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1 | INTRODUCTION

Computer experiments play a critical role in many areas of scientific research where physical experiments are too costly or infeasible. Complex
mathematical models are implemented in large computer codes to study real systems, and a large computer program often can be run at different
levels of complexity with vastly varying computational times. For example, two different computer experiments can be used for designing the
same type of linear cellular alloy for electronic cooling. One code uses finite-element analysis, whereas the other is based on the finite difference
method. The two codes differ in terms of the numerical method and resolution of the grid, resulting in an accurate but slow version and a crude
but fast approximation. In this paper we focus on the situation in which two experiments are available and one is generally more accurate than
the other but also more expensive to run. The two experiments considered are called the low-accuracy experiment (LE) and high-accuracy experi-
ment (HE). It is often something experimenters need to consider that how to integrate these multiple data sources efficiently.

The issue of building prediction models based on the HE and LE data has drawn significant attention. Related work includes Kennedy and
O'Hagan (2000), Qian et al. (2006) and Qian and Wu (2008), among others. The basic idea of their modelling methods is to run the HE and LE with
a pair of nested space-filling designs (Haaland & Qian, 2010; Qian, 2009; Qian, Ai, & Wu, 2009; Qian, Tang, & Wu, 2009; Sun et al., 2013, 2014)
or a pair of nested Latin hypercube designs (Yang et al., 2014, 2016) and then fit a prediction model based on the LE data and refine it by incorpo-
rating the more accurate HE data. In their methods, it is always assumed that a kind of Markov property between HE and LE holds; thus, their
models are based on an autoregressive model which will be introduced in Section 2.2.

The method of this paper is motivated by Example 3.6 in Chapter 3.5.2 of Santner et al. (2018). The HE and LE codes of this example are plot-
ted in Figure 1 (more details can be found in Example 1 in this paper). It can be seen that although HE and LE share similar trends, the Markov
property between HE and LE and the autoregressive model are not so appropriate for the codes as there seems to be a deviation in the x-axis
direction. As will be stated in Section 2.2, the Markov property assumes that we cannot get any information for the response at an HE point from
any other LE point if the response of the LE point at the same position of the HE point is given. This assumption will cause the autoregressive
model to be less effective if the real HE experiment also depends on the real LE experiment on another position or even a larger scope of the

design region, which seems more reasonable for this example. We believe that a similar situation may occur in practice. Thus, in this paper, we
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FIGURE 1 HE and LE in the motivating example

derive an integral model in order to make better predictions of HE on the whole design region. The proposed integral model not only ignores the
Markov property but also is a generalization of the model in Kennedy and O'Hagan (2000). Under the assumption of Markov property being
ignored, location and scale adjustments are implemented on an integral instead of a point of the surrogate model of LE. The paper is organized as
follows. Section 2 briefly reviews the Gaussian process modelling and describes the proposed integral model in detail. It also gives some notation
and two explicit forms of some matrices and vectors used when fitting the model. Section 3 shows some details when implementing the proposed
modelling method. Section 4 uses several examples to illustrate the effectiveness of the integral model. Section 5 provides some concluding

remarks. The proofs are deferred to Appendix Al.
2 | BUILDING ASURROGATE MODEL WITH BOTH HE AND LE
21 | Gaussian process modelling
The Gaussian process model (Kriging model) is widely used in computer experiments because of its desirable properties. Suppose the n x d matrix
X= (xl,xz,...,xn)T is the matrix of all inputs, where x; = (x,-l,...,x,d)T is the ith d-dimensional input vector. The corresponding response values are
denoted by z= (zl,...,z,,)T. The Gaussian process model assumes the following structure:

z(x;) :ﬂTh(x,-) +e(xi), i=1,..n,

where h(x) = (hy(x), ..., hq(x))T is a set of prespecified functions and g = (..., q)T is a set of unknown coefficients. The &(x) is assumed to be a

realization of a stationary Gaussian process with covariance
covle(xi),e(X))] = 62 (XiX;),

where 62 is the variance and r.(-,-) is the correlation function. One of the most commonly used forms of the correlation function is
d
re(XiXj) = H exp {—6k|xi — x|},
k=1

where 8 = (61,...,0d)T is a vector of the correlation parameters, and in this paper, only p=1 and p = 2 are considered. This form of correlation func-
tion is often adopted in the literature of computer experiments.

In this paper, a Gaussian process with mean y, variance o2 and correlation parameters  is denoted by GP(u,62,0).

2.2 | Anintegral model

Suppose LE has m runs and HE has n runs. Let X = (xl,...)(m)T andY = (yl,...,y,,)T be the designs of LE and HE, respectively, and the corresponding
response values are denoted by z; and z, where z; = (4 (X1), ..., 21 (Xm))" and z2 = (z2(y1), ... 22(y,))". Let z= (z{,zz)T.

In Kennedy and O'Hagan (2000), it is assumed that
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cov(za(y), z1(x)[z1(y)] =0,

for all y # x. This assumption is called a kind of Markov property. Based on the assumption, Kennedy and O'Hagan (2000) proposed an auto-

regressive model, which is of the form
21(X) =¢* (x).22(X) = 121 (X) +5* (x),
where
e* () ~GP(h(-)"B..62.8:).5" (-) ~ GP(h(-) ;03 05),
pq is a kind of regression parameter and 6* (-) is independent of z4(-). The corresponding correlation functions are denoted by r.(-,-) and rs(-,-). In
the rest of this paper, this autoregressive model together with the fitting methods in Kennedy and O'Hagan (2000) is called the KO model.

In this paper, to borrow more information from LE, we propose an integral model as a generalization of the autoregressive model. Assume

that the design region X is a d-dimensional hypercube. The integral model we proposed in this paper is of the form

21(X) =" (X),22(¥) :piszut)dﬂ (t)+6° (y), (1)

where pq, £* () and 6* (-) are defined the same as above, and F,(t) is a distribution function on X which satisfies that

J dF,(t)=1, foranyyec X.
x

It can be easily seen that when Fy (x) = 14 ;, the integral model degenerates to the autoregressive model.

Let y* be a new design point at which we want to predict the HE response value z,(y * ). Given
E= {/)1’05,0570'62"0—527ﬂgﬁ5}’

as a result of our integral model, we have

(z2(y™).2") = <h;’t_,(y*)>ﬂ+ (pi.[,yg(t)dFy* (t)+5(y*)>,
int gint

where
h'(x1), 0" €(x1)

hT(x,;,), o' €(Xm)
Hoe= | | W1 (0dF (0.0 (r2) |- 8= | s ety 0+00r2)

| (0 (0. () | ety ©-+o(y,)

.
hint(y*) = <p1J'XhT(t)dFy* (), h" (y* )) ,and g= (ﬂ[ﬁg)T. Here, we have separated the mean terms h'(-)8, and h'(-)8; from the Gaussian pro-
cesses e* (-) and 6% (-) to get () and &(-), which are two independent mean zero Gaussian processes with parameters (0,62,.) and (0,62,05),
respectively.

T *
Given =, the vector (zz(y*),zT)T is multivariate normal distributed with mean ﬂ(hi”t(y )

2 T * C C Hint
c=( ¥ Fine(y ") , where Cint = cov(&int) = ( 1o > and
rint(y*)  Cint Ca1 Cx

>ﬂ and the covariance matrix
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Fint(Y ™)
- (pmzj s, OFy (8) 102 | 1l Oy 0 07| relts, ta)dFy, (t2)dF, - (1)
X Jx J X

.
+62r5(Y1, ¥* ), oo /7%0‘3,[ re(ta, to)dFy, (t1)dFy - (t2) +62r5(Yn, ¥* )> ,
Ja

C11 = O'{Zng
J re(xq, t)dFy, (t) ... J re(x, t)dFy, (t)
X x
Ci2=py0? : : =Cy
|| o, 0Fy, 6) . [ .o, 10F, 8
X X
‘ere(tlv tZ)th (ti)dFH (t2) ‘ert (tlv tZ)th (ti)dFYn (tz)
Coo =p3c? : : + iR

L(ng(ti, tz)dFyn (ti)dFyi (tz) [rzrt.(tl, tz)dFyn (tl)dFyn (tz)

where R, and R; are the correlation matrices obtained by applying r.(-,-) on X and r;(-,-) on Y, respectively. Thus, for fixed E, the expectation of

Z5(y*) conditional on z is
Blzz(y*)[2] = hiy(y* )+ Cint (2 Hieh). 2)

Let <8 be the parameter set {p,,0.,05,62,62}, and we know that z=HinB -+ Eint ~ Nmyn(HintB, Cint)- Thus, for fixed E- g, by generalized least

squares, we can get the best linear unbiased estimation and also the maximum likelihood estimation (MLE) of g as

ﬁ (HTC Hlnt) HTC Z. (3)

int™~int int™int

After substituting (3) into (2), we get the predictor of zy(y* ) as

23 (Y * ) |nt( )ﬂ + rlntclnt (Z Hmtﬂ) (4)

Now, we discuss the properties of the predictor of z,(y *) in (4). It is straightforward that Z,(y *) is an unbiased and interpolated predictor for
z,(y*) when the model is true. Rewrite Z,(y *) as bz(y* )z, where

B(y*) =hh(y* ) (HECotHint)  HE Gk +7T (v * )Gt

int™int int int

_’Lt(Y*)C Hlnt(HT (o Hlnt) HT C7

int int™int int™int *

Then, we can get the mean squared prediction error of (4) as
B[}y )z-20"))’]

2

<b2 Hine — mt( ))ﬁJsz( *)5intfﬂ1[¥€<t)dFy‘ (t)fé(y*)> }

2
6w elt)dF,: (t),(w)) }

= by(y*)Cintba(y*) - 2b2(y*)rim(y*)+p§gzszrg(t1,t2)dFyy(t1)dFy,(t2)+g§.

It is not hard to find out that (4) is the best linear unbiased prediction of z;(y*). If we then obtain MLEs of the other unknown parameters in =
and plug them in (4), we can get the empirical best linear unbiased prediction of za(y * ).
In order to get MLEs of the parameters in E\ g, we should maximize the likelihood function

;exp{—&z—mmﬁ)rcaé (z—Hmtﬁ)}.
(22) ™ Cip 2

After taking logarithm and ignoring some constant terms, it is equivalent to minimizing the value of the objective function
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In|Cint| + (2— Hi) Cint(z— Hint).

23 | Explicit forms

In this part, we assign the distribution function in our integral model to be a uniform distribution or truncated normal distribution and then derive
explicit forms for C;,¢ and rj¢. These are the two most commonly used distribution functions, and we assign them to different choices of p in the
correlation functions. In this paper, we assume X to be a bounded hypercube region. Let | and ti denote the lower bound vector and upper bound
vector of X, respectively, for example, the kth element of I is the lower bound of the kth dimension of X.

Next, we specify the form of the distribution function F,(t). For the uniform distribution function, let X, denote a hypercube region with
boundary vectors y +A —S and y + A +S, where A and § are unknown vector parameters, and X =X, N X. Denote the lower and upper bound
vectors of X;‘ by iy and uy, respectively. Then, let U, (t) be a uniform distribution function on X; , whose density function is

1y
uy(t) :%-
[Tk(@yx —lyk)

For the truncated normal distribution, let g, (t) denote the density function of a multivariate normal distribution with mean y 4 A and the covari-
ance matrix X, where A and T are unknown parameters. Then, the density function g, (t) of the assumed truncated normal distribution can be

written as

Let G, (t) be the corresponding cumulative distribution function.

With Fy (t) being U, (t), we can derive the explicit forms of Cin; and ri,s when p = 1; and with F (t) being G, (t), we can derive the explicit forms
of C;t and rin: when p = 2. The following theorems show the explicit forms of C;.; and r;,; under these two situations.

In Theorems 2.1 and 2.2, denote exp {—6.(ax — by)} by ef (k).

Theorem 2.1. When p =1 in the correlation functions r.(-,-) and r;(,-), and the distribution function in the integral model is the uni-

form distribution specified above, the elements in C;,; have the following explicit forms:

d [ iy, d -
Ci2 (’J) :/)163 H (J, j exp {_Hsk ‘Xik - tk}dtk> /H (u}’1,k - ’Yj,k) ’
k=1 k k=1

by,

where
1 10, 1 4, . -
g (0 e (), ifxi <1y
Uy, k 2 1 1, 1 e ~
J« ' exp{fé)gk\X;k — fk‘}dtk = 0——0—6;{ (k) —0—8;(' (k), Iﬂy}.yk < Xijk £ Uyl‘k;
ik ek ek ek Vi
1, 1, -
é)_gke"v,' k) — H_ekein k), ifdy, k < Xik,
and

exp { —Oek|t1k — tok| }dtlkdt2k>

d . ~
/[~ a0 g 0] + 2150,
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where

J exp { —0.x|t1k — to|dtydtax
Eopon

1 u,,A y, iyi ﬁyi - ~

2 (k)+e (k)—eLi(k)—eayj(k) o ifly >y

2 4 2 o2 o
BT y,'+91 (a y,—’y,v)—e—ik’ ifly, =ly,, dy, = dy,;

1 Uy, ’y iy] ay, L~ N

92k< L)y () —e) () —e (k)), il > iy
Other cases can be obtained by combining these three cases. When Xnx,#0, uy,=min{tyy,+Ac+S} and
Ty = max {lyi + Ay — S}

Remark 2.1. Here, we show how the combination is done in the second part of the theorem. Suppose iy‘.,k < iyiyk <y, < Uy, and let

A denote exp {—601|ti — tak|}, then

o (Byk (v (e (g lyk
J Adtlkdtzk J J + J_ J~ + J: J Adtqdtoy,
Fyk X’Y Iy by, Iy Iy, Iy Jdy

i

and the items on the right-hand side are all in the forms above.

Theorem 2.1 shows the explicit forms of the elements in Ci,: when p=1 and F,(t) = U,(t). By a similar proof, we can get the explicit forms of
the elements in rint(y * ), which are shown in Theorem 2.2.

Theorem 2.2. When p =1 in the correlation functions r.(-,-) and r;(,-), and the distribution function in the integral model is the uni-

form distribution specified above, the rint(y * ) has the following explicit forms:

d Uy d 5 -
rine(y*)i= p1o? 1 (J eXp{_95k|Xik—tk}dtk>/H (Uy« k—ly- )and
* k=1

'Y K

Tt (Y )msj = p202 J exp { —0e |tk t2k}dt1kdt2k>
1 XF, xXS

d _ -
T [ k=l 10 s~y + 0Bt ),
where i=1,...m, j=1,...,n and other symbols and values of the integrals are similar to Theorem 2.1.

Before presenting Theorems 2.3 and 2.4, let @y, 5;(a ~b) denote the probability that a random vector &~ N(u,B) falls in a hypercube whose
lower and upper bound vectors are a and b, respectively.

Theorem 2.3. When p =2 in the correlation functions r.(-,-) and r;(-,-), and the distribution function in the integral model is the

truncated normal distribution specified above, the elements in C;,; have the following explicit forms:

. |(2u)™ ) 1 are
Cua(ij)= pqi6? %exp {pgu;qjfx,leag(Gg)x,'fiyjATZ 1Vf}
@iy 20 / L ay, (t)dt.and

=1 0
Co(ij) = p3o? ‘exp VVu y ya
¢ Vu|2\ Vo zt)"
o

(I){’/u (2v)~ }(’ ~ U) r&(eryl)
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where yt=y,+A, yt=y+A4, y,?:(y,T+AT,yJ-T+AT)T, U=diag(.)+3ix7t, p; is the solution to the equation
=1 0

7’,1 0 271

=1 0
equation Vy; =3 ( )y?.

I
ujU=x]diag(0.) +3yAT=t, V= < d >diag(0€)(ld,ld)+%< ) Vij= [ y24y,(t1)ay, (t2)dt1dt; and vj is the solution to the

0 xt

Theorem 2.3 shows the explicit forms of the elements in Ci,x when p=2 and F,(t) =G, (t). Moreover, by a similar proof, we can get the

explicit forms of the elements in ri:(y * ), which are shown in Theorem 2.4.

Theorem 2.4. When p =2 in the correlation functions r.(-,-) and r;s(-), and the distribution function in the integral model is the trun-
cated normal distribution specified above, the r,¢(y * ) has the following explicit forms:

-1
rit(y*);= p162 ‘(2‘?' 'exp{ui‘TUﬂf‘ —X,Tdiag(ﬂe)x,-—%(Y*A)Tz’ly*A}

B u
'q){ui*,(ZU) 1}(I~ﬁ)/J’ ay- (t)dtand

2v)™"| e 1 (=t 0
Fily iy = AT @RV 01 L
J

P 0 (I~1)+a3rs(y;y ™),

where i=1..m, j=1,..n y*2=y* +A, yj*A =(y*T +AT,y].T +AT)T, p is  the solution 1to the equation
W U:xidiag(ag)-i-%(y*A)TZ’l, V' = [ 420y (t1)ay,(t2)dtadt, v is the solution to the equation Vi;* :%<20 Z&)yiw and other
symbols are defined similar to Theorem 2.3.

The assumptions behind the two choices of F, (t) are different. A uniform distribution assumes that the value of z,(y) is based on the integral
of z1(x)s on a hypercube region centred on y + A with even weights; and a truncated normal distribution assumes that z,(y) is based on the inte-

gral of z1(x)s on the whole design region with uneven weights.

3 | IMPLEMENTATION

While fitting an integral model, several things should be considered. Firstly, the input and corresponding output data are standardized in advance,
just like fitting a Gaussian process model. Secondly, we seek MLEs of the parameters to determine their values, and the determination is an opti-
mization problem with box constraints. The same algorithm as Matlab toolbox DACE with successive coordinate search and pattern moves is used
to solve this problem (Kowalik & Osborne, 1968, Section 2.4; Lophaven et al., 2002, Section 6). However, a minor adjustment is made to the algo-
rithm. The purpose of the adjustment is to ensure that the algorithm can continue to work when the value of objective function does not exist
after a certain step of the algorithm. For example, for a correlation function with p=1 and F,(t) being U, (t), after the search process reduces the
value of Sy and the value of A is relatively large, it would happen that XN X, =0 on some ys with y, close to the upper bound in the kth dimen-
sion of X. For the same reason, in order to ensure the existence of all predictions, it is preferred that all inputs which reach the bound of X" in any
dimension should be included in Y. Thirdly, when we let p=2 in the correlation function and use the truncated normal distribution as F(t), the
explicit forms contain the cumulative distribution function of the multivariate normal distribution. In our examples we use the “pmvnorm” func-
tion in the R package “mvtnorm” to get this value, but the computation time grows greatly as the dimension of input increases. So it is usually
infeasible to find the MLEs directly. In this case, we can fit a KO model first and take the resulting parameter estimates to be the initial values in
our integral model. The initial values for other parameters can be randomly chosen multiple times, and the algorithm stated above is applied to

them separately. Similarly to ordinary Kriging, we assume h(x) =1 in the rest of the paper.

4 | NUMERICAL STUDIES

We use three examples to illustrate the proposed model. The first two are simulation studies and the third one is a real data example. For the con-

venience of comparison, all designs used in the examples have the property that the HE points are nested in the LE points, which is not necessary
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for the proposed integral model. In this section, we use “int1” and “int2” to denote the applications of two different explicit forms with p=1 and

p =2, respectively, and compare them with the KO model.

41 | Example 1

We use the method proposed in this paper to solve the problem in the motivating example from Chapter 3.5.2 of Santner et al. (2018).
It is supposed that the HE code is

25(x) =e 1 cos (72x/2), x€ [0,1],

and the LE code is

z1(x) =22(x/(2—-x)), x€ [0,1].

In this example, we just choose X to be the interval [0,1], and let X ={0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, Y ={0.1,0.3,0.5,0.7,0.9}. It can be
seen that X and Y are both uniformly scattered and satisfy Y € X. The HE code, LE code, X and Y we choose above are plotted in Figure 2a. The
black line and points correspond to z,, and the grey ones correspond to z;.

Here, for the KO method, we use the “optim” function with the “L-BFGS-B” method in R to minimize the objective function. For our integral
model, the objective function is minimized based on the algorithm we mentioned in Section 3. By minimizing the objective functions, we get MLEs
of the unknown parameters. Note that all estimates are obtained after standardizing the input and output data.

For the KO model, the estimates are
$»=0.31910, =1.5537,0; = 53‘3038,?{ =3.2693, § =0.5425,

and the value of the objective function is —6.6578.

For the int1 model, the estimates are
5 =1.60280, =0.9259,0; = 0.0074,62 = 1.1863,62 = 0,5 = 0.3487,A = 0.4067,

and the value of the objective function is —4.0993.

For the int2 model, the estimates are
p=1.6132,0,=1.5673,05=0.2717,62 = 3.1674,62 =0.0628,5 = 0.0464,A = 0.4276,

and the value of the objective function is —29.8651.

We use these three models to predict z; on the 101 uniformly scattered points {0,0.01,0.02,...,1} in the design region, and the predictors are
plotted in Figure 2b. It can be seen that all three predictors interpolate the HE points but the predictors from the proposed integral models can fit
7, better than the KO model.

o
- z1 o | \ — z2
o | — 22 \ KO
e T \ int1
& S N int2
o _| N LR
Yoe 2 o | .
o e s
? ©
i
o ]
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
(a) z1 and 22 (b) 22 and the predictors of z2

FIGURE 2 The plots of z1, z, and the predictors of z, in Example 1
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The mean squared errors (MSEs) of these three predictors on these 101 points are also calculated. We get MSEyo =0.0832,
MSE; 11 = 0.0043, MSE;,+>» = 0.0044, which confirms our conclusion from the figure.

42 | Example 2

This example is modified from Example 1 in Xiong et al. (2013). In their paper, the HE code is

=|1-ex _1 2300x3 + 1900x2 + 2092x; + 60
" P20 100x3 + 500x3 +4x4 +20

and the LE code is

¥i = [yn(xa+1/20x; +1/20) +y, (x1 + 1/20,max (0x; — 1/20))
Hyn(X1 —1/20%2 +1/20) + yu (x1 — 1/20,max (0xz — 1/20))] /4.

Here, we assume the accuracy of the LE code is lower and replace the 1/20 in the expression for y,; with 1/10. Thus, in our example,

and

1 \72300x3 + 1900x2 + 2092x + 60
72(x) =|1—exp

2% 100x3 +500x2 +4x, +20
z1(X) =[z2(x1+1/10,x2+1/10) +z5(x1 +1/10,max (0,x, — 1/10))
+22(x1 —1/10x2 +1/10) +2z2(x1 — 1/10,max (0,x, — 1/10))] /4.

The contours of the two codes are shown in Figure 3.
We take X to be a sliced Latin hypercube design with 60 rows, two columns and four slices generated by the function “maximinLHD” in the
R package “SLHD” (Ba et al., 2015), and let Y be the third slice of X. Figure 4 shows the scatter plot of X and Y on the design region X. In this

o o
© \ ©
S . S
© _| © ]
o o
N I N
"2 N =
c e ’ =
IR \ ~ |
[S) ) . o
- Tl ==~ - il
b T T T T T T i T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x1
(a) The contour of zs. (b) The contour of z;.
FIGURE 3 The contours of z, and z; in Example 2
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o _] o (0] o
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o o A o
© | a © ° o o 4
o o A o
o o © A
X o o
< o o A
o © A o o
o o o A
N o (¢} ° A
S |o A o o
A o
o o o
e 1 o o A
e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x1

FIGURE 4 The scatter plot of X and Y with the triangles being the points of Y in Example 2
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TABLE 1 Results of Example 2

KO intl int2
p 0.9353 1.2311 1.2035
0. 0.8115 0.0996 0.8115
05 0.5047 6.1494 0.3945
53 1.7080 1.7687 1.7080
5§ 0.2299 0.0001 0.1365
S(int1)/5(int2) (0.145; 0.536)" diag(0.0036; 0.0091)"
A (0.2010; 0.1860)" (0.1733; 0.0315)"
Objective function —191.8456 —138.8033 —210.4528
RMSE 0.7958 0.5695 0.4891
SRMSE 0.3040 0.2054 0.1766
3l S ’//% ;)
R AN —— s LI ﬁ NN <
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x1 x1
(a) The contour of KO model. (b) The contour of intl model. (c) The contour of int2 model.
FIGURE 5 The contours of KO model, intl model and int2 model in Example 2
TABLE 2 RMSEs and SRMSEs after ignoring points with x; =0
LE code KO intl int2

RMSE 0.7721 0.2976 0.1719 0.2050
SRMSE 0.0903 0.0388 0.0227 0.0253

example, we use isotropic correlation functions, and when p =2 in the correlation function, we restrict the covariance matrix X of the truncated
normal distribution to be diagonal.

Table 1 gives the estimated parameters, values of the objective functions, root mean squared errors (RMSEs) and standardized RMSEs
(SRMSEsS) of all fitted models. The RMSEs and SRMSEs are calculated on the 121 gird points {0,0.1,...,1} x {0,0.1,...,1}. Denote the grid points by

$1,...,5121, the expression of SRMSE is

\/Z,-“} 22(59) ~ 22(51))/22(5)
121 ’
The corresponding contours of the predictions are shown in Figure 5.

From Table 1, we can see that both integral models outperform the KO model in prediction, and it is better to take the combination of p =2
and the truncated normal distribution for the correlation function and F (t), respectively.

We also compare the fitted models with the LE code here. Regarding the LE code as a model, the RMSE value is 0.7363 and the SRMSE value
is 0.0862. It is worth noting that the KO model is worse than the low-accuracy code under both criteria, and two integral models are worse than
the low-accuracy code in terms of the SRMSE values. The most possible reason is that the responses z; and z, change rapidly with x; when x4 is
small and we did not choose enough design points in that area for the models to fit the change. Sometimes, this case cannot be avoided when we
have no prior information. So we ignore the 11 grid points with x; =0 and make the comparison on the other 110 points. The results are shown
in Table 2. It can be seen that all three models outperform the LE code and the two integral models are better than the KO model. The combina-

tion of p =1 and the uniform distribution performs the best.
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43 | Example 3

We consider the linear cellular alloy example used by Qian et al. (2006) and Qian and Wu (2008). The inputs are four-dimensional, including the
mass flow rate of entry air m, the temperature of entry air T;,, the temperature of the heat source T, and the solid material thermal conductivity
k. A detailed but slow simulation based on FLUENT finite-element analysis (HE) and an approximate but fast simulation using the finite difference
method (LE) are used. The responses of the two experiments are denoted by y, and y,, respectively. Details on the engineering background can
be found in Qian et al. (2006) and Qian and Wu (2008).

We use the same data as Example 1 of Qian and Wu (2008) with a small adaptation. Since the dimension of the data is higher than in the first

two examples and the space-filling property of the data is not as good, we take the 20th point out of the training set and put the first point in it

TABLE 3 Data from the linear cellular alloy experiment

Run m (kg/s) Tin (K) k (W/mK) Twan (K) Y| Yh Status
1 0.000500 293.15 362.73 393.15 27.24 25.82 Train
2 0.000550 315.00 310.00 365.00 7.02 7.48 Train
3 0.000552 293.53 318.63 388.29 25.61 23.54 Train
4 0.000560 277.01 354.98 374.00 25.53 19.77 Test
5 0.000566 285.77 266.71 367.27 21.23 20.15 Train
6 0.000578 302.17 358.13 343.72 11.44 10.17 Train
7 0.000580 272.26 211.71 333.65 15.03 15.29 Train
8 0.000589 278.16 225.78 351.83 18.55 18.39 Train
9 0.000594 279.54 258.51 360.13 20.74 20.52 Test
10 0.000612 280.83 291.53 394.72 30.22 30.12 Train
11 0.000620 275.00 225.00 340.00 16.40 18.78 Test
12 0.000626 284.89 350.46 352.29 18.13 18.17 Train
13 0.000627 287.60 243.96 382.54 25.02 24.68 Test
14 0.000639 270.45 241.21 341.81 17.92 19.05 Train
15 0.000643 276.17 216.99 371.60 24.20 24.96 Train
16 0.000652 298.04 303.96 361.58 17.47 16.95 Train
17 0.000657 294.24 330.63 375.53 2248 22.30 Test
18 0.000680 313.28 259.12 350.00 10.23 4.55 Test
19 0.000700 288.15 300.00 400.00 30.90 34.45 Train
20 0.000751 287.99 326.02 354.08 18.17 19.57 Test
21 0.000763 292.82 254.84 373.38 21.96 23.33 Test
22 0.000780 292.73 267.84 369.00 20.92 21.97 Train
23 0.000800 303.15 250.00 350.00 13.08 14.83 Train
24 0.000814 286.39 339.92 332.40 12.68 14.36 Train
25 0.000842 294.39 203.45 346.05 13.75 15.12 Train
26 0.000850 270.00 325.00 385.00 31.14 32.85 Test
27 0.000850 301.31 317.85 341.00 11.30 11.92 Train
28 0.000851 273.71 315.27 381.14 29.08 34.80 Test
29 0.000857 282.12 262.30 350.10 18.25 21.31 Train
30 0.000874 282.50 253.25 396.36 30.90 36.11 Test
31 0.000882 299.22 288.45 385.07 24.45 27.36 Test
32 0.000903 284.25 290.90 364.99 22.22 25.37 Train
33 0.000910 248.87 206.74 398.00 36.56 47.05 Train
34 0.000940 271.32 362.73 400.00 35.583 42.93 Train
35 0.000950 280.00 270.00 330.00 13.54 17.41 Train
36 0.001000 293.15 202.40 373.15 21.60 22.89 Train
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TABLE 4 Results of Example 3

KO intl int2
p 1.2025 1.2176 1.3381
0. 0.0574 0.0335 0.0633
05 0.2357 0.0347 0.1839
62 24519 1.4780 2.1013
62 0.0929 0.1226 0.0515
S(int1)/2(int2) (1.33e-5, 9.58e—1, diag(8.11e—3, 9.60e—3,
1.05e—5, 5.66e—2)T 6.99e—2, 9.50e—4)T
A (0,0.8844, 0, —0.0208)" (—0.5820, 0.1661, —1, —0.0989)"
Objective function —137.8099 -109.1277 —149.4909
RMSE 2.1529 2.2502 2.1515
SRMSE 0.0966 0.1056 0.0935

so that all inputs that reach the bound of X in any dimension are included in Y as recommended in Section 3. The data are shown in Table 3,
where bold texts in the last column indicate the change we made to the data.

Similar to Example 2, isotropic correlation functions are used, and when p=2 in the correlation function, we restrict the covariance
matrix X of the truncated normal distribution to be diagonal. After fitting all three models (KO, intl and int2), the estimated
parameters, values of the objective functions, RMSEs and SRMSEs are shown in Table 4. Similar to Qian and Wu (2008), the results for run 18 are
suppressed.

For this example, the two integral models do not show much in common. The results for intl are worse than the KO model, and the results
for int2 are slightly better than the KO model. In Qian and Wu (2008), the KO model performs the best among all models. As the fitting methods
of the KO model use a correlation function with p =2, a conclusion may be made that a correlation function with p=1 cannot fit the data well,
and the KO model is somehow good enough for the data. However, the KO model can still be improved by our int2 model, which is a generaliza-

tion of it.

5 | CONCLUDING REMARKS

In this paper, we have developed an integral Gaussian process model for modelling and integrating LE and HE data. The model in (1) together with
some explicit forms of matrices and vectors works well for integrating the HE and LE data in the numerical examples in Section 4. The implemen-
tation of location and scale adjustments on an integral of the surrogate model of LE makes the prediction much closer to HE in some cases, and
the explicit forms allow us to do the fitting procedure. Compared with the existing methods that model the scale parameter in various ways, the
proposed modelling approach provides another perspective which may perform better under certain circumstances. Further, one can consider
using both methods simultaneously, but a significant increase in the number of parameters may cause problems.

Extensions of the present work can be made in several directions. Firstly, we have only derived two explicit forms in Section 2. There may
exist combinations of correlation functions and distribution functions that we do not consider with better predictions and less computing time.
Furthermore, Monte Carlo methods may be applied to deal with the cases that explicit forms are unable to derive. We have attempted to do so
but could not achieve a balance between the computing time and accuracy. Secondly, we have chosen the design region X' to be the integral
region in the proposed integral model. However, this is not necessary. It is of interest that what would happen to the predictors if we make some
change to the integral region, and how to choose a “best” one. Thirdly, in some cases, the proposed integral model can only give a little improve-
ment to the KO model, and sometimes, the predictions may get worse as the likelihood function value gets bigger. Methods may be found out to

determine when and how to use the integral model and how to avoid overfitting as well.
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APPENDIX A

Proof of Theorem 2.1. As long as uy x = min{uj,yy + Ax + Sk} and iyvk = max {li.,yx + Ak — S¢} are known, the proof is straightforward.

Proof of Theorem 2.3. In this setting, we have
Cuaid) =i iy 0t /| o,
X Jx

and the integral part of it is
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J' r(xt)ay, (t)dt
X —

- WJ’ exp{—(t—x;)Tdiag(ee)(t—x,-) —%(t— yH 'zt - yiA)}dt
) |2

a
= % exp {ﬂTUu — x] diag(6,)x; — %yfTE‘ly,»A} ]] exp {—%(t -w'U)(t-p) }dt
(27)°1z| '

20)" . 1 are _
pyCL/i IZ)\ ‘EXP{IJTUI‘—X;T diag(0.)x — 5y} =ty }‘I’w(zurl}(’w")'

Similarly,

2620
Cos(iif) :/%JXZ re(ty,tz)ay, (t1)ay, (t2)dtrdty +oZrs(y.y;),

y

and the integral part of it is

| rttstoa, b, (e desct
X

m [ " exp{‘(t1 —t,) diag(0.)(t1 — t)

1 1
TS ) Sty E yf)}dtldtz

_ 1 e )
) <2n)"zszex"{ ‘ (,)duag(eem,,, lot

1 (=t 0
—E(t—yi?) (O o1 (t—yj) pdtadt,

(2U)7Y| 1 (=t o0 .
= e pUp—=5y;" o s V5 0@,y (1~ 0).
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