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Abstract

Marginally coupled designs (MCDs) were first introduced by Deng et al. (Stat Sin
25:1567-1581, 2015), as more economical designs than sliced space-filling designs
which are the popular choices for computer experiments with both qualitative and
quantitative factors. In an MCD, the design for qualitative factors is an orthogonal
array, and the one for quantitative factors is a Latin hypercube design (LHD) with its
rows corresponding to each level of any qualitative factor also forming a small LHD.
As we know, orthogonality is a popular and important property for evaluating LHDs,
but was not considered in existing results on MCDs. In this paper, we propose some
approaches to constructing a new class of MCDs with orthogonality. In some cases, the
designs for quantitative factors also satisfy the two dimensional space-filling property.
Besides, the run sizes of the obtained designs are more flexible than the existing ones.

Keywords Computer experiment - Orthogonality - Orthogonal array - Regular design

1 Introduction

Latin hypercube designs (LHDs), proposed by McKay et al. (1979), are widely used
in computer experiments. A large number of papers have made efforts to find differ-
ent variants of LHDs, including orthogonal LHDs and maximin LHDs (see e.g., Lin
and Tang 2015; Wang et al. 2018a,b, and the references therein). These designs are
constructed for computer experiments with only quantitative factors. For computer
experiments with both qualitative and quantitative factors, sliced LHDs (SLHDs) pro-
posed by Qian (2012) are often used. However, if the number of the level-combinations
of the qualitative factors is large, the run size of the SLHD will be very large. Recently,
Dengetal. (2015) proposed a cost-effective class of designs, called marginally coupled
designs (MCDs), which maintain an economic run size with space-filling properties.
The construction of MCDs has been studied by Deng et al. (2015), He et al. (2017,

B Min-Qian Liu
mgqliu@nankai.edu.cn

1 School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin 300071,
China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-019-01156-1&domain=pdf
http://orcid.org/0000-0003-1954-6241

1796 W. Zhou et al.

2019) and He et al. (2017). However, the designs for quantitative factors in these
existing papers do not have the orthogonality property. Orthogonality not only is of
vital importance for fitting polynomial models, but also can be regarded as a step-
ping stone to space-filling designs (Bingham et al. 2009). In this paper, we propose
several methods to construct MCDs in which the designs for quantitative factors are
orthogonal LHDs. In addition, some of the obtained designs have an attractive space-
filling property, i.e., the designs for quantitative factors possess stratification in some
two-dimensional projections.

The remainder of the paper is organized as follows. In Sect. 2, we present some
definitions and notation. Section 3 devotes itself to the construction approaches and
examples. Some concluding remarks are given in Sect. 4. All proofs are deferred to
the Appendix.

2 Definitions and notation

For any design D, let D[i, k] denote the element in the ith row and kth column of D,
Dli, :] denote the ith row of D, D[i, k : m] consist of the kth to mth elements in the
ithrow of D, and D[:, k : m] consist of the kth to mth columns of D. An n x m matrix
in which the jth column includes s; equally-spaced levels is called a mixed-level
orthogonal array (OA) of strength ¢, denoted by O A(n, 152 . .. s, t), if foreach n x ¢
submatrix, all possible level-combinations occur with the same frequency. When all
the s;’s are equal to s, the OA is symmetric and denoted as OA(n, m, s,t). A Latin
hypercube design (LHD) with n runs and p factors, denoted as L(n, p),isann x p
matrix in which each column includes n equally-spaced levels. An LHD is called
an orthogonal LHD (OLHD) if the correlation between any two distinct columns is
zero. An OLHD with centered levels is called second-order orthogonal if the sum of
the elementwise products of any three columns is zero. The correlation between two
vectors a = (ay, ...,a,)T and b = (by, ..., b,)T is defined as

M7 (@ —a)(b; —b)
\/27:1(‘11' —a)2 Y (bi — b)?

pla,b) =

wherea =Y " a;/nandb=Y"_, b;i/n.

éu o duk P11 Pm
For two matrices ¢ = | : U andp = | : R , define
Gn1 o Puk Qi @im
pruute - duto
P9 =|: R
[ N Y &

Furthermore, for k = m, define ¢ &, ¢ = (¢1 D @1, ..., P D @), where ¢; and @;
are the ith columns of ¢ and ¢, respectively.
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Orthogonal marginally coupled designs 1797

A design D = (Dy, Dy), where D and D; are sub-designs for qualitative and
quantitative factors respectively, is called an MCD if (i) D is an OA, (ii) D> is an
LHD, and (iii) for each level of any factor in D1, the corresponding rows in D, form
a small LHD. Furthermore, if D, in an MCD is an OLHD, the MCD is called an
orthogonal MCD (OMCD).

A design D = (xj)nxm is called mirror-symmetric if we reverse the level order
for all factors, the resulting design is still itself (Tang and Xu 2014). In particular, for
a mirror-symmetric design D with centered levels, if x is a row in D, —x is also one
of the rows in D.

The notation Bj\ By represents the array which consists all columns in By but not
in By.

3 Design construction

This section presents five methods to construct OMCDs. The first four ones are based
on the rotation approach, and the fifth one is based on mixed-level OAs. In addition,
the low-dimensional projection properties of the proposed designs are also discussed.

3.1 Construction of MCDs using OAs with s runs

Suppose an 0A(s2, k,s,2) withlevels 1, ..., s, denoted as A, is available. Let d and
f be positive integers with k = d 4-2 f. Then A can be divided into two parts, denoted
as Dp and C, with d and 2 f columns respectively.

Let M = (m;;) be an L(s, p) with elements {—(s — 1)/2, —(s —3)/2,..., (s —
1)/2}. Then the correlation matrix of M is given by

1 —1
R={—s¢s>=1Dt M'Mm.
12

The construction steps are presented in the following algorithm.

Algorithm 1

Step 1 For j = 1,...,p, replace the symbols 1,...,s in C by myj,...,mgj,
respectively, to obtain an s* x (2f) matrix C j. Then partition C; as
Ci=(Cj1,...,Cjp), where each of Cjy, ..., Cjs has two columns.

Step2 For j = 1,..., p, obtain an 52 x Q2f) matrix X; = (Cj1V,...,CjfV),

where
s —1
v = (1 ) .
Step 3 Obtain a matrix D = (D1, X), where X = (X1, ..., X,) with order s2 x
@pf).
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Lemma 1 (Lin et al. 2009)

(1) The matrix X is an LHD in the sense that each of its columns is a permutation of
{(—(s2—1)/2, = (s> =3)/2, ..., (s> = 1)/2};

(i1) The correlation matrix among the columns of X is given by R=RQDL f» where
1, is the identity matrix of order u and ® denotes the Kronecker product.

Theorem 1 The design D constructed in Algorithm 1 is an MCD. Furthermore, if M
is orthogonal, X is orthogonal.

Next, we discuss the projection property of the proposed designs. Denote the ith
column of X ; by x; ;.
Corollary 1 For X constructed above, we have

(1) after collapsing the levels of X to s levels, each X j is an OA(s?,2f,s,2);
(i) (xji,x; ) achieves stratification on s x s grids for i # i"and j=1,..., p;
(iii) (x;,;,xj 1) achieves stratification on s x s grids fori #i" and j # j'.

Then, an example is given to illustrate the construction.

Example 1 Let Abe an O A(16, 5, 4, 2). Divide it into two parts D and C as follows:

T
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 23 41 2 3 412 3 41 2 3 4
A=DiIC)=]1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 43 41 2 43 2 12 1 43
1 2 3 4 4 3 2 1 2 143 3 41 2
Let
1 -3
1 3 1 4 —1
M_z 1 3 andV_(1 4).
-3 -1
After replacing the symbols of C by myj, ..., m4;j, C; is obtained respectively, for
j=12
(1 3 -1 =3 -1 =3 1 3 -3 -1 3 1 3 1 =3 -1\
C‘:§<1 3 -1 -3 -3 -1 3 1 3 1 -3 -1 -1 -3 1 3>'

C_1—313—13—1—31—131—31—3—13’
2553\ 3 13 -1 -1 3 1 -3 1 -3 -1 3 3 -1 -3 1)°

Then X = (X1, X») = (C1V, C,V), where

Xi=313 9o 3 —9 —11 -1 11 1 15 5 —15 -5 -7 -13 7 13

1(5 15 -5 -—I5 -7 -13 7 13 -9 -3 9 3 11 1 —11 71)T‘
2

@ Springer



Orthogonal marginally coupled designs 1799

x _ /=15 5 15 -5 11 -1 -1 1 -3 9 3 -9 7 -13 -7 13\"
S -9 3 9 -3 -7 13 7 -13 5 =15 =5 15 11 -1 -11 1

Collapsing the levels of X and X by [(x + 15/2)/4], we get C} and C; as follows:

cr = 231 0102301323201 T;
231001 3 232011260 2 3

C; = 0231310213202 ¢01 3 !
0231132020133 10 2

Denote the ith column of C}‘f by cj ;»fori, j =1, 2.1tis easy to check that each C;f is
an OA(16,2,4,2) for j = 1,2, and (CT,I’ C;,z) and (CT’Z, c;]) are OA(16,2,4,2)’s
respectively.

3.2 Construction of MCDs using regular factorial designs

This subsection presents three methods for constructing MCDs of s runs. The first two
methods make use of the Rao-Hamming construction (Hedayat et al. 1999) and some
rotation matrices. For an integer # > 2, a prime power s andi = 1, ..., u, lete; be an
s* x 1 column vector of s-level with entries from G F (s), the Galois field of order s.
Assume that the columns ey, ..., ¢, are independent. Here the independence means
that their linear combination equals the zero vector if and only if the combination
coefficients are all equal to zero. O A(s”, (s* — 1)/(s — 1), s, 2)’s can be constructed
using these u independent columns by the Rao-Hamming construction. Then we
obtain OA’s, By, ..., Bs11, in the following way. Let

By = (e1, ..., eu—2)Up,

where Up is a (u — 2) x [(s“~% — 1)/(s — 1)] matrix by collecting all the nonzero
column vectors given by (I1, I, ..., lu_z)T withl; € GF(s)for j =1,...,u—2,
and the first nonzero entry in (I1, I, . . ., Li—2)T is one. Let

Bi=(e1,...,eq o, wj)Ufori=1,...,5s+1,
where Uisa (u—1) x [(s*~ ! — 1)/(s — 1)] matrix by collecting all the nonzero column
vectors given by (/1, I, . . ., LT withl; € GF(s)for j =1, ..., u—1, and the first
nonzero entry in (/1, o, ..., lu_l)T isone, w; = (ey—1,¢y) fifori =1,...,s +1,
fi=U, ;)T fori=1,...,sand fi11 = (0, DT, 0; € GF(s) = {ap, ..., 05_1}
with «g = 0. The following lemma discusses the properties of the constructed arrays:
Bo, ..., Bsy1.

Lemma2 (Heetal. 2017) For By, ..., Bsy1 constructed above, we have

(i) By is an OA(s*, (s*"2 — 1)/(s — 1),s,2) consisting of s> replicates of
OAG" 2, ("2 = D/(s = 1),5,2);
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(i) B; is an OA(s*, (s*"' — 1)/(s — 1),s,2) consisting of s replicates of
OAG* 1, (s 1 =1)/(s=1),5,2), fori=1,...,s+1;

(iii) for 1 <i <s+1, By C B;, and for 1 <i' #i < s + 1, none of the columns in
B\ By can be generated by any linear combination of columns in B;;

(iv) letby, ..., b,—1 be any u — 1 independent columns from B; and b be any column
of By \ By, where i #i’, then (by,...,b,_1,b) isan OA(s%, u, s, u);

(v) {Bo, (B1\By), (B2\By), ..., (Bs+1\Bo)} form a disjoint partition of O A(s", (s"
—1/(s—=1),s,2).

Given the OA’s By, . . ., By+1, we propose Algorithm 2 below to construct OMCDs.
For ease of expression, B;\ By is denoted as P;. In the algorithm, we use the following
rotation matrices from Sun and Tang (2017):

sRyo —Quw SRw(v—l) —Qutv-1
Ry = and Ry, = forv > 2,
wl (Qw sRy0 vy Quw+tv—1 SRw(v—l) -

where
s —1 Sz(w_l)R( 1o —Rw-10
Rio = ( ) Ryo = ( Y v ,
1 s w Rw-10 s2w ])R(w—l)o

le((l) (il) ande=(OQw_1 (iQw_l),forsz

Algorithm 2

Step 1 For a given k (1 < 2k < s+ 1) and u = 2% + 1 for some integer a, let
di = (d;i1,di2,...,diy—1) consist of u — 1 independent columns from P;,
fori=1,...,2k,and O; = (drj_1,dpj) for j =1,... .,k

Step 2 Derive an s x q OLHD W = (w;;) with levels {—(s — 1)/2, —(s —
3)/2,...,(s—1)/2}.

Step3 Forl=1,...,q,i =1,...,k, obtain an s* x 2(u — 1) matrix Oi(l)from O;
by replacing the levels 0, ...,s — 1 of O; with wyy, . .., wg, respectively.

Step4 Forl=1,...,q,i =1,...,k, obtain Zfl) = (z;{)l, e, Zg)zu—z) = Oi(l)Ra].

Step 5 Take Dy = Ut} Prand Dy = (z\",....,z{", ..., 2\ ..., 2.

Note that, when u = 2, By is an empty set and B;\ By fori =1, ..., s+ 1 istheith
column of the OA(s2, s + 1, s, 2) in Lemma 2(v). Clearly, Algorithm 1 can be seen
as a special case of Algorithm 2 if u = 2 is chosen in Step 1 of Algorithm 2 and R,
is replaced by Rjq in Step 4 of Algorithm 2.

Theorem 2 summarizes the properties of D1 and D, constructed above.

Theorem 2 For D and D, constructed above, we have

(i) Diisan OA(s", (s+1—2k)s*"2,s,2) and D, is an orthogonal L(s", 2kq (u —

1),
(i) (Dy, D) is an OMCD;
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(iii) (z(l) , z(li,) achieves stratiﬁcation ons x s grids for1l < j ;é Jj <2u-—2;

@iv) (zfl;, z(l),) and (zl(lgl, Z; h,) achieve stratification on s x s* Vand s*=—! x s grids
mrwodzmenszonsforl <j<u—-lLu<j <2u—-2i#i,andl <h #
h <2u—2.

Example 2 Considerthe caseof s = 3,u = 3andk = 1,withGF (3) = {ap, a1, a2} =
{0, 1, 2}. Leteq, €3 and e3 be three independent 3-level columns of length 27, and w =
ey, wy) = ex+e3, w3 = ex+2e3,and wg = e3. The arrays By, By, ..., B4 are obtained
as By = {e1}, Bi = {e1, wi, wi + e1, w; + 2e1} fori = 1, 2, 3, 4. Then applying the
Rao—Hamming construction to e, e> and e3, we obtain an O A(27, 13, 3, 2), whose
column partition is displayed in Table 1. Here, the jth column of P; is denoted by
P; ;. Let di = (P12, P13),da = (P21, P»2) and Oy = (di, dz). Here s = 3, the
design W only has one column. Ofl) is obtained from O by replacing the levels 0, 1, 2
with —1,0, 1 respectively. Take Dy = O\" Ry and Dy = (P3, Py), then (Dy, D) is
an OMCD, which is presented in Table 1. The stratification properties of D; can be
seen intuitively in Fig. 1, where X1, X2, X3 and X4 denote zﬁ, z%, zglg and z (1)
respectively, which are the four columns of Dj. For example it is easy to see that
(z ili, z%) achieves stratification on 3 x 3 grids; (z 1. 1, z 1. 3) achieves stratification on
3 x 9and 9 x 3 grids in two dimensions.

Corollary 2 In Algorithm 2, if 2k < s, we can further let Oxy1 = (dj, u, ..., di,_.u>

doky1) withdy, y, ..., dy,_, . being u—1independent columnsfrom Py \dy,, ..., P,,_,\
dy,_, respectively, and doi41 consisting of u — 1 independent columns from Py,
where ly, ..., l,—1 take values from {1, ..., 2k}. Then following the similar steps in

Algorithm 2, we can get D1 = Ufizlk_ﬂPi and Dy = (Z(l), .. Z(l) Ziq), e,

PESTRER
z®)), and (D, Dy) is an OMCD.

Besides orthogonality, second-order orthogonality is a desirable property for LHDs
(see e.g., Sun et al. 2009; Wang et al. 2018a). It is easy to see that a mirror-symmetric
LHD can guarantee the second-order orthogonality. In the following, OMCDs with
second-order orthogonality are constructed via modifying Algorithm 2.

Algorithm 3 (Modified construction of OMCDs)

Step 1 Permute the levels of B; to obtain a mirror-symmetric design, denoted as B;,

i=0,...,5+ 1 foran odd prime power s.
Step 2 For a given k(1 <2 <s+1),andu =2+ 1 for some integer a, let
(a’l 1, d 20 di y—1) consistofu—1 zna’ependentcolumnsfrom B \Bo

(denotedasP)forz_l 2k, and O; = (dzj 1,d21) forj=1,... k.
Step 3 Derive an s X t mirror- symmetric OLHD L = (l;j) with levels {—(s —
/2, —(s—=3)/2,...,(s—1)/2}.
Step4 Forl=1,...,t,i=1,...,k, obtain an s* x 2(u — 1) matrix Ol.(l)from 0;
by replacing the levels O, ...,s — 1 of O; withlyy, ..., lg, respectively.
Step5 Forj=1,....1,i=1,....kobain Z" = @\'},.... 25 ) = 0P Rar.

Step 6 Take Dy = U4y, Prand Dy = (z\",..., 2", ..., z{", ..., Z,E”).
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-15 -5 5 15 -15 -5 5 15

Fig. 1 Bivariate projections among the four columns of D; in Table 1

Here B; is a regular design, and for an odd prime power s, a mirror-symmetric
design can be obtained from B; by permuting the levels which has been studied in
Tang and Xu (2014). Theorem 3 summarizes the properties of D; and D, obtained in
Algorithm 3.

Theorem 3 For D and D, constructed above, we have

(i) Diisan OA(s", (s + 1 — 2k)s"~2, s, 2), D, is an orthogonal mirror-symmetric
L(s", 2kt (u — 1)), and hence D> is a second-order orthogonal LHD;
(i1) (Dy, Dy) is an OMCD.

The projection properties of D, constructed in Algorithm 3 are the same as that of
the D, in Theorem 2.

Example 3 (Example 2 continued) First we permute the levels of the O A(27, 13, 3, 2)
in Table 1 to derive a mirror-symmetric design which is listed in the left part of
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Table1 OA(27,13,3,2) and OMCD in Example 2

0OAQ27,13,3,2) OMCD

By Py Py P3 Py Dy Dy = (P3, Py)

0 O 0 0oo0o 0 0 O0O0OO0OO0OO0-13 -5 —11 -7 0 0 0 0 0 O
0 o o0 o0 1 1 2 2 2 111 2 —-12 —6 1 -1 2 2 1 1 1 2
0 o o002 21112 2 2 1-11 =7 13 5 1 1 2 2 21
0 11 2 1 1 2 1 1 2 0 0 O 3 9 0 1 1.1 2 0 0 O
0 11 2 2 2 1 0 0 0 1 1 2 4 8 12 7 0 0 0 1 1 2
0 1 1.2 0 0 0 2 2 1 2 2 1 2 10 —-12 -5 2 2 1 2 2 1
0 221 2 2 1 2 2 1 0 0 0 10 -4 11 6 2 2 1 0 0 O
0 22 1 0 0 0 1 1 2 1 1 2 § -2 —13 -6 1 1 2 1 1 2
0 22 1 1 1 2 0 0 0 2 2 1 9 -3 -1 0O 0 0 0 2 2 1
1 o1 1 0 1 1 0 1 1 0 1 1 -1 0 -9 30 1 1 0 1 1
1 o1 1 1 2 0 2 02 1 2 0 0 -1 3 9 2 0 2 1 2 0
1 o1 12 0 2 1 2 0 2 0 2 1 1 6 —12 1 2 0 2 0 2
1 1 201 2 0 1 2 0 0 1 1 6 —13 2 g§ 1 2 0 0 1 1
1 1 2 0 2 0 2 0 1 1 1 2 0 7 —11 5 =13 0 1 1 1 2 O
1 1 20 0 1 1 2 0 2 2 0 2 5 —12 —10 2 2 0 2 2 0 2
1 20 2 2 0 2 2 0 2 01 1 =5 13 7 —11 2 0 2 0 1 1
1 20 2 0 1 1 1 2 01 2 0 =7 12 -8 4 1 2 0 1 2 0
1 20 21 2 001 1 2 0 2 -6 11 4 10 0 1 1 2 0 2
2 0o 2 2 0 2 2 0 2 2 0 2 2 11 5 =7 13 0 2 2 0 2 2
2 0 2 2 1 01 2 1 01 0 1 12 7 -4 -8 2 1 0 1 0 1
2 0o 2 2 2 1 01 01 2 10 13 6 8§ -2 1 0 1 2 1 0
2 1 o1 101 1 01 0 2 2 -9 4 -2 -9 1 0 1 0 2 2
2 1 01 2 1 00 2 2 1 0 1 -8 3 10 -3 0 2 2 1 0 1
2 1 01 0 2 2 2 1 0 2 1 0-10 2 =5 2 2 1 0 2 1 0
2 21 0 2 1 0 2 1 0 0 2 2 =2 -9 9 —4 2 1 0 0 2 2
2 21 00 2 21 01 1 01 -4 —-10 -6 11 1 0 1 1 0 1
2 2101010222160 -3 -8 -3 —-10 0222120

Table 2. Letd; = (P12, P1.3), dy = (P21, Pas) and Oy = (dy, d»). Here s = 3, it is
impossible to find a mirror-symmetric OLHD with more than one column. Thus, we
take/ =t = 1, and replace the levels 0, 1, 2 of O with —1, 0, 1 respectively to obtain
o 1(1). After rotating Ofl), the derived OMCD is shown in the right part of Table 2.

From Theorems 2 and 3, the run sizes of the obtained designs are closely related
to the rotation matrices. To construct designs with s* runs for any integer u > 3,
one way is to find other (orthogonal or nearly orthogonal) rotation matrices through
computer search. For example, when u = 4, we can use this nearly orthogonal rotation
matrix:
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Table2 OA(27,13,3,2) and OMCD in Example 3

OMCD
Dy

0A(27,13,3,2)

Dy = (P3, Py)

1

1 0 0 0 2

-3

10

1

1 0 0 0 2

2
1

0 0 2

1

0 2
2 2

1 0 2
1
0 0 0 2
0 0

2

2

2 2
1

2
2

1

2

1

1
1

2 0 2
0 0

1

11

—10

2 0 2 —13
0 0 0 0 —12

2

1
2 0 2

1

1

0

-5

1

2

0 0
1

1

1 2 -11 -6 10

1
1

0 0 2

1

2 1 0 2

0

0 0 0 2 0 2

1

2

2
1

2 2

2
2

I 00 2 1 2
0 0 2
1

220 2 20

2 2 0 0 0 2

13

1 00 2 1 2
1 1 0 0 2
1
220 2 2 0
00 2 2 2 0 0 0 2

00 2 0 0 2 00 2

0 0 2

1

2 0 2

1

-5 11 13 1
-7 —11 0 0 2

-6

-1

1

00 2 2 20

13 =5

12

1

1

1

—6

1 1

1

—-12

1

1

00 2 2 2 0
00 2 0 0 2

6
-1

12

220 0 0 2 2 20

1 1
1

1

—-12
—13

00 2 00 2 6

1

1

2 20

5 2 2 0 1

11

11

1

2 2 0 2 2 02 20

1
1

22 0 0 0 2

0

1 2 2 0 1

—13

0

1 0 2 0 1 2 2 0 1
1

0
0

1 2 2 -4
-3

00 1 0 O 0
0

2 20

2 2

1 20

0

—10

2 0 1

0

1

1
1
2 2
1
1

2 2 20
0

1

—10

11
12
13

0 2 0

2 2

1

1

2 2 1 2

1

10

—11

2

1

0

1

1

0 2 0
0

0 0

0
0

1

2 2 2 01 0 2 0
0 0 0
2 2

1

1 2 2 0

1
1

-8
—10

1

2 2 2 0

2

2 0
1

0

1 2 2 2 0 1

1

0

The resulting designs may be nearly orthogonal, but the numbers of columns will

usually be larger than the orthogonal case.

In the following, we present another approach to constructing OMCDs with s*

runs with k > 3. We recall that the

@ operator is based on GF(s) = {ag =

'7aS*1}'

0,a1,a,..

pringer

As
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Algorithm 4

Step 1 Let N be an s> x 2 full factorial design with s levels. Two generator matrices
are given as

1 | I | 0
G1—<a0 o e as_l)andG2—<1),
where oa; € GF(s) = {ag, ..., as_1} withag =0,i =0,...,s — 1. Obtain
DO = NG and ¢® = NG.

Step 2 Lety = (ao,al,...,asq)T, and define B; = oy for j =0,1,...,5 — L.
Step 3 Forv =1,2, ..., create an $2H0 5 g1 patrix as

DY = (oD ", oD, ... g 1®D)
and create an sV x (s — 1)V matrix as
W =Br@e ) oV L B @)

Step 4 If s is even, divide D© into Ey, .. ., E; 2, where each E; is a full factorial
design of two factors. If s is odd, divide D©) into Ey, ..., E\s2) and one

column . )
Step 5 For each i = 1,...,|s/2], create F(l) = (B2, ® Ei, Brji+1 @ Ei),
Jor each j; = 0,1,...,|s/2] — 1; create F,(l),z gy = (B &

F/(:jz oz P2 1+169Fj(1j2 o for gy =010 [s/2] = 1

given p, where 0 < p < |s/2]| — 1, create H(l) F(l)for Jj1i=0,1,....p

@) . o (l)
e i~ B2ie © Mg ﬂzJ"H @ sz o) Jor v =2,
JlseoesJu—1=0,1,...,s/2] —land j, =0,1,..., p. ObtamHj(li: v
from H/(l; o via replacing o by j — %

Step6 For0 < p < [s/2] —landv = 1,2,..,if2p+2 < s — 1, let D, =
(e™, ,32p+2€9D(:_1), cos Bs—1 ® DW=, andif2p+2 =s,let D| = e,
Obtain D from Dy by replacing level oj by level j.

Step7 Let HY. . = HY* Ry fori = 1,2,...,15/2) jisernsjo1 =

J1j2eJu J1j2eeju
0,1,...,s/2)] — 1 and j, = O0,1,...,p. Construct D as Dy =

7 (D 7 (Ls/2D)
(H/I/ZJU H]l.]Z /v)/.IJ.Z---jv‘
Theorem 4 summarizes the properties of D and D, constructed in Algorithm 4.

Theorem 4 For D and D; obtained in Algorithm 4, we have

(i) Diisan OA(s®TY, (s — 1)V + (s — 2p 4+ 2))sV, s, 2) and D5 is an orthogonal
L, Ls/2]"(p + D2Y);
(ii) (Dy, Dy) is an OMCD;
(iii)) Dy achieves stratification on s X s grids in any two dimensions.
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The following example provides an illustration for Theorem 4.

Example 4 Consider the case of s = 3, v = 2 and p = 0, with GF(3) =
{oo, a1, a2} = {0, 1, 2}. The full factorial design N is

v (000 1 11 22 2\
“\0 1 20 1 2 0 1 2)°
And D© and e© are obtained as
00 0 112 2 2\
PO=[0 1 2 1 20 2 0 1| ade®=(0 1 2 0 1 2 0 1 2)".
021 102210

In this case Bo = (0,0,0)7, g1 = (0, 1,2)7, B = (0,2, )T, then DV and ¢ are
obtainedas D1V = (Bo@ D, 81D, Bod D) and eV = (B1 B, Br®e®).
Thus for v = 2 and p = 0, D is obtained as D = 51 =B P e, B ® e B ®
D(l)). Here s = 3, then [s/2] = 1, so DO is divided into E 1 and one column, where

e (00 0 1 1 122 2\
'“\o 1 21202 0 1) "

For p = 0, only Fél) is obtained as Fé]) =Bo® E1, 1@ Er) and Fé(l)) is obtained
as Fé(l)) = (Bo @ F(l), B1 @& Fél)). Then for v = 2 and p = 0, D; can be constructed
as D = Féé)*Rlz = (FO%) — Jgix8)R12, where Jgi«g is a 81 x 8 matrix of ones.

It is easy to check that D = (Dy, D3) is an OMCD, which is provided in Tables 5
and 6 in Appendix B. After collapsing the levels of D; by | (x +40)/27], D, becomes

FO((I)) whichis an O A(81, 8, 3, 2), then D, achieves stratification on 3 x 3 grids in two
dimensions.

Note that if s = 2, then D; just has one column, which is not desirable, and
D, = Héé?..o is an orthogonal L (s>, 21*7). We now present a method to extend the
number of columns of D| with s = 2 up to 2V + 1.

Corollary 3 For Hé(l)_)v_o and ﬁéé_)._o obtained in Algorithm 4 with s = 2, let W consist

of the first 2V columns of H(%)__o and I" consist of the last 2° columns of I-NI(%.)_O. Let
@ = (W), W), then

() @ isan OAQR*Y, 1 +2Y,2,2) and I is an orthogonal L(2*+V, 2Y);
(i) (@, I') is an OMCD.

Note that for s > 2, we can extend the number of columns of D upto (s — 1)V +
(s —2)s¥ + |s/2] V2" similarly as Corollary 3 does. The following example provides
an illustration for Corollary 3.
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Example 5 Consider the case of s = 2 and v = 3, with GF (2) = {ag, o1} = {0, 1}.
The full factorial design N is

And D© and ¢© are obtained as

T
D<0>=<8 (1) i é) ande®=(0 1 0 1)".

In this case By = (0, O)T and 81 = (0, l)T, then for v = 3, ¢ is obtained as
P =pro B ® B ®e)).

Here s = 2, s0 E; = D©. Thus FO(I) = (Bo ® DV, gy & DO, Fé(l)) = (Bo @
&) &) O _ s (1) €Y) g _ (1
Fy s B1 @ Fy'), Hypy = Fogg = (Bo @ Fyg', 1 @ Fyy') and Hyyy = (Hygg —
(1/2)J32x16) R13, where J32x16 is a 32 X 16 matrix of ones. @ = (e, ¥), where &
consists of the first eight columns of Hé(lx)), and I” consists of the last eight columns

of 1-7(%2). It is easy to check that (@, I') is an OMCD which is given in Table 7 in
Appendix B.

If an orthogonal L(s,m’) can be constructed, then an OLHD with more columns
can be constructed following the idea of Lin et al. (2009). By the similar method,
OMCDs with more columns can be constructed as follows.

Corollary 4 If an orthogonal L(s, m’) is available, and an OMCD (Dy, D;) can be
obtained by Algorithm 4, where D1 is an 0A(s2+”, myi, s, 2) and Dj is an orthogonal
L(s*tV, m»), then D> can be extended to an orthogonal L(s*t", m'm») for v =
1,2,....

Note that both Algorithms 2 and 4 can construct OMCDs with s* runs, but the
values of u in the two algorithms are different. Algorithm 2 is suitable for u = 2% 4 1
with a being an integer, while Algorithm 4 is appropriate for any integer u > 3. For
u = 2%+ 1, Algorithm 2 can construct OMCDs with D; having more columns than
Algorithm 4.

3.3 Construction of MCDs using mixed-level OAs

The above four algorithms can generate designs with s* runs for u > 2. This section
introduces another construction for MCDs with n runs, m qualitative factors and k
quantitative factors through an O A(n, s™(n/s), 2) and two LHDs. The construction
can get OMCDs with their run sizes n being multiples of s2. Denote the set {i — (r —
1)/2:i=0,1,...,r—1}as 2(r).Let T bean OA(n, s™(n/s),2), L1 bean L(s, k1)
with entries from £2(s), and Ly be an L(n/s, ky) with entries from §2(n/s). A new
class of MCDs can be constructed as follows.
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Algorithm 5

Step 1 Ifky =ka, letY; = L1[j,:] ®c (sL2); and if ky < kp, let Y; = (L1[j, 1] ®
(sLo[:, 1t ko — ki + 1D, Lilj, 2 : k1] @c (sLal:, (k2 — ki + 2) @ ka])), for
j=1,...,s.

Step 2 Stack therows of Y for j =1, ..., s together to obtain Y = wr, ..., YST)T.

Step 3 Permutate the rows of T to make sure that the last column is 1y ®
(1,2,...,n/5)T.

Step 4 Let D1 be the first m columns of T.

Step 5 Stack the columns of Dy and Y together, i.e., D = (D1, 7Y).

Then we have the following theorem.

Theorem 5 The design D constructed in Algorithm 5 is an MCD with n runs, m
qualitative factors and ko quantitative factors.

In Algorithm 5, the run size # must be a multiple of s> and the number of qualitative
factors m can be up to n/s according to He et al. (2017). By carefully choosing L
and L,, the resulting design Y in Algorithm 5 can be an OLHD (when k| = kj) or
nearly OLHD (when k| < k»). The theoretical results in the following theorem will
justify this.

Theorem 6 Let L1, Ly and Y be the designs in Algorithm 5, we have

(1) for ki = ko, if L1 and Ly are OLHDs, then Y is an OLHD, furthermore, Y is
second-order orthogonal if L and L, are second-order orthogonal.
(i) forky < ko, let = (s> = 1)/(n®> — 1) and p = ko — ky,

A+A=MpjpLo), 1 <ji, p<pu+1;
Piip(Y) = Ao1—wy (L) + (L =Mpj jy(L2), 1< i <pu+1,p+2<jp<ks;
MG -0 Ga—w (L) + (A =M pj jp(L2), w+2 = j1,ja <ka.
(D

Here for any design D, p;j(D) = p(d;, d;) with d; and d; being the ith and jth
columns of D respectively.

Table 3 presents some orthogonal and nearly orthogonal MCDs constructed via
Algorithm 5. The first column lists the mixed-level OAs obtained by He et al. (2017).
The second and third columns provide the designs used for the construction of the
corresponding Y.

4 Concluding remarks

MCDs proposed by Deng et al. (2015) are cost-effective designs for computer exper-
iments with both quantitative and qualitative factors. Orthogonality is a desirable
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Table 3 Some orthogonal and nearly orthogonal MCDs (D1, Y) with n < 100 runs constructed by Algo-
rithm 5

T L [source] L» [source] D, Y
0A(8,2441 2) L(2,2)* OL(4,2)[LB] 0A(8,4,2,2) NOL,2)
0A(16,2881,2) L2, 4* OL(8, 4)[LB] 0A(16,8,2,2) NOL(16, 4)
0A(24,21212! 2) L(2,6)* OL(12,6)[LB] 0A(24,12,2,2) NOL(24,6)
0A(27,3%99!,2) L(3,5)* OL(9, 5)[LB] 0A(27,9,3,2) NOL(217,5)
0A(32,21916!,2) L(2,12)* OL(16,12)[LB] 0A(32,16,2,2) NOL(32,12)
0A(32,438! 2) L4, 4)* OL(8, 4)[LB] 0A(32,8,4,2) NOL(32,4)
0A(32,438! 2) OL(4,2)[LB] OL(8, 4)[LB] 0A(32,8,4,2) NOL(32,4)
0A(32,438! 2) OL(4,2)[LB] OL(8, 2)[LB] 0A(32,8,4,2) 0L(32,2)
0A(40,22020!, 2) L(2,6)* OL(20, 6)[LB] 0A(40,20,2,2) NOL(40, 6)
0A(48,2%241 2) L(2,12)* OL(24,12)[GS] 0A(48,24,2,2) NOL(48,12)
0A(54,318181,2) L(3, 8)* OL(18, 8)[GS] 0A(54,18,3,2) NOL(54,8)
0A(56,2%828!,2) L(2,6)* OL(28,6)[LB] 0A(56,28,2,2) NOL(56, 6)
0A(64,232321 2) L(2,16)* OL(32,16)[GS] 0A(64,32,2,2) NOL(64,16)
0A(64,41016!, 2) L(4,12)* OL(16,12)[LB] OA(64,16,4,2) NOL(64,12)
0A(64,41016!,2) OL(4,2)[LB] OL(16,12)[LB] OA(64,16,4,2) NOL(64,12)
0A(64, 410161 2) OL(4,2)[LB] OL(16,2)[LB] OA(64,16,4,2) OL(64,2)
0A(72,23036! 2) L(2, 6)* OL(36, 6)[ST] 0A(72,36,2,2) NOL(72,6)
0A(80,2%0401, 2) L(2,20)* O L(40, 20)[GS] 0A(80, 40, 2,2) N OL(80, 20)
0A(81,3%72712) L@3, 12)* OL(27,12)[ST] 0A(81,27,3,2) NOL(81,12)
0A(88, 24441 2) L(2,6)* OL(44, 6)[LB] OA(88,44,2,2) NOL(88,6)
0A(96,2%8481 2) L(2,24)* OL(48,24)[GS] 0A(9,48,2,2) NOL(96,24)
0A(100, 529201, 2) L(5,6)* OL(20, 6)[LB] 0A(100,20,5,2) NOL(100, 6)
0A(100, 529201, 2) OL(5,2)[LB] OL(20, 6)[LB] 0A(100,20,5,2) NOL(100, 6)
0A(100, 529201, 2) OL(5,2)[LB] OL(20,2)[LB] 0A(100,20,5,2) OL(100, 2)
Note: L(s, k)*: (0,1, ...,s— 1)T1Z with 1 being an k x 1 vector of ones; O L(n, m): orthogonal L(n, m);

N OL(n, m): nearly orthogonal L(n, m); GS: Georgiou and Stylianou (2011); LB: Lin et al. (2010); ST:
Sun and Tang (2017)

property for designs of computer experiments. To our knowledge, there is no litera-
ture on the construction of MCDs with orthogonality.

We provide five methods to construct (nearly) OMCDs, where the designs for the
qualitative factors are s-level OAs. The construction methods are easy to be carried
out. Besides orthogonality, the MCDs constructed by Algorithms 1 to 4 guarantee
some low-dimensional space-filling properties. In addition, the MCDs obtained by
Algorithm 3 are second-order orthogonal. The first four approaches can construct
MCDs with s" runs where s is a prime power and v > 2. The fifth one can construct
MCDs with some multiples of s runs. Finally, Table 4 lists some OMCDs that can
be constructed by our methods. For the construction of OMCDs with their run sizes
being multiples of s, this deserves further study.
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Appendix A: Proofs

To prove the theoretical results of this paper, we first give the following two lemmas.

LemmaA.1 Let ¢ be any column of D1 which is an OA(s', m,s,2) and & be any
column of Dy whichis an L(s', k). And & can be represented as & = +ny£nys+---+
nts’_l, where (N1, M2, . .., ny) with entries from {—(s — 1)/2, —(s —3)/2, ..., (s —
3)/2, (s — 1)/2} is an s' full factorial design. If (¢, na, ..., ny) is an s' full factorial
design, then (D1, D7) is an MCD.

Following the symbols in Algorithm 4, let ix, jy = 0,1,...,[s/2] — 1, k =

1,2,.... Let Wl(lll)l (a(l) (1), b)Y, where a(l) and a( ) are any two columns

in B, ® D(O) and b is any column in Bj @ ® DO, i, # j. Create Wl(|2])| i =

B, @W " b®), whereb@ e B,,&DD, iy # jo.In general, define W'") . =

ij’ i1j1i2j2 1y jo
(Bi, ® l(lvjlllz)lz Ay o1’ b)), where b € B, @ DV iy # ji.
Lemma A.2 Suppose DO, Wl(lvj)llzj2 o and e forv = 1,2,... are as defined
above, then
(6))] Wl(lvj)1 bn oo is a full factorial design with 2 + v factors;
(ii) forany columnh € eV, (a(l) aél), h) is a full factorial design with three factors;
furthermore for any column h € eV with v > 2, Bi, ® wiobo ,h) is

. . . nJjizj2-ty—1Jju—1
a full factorial design with 2 + v factors.

Proof of Lemma A.1 To make sure (D1, D;) is an MCD, it needs to prove that for each
level of ¢, the corresponding rows in D, form an L(s'~!, k) after level-collapsing.
Here, we collapse any level x of £ by f(x) = MJ After level-collapsing, the
levels of £ are collapsed tothe s’ ! levels {0, 1, s' "' —1}.LetA; = £n;+((s—1)/2) 14,
i=1,...,t,thentheentriesof A; areallin{0, 1,...,s—1},and &€ +((s' —1)/2) 1y =
A4 Aas -4 As' L Thus £(€) = Ao 4 A3s + - - - + A5 2. It is easy to see that
for each level of ¢, the corresponding rows in (A, . .., A;) form an s*~! full factorial
design, since (¢, 12, ..., ;) is an s” full factorial design. Thus for each level of ¢, the
corresponding rows in D, form an L(s'~!, k) after level-collapsing. This completes
the proof. O

Proof of Lemma A.2 (i) From the construction of D(? it is easy to see that D is an
0A(s2, s,8,2), and (o, ..., ) iS a row in DO for any ¢ € GF(s). Furthermore,
the rows of D© form a linear space over G F(s). Then, for any «;, oy € GF(s),
@i J 2y o+ D@ canbe transformed into D by row permutation. Thus if « =+
oy, oy 7 0, then after row permutation, (ﬂ,-l ® DO, Bj @ D(O)) can be transformed
1nto
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T
<(D(0))T (D(O))T (D(O))T )
(anaotays + DT (aqor1Joy, + DT L0 (o512, + DO)YT

So it is straightforward to obtain that Wi(llj?l is a full factorial design with three factors.
Furthermore, forv = 2, 3, .. .,ifa;, = a;, +oy,, oy, # 0, then after row permutation,
(Bi, ® D7D, B;, & DVV) can be transformed into

(D@=DyT (DW=yT . (DW=DyT T
(aluao‘l.\"’“ xsv T D(Uil))T (Ollval ‘I.s'"“ xsv T D(Uil))r s (O(,UO{S,I ‘],\'erl xsv T D(Uil))r
Thus W.(v) is an s-level full factorial design with 2+-v factors forv = 2, 3, . . ..

i j1i 2 Iy Ju
(i1) Inl llklzgz)rithm 4, N is a full factorial design which can be written as

T
N — (yT yT syl )
OlolST allsT Ols_llST
and G| = (1g, y)T,Wherey = (g, - - - ,ozs_l)T.Then (D(O), e(o)) can be written as
y1I +aglyy” aols
17 IyT 1
(DO, 0y _ | Vs Ty ek
Vlz +as—11sVT a1l

From the definitions, it is obvious to obtain that

B, ® DV, B, @ ™)
aj o2y + D© O[j'lololsz + e®

ailas—l‘lvzxs + D© O[ho‘s_lls2 + e©®

aj a0 dyxs + 1T +aplsy? ajapls +agly
apootsxs +y 17 +arley” ajaoly 4 ol
ajapJyxs + VlsT + Ols—lls]/T O‘jlaols +as_11;

ailas—ljsxs‘i‘)/lST‘i‘aOls)/T ajlas—lls +aoly
ailas—l‘lsxs"‘ylz"‘allsVT ajlas—lls + ol

O(ilas—l-]sxs + VlsT + o5 1SVT ajs—1 Iy + o115
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Note that (et o, Jyxs + Y17 + oy Ly T, ook, 15 + ag, 15) can be transformed into
1T o, 1y T, aj o, 15+, 15) by permuting rows, forany ki, k> =0, ..., s — 1.
Then (B;, ® D©, B;, @ ¢?) can be transformed into

DO, ajaply + e©®

DO, ajas—11po + e©

Thus (ail), aél) , h) is a full factorial design with three factors, where «j, # 0. Fur-
thermore, for v > 2, (8;, ® D™, B, ® e*)) can be transformed into

DY D q; aplp + VD

D=, ajas 112+ W=D

Similarly, for any column h € e™ with v > 2, we can obtain that Bi, ®

Wi(lvjl_ilz)jzml.v_1 ot h) is a full factorial design with 2 + v factors, where a;, # 0.
This completes the proof. O

Proof of Theorem 1 From the construction of Algorithm 1, it is easy to obtain that X
is an LHD and D is an OA. D being an MCD follows from Lemma A.1 with ¢ = 2.
Any column of X denoted as & can be represented as & = n; &+ nas, where (11, 172)
is an s full factorial design. From the construction, it is obvious that (¢, 77) is an
s2 full factorial design, where ¢ is any column of D;. Then D is an MCD following
Lemma A.1. From Lemma 1, if M is orthogonal, then X is orthogonal. O

Proof of Corollary 1 For any two columns in X ;, denoted as & and &, they can be
expressed as &1 = 011 £ n12s and & = 21 £ naos, respectively. And (911, 712),
(21, n22) and (912, N22) are s2 full factorial designs. Collapse the level x of X ; by
[(x + (s> —1)/2)/s]t0{0, 1, ..., s—1}. Then & and & become 112+ ((s — 1)/2)1,2
and 122 + ((s — 1)/2) 12, respectively. As (7124 ((s —1)/2) 12, oo+ ((s = 1) /2)1,2)
is an s2 full factorial design, then (i) is correct. The proofs of (ii) and (iii) are similar
to that of (i) and thus omitted here. O

Proof of Theorem 2 (i) It is easy to see that D; is an OA. From the construction
of Algorithm 2, following the idea of Lemma 2, each O; is an O A(s*, 2(u —
1), s,u).Soeach 0" isan O A(s*, 2(u—1), s, u) with levels {—(s —1)/2, — (s —

3)/2, ..., (s — 1)/2}. From the properties of the rotation matrix R, Zi(l) is an
OLHD. Then D; is an OLHD from Lemma 1.

(i) Combing theidea of (iv) in Lemma?2 and Lemma A.1, we can obtain that (D1, D3)
is an OMCD.

(iii) Similarly to the proof of Theorem 1, after the levels of (z(l)

i.J
to {0, 1, ..., s — 1}, they become (n; + %lsu, nj+ %hu), where 7; and 7/

, ZE{.)i’) are collapsed

are the two corresponding columns in 0,.(1). Then (iii) can be obtained straight-
forwardly.
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vy Forl < j <u—1landu < ] < 2u —2, z(l)~ and z(l), can be represented

as Z( ). = @dyi—| T dy; j and z , = ¢'dy; + doi_,js, where ¢ and ¢’ are rows

with entrles from a signed permutatlon of s, 52 s"~1. After collapsing z

and z , to s and 5%~ separately, the correspondmg columns are dp; 1 - and dzl

respectlvely As (d2i—1,7, d2;) forms a full factorial design, (zfli, z(l),) achieves

stratification on s x s*~!. The proofs for the other cases are similar.

Proof of Theorem 3 We only need to prove that D5 is mirror-symmetric as other results
follow from Theorem 2. As O; fori =1, ..., k and L are mirror-symmetric designs,
then each Oi(l) is a mirror-symmetric design. So if b is a row of Oi(l), —b is also one
of its rows. Then for Z,.(l), if bR, is one of the rows, —b R, is also one of its rows.

. . . .. .
Thus Zi( )is mirror-symmetric, furthermore, D; is mirror-symmetric. O

Proof of Theorem 4 (i) From the definitions of D@ and ¢(©, it is easy to check that
Dyisan OA(s*t?, (s—1)" + (s — (2p+2))s?, s, 2). From Theorem 1 of Sun and
Tang (2017), we can obtain that D, is an orthogonal L(s>*, [s/2]"(p+1)2!1Y).

(ii) Let ¢ be any column of Dy, then ¢ € ¢™ or¢ € B; @ D®~D fori =

2p+2,...,5s — 1. Let £ be any column of D, then & € H](32 v

corresponding ji, jo, ..., jy. And there exist W,(lvjlllz)/2 dy 1 , Bi, and Bj,,

such that & can be represented as § = £A; = Aps £--- %+ )\.2+US2+v_l where
(oo hap) = B, @ WL o and 2 € B, @ DO, From
Lemma A.2, we can obtain that (¢, A2, ..., Ax4y) is a full factorial design. Then
(D1, D) is an MCD from Lemma A.1.

(iii) According to the construction of D», itis easy to see that D, achieves stratification

on s X s grids in any two dimensions.

for some

O

Proof of Corollary 3 (i) 1It is clear that Part (i) can be obtained from Theorem 4 and
Lemma A.2.

(i) From Theorem 4, (D1, I") is an OMCD. We only need to prove that (¥, I") is an
OMCD. From the construction in Algorithm 4, we can obtain that

(1) (1)
Hyg..0 = (ﬁO@Hoo Ojvtljor=0" PLO® Hog 0,15, 1—0>

Let & be any column of I', then £ = :I:m :I: ms & - & napus?TL where

n € o ® Hy) Ojvtljo1 o-Th € B1 ® Hp Ojuiljog=0 fOrh =224
and (91, M2, ..., N2+y) is a full factorial design. Let ¢ be any column of lI/ from
the definition of ¥, we can obtain that (¢, 12, . .., 724y) is a full factorial design
from Lemma A.2. From Lemma A.1, (¥, I') is an OMCD. Now Part (ii) can be
proved.

O

Proof of Theorem 5 Let li(r) denote the ith column of L,, r = 1, 2. Without loss of
generality, we only consider the column / 1“) ® (slfz)), which is the first column of Y.
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Sincelfl) is a permutationon {—(s —1)/2, —(s —3)/2, ..., (s —3)/2, (s —1)/2}, and
1) is a permutation on {—(n/s —1)/2, —=(n/s =3)/2, ..., (n/s —3)/2, (n/s —1)/2},
then 11" & (s1\?)) is a permutation on {—(n — 1)/2, —=(n —3)/2, ..., (n —3)/2, (n —
1)/2}. Thus Y is an L(n, ka). It is clear that [(Y; 4+ (n — 1)/2)/s] = Ly + (n/s —
1)/2 for j = 1,2,...,s, where L, + (n/s — 1)/2 is an L(n/s, ko) with entries
from {0, 1,...,n/s — 1}. So D = (D1, Y) can be transformed into (D1, 1; ® (L +
(n/s — 1)/2)) after level-collapsing of Y. Since (D1, 1, ® (1,2, ..., n/s)T) is an
O0A(, s™(n/s),2), (D1, 1 ® (1P + (n/s — 1)/2)) is an OA(n, s (n/s),2) too,

i =1,2,..., ky. Therefore, D is an MCD with m qualitative factors and k> quantitative
factors. O
Proof of Theorem 6 For two vectorsa = (ay, ...,a,)  andb = (by, ..., b,)T, define

© operator as

n
a®b= Zaibi
i=1

Let " denote the vth column of L, forr = 1, 2,1 denote the uth element of I, and
dip =1V @ (s1?), where i = 1,2,..., kyandt = 1,2,... k. For 1 <iy,ir < ky
and 1 <11, < ko,

diyy © diy, = Z(lf,if & 6157 0 () & 1)

uin

s
(1) ;(D) §2 (2) (2)
=(n/s) Y L)+ Zl
u=1
= (n/s)ll.(ll) © ll.(zl) + s3ll(12) 0] ll(zz).

From the construction procedure, it is easy to see that

12 1253
(L M)y _ (D (D 2 ;2 2) 2)
P 1) = =i @15 PGP ) = Y o1
and
12
p(diltpdiztz) ( 2 )dl|t1 leztz
Then we can obtain that
2
—1
Py din) = oS 1) + (1= (Y 1T, where d = ——.

(1) Forky = kp and 1 < ji, jo < k2, we can have that pj, ;,(Y) = Apj j,(L1) +
(I = X)pjy j,(L2). From Corollary 2 of Huang et al. (2014), if L and L are both
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OLHDs, then Y is OLHD; furthermore, Y is second-order orthogonal if L; and

L, are both second-order orthogonal.
(1) Itis straightforward to see that (1) is true.

Appendix B

Table5 An OMCD of 81 runs in Example 4

Dy

Run D

B ® DM

@
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—14 =32
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Table 5 continued

Dy

Run D

B & DD

@

—31

—10

1021021 0-=-21 34 —15 38 -8 —-23
-1
25
—-24 —10

2
22 0000O0O0OO0O0O0

30
31

21
—40

33
15
24
—14 =32

15
—32
—10

39
21

1
10
-8
38

1

1

29
-30

201201 2
1 1 1
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0 2 0 2 0 2

1

0
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0
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0
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-26 27
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5
40
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2
1
1

0 1
00 2
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1
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37

1

1
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—33

1

1 00 01
1

2 00

I 13 31 19
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2

1

2 0

Table6 An OMCD of 81 runs in Example 4 (Table 5 continued)

Dy

Run D

By ® DM

@
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Table 6 continued

Run D Dy

el B> & DD
62 0022012012012 21 -3 15 -38 8§ 23 10 31
63 1100021021021 30 -8 24 —-10 —10 —24 -8 =30
64 01 2 011122200 0-=35 -19 4 —4 34 20 -39 -15
65 1 201 12020101 2-26 7 13 27 16 —36 -30 5
66 2 012102210°O0721-17 39 -5 -23 25 —11 -21 37
67 01 2 0222000111 2 -2 36 18 —36 —18 4 -4
68 1 2012010121220 11 30 18 —32 -27 7 13 28
6 2012210021T1S02 -7 -28 27 —13 —18 38 -5 —-24
70 0120000111222 33 21 —40 —14 2 -2 35 19
717 1 20101212¢0201 15 =37 =31 5 11 29 17 =33
72 20120211%022120 24 —-11 =22 36 -7 =27 26 —13
73 1 00211100022 2-32 -22 39 15 37 17 =2 2
74 211012001220 1-23 13 21 =35 19 -39 7 25
75 0221102021?21S0-14 36 30 -7 28 -5 -—-11 =27
7% 1 002222111000 —4 4 =37 —17 =33 -21 38 16
77 2110201120012 5 27 —-28 11 —-24 13 20 —-36
7% 0221210102202T1-13 -31 -19 33 —-15 3 29 -7
7% 1 002000222111 36 18 -2 2 —4 4 —36 —18
80 2110012201120 18 —40 7 24 5 26 =27 11
g1 0221 0212101°02 27 -5 —-11 =26 —13 =30 —18 34
Table7 An OMCD of 32 runs in Example 5
Run @ r

e® w
1 0 0 0 0 0 0 0 0 0 —145 —-15 =95 —-65-135 —-25-105 =55
2 01 0 1 0 1 0 1 =65 95 —15 145 —55 105 —25 135
3 0 1 1 1 1 1 1 1 1 14.5 1.5 95 65 135 25 105 55
4 1 1 01 0 1 0 1 O 6.5 —9.5 1.5-145 55-105 25-135
5 1 600 1 1 0 0 1 1 =105 =55 135 25 —95 —65 145 1.5
6 0 01 1 0 0 1 1 0 —25 135 55-105 —15 145 65 —-95
7 1 1 1. 0 0 1 1 0 O 105 55—-135 —25 95 65-145 —15
8 0 1 0 0 1 1 0 0 1 25-135 =55 105 1.5-145 —-65 95
9 1 00 0 0 1 1 1 1 —125 -35-115 —45 155 05 85 175
10 0 01 0 1 1 0 1 0 —45 115 =35 125 75 -85 05-155
11 1 1 1.1 1 0 0 0 O 125 35 115 45-155 —-05 -85 —-175
12 0 1 01 0 0 1 0 1 45-115 35-125 =75 85 =05 155
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Table 7 continued

Run @& r
e® v

13 0 o o0 1 1 1 1 0 0 -85 —75 155 0.5 115 45—-125 =35
14 1 0o 1 1 0 1 0 O I —=05 155 75 -85 35—-125 —45 115
15 0 1 1.0 0 0 0 1 1 8.5 75—-155 —-05-11.5 —45 125 3.5
16 1 1 0 01 0 1 1 O 05—-155 =175 85 =35 125 45 —-11.5
17 1 0o 0 0 0 0 0 0 O 15.5 0.5 8.5 7.5 125 3.5 115 4.5
18 0 0o 1 0 1 0 1 0 1 75 =85 0.5 —-15.5 45 —11.5 3.5—-125
19 1 111 1 1 1 1 1 —155 —-05 -85 —75—-125 -35-11.5 —45
20 0 1 o 1.0 1 0 1 0 =75 85 —05 155 —45 115 =35 125
21 0 o o0 1 1 0 0 I 1 11.5 45—-125 =35 8.5 7.5—-155 —-0.5
22 1 o1 1 0 O 1 1 O 35—-125 —45 115 0.5-155 —-175 8.5
23 0 1 1.0 0 1 1 0 0 —115 —45 125 35 =85 =75 155 0.5
24 1 1 0 01 1 0 0 1 =35 125 45—-11.5 —-05 155 7.5 —85
25 0 o 0 0 0 1 1 1 1 13.5 2.5 105 55—-145 —15 =95 —6.5
26 1 o1 0 1 1 0 1 O 5.5-10.5 25—-135 —6.5 95 —15 145
27 0 1 11 1 0 0 O O —135 —25-105 =55 145 1.5 9.5 6.5
28 1 1 01 0 01 0 1 —=55 105 —25 135 6.5 —95 1.5 -14.5
29 1 o o0 1 1 1 1 0 O 9.5 6.5—-145 —1.5-105 =55 135 2.5
30 0 o 1 1 0 1 0 O 1 1.5-145 —-6.5 9.5 —25 135 5.5-10.5
31 1 1 1.0 0 0 0 I I =95 —-65 145 1.5 105 55—-135 =25
32 0 1 0 01 01 I 0O —15 145 6.5 —9.5 25—-135 =55 105
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