1 1 SLHD(n1,m1,2) SLHD(n,,m,,2) first slice SLHD(N,t,4)
' 1 2 SLHD(n,,my, 2) first slice
2 1 SLHD(n1,m1,2) SLHD(n,,m,,2) second slice
N 2 2 SLHD(n,,m,,2) second slice
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TABLE B2 A BLHD with two branching factors each of two levels

Run z1 2z Vv ) V.V, X1..X¢

1 1 1 LHD(ny,m4) LHD(n,,m5) first half LHD(N,t)

1 2 LHD(n,,m5) first half
2 1 LHD(n1,m1) LHD(n,,m,) second half

N 2 2 LHD(n,,m,) second half
TABLE B3 SLHD-based BLHD with two branching factors each of s levels

Run z1 2z vit.va VE2..Vig, X1..X¢

1 1 1 SLHD1(n,my,s)'s slice 1 SLHD1(n,my,s)'s slice 1 SLHD(N,t,52)

s 1 s SLHD{(n,mq,s)'s slice s SLHD4(n,my,s)'s slice 1

N s s SLHDs(n,m4,s)'s slice s SLHD4(n,my,s)'s slice s
TABLE B4 The maximum number of columns m in OLHD (n,m) for 1<n<21

n 2 3 4 5 7 8 9 11 12 13 15 16 17 19 20 21

m 1 1 2 2 3 4 5 7 6 6 6 12 6 6 6 6
TABLE B5 Some BOLHD (N,q,(m1,ma,...,mq))'s obtainable by Algorithm 3

q 4

s

max{=? ,m;} 2 4 8 4 4 8 4 8 4 8 8

N 16 32 64 64 72 128 128 144 216 256 432
TABLE B6 Some BOLHD (N,q,(m1,ma,...,mq),t) 's obtainable by Algorithm 4

q 2 2 3 2 2 3 2 3 2 3 2 2 3

s 2 2 2 3 4 2 3 3 4 3 7 8 4

max{Z?zlmi} 3 7 3 3 2 7 7 3 6 7 5 4 6

t 1 1 1 1 2 1 1 1 2 1 3 4 2

N 32 64 64 72 128 128 144 216 256 432 784 1024 1024
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