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A growing trend in engineering and science is to use multiple computer codes with

different levels of accuracy to study the same complex system. Strategies are needed

to combine the simulation results obtained at different levels of accuracy to produce

an efficient surrogate model for prediction. In this paper, we propose an integral

model to borrow as much information as possible from the low-accuracy experiment.

We ignore the Markov property assumed before and model the high-accuracy experi-

ment based on an integral form of the low-accuracy experiment. The proposed model

is more general thus better predictions are expected. Two explicit forms of some

matrices and vectors used in our predictions are given. The effectiveness of the pro-

posed model is illustrated with several examples.
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1 | INTRODUCTION

Computer experiments play a critical role in many areas of scientific research where physical experiments are too costly or infeasible. Complex

mathematical models are implemented in large computer codes to study real systems, and a large computer program often can be run at different

levels of complexity with vastly varying computational times. For example, two different computer experiments can be used for designing the

same type of linear cellular alloy for electronic cooling. One code uses finite-element analysis, whereas the other is based on the finite difference

method. The two codes differ in terms of the numerical method and resolution of the grid, resulting in an accurate but slow version and a crude

but fast approximation. In this paper we focus on the situation in which two experiments are available and one is generally more accurate than

the other but also more expensive to run. The two experiments considered are called the low-accuracy experiment (LE) and high-accuracy experi-

ment (HE). It is often something experimenters need to consider that how to integrate these multiple data sources efficiently.

The issue of building prediction models based on the HE and LE data has drawn significant attention. Related work includes Kennedy and

O'Hagan (2000), Qian et al. (2006) and Qian and Wu (2008), among others. The basic idea of their modelling methods is to run the HE and LE with

a pair of nested space-filling designs (Haaland & Qian, 2010; Qian, 2009; Qian, Ai, & Wu, 2009; Qian, Tang, & Wu, 2009; Sun et al., 2013, 2014)

or a pair of nested Latin hypercube designs (Yang et al., 2014, 2016) and then fit a prediction model based on the LE data and refine it by incorpo-

rating the more accurate HE data. In their methods, it is always assumed that a kind of Markov property between HE and LE holds; thus, their

models are based on an autoregressive model which will be introduced in Section 2.2.

The method of this paper is motivated by Example 3.6 in Chapter 3.5.2 of Santner et al. (2018). The HE and LE codes of this example are plot-

ted in Figure 1 (more details can be found in Example 1 in this paper). It can be seen that although HE and LE share similar trends, the Markov

property between HE and LE and the autoregressive model are not so appropriate for the codes as there seems to be a deviation in the x-axis

direction. As will be stated in Section 2.2, the Markov property assumes that we cannot get any information for the response at an HE point from

any other LE point if the response of the LE point at the same position of the HE point is given. This assumption will cause the autoregressive

model to be less effective if the real HE experiment also depends on the real LE experiment on another position or even a larger scope of the

design region, which seems more reasonable for this example. We believe that a similar situation may occur in practice. Thus, in this paper, we
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derive an integral model in order to make better predictions of HE on the whole design region. The proposed integral model not only ignores the

Markov property but also is a generalization of the model in Kennedy and O'Hagan (2000). Under the assumption of Markov property being

ignored, location and scale adjustments are implemented on an integral instead of a point of the surrogate model of LE. The paper is organized as

follows. Section 2 briefly reviews the Gaussian process modelling and describes the proposed integral model in detail. It also gives some notation

and two explicit forms of some matrices and vectors used when fitting the model. Section 3 shows some details when implementing the proposed

modelling method. Section 4 uses several examples to illustrate the effectiveness of the integral model. Section 5 provides some concluding

remarks. The proofs are deferred to Appendix A1.

2 | BUILDING A SURROGATE MODEL WITH BOTH HE AND LE

2.1 | Gaussian process modelling

The Gaussian process model (Kriging model) is widely used in computer experiments because of its desirable properties. Suppose the n�d matrix

X¼ðx1,x2,…,xnÞT is the matrix of all inputs, where xi ¼ðxi1,…,xidÞT is the ith d-dimensional input vector. The corresponding response values are

denoted by z¼ðz1,…,znÞT . The Gaussian process model assumes the following structure:

zðxiÞ¼ βThðxiÞþεðxiÞ, i¼1,…,n,

where hðxÞ¼ h1ðxÞ, …, hqðxÞð ÞT is a set of prespecified functions and β¼ðβ1,…,βqÞT is a set of unknown coefficients. The εðxÞ is assumed to be a

realization of a stationary Gaussian process with covariance

cov½εðxiÞ,εðxjÞ� ¼ σ2ε rεðxi,xjÞ,

where σ2ε is the variance and rεð�,�Þ is the correlation function. One of the most commonly used forms of the correlation function is

rεðxi ,xjÞ¼
Yd
k¼1

expf�θkjxik�xjkjpg,

where θ¼ðθ1,…,θdÞT is a vector of the correlation parameters, and in this paper, only p¼1 and p¼2 are considered. This form of correlation func-

tion is often adopted in the literature of computer experiments.

In this paper, a Gaussian process with mean μ, variance σ2 and correlation parameters θ is denoted by GPðμ,σ2,θÞ.

2.2 | An integral model

Suppose LE has m runs and HE has n runs. Let X¼ðx1,…,xmÞT and Y¼ðy1,…,ynÞT be the designs of LE and HE, respectively, and the corresponding

response values are denoted by z1 and z2, where z1 ¼ z1ðx1Þ, …, z1ðxmÞð ÞT and z2 ¼ z2ðy1Þ, …, z2ðynÞð ÞT . Let z¼ðzT1,zT2Þ
T
.

In Kennedy and O'Hagan (2000), it is assumed that

F IGURE 1 HE and LE in the motivating example
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cov z2ðyÞ, z1ðxÞjz1ðyÞ½ � ¼0,

for all y≠ x. This assumption is called a kind of Markov property. Based on the assumption, Kennedy and O'Hagan (2000) proposed an auto-

regressive model, which is of the form

z1ðxÞ¼ ε ∗ ðxÞ,z2ðxÞ¼ ρ1z1ðxÞþδ ∗ ðxÞ,

where

ε ∗ ð�Þ�GPðhð�ÞTβε,σ2ε ,θεÞ,δ ∗ ð�Þ�GPðhð�ÞTβδ,σ2δ ,θδÞ,

ρ1 is a kind of regression parameter and δ ∗ ð�Þ is independent of z1ð�Þ. The corresponding correlation functions are denoted by rεð�,�Þ and rδð�,�Þ. In
the rest of this paper, this autoregressive model together with the fitting methods in Kennedy and O'Hagan (2000) is called the KO model.

In this paper, to borrow more information from LE, we propose an integral model as a generalization of the autoregressive model. Assume

that the design region X is a d-dimensional hypercube. The integral model we proposed in this paper is of the form

z1ðxÞ¼ ε ∗ ðxÞ,z2ðyÞ¼ ρ1

ð
X
z1ðtÞdFyðtÞþδ ∗ ðyÞ, ð1Þ

where ρ1, ε
∗ ð�Þ and δ ∗ ð�Þ are defined the same as above, and FyðtÞ is a distribution function on X which satisfies that

ð
X
dFyðtÞ¼1, for any y�X :

It can be easily seen that when FyðxÞ¼1fx ≥ yg , the integral model degenerates to the autoregressive model.

Let y ∗ be a new design point at which we want to predict the HE response value z2ðy ∗ Þ. Given

Ξ¼fρ1,θε,θδ,σ2ε ,σ2δ ,βε,βδg,

as a result of our integral model, we have

z2ðy ∗ Þ, zT� �T ¼ hTintðy ∗ Þ
Hint

 !
βþ ρ1

ð
X
εðtÞdFy ∗ ðtÞþδðy ∗ Þ

Eint

0
@

1
A,

where

Hint ¼

hTðx1Þ, 0T

..

.

hTðxmÞ, 0T

ρ1

ð
X
hTðtÞdFy1 ðtÞ, hTðy1Þ

..

.

ρ1

ð
X
hTðtÞdFyn ðtÞ, hTðynÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

, Eint ¼

εðx1Þ
..
.

εðxmÞ
ρ1

ð
X
εðtÞdFy1 ðtÞþδðy1Þ

..

.

ρ1

ð
X
εðtÞdFyn ðtÞþδðynÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

hintðy ∗ Þ¼ ρ1
Ð
Xh

TðtÞdFy ∗ ðtÞ, hTðy ∗ Þ
� �T

, and β¼ðβTε ,βTδ Þ
T
. Here, we have separated the mean terms hTð�Þβε and hTð�Þβδ from the Gaussian pro-

cesses ε ∗ ð�Þ and δ ∗ ð�Þ to get εð�Þ and δð�Þ, which are two independent mean zero Gaussian processes with parameters ð0,σ2ε ,θεÞ and ð0,σ2δ ,θδÞ,
respectively.

Given Ξ, the vector z2ðy ∗ Þ, zT� �T
is multivariate normal distributed with mean μ¼ hTintðy ∗ Þ

Hint

 !
β and the covariance matrix

C¼ σ2y ∗ rTintðy ∗ Þ
rintðy ∗ Þ Cint

 !
, where Cint ¼ covðE intÞ¼

C11 C12

C21 C22

� �
, and

QI ET AL. 3 of 14
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rintðy ∗ Þ
¼ ρ1σ

2
ε

ð
X
rϵðx1, tÞdFy ∗ ðtÞ, …, ρ1σ2ε

ð
X
rϵðxm, tÞdFy ∗ ðtÞ, ρ21σ2ε

ð
X2
rϵðt1, t2ÞdFy1 ðt1ÞdFy ∗ ðt2Þ

�

þσ2δ rδðy1, y ∗ Þ, …, ρ21σ2ε
ð
X2
rϵðt1, t2ÞdFyn ðt1ÞdFy ∗ ðt2Þþσ2δ rδðyn, y ∗ Þ

�T

,

C11 ¼ σ2εRε,

C12 ¼ ρ1σ
2
ε

ð
X
rεðx1, tÞdFy1 ðtÞ …

ð
X
rεðx1, tÞdFyn ðtÞ

..

. ..
.ð

X
rεðxm, tÞdFy1 ðtÞ …

ð
X
rεðxm, tÞdFyn ðtÞ

0
BBBBBB@

1
CCCCCCA

¼CT
21,

C22 ¼ ρ21σ
2
ε

ð
X2
rεðt1, t2ÞdFy1 ðt1ÞdFy1 ðt2Þ …

ð
X2
rεðt1, t2ÞdFy1 ðt1ÞdFyn ðt2Þ

..

. ..
.ð

X2
rεðt1, t2ÞdFyn ðt1ÞdFy1 ðt2Þ …

ð
X2
rεðt1, t2ÞdFyn ðt1ÞdFyn ðt2Þ

0
BBBBBB@

1
CCCCCCA
þσ2δRδ ,

where Rε and Rδ are the correlation matrices obtained by applying rεð�,�Þ on X and rδð�,�Þ on Y, respectively. Thus, for fixed Ξ, the expectation of

z2ðy ∗ Þ conditional on z is

E½z2ðy ∗ Þjz� ¼ hTintðy ∗ Þβþ rTintC
�1
int ðz�HintβÞ: ð2Þ

Let Ξ ∖ β be the parameter set fρ1,θε,θδ,σ2ε ,σ2δg, and we know that z¼HintβþE int �Nmþn Hintβ, Cintð Þ. Thus, for fixed Ξ ∖ β, by generalized least

squares, we can get the best linear unbiased estimation and also the maximum likelihood estimation (MLE) of β as

β̂¼ðHT
intC

�1
intHintÞ�1

HT
intC

�1
int z: ð3Þ

After substituting (3) into (2), we get the predictor of z2ðy ∗ Þ as

ẑ2ðy ∗ Þ¼ hTintðy ∗ Þβ̂þ rTintC
�1
int ðz�Hintβ̂Þ: ð4Þ

Now, we discuss the properties of the predictor of z2ðy ∗ Þ in (4). It is straightforward that ẑ2ðy ∗ Þ is an unbiased and interpolated predictor for

z2ðy ∗ Þ when the model is true. Rewrite ẑ2ðy ∗ Þ as bT2ðy ∗ Þz, where

bT2ðy ∗ Þ ¼ hTintðy ∗ ÞðHT
intC

�1
intHintÞ�1

HT
intC

�1
int þ rTintðy ∗ ÞC�1

int

�rTintðy ∗ ÞC�1
intHintðHT

intC
�1
intHintÞ�1

HT
intC

�1
int :

Then, we can get the mean squared prediction error of (4) as

E ðbT2ðy ∗ Þz� z2ðy ∗ ÞÞ2
h i

¼ E ðbT2ðy ∗ ÞHint�hTintðy ∗ ÞÞβþbT2ðy ∗ ÞE int�ρ1

ð
X
εðtÞdFy ∗ ðtÞ�δðy ∗ Þ

� �2
" #

¼ E bT2ðy ∗ ÞE int�ρ1

ð
X
εðtÞdFy ∗ ðtÞ�δðy ∗ Þ

� �2
" #

¼ bT2ðy ∗ ÞCintb2ðy ∗ Þ�2bT2ðy ∗ Þrintðy ∗ Þþρ21σ
2
ε

ð
X2
rϵðt1,t2ÞdFy ∗ ðt1ÞdFy ∗ ðt2Þþσ2δ :

It is not hard to find out that (4) is the best linear unbiased prediction of z2ðy ∗ Þ. If we then obtain MLEs of the other unknown parameters in Ξ

and plug them in (4), we can get the empirical best linear unbiased prediction of z2ðy ∗ Þ.
In order to get MLEs of the parameters in Ξ ∖ β, we should maximize the likelihood function

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞðmþnÞjCintj

q exp �1
2
ðz�Hintβ̂ÞTC�1

int ðz�Hintβ̂Þ
	 


:

After taking logarithm and ignoring some constant terms, it is equivalent to minimizing the value of the objective function

4 of 14 QI ET AL.
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ln jCintjþðz�Hintβ̂ÞTC�1
int ðz�Hintβ̂Þ:

2.3 | Explicit forms

In this part, we assign the distribution function in our integral model to be a uniform distribution or truncated normal distribution and then derive

explicit forms for Cint and rint. These are the two most commonly used distribution functions, and we assign them to different choices of p in the

correlation functions. In this paper, we assume X to be a bounded hypercube region. Let l and u denote the lower bound vector and upper bound

vector of X , respectively, for example, the kth element of l is the lower bound of the kth dimension of X .

Next, we specify the form of the distribution function FyðtÞ. For the uniform distribution function, let Xy denote a hypercube region with

boundary vectors yþΔ�S and yþΔþS, where Δ and S are unknown vector parameters, and X ∗
y ¼X y \X . Denote the lower and upper bound

vectors of X ∗
y by ~ly and ~uy , respectively. Then, let UyðtÞ be a uniform distribution function on X ∗

y , whose density function is

uyðtÞ¼
1X ∗

yQ
kð~uy,k�~ly,kÞ

:

For the truncated normal distribution, let qyðtÞ denote the density function of a multivariate normal distribution with mean yþΔ and the covari-

ance matrix Σ, where Δ and Σ are unknown parameters. Then, the density function gyðtÞ of the assumed truncated normal distribution can be

written as

gyðtÞ¼
qyðtÞð
X
qyðtÞ

�1X :

Let GyðtÞ be the corresponding cumulative distribution function.

With FyðtÞ being UyðtÞ, we can derive the explicit forms of Cint and rint when p¼1; and with FyðtÞ being GyðtÞ, we can derive the explicit forms

of Cint and rint when p¼2. The following theorems show the explicit forms of Cint and rint under these two situations.

In Theorems 2.1 and 2.2, denote expf�θεkðak�bkÞg by eabðkÞ.

Theorem 2.1. When p¼1 in the correlation functions rϵð�,�Þ and rδð�,�Þ, and the distribution function in the integral model is the uni-

form distribution specified above, the elements in Cint have the following explicit forms:

C12ði,jÞ¼ ρ1σ
2
ε

Yd
k¼1

ð~uyj ,k
~lyj ,k

expf�θεkjxik � tkjgdtk
 ! Yd

k¼1

,
~uyj ,k�~lyj ,k
� �

,

where

ð~uyj ,k
~lyj ,k

expf�θεkjxik � tkjgdtk ¼

1
θεk

e
~lyj
xi ðkÞ�

1
θεk

e
~uyj
xi ðkÞ, ifxik ≤~lyj ,k;

2
θεk

� 1
θεk

e
~lyj
xi ðkÞ�

1
θεk

exi~lyj
ðkÞ, if~lyj ,k < xik ≤ ~uyj ,k;

1
θεk

exi~uyj
ðkÞ� 1

θεk
exi~lyj

ðkÞ, if~uyj ,k < xik ,

8>>>>>>>><
>>>>>>>>:

and

C22ði,jÞ¼ ρ21σ
2
ε

Qd
k¼1

ð
X ∗

yi ,k
�X ∗

yj ,k

expf�θεkjt1k� t2kjgdt1kdt2k
0
@

1
A

Qd
k¼1

�
ð~uyi ,k�~lyi ,kÞ � ð~uyj ,k�~lyj ,kÞ
h i

þσ2δ rδðyi ,yjÞ,

QI ET AL. 5 of 14
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where

ð
X ∗

yi ,k
�X ∗

yj ,k

expf�θεkjt1k� t2kjgdt1kdt2k

¼

1

θ2εk
e
~uyi
~lyj
ðkÞþe

~lyi
~uyj
ðkÞ�e

~lyi
~lyj
ðkÞ�e

~uyi
~uyj
ðkÞ

� �
, if~lyi ,k > ~uyj ,k;

2

θ2εk
e
~uyi
~lyi

þ 2
θ1k

ð~uyi �~lyi Þ�
2

θ21k
, if~lyi ¼~lyj , ~uyi ¼ ~uyj ;

1

θ2εk
e
~uyj
~lyi
ðkÞþe

~lyj
~uyi
ðkÞ�e

~lyj
~lyi
ðkÞ�e

~uyj
~uyi
ðkÞ

� �
, if~lyj ,k > ~uyi ,k:

8>>>>>>>>><
>>>>>>>>>:

Other cases can be obtained by combining these three cases. When X \Xy ≠ ;, ~uy,k ¼ minfuk ,ykþΔkþSkg and
~ly,k ¼ maxflk ,ykþΔk�Skg.

Remark 2.1. Here, we show how the combination is done in the second part of the theorem. Suppose ~lyj ,k <
~lyi ,k < ~uyj ,k < ~uyi ,k , and let

A denote expf�θ1kjt1k� t2kjg, then

ð
X ∗

yi ,k
�X ∗

yj ,k

Adt1kdt2k ¼
ð~lyi ,k
~lyj ,k

ð~uyi ,k
~lyi ,k

þ
ð~uyj ,k
~lyi ,k

ð~uyj ,k
~lyi ,k

þ
ð~uyj ,k
~lyi ,k

ð~uyi ,k
~uyj ,k

 !
Adt1kdt2k ,

and the items on the right-hand side are all in the forms above.

Theorem 2.1 shows the explicit forms of the elements in Cint when p¼1 and FyðtÞ¼UyðtÞ. By a similar proof, we can get the explicit forms of

the elements in rintðy ∗ Þ, which are shown in Theorem 2.2.

Theorem 2.2. When p¼1 in the correlation functions rϵð�,�Þ and rδð�,�Þ, and the distribution function in the integral model is the uni-

form distribution specified above, the rintðy ∗ Þ has the following explicit forms:

rintðy ∗ Þi ¼ ρ1σ
2
ε

Qd
k¼1

ð~uy ∗ ,k

~ly ∗ ,k

expf�θεkjxik� tkgdtk
 ! Qd

k¼1

�
ð~uy ∗ ,k�~ly ∗ ,kÞ,and

rintðy ∗ Þmþj ¼ ρ21σ
2
ε

Qd
k¼1

ð
X ∗

y ∗ ,k�X ∗
yj ,k

expf�θεkjt1k� t2kjgdt1kdt2k
0
@

1
A

Qd
k¼1

�
ð~uy ∗ ,k�~ly ∗ ,kÞð~uyj ,k�~lyj ,kÞ
h i

þσ2δ rδðyj ,y ∗ Þ,

where i¼1,…,m, j¼1,…,n and other symbols and values of the integrals are similar to Theorem 2.1.

Before presenting Theorems 2.3 and 2.4, let Φfμ,Bgða� bÞ denote the probability that a random vector ξ�Nðμ,BÞ falls in a hypercube whose

lower and upper bound vectors are a and b, respectively.

Theorem 2.3. When p¼2 in the correlation functions rεð�,�Þ and rδð�,�Þ, and the distribution function in the integral model is the

truncated normal distribution specified above, the elements in Cint have the following explicit forms:

C12ði,jÞ¼ ρ1σ
2
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2UÞ�1j

jΣj

s
exp μTij Uμij�xTi diagðθεÞxi�

1
2
yΔTj Σ�1yΔj

	 


�Φfμij ,ð2UÞ�1gðl� uÞ
ðu
l

,
qyj ðtÞdt,and

C22ði,jÞ¼ ρ21σ
2
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2VÞ�1j

q
V ijjΣj exp νTij Vνij�

1
2
yΔTij

Σ�1 0

0 Σ�1

 !
yΔij

( )

�Φfνij ,ð2VÞ�1gðl� uÞþσ2δ rδðyi,yjÞ,

6 of 14 QI ET AL.
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where yΔi ¼ yiþΔ, yΔj ¼ yjþΔ, yΔij ¼ðyTi þΔT ,yTj þΔTÞT , U¼diagðθεÞþ 1
2Σ

�1, μij is the solution to the equation

μTij U¼ xTi diagðθεÞþ 1
2y

ΔT
j Σ�1, V¼ Id

�Id

� �
diagðθεÞðId,� IdÞþ 1

2

Σ�1 0

0 Σ�1

 !
, V ij ¼

Ð
X2qyi ðt1Þqyj ðt2Þdt1dt2 and νij is the solution to the

equation Vνij ¼ 1
2

Σ�1 0

0 Σ�1

 !
yΔij .

Theorem 2.3 shows the explicit forms of the elements in Cint when p¼2 and FyðtÞ¼GyðtÞ. Moreover, by a similar proof, we can get the

explicit forms of the elements in rintðy ∗ Þ, which are shown in Theorem 2.4.

Theorem 2.4. When p¼2 in the correlation functions rεð�,�Þ and rδð�Þ, and the distribution function in the integral model is the trun-

cated normal distribution specified above, the rintðy ∗ Þ has the following explicit forms:

rintðy ∗ Þi ¼ ρ1σ
2
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2UÞ�1j

jΣj

s
exp μ ∗ T

i Uμ ∗
i �xTi diagðθεÞxi�

1
2
ðy ∗ΔÞTΣ�1y ∗Δ

	 


�Φfμ ∗
i
,ð2UÞ�1gðl� uÞ

ðu
l

,
qy ∗ ðtÞdt,and

rintðy ∗ Þmþj ¼ ρ21σ
2
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2VÞ�1j

q
V ∗
j jΣj

exp ν ∗ T
j Vν ∗

j �1
2
ðy ∗Δ

j ÞT Σ�1 0

0 Σ�1

 !
y ∗Δ
j

( )

�Φfνj ,ð2VÞ�1gðl� uÞþσ2δ rδðyj,y ∗ Þ,

where i¼1,…,m, j¼1,…,n, y ∗Δ ¼ y ∗ þΔ, y ∗Δ
j ¼ðy ∗ T þΔT ,yTj þΔTÞT , μ ∗

i is the solution to the equation

μ ∗
i U¼ xidiagðθεÞþ 1

2ðy ∗ΔÞTΣ�1, V ∗
j ¼ ÐX2qy ∗ ðt1Þqyj ðt2Þdt1dt2, ν ∗

j is the solution to the equation Vν ∗
j ¼ 1

2

Σ�1 0

0 Σ�1

 !
y ∗Δ
j and other

symbols are defined similar to Theorem 2.3.

The assumptions behind the two choices of FyðtÞ are different. A uniform distribution assumes that the value of z2ðyÞ is based on the integral

of z1ðxÞs on a hypercube region centred on yþΔ with even weights; and a truncated normal distribution assumes that z2ðyÞ is based on the inte-

gral of z1ðxÞs on the whole design region with uneven weights.

3 | IMPLEMENTATION

While fitting an integral model, several things should be considered. Firstly, the input and corresponding output data are standardized in advance,

just like fitting a Gaussian process model. Secondly, we seek MLEs of the parameters to determine their values, and the determination is an opti-

mization problem with box constraints. The same algorithm as Matlab toolbox DACE with successive coordinate search and pattern moves is used

to solve this problem (Kowalik & Osborne, 1968, Section 2.4; Lophaven et al., 2002, Section 6). However, a minor adjustment is made to the algo-

rithm. The purpose of the adjustment is to ensure that the algorithm can continue to work when the value of objective function does not exist

after a certain step of the algorithm. For example, for a correlation function with p¼1 and FyðtÞ being UyðtÞ, after the search process reduces the

value of Sk and the value of Δk is relatively large, it would happen that X \Xy ¼; on some ys with yk close to the upper bound in the kth dimen-

sion of X . For the same reason, in order to ensure the existence of all predictions, it is preferred that all inputs which reach the bound of X in any

dimension should be included in Y: Thirdly, when we let p¼2 in the correlation function and use the truncated normal distribution as FyðtÞ, the
explicit forms contain the cumulative distribution function of the multivariate normal distribution. In our examples we use the “pmvnorm” func-

tion in the R package “mvtnorm” to get this value, but the computation time grows greatly as the dimension of input increases. So it is usually

infeasible to find the MLEs directly. In this case, we can fit a KO model first and take the resulting parameter estimates to be the initial values in

our integral model. The initial values for other parameters can be randomly chosen multiple times, and the algorithm stated above is applied to

them separately. Similarly to ordinary Kriging, we assume hðxÞ¼1 in the rest of the paper.

4 | NUMERICAL STUDIES

We use three examples to illustrate the proposed model. The first two are simulation studies and the third one is a real data example. For the con-

venience of comparison, all designs used in the examples have the property that the HE points are nested in the LE points, which is not necessary
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for the proposed integral model. In this section, we use “int1” and “int2” to denote the applications of two different explicit forms with p¼1 and

p¼2, respectively, and compare them with the KO model.

4.1 | Example 1

We use the method proposed in this paper to solve the problem in the motivating example from Chapter 3.5.2 of Santner et al. (2018).

It is supposed that the HE code is

z2ðxÞ¼ e�1:4x cosð7πx=2Þ, x� ½0,1�,

and the LE code is

z1ðxÞ¼ z2ðx=ð2�xÞÞ, x� ½0,1�:

In this example, we just choose X to be the interval ½0,1�, and let X¼f0,0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:9,1g, Y¼f0:1,0:3,0:5,0:7,0:9g. It can be

seen that X and Y are both uniformly scattered and satisfy Y�X. The HE code, LE code, X and Y we choose above are plotted in Figure 2a. The

black line and points correspond to z2, and the grey ones correspond to z1.

Here, for the KO method, we use the “optim” function with the “L-BFGS-B” method in R to minimize the objective function. For our integral

model, the objective function is minimized based on the algorithm we mentioned in Section 3. By minimizing the objective functions, we get MLEs

of the unknown parameters. Note that all estimates are obtained after standardizing the input and output data.

For the KO model, the estimates are

ρ̂¼0:3191,θ̂ε ¼1:5537,θ̂δ ¼53:3038,σ̂2ϵ ¼3:2693,σ̂2δ ¼0:5425,

and the value of the objective function is �6.6578.

For the int1 model, the estimates are

ρ̂¼1:6028,θ̂ε ¼0:9259,θ̂δ ¼0:0074,σ̂2ϵ ¼1:1863,σ̂2δ ¼0,Ŝ¼0:3487,Δ̂¼0:4067,

and the value of the objective function is �4.0993.

For the int2 model, the estimates are

ρ̂¼1:6132,θ̂ε ¼1:5673,θ̂δ ¼0:2717,σ̂2ϵ ¼3:1674,σ̂2δ ¼0:0628,Σ̂¼0:0464,Δ̂¼0:4276,

and the value of the objective function is �29.8651.

We use these three models to predict z2 on the 101 uniformly scattered points f0,0:01,0:02,…,1g in the design region, and the predictors are

plotted in Figure 2b. It can be seen that all three predictors interpolate the HE points but the predictors from the proposed integral models can fit

z2 better than the KO model.

F IGURE 2 The plots of z1, z2 and the predictors of z2 in Example 1

8 of 14 QI ET AL.
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The mean squared errors (MSEs) of these three predictors on these 101 points are also calculated. We get MSEKO ¼0:0832,

MSEint1 ¼0:0043, MSEint2 ¼0:0044, which confirms our conclusion from the figure.

4.2 | Example 2

This example is modified from Example 1 in Xiong et al. (2013). In their paper, the HE code is

yh ¼ 1� exp � 1
2x2

� �� 
2300x31þ1900x21þ2092x1þ60

100x31þ500x21þ4x1þ20
,

and the LE code is

yl ¼ ½yhðx1þ1=20,x2þ1=20Þþyhðx1þ1=20,maxð0,x2�1=20ÞÞ
þyhðx1�1=20,x2þ1=20Þþyhðx1�1=20,maxð0,x2�1=20ÞÞ�=4:

Here, we assume the accuracy of the LE code is lower and replace the 1/20 in the expression for yl with 1/10. Thus, in our example,

z2ðxÞ ¼ 1� exp � 1
2x2

� �� 
2300x31þ1900x21þ2092x1þ60

100x31þ500x21þ4x1þ20
,and

z1ðxÞ ¼ ½z2ðx1þ1=10,x2þ1=10Þþ z2ðx1þ1=10,maxð0,x2�1=10ÞÞ
þz2ðx1�1=10,x2þ1=10Þþ z2ðx1�1=10,maxð0,x2�1=10ÞÞ�=4:

The contours of the two codes are shown in Figure 3.

We take X to be a sliced Latin hypercube design with 60 rows, two columns and four slices generated by the function “maximinLHD” in the

R package “SLHD” (Ba et al., 2015), and let Y be the third slice of X. Figure 4 shows the scatter plot of X and Y on the design region X . In this

F IGURE 3 The contours of z2 and z1 in Example 2

F IGURE 4 The scatter plot of X and Y with the triangles being the points of Y in Example 2
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example, we use isotropic correlation functions, and when p¼2 in the correlation function, we restrict the covariance matrix Σ of the truncated

normal distribution to be diagonal.

Table 1 gives the estimated parameters, values of the objective functions, root mean squared errors (RMSEs) and standardized RMSEs

(SRMSEs) of all fitted models. The RMSEs and SRMSEs are calculated on the 121 gird points f0,0:1,…,1g�f0,0:1,…,1g. Denote the grid points by

s1,…,s121, the expression of SRMSE is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP121
i¼1 f½ẑ2ðsiÞ� z2ðsiÞ�=z2ðsiÞg2

121

s
:

The corresponding contours of the predictions are shown in Figure 5.

From Table 1, we can see that both integral models outperform the KO model in prediction, and it is better to take the combination of p¼2

and the truncated normal distribution for the correlation function and FyðtÞ, respectively.
We also compare the fitted models with the LE code here. Regarding the LE code as a model, the RMSE value is 0.7363 and the SRMSE value

is 0.0862. It is worth noting that the KO model is worse than the low-accuracy code under both criteria, and two integral models are worse than

the low-accuracy code in terms of the SRMSE values. The most possible reason is that the responses z1 and z2 change rapidly with x1 when x1 is

small and we did not choose enough design points in that area for the models to fit the change. Sometimes, this case cannot be avoided when we

have no prior information. So we ignore the 11 grid points with x1 ¼0 and make the comparison on the other 110 points. The results are shown

in Table 2. It can be seen that all three models outperform the LE code and the two integral models are better than the KO model. The combina-

tion of p¼1 and the uniform distribution performs the best.

TABLE 1 Results of Example 2

KO int1 int2

ρ̂ 0.9353 1.2311 1.2035

θ̂ε 0.8115 0.0996 0.8115

θ̂δ 0.5047 6.1494 0.3945

σ̂2ϵ 1.7080 1.7687 1.7080

σ̂2δ 0.2299 0.0001 0.1365

Ŝðint1Þ=Σ̂ðint2Þ (0.145; 0.536)T diag(0.0036; 0.0091)T

Δ̂ (0.2010; 0.1860)T (0.1733; 0.0315)T

Objective function �191.8456 �138.8033 �210.4528

RMSE 0.7958 0.5695 0.4891

SRMSE 0.3040 0.2054 0.1766

F IGURE 5 The contours of KO model, int1 model and int2 model in Example 2

TABLE 2 RMSEs and SRMSEs after ignoring points with x1 ¼0

LE code KO int1 int2

RMSE 0.7721 0.2976 0.1719 0.2050

SRMSE 0.0903 0.0388 0.0227 0.0253

10 of 14 QI ET AL.
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4.3 | Example 3

We consider the linear cellular alloy example used by Qian et al. (2006) and Qian and Wu (2008). The inputs are four-dimensional, including the

mass flow rate of entry air _m, the temperature of entry air Tin, the temperature of the heat source Twall and the solid material thermal conductivity

k. A detailed but slow simulation based on FLUENT finite-element analysis (HE) and an approximate but fast simulation using the finite difference

method (LE) are used. The responses of the two experiments are denoted by yh and yl , respectively. Details on the engineering background can

be found in Qian et al. (2006) and Qian and Wu (2008).

We use the same data as Example 1 of Qian and Wu (2008) with a small adaptation. Since the dimension of the data is higher than in the first

two examples and the space-filling property of the data is not as good, we take the 20th point out of the training set and put the first point in it

TABLE 3 Data from the linear cellular alloy experiment

Run _m (kg/s) Tin (K) k (W/mK) Twall (K) yl yh Status

1 0.000500 293.15 362.73 393.15 27.24 25.82 Train

2 0.000550 315.00 310.00 365.00 7.02 7.48 Train

3 0.000552 293.53 318.63 388.29 25.61 23.54 Train

4 0.000560 277.01 354.98 374.00 25.53 19.77 Test

5 0.000566 285.77 266.71 367.27 21.23 20.15 Train

6 0.000578 302.17 358.13 343.72 11.44 10.17 Train

7 0.000580 272.26 211.71 333.65 15.03 15.29 Train

8 0.000589 278.16 225.78 351.83 18.55 18.39 Train

9 0.000594 279.54 258.51 360.13 20.74 20.52 Test

10 0.000612 280.83 291.53 394.72 30.22 30.12 Train

11 0.000620 275.00 225.00 340.00 16.40 18.78 Test

12 0.000626 284.89 350.46 352.29 18.13 18.17 Train

13 0.000627 287.60 243.96 382.54 25.02 24.68 Test

14 0.000639 270.45 241.21 341.81 17.92 19.05 Train

15 0.000643 276.17 216.99 371.60 24.20 24.96 Train

16 0.000652 298.04 303.96 361.58 17.47 16.95 Train

17 0.000657 294.24 330.63 375.53 22.48 22.30 Test

18 0.000680 313.28 259.12 350.00 10.23 4.55 Test

19 0.000700 288.15 300.00 400.00 30.90 34.45 Train

20 0.000751 287.99 326.02 354.08 18.17 19.57 Test

21 0.000763 292.82 254.84 373.38 21.96 23.33 Test

22 0.000780 292.73 267.84 369.00 20.92 21.97 Train

23 0.000800 303.15 250.00 350.00 13.08 14.83 Train

24 0.000814 286.39 339.92 332.40 12.68 14.36 Train

25 0.000842 294.39 203.45 346.05 13.75 15.12 Train

26 0.000850 270.00 325.00 385.00 31.14 32.85 Test

27 0.000850 301.31 317.85 341.00 11.30 11.92 Train

28 0.000851 273.71 315.27 381.14 29.08 34.80 Test

29 0.000857 282.12 262.30 350.10 18.25 21.31 Train

30 0.000874 282.50 253.25 396.36 30.90 36.11 Test

31 0.000882 299.22 288.45 385.07 24.45 27.36 Test

32 0.000903 284.25 290.90 364.99 22.22 25.37 Train

33 0.000910 248.87 206.74 398.00 36.56 47.05 Train

34 0.000940 271.32 362.73 400.00 35.53 42.93 Train

35 0.000950 280.00 270.00 330.00 13.54 17.41 Train

36 0.001000 293.15 202.40 373.15 21.60 22.89 Train
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so that all inputs that reach the bound of X in any dimension are included in Y as recommended in Section 3. The data are shown in Table 3,

where bold texts in the last column indicate the change we made to the data.

Similar to Example 2, isotropic correlation functions are used, and when p¼2 in the correlation function, we restrict the covariance

matrix Σ of the truncated normal distribution to be diagonal. After fitting all three models (KO, int1 and int2), the estimated

parameters, values of the objective functions, RMSEs and SRMSEs are shown in Table 4. Similar to Qian and Wu (2008), the results for run 18 are

suppressed.

For this example, the two integral models do not show much in common. The results for int1 are worse than the KO model, and the results

for int2 are slightly better than the KO model. In Qian and Wu (2008), the KO model performs the best among all models. As the fitting methods

of the KO model use a correlation function with p¼2, a conclusion may be made that a correlation function with p¼1 cannot fit the data well,

and the KO model is somehow good enough for the data. However, the KO model can still be improved by our int2 model, which is a generaliza-

tion of it.

5 | CONCLUDING REMARKS

In this paper, we have developed an integral Gaussian process model for modelling and integrating LE and HE data. The model in (1) together with

some explicit forms of matrices and vectors works well for integrating the HE and LE data in the numerical examples in Section 4. The implemen-

tation of location and scale adjustments on an integral of the surrogate model of LE makes the prediction much closer to HE in some cases, and

the explicit forms allow us to do the fitting procedure. Compared with the existing methods that model the scale parameter in various ways, the

proposed modelling approach provides another perspective which may perform better under certain circumstances. Further, one can consider

using both methods simultaneously, but a significant increase in the number of parameters may cause problems.

Extensions of the present work can be made in several directions. Firstly, we have only derived two explicit forms in Section 2. There may

exist combinations of correlation functions and distribution functions that we do not consider with better predictions and less computing time.

Furthermore, Monte Carlo methods may be applied to deal with the cases that explicit forms are unable to derive. We have attempted to do so

but could not achieve a balance between the computing time and accuracy. Secondly, we have chosen the design region X to be the integral

region in the proposed integral model. However, this is not necessary. It is of interest that what would happen to the predictors if we make some

change to the integral region, and how to choose a “best” one. Thirdly, in some cases, the proposed integral model can only give a little improve-

ment to the KO model, and sometimes, the predictions may get worse as the likelihood function value gets bigger. Methods may be found out to

determine when and how to use the integral model and how to avoid overfitting as well.
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TABLE 4 Results of Example 3

KO int1 int2

ρ̂ 1.2025 1.2176 1.3381

θ̂ε 0.0574 0.0335 0.0633

θ̂δ 0.2357 0.0347 0.1839

σ̂2ϵ 2.4519 1.4780 2.1013

σ̂2δ 0.0929 0.1226 0.0515

Ŝðint1Þ=Σ̂ðint2Þ (1.33e�5, 9.58e�1, diag(8.11e�3, 9.60e�3,

1.05e�5, 5.66e�2)T 6.99e�2, 9.50e�4)T

Δ̂ (0, 0.8844, 0, �0.0208)T (�0.5820, 0.1661, �1, �0.0989)T

Objective function �137.8099 �109.1277 �149.4909

RMSE 2.1529 2.2502 2.1515

SRMSE 0.0966 0.1056 0.0935
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APPENDIX A

Proof of Theorem 2.1. As long as ~uy,k ¼ minfuk ,ykþΔkþSkg and ~ly,k ¼ maxflk ,ykþΔk�Skg are known, the proof is straightforward.

▪

Proof of Theorem 2.3. In this setting, we have

C12ði,jÞ¼ ρ1σ
2
ε

ð
X
rεðxi,tÞqyj ðtÞdt

ð
X

�
qyðtÞdt,

and the integral part of it is
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ð
X
rεðxi ,tÞqyj ðtÞdt

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdjΣj

q ðu
l
exp �ðt�xiÞTdiagðθεÞðt�xiÞ�1

2
ðt�yΔj Þ

TΣ�1ðt�yΔj Þ
	 


dt

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞdjΣj

q exp μTUμ�xTi diagðθεÞxi�
1
2
yΔTj Σ�1yΔj

	 
ðu
l
exp �1

2
ðt�μÞTð2UÞðt�μÞ

	 

dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2UÞ�1j

jΣj

s
exp μTUμ�xTi diagðθεÞxi�

1
2
yΔTj Σ�1yΔj

	 

Φfμ,ð2UÞ�1gðl� uÞ:

Similarly,

C22ði,jÞ¼ ρ21σ
2
ε

V ij

ð
X2
rεðt1,t2Þqyi ðt1Þqyj ðt2Þdt1dt2þσ2δ rδðyi,yjÞ,

and the integral part of it is

ð
X2
rεðt1,t2Þqyi ðt1Þqyj ðt2Þdt1dt2

¼ 1

ð2πÞdjΣj

ð
X2

exp �ðt1� t2ÞTdiagðθεÞðt1� t2Þ
n

�1
2
ðt1�yΔi Þ

TΣ�1ðt1�yΔi Þ�
1
2
ðt2�yΔj Þ

TΣ�1ðt2�yΔj Þ


dt1dt2

¼ 1

ð2πÞdjΣj

ð
X2

exp �tT
Id

�Id

 !
diagðθεÞðId, � IdÞt

(

�1
2
ðt�yΔij Þ

T Σ�1 0

0 Σ�1

 !
ðt�yΔij Þ

)
dt1dt2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2UÞ�1j

q
jΣj exp μTUμ�1

2
yΔTij

Σ�1 0

0 Σ�1

 !
yΔij

( )
Φfμ,ð2UÞ�1gðl� uÞ:

▪
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