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Abstract
Marginally coupled designs (MCDs) were first introduced by Deng et al. (Stat Sin
25:1567–1581, 2015), as more economical designs than sliced space-filling designs
which are the popular choices for computer experiments with both qualitative and
quantitative factors. In an MCD, the design for qualitative factors is an orthogonal
array, and the one for quantitative factors is a Latin hypercube design (LHD) with its
rows corresponding to each level of any qualitative factor also forming a small LHD.
As we know, orthogonality is a popular and important property for evaluating LHDs,
but was not considered in existing results on MCDs. In this paper, we propose some
approaches to constructing a new class ofMCDswith orthogonality. In some cases, the
designs for quantitative factors also satisfy the two dimensional space-filling property.
Besides, the run sizes of the obtained designs are more flexible than the existing ones.

Keywords Computer experiment · Orthogonality · Orthogonal array · Regular design

1 Introduction

Latin hypercube designs (LHDs), proposed by McKay et al. (1979), are widely used
in computer experiments. A large number of papers have made efforts to find differ-
ent variants of LHDs, including orthogonal LHDs and maximin LHDs (see e.g., Lin
and Tang 2015; Wang et al. 2018a, b, and the references therein). These designs are
constructed for computer experiments with only quantitative factors. For computer
experiments with both qualitative and quantitative factors, sliced LHDs (SLHDs) pro-
posed byQian (2012) are often used. However, if the number of the level-combinations
of the qualitative factors is large, the run size of the SLHDwill be very large. Recently,
Deng et al. (2015) proposed a cost-effective class of designs, calledmarginally coupled
designs (MCDs), which maintain an economic run size with space-filling properties.
The construction of MCDs has been studied by Deng et al. (2015), He et al. (2017,
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2019) and He et al. (2017). However, the designs for quantitative factors in these
existing papers do not have the orthogonality property. Orthogonality not only is of
vital importance for fitting polynomial models, but also can be regarded as a step-
ping stone to space-filling designs (Bingham et al. 2009). In this paper, we propose
several methods to construct MCDs in which the designs for quantitative factors are
orthogonal LHDs. In addition, some of the obtained designs have an attractive space-
filling property, i.e., the designs for quantitative factors possess stratification in some
two-dimensional projections.

The remainder of the paper is organized as follows. In Sect. 2, we present some
definitions and notation. Section 3 devotes itself to the construction approaches and
examples. Some concluding remarks are given in Sect. 4. All proofs are deferred to
the Appendix.

2 Definitions and notation

For any design D, let D[i, k] denote the element in the i th row and kth column of D,
D[i, :] denote the i th row of D, D[i, k : m] consist of the kth to mth elements in the
i th row of D, and D[:, k : m] consist of the kth tomth columns of D. An n×m matrix
in which the j th column includes s j equally-spaced levels is called a mixed-level
orthogonal array (OA) of strength t , denoted by OA(n, s1s2 . . . sm, t), if for each n× t
submatrix, all possible level-combinations occur with the same frequency. When all
the s j ’s are equal to s, the OA is symmetric and denoted as OA(n,m, s, t). A Latin
hypercube design (LHD) with n runs and p factors, denoted as L(n, p), is an n × p
matrix in which each column includes n equally-spaced levels. An LHD is called
an orthogonal LHD (OLHD) if the correlation between any two distinct columns is
zero. An OLHD with centered levels is called second-order orthogonal if the sum of
the elementwise products of any three columns is zero. The correlation between two
vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T is defined as

ρ(a, b) =
∑n

i=1(ai − ā)(bi − b̄)
√∑n

i=1(ai − ā)2
∑n

i=1(bi − b̄)2
,

where ā = ∑n
i=1 ai/n and b̄ = ∑n

i=1 bi/n.

For two matrices φ =
⎛

⎜
⎝

φ11 · · · φ1k
...

. . .
...

φn1 · · · φnk

⎞

⎟
⎠ and ϕ =

⎛

⎜
⎝

ϕ11 · · · ϕ1m
...

. . .
...

ϕl1 · · · ϕlm

⎞

⎟
⎠, define

φ ⊕ ϕ =
⎛

⎜
⎝

φ11 + ϕ · · · φ1k + ϕ
...

. . .
...

φn1 + ϕ · · · φnk + ϕ

⎞

⎟
⎠ .

Furthermore, for k = m, define φ ⊕c ϕ = (φ1 ⊕ ϕ1, . . . , φk ⊕ ϕk), where φi and ϕi
are the i th columns of φ and ϕ, respectively.

123



Orthogonal marginally coupled designs 1797

A design D = (D1, D2), where D1 and D2 are sub-designs for qualitative and
quantitative factors respectively, is called an MCD if (i) D1 is an OA, (ii) D2 is an
LHD, and (iii) for each level of any factor in D1, the corresponding rows in D2 form
a small LHD. Furthermore, if D2 in an MCD is an OLHD, the MCD is called an
orthogonal MCD (OMCD).

A design D = (xi j )n×m is called mirror-symmetric if we reverse the level order
for all factors, the resulting design is still itself (Tang and Xu 2014). In particular, for
a mirror-symmetric design D with centered levels, if x is a row in D, −x is also one
of the rows in D.

The notation B1\B0 represents the array which consists all columns in B1 but not
in B0.

3 Design construction

This section presents five methods to construct OMCDs. The first four ones are based
on the rotation approach, and the fifth one is based on mixed-level OAs. In addition,
the low-dimensional projection properties of the proposed designs are also discussed.

3.1 Construction of MCDs using OAs with s2 runs

Suppose an OA(s2, k, s, 2) with levels 1, . . . , s, denoted as A, is available. Let d and
f be positive integers with k = d+2 f . Then A can be divided into two parts, denoted
as D1 and C , with d and 2 f columns respectively.

Let M = (mi j ) be an L(s, p) with elements {−(s − 1)/2,−(s − 3)/2, . . . , (s −
1)/2}. Then the correlation matrix of M is given by

R =
{
1

12
s(s2 − 1)

}−1

MT M .

The construction steps are presented in the following algorithm.

Algorithm 1

Step 1 For j = 1, . . . , p, replace the symbols 1, . . . , s in C by m1 j , . . . ,msj ,
respectively, to obtain an s2 × (2 f ) matrix C j . Then partition C j as
C j = (C j1, . . . ,C j f ), where each of C j1, . . . ,C j f has two columns.

Step 2 For j = 1, . . . , p, obtain an s2 × (2 f ) matrix X j = (C j1V , . . . ,C j f V ),
where

V =
(
s −1
1 s

)

.

Step 3 Obtain a matrix D = (D1, X), where X = (X1, . . . , X p) with order s2 ×
(2p f ).
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1798 W. Zhou et al.

Lemma 1 (Lin et al. 2009)

(i) The matrix X is an LHD in the sense that each of its columns is a permutation of
{−(s2 − 1)/2,−(s2 − 3)/2, . . . , (s2 − 1)/2};

(ii) The correlation matrix among the columns of X is given by R̃ = R ⊗ I2 f , where
Iu is the identity matrix of order u and ⊗ denotes the Kronecker product.

Theorem 1 The design D constructed in Algorithm 1 is an MCD. Furthermore, if M
is orthogonal, X is orthogonal.

Next, we discuss the projection property of the proposed designs. Denote the i th
column of X j by x j,i .

Corollary 1 For X constructed above, we have

(i) after collapsing the levels of X to s levels, each X j is an OA(s2, 2 f , s, 2);
(ii) (x j,i , x j,i ′) achieves stratification on s × s grids for i �= i ′ and j = 1, . . . , p;
(iii) (x j,i , x j ′,i ′) achieves stratification on s × s grids for i �= i ′ and j �= j ′.

Then, an example is given to illustrate the construction.

Example 1 Let A be an OA(16, 5, 4, 2). Divide it into two parts D1 and C as follows:

A = (D1|C) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3

1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

.

Let

M = 1

2

⎛

⎜
⎜
⎝

1 −3
3 1

−1 3
−3 −1

⎞

⎟
⎟
⎠ and V =

(
4 −1
1 4

)

.

After replacing the symbols of C by m1 j , . . . ,m4 j , C j is obtained respectively, for
j = 1, 2.

C1 = 1

2

(
1 3 −1 −3 −1 −3 1 3 −3 −1 3 1 3 1 −3 −1
1 3 −1 −3 −3 −1 3 1 3 1 −3 −1 −1 −3 1 3

)T

;

C2 = 1

2

( −3 1 3 −1 3 −1 −3 1 −1 3 1 −3 1 −3 −1 3
−3 1 3 −1 −1 3 1 −3 1 −3 −1 3 3 −1 −3 1

)T

.

Then X = (X1, X2) = (C1V ,C2V ), where

X1 = 1

2

(
5 15 −5 −15 −7 −13 7 13 −9 −3 9 3 11 1 −11 −1
3 9 −3 −9 −11 −1 11 1 15 5 −15 −5 −7 −13 7 13

)T

;
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Orthogonal marginally coupled designs 1799

X2 = 1

2

( −15 5 15 −5 11 −1 −11 1 −3 9 3 −9 7 −13 −7 13
−9 3 9 −3 −7 13 7 −13 5 −15 −5 15 11 −1 −11 1

)T

.

Collapsing the levels of X1 and X2 by �(x + 15/2)/4�, we get C∗
1 and C

∗
2 as follows:

C∗
1 =

⎛

⎝
2 3 1 0 1 0 2 3 0 1 3 2 3 2 0 1

2 3 1 0 0 1 3 2 3 2 0 1 1 0 2 3

⎞

⎠

T

;

C∗
2 =

⎛

⎝
0 2 3 1 3 1 0 2 1 3 2 0 2 0 1 3

0 2 3 1 1 3 2 0 2 0 1 3 3 1 0 2

⎞

⎠

T

.

Denote the i th column of C∗
j by c

∗
j,i , for i, j = 1, 2. It is easy to check that each C∗

j is
an OA(16, 2, 4, 2) for j = 1, 2, and (c∗

1,1, c
∗
2,2) and (c∗

1,2, c
∗
2,1) are OA(16, 2, 4, 2)’s

respectively.

3.2 Construction of MCDs using regular factorial designs

This subsection presents threemethods for constructingMCDs of su runs. The first two
methods make use of the Rao–Hamming construction (Hedayat et al. 1999) and some
rotation matrices. For an integer u ≥ 2, a prime power s and i = 1, . . . , u, let ei be an
su × 1 column vector of s-level with entries from GF(s), the Galois field of order s.
Assume that the columns e1, . . . , eu are independent. Here the independence means
that their linear combination equals the zero vector if and only if the combination
coefficients are all equal to zero. OA(su, (su − 1)/(s − 1), s, 2)’s can be constructed
using these u independent columns by the Rao–Hamming construction. Then we
obtain OA’s, B0, . . . , Bs+1, in the following way. Let

B0 = (e1, . . . , eu−2)U0,

where U0 is a (u − 2) × [(su−2 − 1)/(s − 1)] matrix by collecting all the nonzero
column vectors given by (l1, l2, . . . , lu−2)

T with l j ∈ GF(s) for j = 1, . . . , u − 2,
and the first nonzero entry in (l1, l2, . . . , lu−2)

T is one. Let

Bi = (e1, . . . , eu−2, wi )U for i = 1, . . . , s + 1,

whereU is a (u−1)×[(su−1−1)/(s−1)]matrix by collecting all the nonzero column
vectors given by (l1, l2, . . . , lu−1)

T with l j ∈ GF(s) for j = 1, . . . , u−1, and the first
nonzero entry in (l1, l2, . . . , lu−1)

T is one, wi = (eu−1, eu) fi for i = 1, . . . , s + 1,
fi = (1, αi−1)

T for i = 1, . . . , s and fs+1 = (0, 1)T , αi ∈ GF(s) = {α0, . . . , αs−1}
with α0 = 0. The following lemma discusses the properties of the constructed arrays:
B0, . . . , Bs+1.

Lemma 2 (He et al. 2017) For B0, . . . , Bs+1 constructed above, we have

(i) B0 is an OA(su, (su−2 − 1)/(s − 1), s, 2) consisting of s2 replicates of
O A(su−2, (su−2 − 1)/(s − 1), s, 2);
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1800 W. Zhou et al.

(ii) Bi is an OA(su, (su−1 − 1)/(s − 1), s, 2) consisting of s replicates of
O A(su−1, (su−1 − 1)/(s − 1), s, 2), for i = 1, . . . , s + 1;

(iii) for 1 ≤ i ≤ s + 1, B0 ⊂ Bi , and for 1 ≤ i ′ �= i ≤ s + 1, none of the columns in
Bi ′ \B0 can be generated by any linear combination of columns in Bi ;

(iv) let b1, . . . , bu−1 be any u− 1 independent columns from Bi and b be any column
of Bi ′ \B0, where i �= i ′, then (b1, . . . , bu−1, b) is an OA(su, u, s, u);

(v) {B0, (B1\B0), (B2\B0), . . . , (Bs+1\B0)} form a disjoint partition of O A(su, (su

− 1)/(s − 1), s, 2).

Given theOA’s B0, . . . , Bs+1, we proposeAlgorithm 2 below to construct OMCDs.
For ease of expression, Bi\B0 is denoted as Pi . In the algorithm, we use the following
rotation matrices from Sun and Tang (2017):

Rw1 =
(
sRw0 −Qw

Qw sRw0

)

and Rwv =
(
sRw(v−1) −Qw+v−1
Qw+v−1 sRw(v−1)

)

for v ≥ 2,

where

R10 =
(
s −1
1 s

)

, Rw0 =
(
s2(w−1)R(w−1)0 −R(w−1)0

R(w−1)0 s2(w−1)R(w−1)0

)

,

Q1 =
(
1 0
0 −1

)

and Qw =
(
Qw−1 0
0 −Qw−1

)

, for w ≥ 2.

Algorithm 2

Step 1 For a given k (1 ≤ 2k < s + 1) and u = 2a + 1 for some integer a, let
di = (di,1, di,2, . . . , di,u−1) consist of u − 1 independent columns from Pi ,
for i = 1, . . . , 2k, and O j = (d2 j−1, d2 j ) for j = 1, . . . , k.

Step 2 Derive an s × q OLHD W = (wi j ) with levels {−(s − 1)/2,−(s −
3)/2, . . . , (s − 1)/2}.

Step 3 For l = 1, . . . , q, i = 1, . . . , k, obtain an su × 2(u − 1) matrix O(l)
i from Oi

by replacing the levels 0, . . . , s − 1 of Oi with w1l , . . . , wsl , respectively.
Step 4 For l = 1, . . . , q, i = 1, . . . , k, obtain Z (l)

i = (z(l)i,1, . . . , z
(l)
i,2u−2) = O(l)

i Ra1.

Step 5 Take D1 = ∪s+1
i=2k+1Pi and D2 = (Z (1)

1 , . . . , Z (1)
k , . . . , Z (q)

1 , . . . , Z (q)
k ).

Note that, when u = 2, B0 is an empty set and Bi\B0 for i = 1, . . . , s+1 is the i th
column of the OA(s2, s + 1, s, 2) in Lemma 2(v). Clearly, Algorithm 1 can be seen
as a special case of Algorithm 2 if u = 2 is chosen in Step 1 of Algorithm 2 and Ra1
is replaced by R10 in Step 4 of Algorithm 2.

Theorem 2 summarizes the properties of D1 and D2 constructed above.

Theorem 2 For D1 and D2 constructed above, we have

(i) D1 is an OA(su, (s+1−2k)su−2, s, 2) and D2 is an orthogonal L(su, 2kq(u−
1));

(ii) (D1, D2) is an OMCD;
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Orthogonal marginally coupled designs 1801

(iii) (z(l)i, j , z
(l)
i, j ′) achieves stratification on s × s grids for 1 ≤ j �= j ′ ≤ 2u − 2;

(iv) (z(l)i, j , z
(l)
i, j ′) and (z(l)i,h, z

(l)
i ′,h′) achieve stratification on s × su−1 and su−1 × s grids

in two dimensions, for 1 ≤ j ≤ u − 1, u ≤ j ′ ≤ 2u − 2, i �= i ′, and 1 ≤ h �=
h′ ≤ 2u − 2.

Example 2 Consider the case of s = 3,u = 3and k = 1,withGF(3) = {α0, α1, α2} =
{0, 1, 2}. Let e1, e2 and e3 be three independent 3-level columns of length 27, andω1 =
e2,ω2 = e2+e3,ω3 = e2+2e3, andω4 = e3. The arrays B0, B1, . . . , B4 are obtained
as B0 = {e1}, Bi = {e1, ωi , ωi + e1, ωi + 2e1} for i = 1, 2, 3, 4. Then applying the
Rao–Hamming construction to e1, e2 and e3, we obtain an OA(27, 13, 3, 2), whose
column partition is displayed in Table 1. Here, the j th column of Pi is denoted by
Pi, j . Let d1 = (P1,2, P1,3), d2 = (P2,1, P2,2) and O1 = (d1, d2). Here s = 3, the

designW only has one column. O(1)
1 is obtained from O1 by replacing the levels 0, 1, 2

with −1, 0, 1 respectively. Take D2 = O(1)
1 R11 and D1 = (P3, P4), then (D1, D2) is

an OMCD, which is presented in Table 1. The stratification properties of D2 can be
seen intuitively in Fig. 1, where X1, X2, X3 and X4 denote z(1)1,1, z

(1)
1,2, z

(1)
1,3 and z(1)1,4

respectively, which are the four columns of D2. For example, it is easy to see that
(z(1)1,1, z

(1)
1,2) achieves stratification on 3× 3 grids; (z(1)1,1, z

(1)
1,3) achieves stratification on

3 × 9 and 9 × 3 grids in two dimensions.

Corollary 2 In Algorithm 2, if 2k < s, we can further let Ok+1 = (dl1,u, . . . , dlu−1,u,

d2k+1)withdl1,u, . . . , dlu−1,u beingu−1 independent columns from Pl1\dl1 , . . . , Plu−1\
dlu−1 respectively, and d2k+1 consisting of u − 1 independent columns from P2k+1,
where l1, . . . , lu−1 take values from {1, . . . , 2k}. Then following the similar steps in
Algorithm 2, we can get D1 = ∪s+1

i=2k+2Pi and D2 = (Z (1)
1 , . . . , Z (1)

k+1, . . . , Z
(q)
1 , . . . ,

Z (q)
k+1), and (D1, D2) is an OMCD.

Besides orthogonality, second-order orthogonality is a desirable property for LHDs
(see e.g., Sun et al. 2009; Wang et al. 2018a). It is easy to see that a mirror-symmetric
LHD can guarantee the second-order orthogonality. In the following, OMCDs with
second-order orthogonality are constructed via modifying Algorithm 2.

Algorithm 3 (Modified construction of OMCDs)

Step 1 Permute the levels of Bi to obtain a mirror-symmetric design, denoted as B̃i ,
i = 0, . . . , s + 1 for an odd prime power s.

Step 2 For a given k (1 ≤ 2k < s + 1), and u = 2a + 1 for some integer a, let
d̃i = (d̃i,1, d̃i,2, . . . , d̃i,u−1) consist of u−1 independent columns from B̃i\B̃0
(denoted as P̃i ) for i = 1, . . . , 2k, and O j = (d̃2 j−1, d̃2 j ), for j = 1, . . . , k.

Step 3 Derive an s × t mirror-symmetric OLHD L = (li j ) with levels {−(s −
1)/2,−(s − 3)/2, . . . , (s − 1)/2}.

Step 4 For l = 1, . . . , t , i = 1, . . . , k, obtain an su × 2(u − 1) matrix O(l)
i from Oi

by replacing the levels 0, . . . , s − 1 of Oi with l1l , . . . , lsl , respectively.
Step 5 For j = 1, . . . , t , i = 1, . . . , k, obtain Z (l)

i = (z(l)i,1, . . . , z
(l)
i,2u−2) = O(l)

i Ra1.

Step 6 Take D1 = ∪s+1
i=2k+1 P̃i and D2 = (Z (1)

1 , . . . , Z (1)
k , . . . , Z (t)

1 , . . . , Z (t)
k ).
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X1

−15 −5 5 15 −15 −5 5 15

−1
5

−5
5

15

−1
5

−5
5

15

X2

X3

−1
5

−5
5

15
−15 −5 5 15−1

5
−5

5
15

−15 −5 5 15

X4

Fig. 1 Bivariate projections among the four columns of D2 in Table 1

Here Bi is a regular design, and for an odd prime power s, a mirror-symmetric
design can be obtained from Bi by permuting the levels which has been studied in
Tang and Xu (2014). Theorem 3 summarizes the properties of D1 and D2 obtained in
Algorithm 3.

Theorem 3 For D1 and D2 constructed above, we have

(i) D1 is an OA(su, (s + 1− 2k)su−2, s, 2), D2 is an orthogonal mirror-symmetric
L(su, 2kt(u − 1)), and hence D2 is a second-order orthogonal LHD;

(ii) (D1, D2) is an OMCD.

The projection properties of D2 constructed in Algorithm 3 are the same as that of
the D2 in Theorem 2.

Example 3 (Example 2 continued) First we permute the levels of the OA(27, 13, 3, 2)
in Table 1 to derive a mirror-symmetric design which is listed in the left part of
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Orthogonal marginally coupled designs 1803

Table 1 OA(27, 13, 3, 2) and OMCD in Example 2

OA(27, 13, 3, 2) OMCD

B0 P1 P2 P3 P4 D2 D1 = (P3, P4)

0 0 0 0 0 0 0 0 0 0 0 0 0 − 13 − 5 − 11 − 7 0 0 0 0 0 0

0 0 0 0 1 1 2 2 2 1 1 1 2 − 12 −6 1 − 1 2 2 1 1 1 2

0 0 0 0 2 2 1 1 1 2 2 2 1 − 11 − 7 13 5 1 1 2 2 2 1

0 1 1 2 1 1 2 1 1 2 0 0 0 3 9 0 1 1 1 2 0 0 0

0 1 1 2 2 2 1 0 0 0 1 1 2 4 8 12 7 0 0 0 1 1 2

0 1 1 2 0 0 0 2 2 1 2 2 1 2 10 − 12 − 5 2 2 1 2 2 1

0 2 2 1 2 2 1 2 2 1 0 0 0 10 − 4 11 6 2 2 1 0 0 0

0 2 2 1 0 0 0 1 1 2 1 1 2 8 − 2 − 13 − 6 1 1 2 1 1 2

0 2 2 1 1 1 2 0 0 0 2 2 1 9 − 3 − 1 0 0 0 0 2 2 1

1 0 1 1 0 1 1 0 1 1 0 1 1 − 1 0 −9 3 0 1 1 0 1 1

1 0 1 1 1 2 0 2 0 2 1 2 0 0 − 1 3 9 2 0 2 1 2 0

1 0 1 1 2 0 2 1 2 0 2 0 2 1 1 6 − 12 1 2 0 2 0 2

1 1 2 0 1 2 0 1 2 0 0 1 1 6 − 13 2 8 1 2 0 0 1 1

1 1 2 0 2 0 2 0 1 1 1 2 0 7 − 11 5 − 13 0 1 1 1 2 0

1 1 2 0 0 1 1 2 0 2 2 0 2 5 − 12 − 10 2 2 0 2 2 0 2

1 2 0 2 2 0 2 2 0 2 0 1 1 − 5 13 7 − 11 2 0 2 0 1 1

1 2 0 2 0 1 1 1 2 0 1 2 0 − 7 12 − 8 4 1 2 0 1 2 0

1 2 0 2 1 2 0 0 1 1 2 0 2 − 6 11 4 10 0 1 1 2 0 2

2 0 2 2 0 2 2 0 2 2 0 2 2 11 5 − 7 13 0 2 2 0 2 2

2 0 2 2 1 0 1 2 1 0 1 0 1 12 7 − 4 − 8 2 1 0 1 0 1

2 0 2 2 2 1 0 1 0 1 2 1 0 13 6 8 − 2 1 0 1 2 1 0

2 1 0 1 1 0 1 1 0 1 0 2 2 − 9 4 − 2 − 9 1 0 1 0 2 2

2 1 0 1 2 1 0 0 2 2 1 0 1 − 8 3 10 − 3 0 2 2 1 0 1

2 1 0 1 0 2 2 2 1 0 2 1 0 − 10 2 − 5 12 2 1 0 2 1 0

2 2 1 0 2 1 0 2 1 0 0 2 2 − 2 −9 9 − 4 2 1 0 0 2 2

2 2 1 0 0 2 2 1 0 1 1 0 1 − 4 − 10 − 6 11 1 0 1 1 0 1

2 2 1 0 1 0 1 0 2 2 2 1 0 − 3 − 8 − 3 − 10 0 2 2 2 1 0

Table 2. Let d̃1 = (P̃1,2, P̃1,3), d̃2 = (P̃2,1, P̃2,2) and O1 = (d̃1, d̃2). Here s = 3, it is
impossible to find a mirror-symmetric OLHD with more than one column. Thus, we
take l = t = 1, and replace the levels 0, 1, 2 of O1 with−1, 0, 1 respectively to obtain
O(1)
1 . After rotating O(1)

1 , the derived OMCD is shown in the right part of Table 2.

From Theorems 2 and 3, the run sizes of the obtained designs are closely related
to the rotation matrices. To construct designs with su runs for any integer u ≥ 3,
one way is to find other (orthogonal or nearly orthogonal) rotation matrices through
computer search. For example, when u = 4, we can use this nearly orthogonal rotation
matrix:
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1804 W. Zhou et al.

Table 2 OA(27, 13, 3, 2) and OMCD in Example 3

OA(27, 13, 3, 2) OMCD

B̃0 P̃1 P̃2 P̃3 P̃4 D2 D1 = (P̃3, P̃4)

0 0 2 1 2 1 2 1 0 0 0 2 1 10 − 3 8 − 3 1 0 0 0 2 1

0 0 2 1 0 2 1 0 2 1 1 0 0 8 − 4 7 12 0 2 1 1 0 0

0 0 2 1 1 0 0 2 1 2 2 1 2 9 − 2 −4 − 9 2 1 2 2 1 2

0 1 0 0 0 2 1 2 1 2 0 2 1 − 13 − 7 − 5 11 2 1 2 0 2 1

0 1 0 0 1 0 0 1 0 0 1 0 0 − 12 − 5 − 2 − 10 1 0 0 1 0 0

0 1 0 0 2 1 2 0 2 1 2 1 2 − 11 −6 10 − 4 0 2 1 2 1 2

0 2 1 2 1 0 0 0 2 1 0 2 1 3 10 − 3 − 8 0 2 1 0 2 1

0 2 1 2 2 1 2 2 1 2 1 0 0 4 9 9 − 2 2 1 2 1 0 0

0 2 1 2 0 2 1 1 0 0 2 1 2 2 8 − 6 13 1 0 0 2 1 2

1 0 0 2 2 2 0 1 1 1 0 0 2 − 5 11 13 7 1 1 1 0 0 2

1 0 0 2 0 0 2 0 0 2 1 1 1 − 7 13 − 11 − 5 0 0 2 1 1 1

1 0 0 2 1 1 1 2 2 0 2 2 0 − 6 12 1 1 2 2 0 2 2 0

1 1 1 1 0 0 2 2 2 0 0 0 2 − 1 1 − 12 −6 2 2 0 0 0 2

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 2 2 0 0 0 2 2 2 0 1 − 1 12 6 0 0 2 2 2 0

1 2 2 0 1 1 1 0 0 2 0 0 2 6 − 12 − 1 − 1 0 0 2 0 0 2

1 2 2 0 2 2 0 2 2 0 1 1 1 7 − 13 11 5 2 2 0 1 1 1

1 2 2 0 0 0 2 1 1 1 2 2 0 5 − 11 − 13 − 7 1 1 1 2 2 0

2 0 1 0 2 0 1 1 2 2 0 1 0 − 2 − 8 6 − 13 1 2 2 0 1 0

2 0 1 0 0 1 0 0 1 0 1 2 2 − 4 −9 − 9 2 0 1 0 1 2 2

2 0 1 0 1 2 2 2 0 1 2 0 1 − 3 − 10 3 8 2 0 1 2 0 1

2 1 2 2 0 1 0 2 0 1 0 1 0 11 6 − 10 4 2 0 1 0 1 0

2 1 2 2 1 2 2 1 2 2 1 2 2 12 5 2 10 1 2 2 1 2 2

2 1 2 2 2 0 1 0 1 0 2 0 1 13 7 5 − 11 0 1 0 2 0 1

2 2 0 1 1 2 2 0 1 0 0 1 0 − 9 2 4 9 0 1 0 0 1 0

2 2 0 1 2 0 1 2 0 1 1 2 2 − 8 4 7 − 12 2 0 1 1 2 2

2 2 0 1 0 1 0 1 2 2 2 0 1 − 10 3 − 8 3 1 2 2 2 0 1

R6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s s s3 −1 0 0
s2 −s3 s 0 1 0
s3 s2 −s2 0 0 −1
1 0 0 s s s3

0 −1 0 s2 −s3 s
0 0 1 s3 s2 −s2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The resulting designs may be nearly orthogonal, but the numbers of columns will
usually be larger than the orthogonal case.

In the following, we present another approach to constructing OMCDs with sk

runs with k ≥ 3. We recall that the ⊕ operator is based on GF(s) = {α0 =
0, α1, α2, . . . , αs−1}.
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Algorithm 4

Step 1 Let N be an s2 × 2 full factorial design with s levels. Two generator matrices
are given as

G1 =
(
1 1 · · · 1
α0 α1 · · · αs−1

)

and G2 =
(
0
1

)

,

where αi ∈ GF(s) = {α0, . . . , αs−1} with α0 = 0, i = 0, . . . , s − 1. Obtain
D(0) = NG1 and e(0) = NG2.

Step 2 Let γ = (α0, α1, . . . , αs−1)
T , and define β j = α jγ for j = 0, 1, . . . , s − 1.

Step 3 For v = 1, 2, . . ., create an s2+v × s1+v matrix as

D(v) = (β0 ⊕ D(v−1), β1 ⊕ D(v−1), . . . , βs−1 ⊕ D(v−1))

and create an s2+v × (s − 1)v matrix as

e(v) = (β1 ⊕ e(v−1), β2 ⊕ e(v−1), . . . , βs−1 ⊕ e(v−1)).

Step 4 If s is even, divide D(0) into E1, . . . , Es/2, where each Ei is a full factorial
design of two factors. If s is odd, divide D(0) into E1, . . . , E�s/2� and one
column l.

Step 5 For each i = 1, . . . , �s/2�, create F (i)
j1

= (β2 j1 ⊕ Ei , β2 j1+1 ⊕ Ei ),

for each j1 = 0, 1, . . . , �s/2� − 1; create F (i)
j1 j2... jv−1

= (β2 jv−1 ⊕
F (i)
j1 j2... jv−2

, β2 jv−1+1 ⊕ F (i)
j1 j2... jv−2

) for j1, . . . , jv−1 = 0, 1, . . . , �s/2� − 1;

given p, where 0 ≤ p ≤ �s/2� − 1, create H (i)
j1

= F (i)
j1

for j1 = 0, 1, . . . , p

and H (i)
j1 j2... jv

= (β2 jv ⊕ F (i)
j1 j2... jv−1

, β2 jv+1 ⊕ F (i)
j1 j2... jv−1

) for v ≥ 2,

j1, . . . , jv−1 = 0, 1, . . . , �s/2� − 1 and jv = 0, 1, . . . , p. Obtain H (i)∗
j1 j2... jv

from H (i)
j1 j2... jv

via replacing α j by j − s−1
2 .

Step 6 For 0 ≤ p ≤ �s/2� − 1 and v = 1, 2, . . ., if 2p + 2 ≤ s − 1, let D̃1 =
(e(v), β2p+2⊕D(v−1), . . . , βs−1⊕D(v−1)), and if 2p+2 = s, let D̃1 = e(v).
Obtain D1 from D̃1 by replacing level α j by level j .

Step 7 Let H̃ (i)
j1 j2... jv

= H (i)∗
j1 j2... jv

R1v for i = 1, 2, . . . , �s/2�, j1, . . . , jv−1 =
0, 1, . . . , �s/2� − 1 and jv = 0, 1, . . . , p. Construct D2 as D2 =(
H̃ (1)

j1 j2... jv
, . . . , H̃ (�s/2�)

j1 j2... jv

)

j1 j2... jv
.

Theorem 4 summarizes the properties of D1 and D2 constructed in Algorithm 4.

Theorem 4 For D1 and D2 obtained in Algorithm 4, we have

(i) D1 is an OA(s2+v, (s − 1)v + (s − (2p + 2))sv, s, 2) and D2 is an orthogonal
L(s2+v, �s/2�v(p + 1)21+v);

(ii) (D1, D2) is an OMCD;
(iii) D2 achieves stratification on s × s grids in any two dimensions.
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The following example provides an illustration for Theorem 4.

Example 4 Consider the case of s = 3, v = 2 and p = 0, with GF(3) =
{α0, α1, α2} = {0, 1, 2}. The full factorial design N is

N =
(
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

)T

.

And D(0) and e(0) are obtained as

D(0) =
⎛

⎝
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

⎞

⎠

T

and e(0) = (
0 1 2 0 1 2 0 1 2

)T
.

In this case β0 = (0, 0, 0)T , β1 = (0, 1, 2)T , β2 = (0, 2, 1)T , then D(1) and e(1) are
obtained as D(1) = (β0⊕D(0), β1⊕D(0), β2⊕D(0)) and e(1) = (β1⊕e(0), β2⊕e(0)).

Thus for v = 2 and p = 0, D1 is obtained as D1 = D̃1 = (β1 ⊕ e(1), β2 ⊕ e(1), β2 ⊕
D(1)). Here s = 3, then �s/2� = 1, so D(0) is divided into E1 and one column, where

E1 =
(
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1

)T

.

For p = 0, only F (1)
0 is obtained as F (1)

0 = (β0 ⊕ E1, β1 ⊕ E1) and F (1)
00 is obtained

as F (1)
00 = (β0 ⊕ F (1)

0 , β1 ⊕ F (1)
0 ). Then for v = 2 and p = 0, D2 can be constructed

as D2 = F (1)∗
00 R12 = (F (1)

00 − J81×8)R12, where J81×8 is a 81 × 8 matrix of ones.
It is easy to check that D = (D1, D2) is an OMCD, which is provided in Tables 5
and 6 in Appendix B. After collapsing the levels of D2 by �(x +40)/27�, D2 becomes
F (1)
00 which is an OA(81, 8, 3, 2), then D2 achieves stratification on 3×3 grids in two

dimensions.

Note that if s = 2, then D1 just has one column, which is not desirable, and
D2 = H̃ (1)

00...0 is an orthogonal L(s2+v, 21+v). We now present a method to extend the
number of columns of D1 with s = 2 up to 2v + 1.

Corollary 3 For H (1)
00...0 and H̃ (1)

00...0 obtained in Algorithm 4 with s = 2, let Ψ consist

of the first 2v columns of H (1)
00...0 and Γ consist of the last 2v columns of H̃ (1)

00...0. Let
Φ = (e(v), Ψ ), then

(i) Φ is an OA(22+v, 1 + 2v, 2, 2) and Γ is an orthogonal L(22+v, 2v);
(ii) (Φ, Γ ) is an OMCD.

Note that for s > 2, we can extend the number of columns of D1 up to (s − 1)v +
(s − 2)sv + �s/2�v2v similarly as Corollary 3 does. The following example provides
an illustration for Corollary 3.
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Example 5 Consider the case of s = 2 and v = 3, with GF(2) = {α0, α1} = {0, 1}.
The full factorial design N is

N =
(
0 0 1 1
0 1 0 1

)T

.

And D(0) and e(0) are obtained as

D(0) =
(
0 0 1 1
0 1 1 0

)T

and e(0) = (
0 1 0 1

)T
.

In this case β0 = (0, 0)T and β1 = (0, 1)T , then for v = 3, e(3) is obtained as

e(3) = β1 ⊕ (β1 ⊕ (β1 ⊕ e(0))).

Here s = 2, so E1 = D(0). Thus F (1)
0 = (β0 ⊕ D(0), β1 ⊕ D(0)), F (1)

00 = (β0 ⊕
F (1)
0 , β1 ⊕ F (1)

0 ), H (1)
000 = F (1)

000 = (β0 ⊕ F (1)
00 , β1 ⊕ F (1)

00 ) and H̃ (1)
000 = (H (1)

000 −
(1/2)J32×16)R13, where J32×16 is a 32× 16 matrix of ones. Φ = (e(3), Ψ ), where Ψ

consists of the first eight columns of H (1)
000, and Γ consists of the last eight columns

of H̃ (1)
000. It is easy to check that (Φ, Γ ) is an OMCD which is given in Table 7 in

Appendix B.

If an orthogonal L(s,m′) can be constructed, then an OLHD with more columns
can be constructed following the idea of Lin et al. (2009). By the similar method,
OMCDs with more columns can be constructed as follows.

Corollary 4 If an orthogonal L(s,m′) is available, and an OMCD (D1, D2) can be
obtained by Algorithm 4, where D1 is an OA(s2+v,m1, s, 2) and D2 is an orthogonal
L(s2+v,m2), then D2 can be extended to an orthogonal L(s2+v,m′m2) for v =
1, 2, . . ..

Note that both Algorithms 2 and 4 can construct OMCDs with su runs, but the
values of u in the two algorithms are different. Algorithm 2 is suitable for u = 2a + 1
with a being an integer, while Algorithm 4 is appropriate for any integer u ≥ 3. For
u = 2a + 1, Algorithm 2 can construct OMCDs with D1 having more columns than
Algorithm 4.

3.3 Construction of MCDs usingmixed-level OAs

The above four algorithms can generate designs with su runs for u ≥ 2. This section
introduces another construction for MCDs with n runs, m qualitative factors and k
quantitative factors through an OA(n, sm(n/s), 2) and two LHDs. The construction
can get OMCDs with their run sizes n being multiples of s2. Denote the set {i − (r −
1)/2 : i = 0, 1, . . . , r−1} asΩ(r). Let T be an OA(n, sm(n/s), 2), L1 be an L(s, k1)
with entries from Ω(s), and L2 be an L(n/s, k2) with entries from Ω(n/s). A new
class of MCDs can be constructed as follows.
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Algorithm 5

Step 1 If k1 = k2, let Y j = L1[ j, :] ⊕c (sL2); and if k1 < k2, let Y j = (L1[ j, 1] ⊕
(sL2[:, 1 : k2 − k1 + 1]), L1[ j, 2 : k1] ⊕c (sL2[:, (k2 − k1 + 2) : k2])), for
j = 1, . . . , s.

Step 2 Stack the rows of Y j for j = 1, . . . , s together to obtain Y = (Y T
1 , . . . ,Y T

s )T .

Step 3 Permutate the rows of T to make sure that the last column is 1s ⊗
(1, 2, . . . , n/s)T .

Step 4 Let D1 be the first m columns of T .
Step 5 Stack the columns of D1 and Y together, i.e., D = (D1,Y ).

Then we have the following theorem.

Theorem 5 The design D constructed in Algorithm 5 is an MCD with n runs, m
qualitative factors and k2 quantitative factors.

In Algorithm 5, the run size n must be a multiple of s2 and the number of qualitative
factors m can be up to n/s according to He et al. (2017). By carefully choosing L1
and L2, the resulting design Y in Algorithm 5 can be an OLHD (when k1 = k2) or
nearly OLHD (when k1 < k2). The theoretical results in the following theorem will
justify this.

Theorem 6 Let L1, L2 and Y be the designs in Algorithm 5, we have

(i) for k1 = k2, if L1 and L2 are OLHDs, then Y is an OLHD, furthermore, Y is
second-order orthogonal if L1 and L2 are second-order orthogonal.

(ii) for k1 < k2, let λ = (s2 − 1)/(n2 − 1) and μ = k2 − k1,

ρ j1 j2 (Y ) =

⎧
⎪⎨

⎪⎩

λ + (1 − λ)ρ j1 j2 (L2), 1 ≤ j1, j2 ≤ μ + 1 ;
λρ1( j2−μ)(L1) + (1 − λ)ρ j1 j2 (L2), 1 ≤ j1 ≤ μ + 1, μ + 2 ≤ j2 ≤ k2 ;
λρ( j1−μ)( j2−μ)(L1) + (1 − λ)ρ j1 j2 (L2), μ + 2 ≤ j1, j2 ≤ k2 .

(1)

Here for any design D, ρi j (D) = ρ(di , d j ) with di and d j being the i th and jth
columns of D respectively.

Table 3 presents some orthogonal and nearly orthogonal MCDs constructed via
Algorithm 5. The first column lists the mixed-level OAs obtained by He et al. (2017).
The second and third columns provide the designs used for the construction of the
corresponding Y .

4 Concluding remarks

MCDs proposed by Deng et al. (2015) are cost-effective designs for computer exper-
iments with both quantitative and qualitative factors. Orthogonality is a desirable
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Table 3 Some orthogonal and nearly orthogonal MCDs (D1, Y ) with n ≤ 100 runs constructed by Algo-
rithm 5

T L1 [source] L2 [source] D1 Y

OA(8, 2441, 2) L(2, 2)∗ OL(4, 2)[LB] OA(8, 4, 2, 2) NOL(8, 2)

OA(16, 2881, 2) L(2, 4)∗ OL(8, 4)[LB] OA(16, 8, 2, 2) NOL(16, 4)

OA(24, 212121, 2) L(2, 6)∗ OL(12, 6)[LB] OA(24, 12, 2, 2) NOL(24, 6)

OA(27, 3991, 2) L(3, 5)∗ OL(9, 5)[LB] OA(27, 9, 3, 2) NOL(27, 5)

OA(32, 216161, 2) L(2, 12)∗ OL(16, 12)[LB] OA(32, 16, 2, 2) NOL(32, 12)

OA(32, 4881, 2) L(4, 4)∗ OL(8, 4)[LB] OA(32, 8, 4, 2) NOL(32, 4)

OA(32, 4881, 2) OL(4, 2)[LB] OL(8, 4)[LB] OA(32, 8, 4, 2) NOL(32, 4)

OA(32, 4881, 2) OL(4, 2)[LB] OL(8, 2)[LB] OA(32, 8, 4, 2) OL(32, 2)

OA(40, 220201, 2) L(2, 6)∗ OL(20, 6)[LB] OA(40, 20, 2, 2) NOL(40, 6)

OA(48, 224241, 2) L(2, 12)∗ OL(24, 12)[GS] OA(48, 24, 2, 2) NOL(48, 12)

OA(54, 318181, 2) L(3, 8)∗ OL(18, 8)[GS] OA(54, 18, 3, 2) NOL(54, 8)

OA(56, 228281, 2) L(2, 6)∗ OL(28, 6)[LB] OA(56, 28, 2, 2) NOL(56, 6)

OA(64, 232321, 2) L(2, 16)∗ OL(32, 16)[GS] OA(64, 32, 2, 2) NOL(64, 16)

OA(64, 416161, 2) L(4, 12)∗ OL(16, 12)[LB] OA(64, 16, 4, 2) NOL(64, 12)

OA(64, 416161, 2) OL(4, 2)[LB] OL(16, 12)[LB] OA(64, 16, 4, 2) NOL(64, 12)

OA(64, 416161, 2) OL(4, 2)[LB] OL(16, 2)[LB] OA(64, 16, 4, 2) OL(64, 2)

OA(72, 236361, 2) L(2, 6)∗ OL(36, 6)[ST] OA(72, 36, 2, 2) NOL(72, 6)

OA(80, 240401, 2) L(2, 20)∗ OL(40, 20)[GS] OA(80, 40, 2, 2) NOL(80, 20)

OA(81, 327271, 2) L(3, 12)∗ OL(27, 12)[ST] OA(81, 27, 3, 2) NOL(81, 12)

OA(88, 244441, 2) L(2, 6)∗ OL(44, 6)[LB] OA(88, 44, 2, 2) NOL(88, 6)

OA(96, 248481, 2) L(2, 24)∗ OL(48, 24)[GS] OA(96, 48, 2, 2) NOL(96, 24)

OA(100, 520201, 2) L(5, 6)∗ OL(20, 6)[LB] OA(100, 20, 5, 2) NOL(100, 6)

OA(100, 520201, 2) OL(5, 2)[LB] OL(20, 6)[LB] OA(100, 20, 5, 2) NOL(100, 6)

OA(100, 520201, 2) OL(5, 2)[LB] OL(20, 2)[LB] OA(100, 20, 5, 2) OL(100, 2)

Note: L(s, k)∗: (0, 1, . . . , s−1)T 1Tk with 1k being an k×1 vector of ones; OL(n,m): orthogonal L(n,m);
NOL(n,m): nearly orthogonal L(n,m); GS: Georgiou and Stylianou (2011); LB: Lin et al. (2010); ST:
Sun and Tang (2017)

property for designs of computer experiments. To our knowledge, there is no litera-
ture on the construction of MCDs with orthogonality.

We provide five methods to construct (nearly) OMCDs, where the designs for the
qualitative factors are s-level OAs. The construction methods are easy to be carried
out. Besides orthogonality, the MCDs constructed by Algorithms 1 to 4 guarantee
some low-dimensional space-filling properties. In addition, the MCDs obtained by
Algorithm 3 are second-order orthogonal. The first four approaches can construct
MCDs with sv runs where s is a prime power and v ≥ 2. The fifth one can construct
MCDs with some multiples of s2 runs. Finally, Table 4 lists some OMCDs that can
be constructed by our methods. For the construction of OMCDs with their run sizes
being multiples of su , this deserves further study.

123



1810 W. Zhou et al.

Ta
bl
e
4

So
m
e
re
su
lti
ng

O
M
C
D
s
(
D
1
,
D
2
)
w
ith

D
1

=
O
A
(n

,
μ
1
,
s,
2)

an
d
D
2

=
L
(n

,
μ
2
)

So
ur
ce

n
μ
1

μ
2

C
on
st
ra
in
ts

Pr
op
er
tie
s

A
lg
or
ith

m
1

s2
d

2
p
f

d
+
2
f

≤
s
+
1
an
d
an

or
th
og

on
al
L
(s

,
p)
,
p

≥
1,
ex
is
ts

1
an
d
3

A
lg
or
ith

m
2

su
(s

+
1

−
2k

)s
u
−2

2k
q
(u

−
1)

u
=

2a
+1

,a
≥

1,
k

(1
≤

2k
<

s
+1

)
an
d
an

or
th
og

on
al

L
(s

,
q
),
q

≥
1,
ex
is
ts

1
an
d
3

A
lg
or
ith

m
3

su
(s

+
1

−
2k

)s
u
−2

2k
t(
u

−
1)

u
=

2a
+1

,a
≥

1,
k

(1
≤

2k
<

s
+1

)
an
d
an

or
th
og

on
al

m
ir
ro
r-
sy
m
m
et
ri
c
L
(s

,
t)

,
t
≥

1,
ex
is
ts

1,
2
an
d
3

A
lg
or
ith

m
4

s2
+v

(s
−

1)
v

+
(s

−
(2
p

+
2)

)s
v

�s/
2�

v
(
p

+
1)
21

+v
v

≥
1
an
d
0

≤
p

≤
�s/

2�
−

1
1
an
d
3

A
lg
or
ith

m
5

n
m

k
O
A
(n

,
sm

(n
/
s)

,
2)

an
d

tw
o

(2
nd

-o
rd
er
)

or
th
og

on
al

L
H
D
s
L
(s

,
k)

an
d
L
(n

/
s,
k)

ex
is
t

1
an
d
2

N
ot
e:
Pr
op

er
ty

1:
or
th
og

on
al
ity

;P
ro
pe
rt
y
2:

se
co
nd

-o
rd
er

or
th
og

on
al
ity

;P
ro
pe
rt
y
3:

pr
oj
ec
tio

n
pr
op

er
ty

123



Orthogonal marginally coupled designs 1811

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
Nos. 1771219, 11771220 and 11601367), National Ten Thousand Talents Program, Tianjin Development
Program for Innovation and Entrepreneurship, and Tianjin “131” Talents Program. The first two authors
contributed equally to this work.

Appendix A: Proofs

To prove the theoretical results of this paper, we first give the following two lemmas.

Lemma A.1 Let ζ be any column of D1 which is an OA(st ,m, s, 2) and ξ be any
column of D2 which is an L(st , k). And ξ can be represented as ξ = ±η1±η2s±· · ·±
ηt st−1, where (η1, η2, . . . , ηt ) with entries from {−(s − 1)/2,−(s − 3)/2, . . . , (s −
3)/2, (s − 1)/2} is an st full factorial design. If (ζ, η2, . . . , ηt ) is an st full factorial
design, then (D1, D2) is an MCD.

Following the symbols in Algorithm 4, let ik, jk = 0, 1, . . . , �s/2� − 1, k =
1, 2, . . .. Let W (1)

i1 j1
= (a(1)

1 , a(1)
2 , b(1)), where a(1)

1 and a(1)
2 are any two columns

in βi1 ⊕ D(0), and b(1) is any column in β j1 ⊕ D(0), i1 �= j1. Create W (2)
i1 j1i2 j2

=
(βi2⊕W (1)

i1 j1
, b(2)), where b(2) ∈ β j2⊕D(1), i2 �= j2. In general, defineW

(v)
i1 j1i2 j2···iv jv =

(βiv ⊕ W (v−1)
i1 j1i2 j2···iv−1 jv−1

, b(v)), where b(v) ∈ β jv ⊕ D(v−1), iv �= jv .

Lemma A.2 Suppose D(0), W (v)
i1 j1i2 j2···iv jv and e(v) for v = 1, 2, . . . are as defined

above, then

(i) W (v)
i1 j1i2 j2···iv jv is a full factorial design with 2 + v factors;

(ii) for any column h ∈ e(1), (a(1)
1 , a(1)

2 , h) is a full factorial design with three factors;

furthermore for any column h ∈ e(v) with v ≥ 2, (βiv ⊕ W (v−1)
i1 j1i2 j2···iv−1 jv−1

, h) is
a full factorial design with 2 + v factors.

Proof of LemmaA.1 To make sure (D1, D2) is an MCD, it needs to prove that for each
level of ζ , the corresponding rows in D2 form an L(st−1, k) after level-collapsing.

Here, we collapse any level x of ξ by f (x) = � x+(st−1)/2
s �. After level-collapsing, the

levels of ξ are collapsed to the st−1 levels {0, 1, st−1−1}. Letλi = ±ηi+((s−1)/2)1st ,
i = 1, . . . , t , then the entries of λi are all in {0, 1, . . . , s−1}, and ξ +((st −1)/2)1st =
λ1 + λ2s + · · · + λt st−1. Thus f (ξ) = λ2 + λ3s + · · · + λt st−2. It is easy to see that
for each level of ζ , the corresponding rows in (λ2, . . . , λt ) form an st−1 full factorial
design, since (ζ, η2, . . . , ηt ) is an st full factorial design. Thus for each level of ζ , the
corresponding rows in D2 form an L(st−1, k) after level-collapsing. This completes
the proof. ��
Proof of LemmaA.2 (i) From the construction of D(0), it is easy to see that D(0) is an
OA(s2, s, s, 2), and (α, . . . , α) is a row in D(0) for any α ∈ GF(s). Furthermore,
the rows of D(0) form a linear space over GF(s). Then, for any αi , αk ∈ GF(s),
αiαk Js2×s+D(0) can be transformed into D(0) by rowpermutation. Thus ifα j1 = αi1+
αt1 , αt1 �= 0, then after row permutation,

(
βi1 ⊕ D(0), β j1 ⊕ D(0)

)
can be transformed

into
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1812 W. Zhou et al.

(
(D(0))T (D(0))T . . . (D(0))T

(αt1α0 Js2×s + D(0))T (αt1α1 Js2×s + D(0))T . . . (αt1αs−1 Js2×s + D(0))T

)T

.

So it is straightforward to obtain thatW (1)
i1 j1

is a full factorial design with three factors.
Furthermore, for v = 2, 3, . . ., if α jv = αiv +αtv , αtv �= 0, then after row permutation,(
βiv ⊕ D(v−1), β jv ⊕ D(v−1)

)
can be transformed into

(
(D(v−1))T (D(v−1))T . . . (D(v−1))T

(αtv α0 Jsv+1×sv + D(v−1))T (αtv α1 Jsv+1×sv + D(v−1))T . . . (αtv αs−1 Jsv+1×sv + D(v−1))T

)T

.

ThusW (v)
i1 j1i2 j2···iv jv is an s-level full factorial designwith 2+v factors for v = 2, 3, . . ..

(ii) In Algorithm 4, N is a full factorial design which can be written as

N =
(

γ T γ T · · · γ T

α01Ts α11Ts · · · αs−11Ts

)T

and G1 = (1s, γ )T , where γ = (α0, · · · , αs−1)
T . Then (D(0), e(0)) can be written as

(D(0), e(0)) =

⎛

⎜
⎜
⎜
⎝

γ 1Ts + α01sγ T α01s
γ 1Ts + α11sγ T α11s
...

...

γ 1Ts + αs−11sγ T αs−11s

⎞

⎟
⎟
⎟
⎠

.

From the definitions, it is obvious to obtain that

(βi1 ⊕ D(0), β j1 ⊕ e(0))

=
⎛

⎜
⎝

αi1α0 Js2×s + D(0) α j1α01s2 + e(0)

...
...

αi1αs−1 Js2×s + D(0) α j1αs−11s2 + e(0)

⎞

⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

αi1α0 Js×s + γ 1Ts + α01sγ T α j1α01s + α01s
αi1α0 Js×s + γ 1Ts + α11sγ T α j1α01s + α11s
...

...

αi1α0 Js×s + γ 1Ts + αs−11sγ T α j1α01s + αs−11s
...

...
...

...

αi1αs−1 Js×s + γ 1Ts + α01sγ T α j1αs−11s + α01s
αi1αs−1 Js×s + γ 1Ts + α11sγ T α j1αs−11s + α11s
...

...

αi1αs−1 Js×s + γ 1Ts + αs−11sγ T α j1αs−11s + αs−11s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Note that (αi1αk1 Js×s + γ 1Ts + αk21sγ
T , α j1αk11s + αk21s) can be transformed into

(γ 1Ts +αk21sγ
T , α j1αk11s +αk21s) by permuting rows, for any k1, k2 = 0, . . . , s−1.

Then (βi1 ⊕ D(0), β j1 ⊕ e(0)) can be transformed into

⎛

⎜
⎝

D(0), α j1α01s2 + e(0)

...
...

D(0), α j1αs−11s2 + e(0)

⎞

⎟
⎠ .

Thus (a(1)
1 , a(1)

2 , h) is a full factorial design with three factors, where α j1 �= 0. Fur-
thermore, for v ≥ 2, (βiv ⊕ D(v), β jv ⊕ e(v)) can be transformed into

⎛

⎜
⎝

D(v−1), α jvα01s2 + e(v−1)

...
...

D(v−1), α jvαs−11s2 + e(v−1)

⎞

⎟
⎠ .

Similarly, for any column h ∈ e(v) with v ≥ 2, we can obtain that (βiv ⊕
W (v−1)

i1 j1i2 j2···iv−1 jv−1
, h) is a full factorial design with 2 + v factors, where α jv �= 0.

This completes the proof. ��
Proof of Theorem 1 From the construction of Algorithm 1, it is easy to obtain that X
is an LHD and D1 is an OA. D being an MCD follows from Lemma A.1 with t = 2.
Any column of X denoted as ξ can be represented as ξ = η1 ± η2s, where (η1, η2)

is an s2 full factorial design. From the construction, it is obvious that (ζ, η2) is an
s2 full factorial design, where ζ is any column of D1. Then D is an MCD following
Lemma A.1. From Lemma 1, if M is orthogonal, then X is orthogonal. ��
Proof of Corollary 1 For any two columns in X j , denoted as ξ1 and ξ2, they can be
expressed as ξ1 = η11 ± η12s and ξ2 = η21 ± η22s, respectively. And (η11, η12),
(η21, η22) and (η12, η22) are s2 full factorial designs. Collapse the level x of X j by
�(x + (s2 − 1)/2)/s� to {0, 1, . . . , s−1}. Then ξ1 and ξ2 become η12+((s−1)/2)1s2
and η22+ ((s−1)/2)1s2 , respectively. As (η12+ ((s−1)/2)1s2 , η22+ ((s−1)/2)1s2)
is an s2 full factorial design, then (i) is correct. The proofs of (ii) and (iii) are similar
to that of (i) and thus omitted here. ��
Proof of Theorem 2 (i) It is easy to see that D1 is an OA. From the construction

of Algorithm 2, following the idea of Lemma 2, each Oi is an OA(su, 2(u −
1), s, u). So each O(l)

i is an OA(su, 2(u−1), s, u)with levels {−(s−1)/2,−(s−
3)/2, . . . , (s − 1)/2}. From the properties of the rotation matrix Ra1, Z

(l)
i is an

OLHD. Then D2 is an OLHD from Lemma 1.
(ii) Combing the idea of (iv) inLemma2 andLemmaA.1,we can obtain that (D1, D2)

is an OMCD.
(iii) Similarly to the proof of Theorem 1, after the levels of (z(l)i, j , z

(l)
i, j ′) are collapsed

to {0, 1, . . . , s − 1}, they become (η j + s−1
2 1su , η j ′ + s−1

2 1su ), where η j and η j ′

are the two corresponding columns in O(l)
i . Then (iii) can be obtained straight-

forwardly.
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1814 W. Zhou et al.

(iv) For 1 ≤ j ≤ u − 1 and u ≤ j ′ ≤ 2u − 2, z(l)i, j and z(l)i, j ′ can be represented

as z(l)i, j = ϕd2i−1 ± d2i, j and z(l)i, j ′ = ϕ′d2i + d2i−1, j ′ , where ϕ and ϕ′ are rows
with entries from a signed permutation of s, s2, . . . , su−1. After collapsing z(l)i, j

and z(l)i, j ′ to s and s
u−1 separately, the corresponding columns are d2i−1,τ and d2i

respectively. As (d2i−1,τ , d2i ) forms a full factorial design, (z(l)i, j , z
(l)
i, j ′) achieves

stratification on s × su−1. The proofs for the other cases are similar.

Proof of Theorem 3 We only need to prove that D2 is mirror-symmetric as other results
follow from Theorem 2. As Oi for i = 1, . . . , k and L are mirror-symmetric designs,
then each O(l)

i is a mirror-symmetric design. So if b is a row of O(l)
i , −b is also one

of its rows. Then for Z (l)
i , if bRa1 is one of the rows, −bRa1 is also one of its rows.

Thus Z (l)
i is mirror-symmetric, furthermore, D2 is mirror-symmetric. ��

Proof of Theorem 4 (i) From the definitions of D(0) and e(0), it is easy to check that
D1 is an OA(s2+v, (s−1)v +(s−(2p+2))sv, s, 2). From Theorem 1 of Sun and
Tang (2017), we can obtain that D2 is an orthogonal L(s2+v, �s/2�v(p+1)21+v).

(ii) Let ζ be any column of D1, then ζ ∈ e(v) or ζ ∈ βi ⊕ D(v−1) for i =
2p + 2, . . . , s − 1. Let ξ be any column of D2, then ξ ∈ H̃ (i)

j1 j2... jv
for some

corresponding j1, j2, . . . , jv . And there exist W (v−1)
i1 j1i2 j2···iv−1 jv−1

, βiv and β jv ,

such that ξ can be represented as ξ = ±λ1 ± λ2s ± · · · ± λ2+vs2+v−1 where
(λ2, . . . , λ2+v) = βiv ⊕ W (v−1)

i1 j1i2 j2···iv−1 jv−1
, and λ1 ∈ β jv ⊕ D(v−1). From

Lemma A.2, we can obtain that (ζ, λ2, . . . , λ2+v) is a full factorial design. Then
(D1, D2) is an MCD from Lemma A.1.

(iii) According to the construction of D2, it is easy to see that D2 achieves stratification
on s × s grids in any two dimensions.

��
Proof of Corollary 3 (i) It is clear that Part (i) can be obtained from Theorem 4 and

Lemma A.2.
(ii) From Theorem 4, (D1, Γ ) is an OMCD. We only need to prove that (Ψ , Γ ) is an

OMCD. From the construction in Algorithm 4, we can obtain that

H (1)
00...0 =

(
β0 ⊕ H (1)

00...0 jv−1| jv−1=0, β1 ⊕ H (1)
00...0 jv−1| jv−1=0

)
.

Let ξ be any column of Γ , then ξ = ±η1 ± η2s ± · · · ± η2+vs2+v−1, where
η1 ∈ β0 ⊕ H (1)

00...0 jv−1| jv−1=0, ηh ∈ β1 ⊕ H (1)
00...0 jv−1| jv−1=0 for h = 2, . . . , 2 + v

and (η1, η2, . . . , η2+v) is a full factorial design. Let ζ be any column of Ψ , from
the definition of Ψ , we can obtain that (ζ, η2, . . . , η2+v) is a full factorial design
from Lemma A.2. From Lemma A.1, (Ψ , Γ ) is an OMCD. Now Part (ii) can be
proved.

��
Proof of Theorem 5 Let l(r)i denote the i th column of Lr , r = 1, 2. Without loss of

generality, we only consider the column l(1)1 ⊕ (sl(2)1 ), which is the first column of Y .
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Since l(1)1 is a permutation on {−(s−1)/2,−(s−3)/2, . . . , (s−3)/2, (s−1)/2}, and
l(2)1 is a permutation on {−(n/s−1)/2,−(n/s−3)/2, . . . , (n/s−3)/2, (n/s−1)/2},
then l(1)1 ⊕ (sl(2)1 ) is a permutation on {−(n − 1)/2,−(n − 3)/2, . . . , (n − 3)/2, (n −
1)/2}. Thus Y is an L(n, k2). It is clear that �(Y j + (n − 1)/2)/s� = L2 + (n/s −
1)/2 for j = 1, 2, . . . , s, where L2 + (n/s − 1)/2 is an L(n/s, k2) with entries
from {0, 1, . . . , n/s − 1}. So D = (D1,Y ) can be transformed into (D1, 1s ⊗ (L2 +
(n/s − 1)/2)) after level-collapsing of Y . Since (D1, 1s ⊗ (1, 2, . . . , n/s)T ) is an
OA(n, sm(n/s), 2), (D1, 1s ⊗ (l(2)i + (n/s − 1)/2)) is an OA(n, sm(n/s), 2) too,
i = 1, 2, . . . , k2. Therefore, D is anMCDwithm qualitative factors and k2 quantitative
factors. ��
Proof of Theorem 6 For two vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T , define
� operator as

a � b =
n∑

i=1

aibi .

Let l(r)v denote the vth column of Lr for r = 1, 2, l(r)uv denote the uth element of l(r)v , and
dit = l(1)i ⊕ (sl(2)t ), where i = 1, 2, . . . , k1 and t = 1, 2, . . . , k2. For 1 ≤ i1, i2 ≤ k1
and 1 ≤ t1, t2 ≤ k2,

di1t1 � di2t2 =
s∑

u=1

(l(1)ui1
⊕ (sl(2)t1 )) � (l(1)ui2

⊕ (sl(2)t2 ))

= (n/s)
s∑

u=1

l(1)ui1
l(1)ui2

+ s2
s∑

u=1

l(2)t1 � l(2)t2

= (n/s)l(1)i1
� l(1)i2

+ s3l(2)t1 � l(2)t2 .

From the construction procedure, it is easy to see that

ρ(l(1)i1
, l(1)i2

) = 12

s(s2 − 1)
l(1)i1

� l(1)i2
, ρ(l(2)t1 , l(2)t2 ) = 12s3

n(n2 − s2)
l(2)t1 � l(2)t2

and

ρ(di1t1 , di2t2) = 12

n(n2 − 1)
di1t1 � di2t2 .

Then we can obtain that

ρ(di1t1, di2t2) = λρ(l(1)i1
, l(1)i2

) + (1 − λ)ρ(l(2)t1 , l(2)t2 ), where λ = s2 − 1

n2 − 1
.

(i) For k1 = k2 and 1 ≤ j1, j2 ≤ k2, we can have that ρ j1 j2(Y ) = λρ j1 j2(L1) +
(1− λ)ρ j1 j2(L2). From Corollary 2 of Huang et al. (2014), if L1 and L2 are both
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OLHDs, then Y is OLHD; furthermore, Y is second-order orthogonal if L1 and
L2 are both second-order orthogonal.

(ii) It is straightforward to see that (1) is true.

��

Appendix B

Table 5 An OMCD of 81 runs in Example 4

Run D1 D2

e(2) β2 ⊕ D(1)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 − 40 − 14 − 32 − 22 − 38 − 16 − 34 − 20

2 1 1 1 1 0 1 2 0 1 2 0 1 2 − 31 9 − 23 9 − 29 9 − 25 9

3 2 2 2 2 0 2 1 0 2 1 0 2 1 − 22 32 − 14 40 − 20 34 − 16 38

4 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

5 1 1 1 1 1 2 0 1 2 0 1 2 0 9 23 9 31 9 25 9 29

6 2 2 2 2 1 0 2 1 0 2 1 0 2 − 9 − 23 − 9 −31 − 9 − 25 − 9 − 29

7 0 0 0 0 2 2 2 2 2 2 2 2 2 40 14 32 22 38 16 34 20

8 1 1 1 1 2 0 1 2 0 1 2 0 1 22 − 32 14 −40 20 − 34 16 −38

9 2 2 2 2 2 1 0 2 1 0 2 1 0 31 − 9 23 −9 29 − 9 25 −9

10 1 2 1 2 0 0 0 1 1 1 2 2 2 − 37 − 17 3 − 3 −35 − 19 3 − 3

11 2 0 2 0 0 1 2 1 2 0 2 0 1 − 28 6 12 28 − 26 6 12 26

12 0 1 0 1 0 2 1 1 0 2 2 1 0 − 19 38 − 6 − 25 − 17 40 − 6 − 23

13 1 2 1 2 1 1 1 2 2 2 0 0 0 3 − 3 35 19 3 − 3 37 17

14 2 0 2 0 1 2 0 2 0 1 0 1 2 12 29 17 − 34 12 31 19 − 32

15 0 1 0 1 1 0 2 2 1 0 0 2 1 − 6 − 26 26 − 12 −6 − 28 28 − 12

16 1 2 1 2 2 2 2 0 0 0 1 1 1 34 20 − 38 − 16 32 22 − 40 − 14

17 2 0 2 0 2 0 1 0 1 2 1 2 0 16 − 35 − 29 6 14 − 37 −31 6

18 0 1 0 1 2 1 0 0 2 1 1 0 2 25 − 12 − 20 37 23 − 12 − 22 35

19 2 1 2 1 0 0 0 2 2 2 1 1 1 − 34 − 20 38 16 − 32 − 22 40 14

20 0 2 0 2 0 1 2 2 0 1 1 2 0 − 25 12 20 − 37 − 23 12 22 − 35

21 1 0 1 0 0 2 1 2 1 0 1 0 2 − 16 35 29 − 6 − 14 37 31 − 6

22 2 1 2 1 1 1 1 0 0 0 2 2 2 − 3 3 −35 − 19 −3 3 − 37 − 17

23 0 2 0 2 1 2 0 0 1 2 2 0 1 6 26 − 26 12 6 28 − 28 12

24 1 0 1 0 1 0 2 0 2 1 2 1 0 − 12 − 29 − 17 34 − 12 − 31 − 19 32

25 2 1 2 1 2 2 2 1 1 1 0 0 0 37 17 − 3 3 35 19 − 3 3

26 0 2 0 2 2 0 1 1 2 0 0 1 2 19 − 38 6 25 17 − 40 6 23

27 1 0 1 0 2 1 0 1 0 2 0 2 1 28 − 6 − 12 − 28 26 − 6 − 12 − 26

28 1 1 2 2 2 2 2 2 2 2 2 2 2 − 39 − 15 − 33 − 21 1 − 1 − 1 1

29 2 2 0 0 2 0 1 2 0 1 2 0 1 − 30 8 − 24 10 10 24 8 30
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Table 5 continued

Run D1 D2

e(2) β2 ⊕ D(1)

30 0 0 1 1 2 1 0 2 1 0 2 1 0 − 21 34 − 15 38 − 8 − 23 − 10 −31

31 1 1 2 2 0 0 0 0 0 0 0 0 0 1 − 1 − 1 1 39 15 33 21

32 2 2 0 0 0 1 2 0 1 2 0 1 2 10 25 8 29 21 − 32 15 −40

33 0 0 1 1 0 2 1 0 2 1 0 2 1 − 8 − 24 − 10 −30 30 − 10 24 − 8

34 1 1 2 2 1 1 1 1 1 1 1 1 1 38 16 34 20 − 40 − 14 − 32 − 22

35 2 2 0 0 1 2 0 1 2 0 1 2 0 20 − 33 16 −39 − 31 8 − 23 10

36 0 0 1 1 1 0 2 1 0 2 1 0 2 29 − 10 25 − 8 − 22 33 − 14 39

37 2 0 0 1 2 2 2 0 0 0 1 1 1 − 36 − 18 2 − 2 4 −4 36 18

38 0 1 1 2 2 0 1 0 1 2 1 2 0 − 27 5 11 26 13 30 18 − 34

39 1 2 2 0 2 1 0 0 2 1 1 0 2 − 18 40 − 7 − 24 − 5 − 26 27 − 11

40 2 0 0 1 0 0 0 1 1 1 2 2 2 4 − 4 37 17 33 21 − 38 − 16

41 0 1 1 2 0 1 2 1 2 0 2 0 1 13 31 19 − 33 15 −35 − 29 7

Table 6 An OMCD of 81 runs in Example 4 (Table 5 continued)

Run D1 D2

e(2) β2 ⊕ D(1)

42 1 2 2 0 0 2 1 1 0 2 2 1 0 − 5 − 27 28 − 11 24 − 13 − 20 36

43 2 0 0 1 1 1 1 2 2 2 0 0 0 32 22 − 39 − 15 − 37 − 17 2 − 2

44 0 1 1 2 1 2 0 2 0 1 0 1 2 14 − 36 −30 7 − 28 5 11 27

45 1 2 2 0 1 0 2 2 1 0 0 2 1 23 − 13 − 21 35 − 19 39 − 7 − 25

46 0 2 1 0 2 2 2 1 1 1 0 0 0 − 33 − 21 40 14 − 2 2 −35 − 19

47 1 0 2 1 2 0 1 1 2 0 0 1 2 − 24 11 22 − 36 7 27 − 26 13

48 2 1 0 2 2 1 0 1 0 2 0 2 1 − 15 37 31 − 5 − 11 − 29 − 17 33

49 0 2 1 0 0 0 0 2 2 2 1 1 1 − 2 2 −36 − 18 36 18 − 4 4

50 1 0 2 1 0 1 2 2 0 1 1 2 0 7 28 − 27 13 18 − 38 5 24

51 2 1 0 2 0 2 1 2 1 0 1 0 2 − 11 −30 − 18 32 27 − 7 − 13 − 28

52 0 2 1 0 1 1 1 0 0 0 2 2 2 35 19 − 4 4 −34 − 20 39 15

53 1 0 2 1 1 2 0 0 1 2 2 0 1 17 − 39 5 23 − 25 11 21 − 37

54 2 1 0 2 1 0 2 0 2 1 2 1 0 26 − 7 − 13 − 27 − 16 36 30 − 5

55 2 2 1 1 1 1 1 1 1 1 1 1 1 − 38 − 16 − 34 − 20 40 14 32 22

56 0 0 2 2 1 2 0 1 2 0 1 2 0 − 29 10 − 25 8 22 − 33 14 −39

57 1 1 0 0 1 0 2 1 0 2 1 0 2 − 20 33 − 16 39 31 − 8 23 − 10

58 2 2 1 1 2 2 2 2 2 2 2 2 2 − 1 1 1 − 1 −39 − 15 −33 − 21

59 0 0 2 2 2 0 1 2 0 1 2 0 1 8 24 10 30 − 30 10 − 24 8

60 1 1 0 0 2 1 0 2 1 0 2 1 0 − 10 − 25 − 8 − 29 − 21 32 − 15 40

61 2 2 1 1 0 0 0 0 0 0 0 0 0 39 15 33 21 − 1 1 1 − 1
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Table 6 continued

Run D1 D2

e(2) β2 ⊕ D(1)

62 0 0 2 2 0 1 2 0 1 2 0 1 2 21 − 34 15 −38 8 23 10 31

63 1 1 0 0 0 2 1 0 2 1 0 2 1 30 − 8 24 − 10 − 10 − 24 − 8 −30

64 0 1 2 0 1 1 1 2 2 2 0 0 0 − 35 − 19 4 − 4 34 20 − 39 − 15

65 1 2 0 1 1 2 0 2 0 1 0 1 2 − 26 7 13 27 16 − 36 −30 5

66 2 0 1 2 1 0 2 2 1 0 0 2 1 − 17 39 − 5 − 23 25 − 11 − 21 37

67 0 1 2 0 2 2 2 0 0 0 1 1 1 2 − 2 36 18 − 36 − 18 4 − 4

68 1 2 0 1 2 0 1 0 1 2 1 2 0 11 30 18 − 32 − 27 7 13 28

69 2 0 1 2 2 1 0 0 2 1 1 0 2 − 7 − 28 27 − 13 − 18 38 − 5 − 24

70 0 1 2 0 0 0 0 1 1 1 2 2 2 33 21 − 40 − 14 2 − 2 35 19

71 1 2 0 1 0 1 2 1 2 0 2 0 1 15 − 37 −31 5 11 29 17 − 33

72 2 0 1 2 0 2 1 1 0 2 2 1 0 24 − 11 − 22 36 − 7 − 27 26 − 13

73 1 0 0 2 1 1 1 0 0 0 2 2 2 − 32 − 22 39 15 37 17 − 2 2

74 2 1 1 0 1 2 0 0 1 2 2 0 1 − 23 13 21 − 35 19 −39 7 25

75 0 2 2 1 1 0 2 0 2 1 2 1 0 − 14 36 30 − 7 28 − 5 − 11 − 27

76 1 0 0 2 2 2 2 1 1 1 0 0 0 − 4 4 −37 − 17 −33 − 21 38 16

77 2 1 1 0 2 0 1 1 2 0 0 1 2 5 27 − 28 11 − 24 13 20 − 36

78 0 2 2 1 2 1 0 1 0 2 0 2 1 − 13 −31 − 19 33 − 15 35 29 − 7

79 1 0 0 2 0 0 0 2 2 2 1 1 1 36 18 − 2 2 −4 4 − 36 − 18

80 2 1 1 0 0 1 2 2 0 1 1 2 0 18 − 40 7 24 5 26 − 27 11

81 0 2 2 1 0 2 1 2 1 0 1 0 2 27 − 5 − 11 − 26 − 13 − 30 − 18 34

Table 7 An OMCD of 32 runs in Example 5

Run Φ Γ

e(3) Ψ

1 0 0 0 0 0 0 0 0 0 − 14.5 − 1.5 − 9.5 −6.5 − 13.5 − 2.5 − 10.5 − 5.5

2 1 0 1 0 1 0 1 0 1 − 6.5 9.5 − 1.5 14.5 − 5.5 10.5 − 2.5 13.5

3 0 1 1 1 1 1 1 1 1 14.5 1.5 9.5 6.5 13.5 2.5 10.5 5.5

4 1 1 0 1 0 1 0 1 0 6.5 − 9.5 1.5 − 14.5 5.5 − 10.5 2.5 − 13.5

5 1 0 0 1 1 0 0 1 1 − 10.5 − 5.5 13.5 2.5 − 9.5 −6.5 14.5 1.5

6 0 0 1 1 0 0 1 1 0 − 2.5 13.5 5.5 − 10.5 − 1.5 14.5 6.5 − 9.5

7 1 1 1 0 0 1 1 0 0 10.5 5.5 − 13.5 − 2.5 9.5 6.5 − 14.5 − 1.5

8 0 1 0 0 1 1 0 0 1 2.5 − 13.5 − 5.5 10.5 1.5 − 14.5 −6.5 9.5

9 1 0 0 0 0 1 1 1 1 − 12.5 −3.5 − 11.5 −4.5 15.5 0.5 8.5 7.5

10 0 0 1 0 1 1 0 1 0 − 4.5 11.5 − 3.5 12.5 7.5 − 8.5 0.5 − 15.5

11 1 1 1 1 1 0 0 0 0 12.5 3.5 11.5 4.5 − 15.5 − 0.5 − 8.5 − 7.5

12 0 1 0 1 0 0 1 0 1 4.5 − 11.5 3.5 − 12.5 − 7.5 8.5 − 0.5 15.5
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Table 7 continued

Run Φ Γ

e(3) Ψ

13 0 0 0 1 1 1 1 0 0 − 8.5 − 7.5 15.5 0.5 11.5 4.5 − 12.5 −3.5

14 1 0 1 1 0 1 0 0 1 − 0.5 15.5 7.5 − 8.5 3.5 − 12.5 −4.5 11.5

15 0 1 1 0 0 0 0 1 1 8.5 7.5 − 15.5 − 0.5 − 11.5 −4.5 12.5 3.5

16 1 1 0 0 1 0 1 1 0 0.5 − 15.5 − 7.5 8.5 − 3.5 12.5 4.5 − 11.5

17 1 0 0 0 0 0 0 0 0 15.5 0.5 8.5 7.5 12.5 3.5 11.5 4.5

18 0 0 1 0 1 0 1 0 1 7.5 − 8.5 0.5 − 15.5 4.5 − 11.5 3.5 − 12.5

19 1 1 1 1 1 1 1 1 1 − 15.5 − 0.5 − 8.5 − 7.5 − 12.5 −3.5 − 11.5 −4.5

20 0 1 0 1 0 1 0 1 0 − 7.5 8.5 − 0.5 15.5 − 4.5 11.5 − 3.5 12.5

21 0 0 0 1 1 0 0 1 1 11.5 4.5 − 12.5 −3.5 8.5 7.5 − 15.5 − 0.5

22 1 0 1 1 0 0 1 1 0 3.5 − 12.5 −4.5 11.5 0.5 − 15.5 − 7.5 8.5

23 0 1 1 0 0 1 1 0 0 − 11.5 −4.5 12.5 3.5 − 8.5 − 7.5 15.5 0.5

24 1 1 0 0 1 1 0 0 1 − 3.5 12.5 4.5 − 11.5 − 0.5 15.5 7.5 − 8.5

25 0 0 0 0 0 1 1 1 1 13.5 2.5 10.5 5.5 − 14.5 − 1.5 − 9.5 −6.5

26 1 0 1 0 1 1 0 1 0 5.5 − 10.5 2.5 − 13.5 −6.5 9.5 − 1.5 14.5

27 0 1 1 1 1 0 0 0 0 − 13.5 − 2.5 − 10.5 − 5.5 14.5 1.5 9.5 6.5

28 1 1 0 1 0 0 1 0 1 − 5.5 10.5 − 2.5 13.5 6.5 − 9.5 1.5 − 14.5

29 1 0 0 1 1 1 1 0 0 9.5 6.5 − 14.5 − 1.5 − 10.5 − 5.5 13.5 2.5

30 0 0 1 1 0 1 0 0 1 1.5 − 14.5 −6.5 9.5 − 2.5 13.5 5.5 − 10.5

31 1 1 1 0 0 0 0 1 1 − 9.5 −6.5 14.5 1.5 10.5 5.5 − 13.5 − 2.5

32 0 1 0 0 1 0 1 1 0 − 1.5 14.5 6.5 − 9.5 2.5 − 13.5 − 5.5 10.5

References

BinghamD, Sitter RR, Tang B (2009) Orthogonal and nearly orthogonal designs for computer experiments.
Biometrika 96:51–65

Deng X, Hung Y, Lin CD (2015) Design for computer experiments with qualitative and quantitative factors.
Stat Sin 25:1567–1581

GeorgiouSD,StylianouS (2011)Block-circulantmatrices for constructingoptimalLatin hypercubedesigns.
J Stat Plan Inference 141:1933–1943

He Y, Lin CD, Sun FS (2017) On construction of marginally coupled designs. Stat Sin 27:665–683
He Y, Lin CD, Sun FS, Lv BJ (2017) Marginally coupled designs for two-level qualitative factors. J Stat

Plan Inference 187:103–108
He Y, Lin CD, Sun FS (2019) Construction of marginally coupled designs by subspace theory. Bernoulli

25:2163–2182
Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays: theory and applications. Springer, NewYork
Huang HZ, Yang JF, Liu MQ (2014) Construction of sliced (nearly) orthogonal Latin hypercube designs. J

Complex 30:355–365
Lin CD, Tang B (2015) Latin hypercubes and space-filling designs. In: Dean A, Morris M, Stufken J,

Bingham D (eds) Handbook of design and analysis of experiments. Chapman & Hall/CRC, London,
pp 593–625

Lin CD, Mukerjee R, Tang B (2009) Construction of orthogonal and nearly orthogonal Latin hypercubes.
Biometrika 96:243–247

Lin CD, Bingham D, Sitter RR, Tang B (2010) A new and flexible method for constructing designs for
computer experiments. Ann Stat 38:1460–1477

123



1820 W. Zhou et al.

McKayMD, Beckman RJ, ConoverWJ (1979) A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code. Technometrics 21:239–245

Qian PZG (2012) Sliced Latin hypercube designs. J Am Stat Assoc 107:393–399
SunFS, TangB (2017)Ageneral rotationmethod for orthogonal Latin hypercubes. Biometrika 104:465–472
Sun FS, LiuMQ, Lin DKJ (2009) Construction of orthogonal Latin hypercube designs. Biometrika 96:971–

974
Tang Y, Xu H (2014) Permuting regular fractional factorial designs for screening quantitative factors.

Biometrika 101:333–350
Wang L, Sun FS, LinDKJ, LiuMQ (2018a) Construction of orthogonal symmetric Latin hypercube designs.

Stat Sin 28:1503–1520
Wang L, Xiao Q, Xu H (2018b) Optimal maximin L1-distance Latin hypercube designs based on good

lattice point designs. Ann Stat 46:3741–3766

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Construction of orthogonal marginally coupled designs
	Abstract
	1 Introduction
	2 Definitions and notation
	3 Design construction
	3.1 Construction of MCDs using OAs with s2 runs
	3.2 Construction of MCDs using regular factorial designs
	3.3 Construction of MCDs using mixed-level OAs

	4 Concluding remarks
	Acknowledgements
	Appendix A: Proofs
	Appendix B
	References




