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Abstract The orthogonal Latin hypercube design and its relaxation, and column-orthogonal design, are two

kinds of orthogonal designs for computer experiments. However, they usually do not achieve maximum stratifi-

cations in multi-dimensional margins. In this paper, we propose some methods to construct column-orthogonal

designs with multi-dimensional stratifications by rotating symmetric and asymmetric orthogonal arrays. The

newly constructed column-orthogonal designs ensure that the estimates of all linear effects are uncorrelated

with each other and even uncorrelated with the estimates of all second-order effects (quadratic effects and bi-

linear effects) when the rotated orthogonal arrays have strength larger than two. Besides orthogonality, the

resulting designs also preserve better space-filling properties than those constructed by using the existing meth-

ods. In addition, we provide a method to construct a new class of orthogonal Latin hypercube designs with

multi-dimensional stratifications by rotating regular factorial designs. Some newly constructed orthogonal Latin

hypercube designs are tabulated for practical use.
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1 Introduction

Latin hypercube designs (LHDs) were first proposed by McKay et al. [13] for computer experiments. Ever

since then, LHDs have become a class of most popular designs because of their maximum stratification

when projected onto any univariate dimension (see [4, 7, 14, 17, 18, 20, 23–25] and among others). It is

well known that orthogonality can be viewed as a stepping stone to space-filling designs [3]. Many efforts

have been made to construct orthogonal LHDs by rotating factorial designs. Steinberg and Lin [16]

rotated grouped two-level regular fractional factorial designs to construct orthogonal LHDs with 2m runs

and ⌊(2m − 1)/m⌋m factors, where m itself is a power of two and ⌊x⌋ denotes the largest integer not

exceeding x. Pang et al. [14] extended [16]’s method to obtain orthogonal LHDs with pm runs and

(pm − 1)/(p− 1) factors, where p is a prime and m is a power of two. By using the subfield theory, Ai et
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al. [1] provided a general partition scheme to divide regular saturated factorial designs of strength two

into groups each being a full factorial design, but the method does not work for designs of strength three

or more. They obtained many new orthogonal LHDs. Recently, Wang et al. [21] also used the rotation

method to construct a kind of orthogonal LHDs. However, all orthogonal LHDs constructed above do

not consider stratifications when projected onto multiple dimensions.

Tang [20] provided a kind of orthogonal array (OA)-based LHDs which achieve stratifications on t-

dimensional margins if OAs of strength t are employed. A new class of arrays called strong OAs (SOAs)

was introduced and constructed by He and Tang [8]. Since an SOA of strength t achieves uniformity

on finer grids in all g-dimensional projections for any g 6 t − 1, the LHD constructed from an SOA of

strength t has better space-filling properties than OA-based LHDs of the same size in all g-dimensional

projections for any 2 6 g 6 t−1 (see [8]). For computer experiments, Bingham et al. [3] pointed out that

practical experiments have revealed that designs with many levels are desirable, but it is not essential to

restrict the number of levels of each factor to be the run size. Then Sun et al. [19] relaxed the restriction

of LHDs and provided some methods to construct column-orthogonal designs (CODs) and nearly CODs

by rotating OAs. The newly constructed designs preserve the geometric configuration of the original

OAs in each rotation part, and thus they have good space-filling properties. Recently, Liu and Liu [12]

proposed some approaches to constructing column-orthogonal and nearly column-orthogonal SOAs by

rotating symmetric OAs. Zhou and Tang [26] provided column-orthogonal SOAs of strength two plus

and three minus.

In this paper, we provide some new methods for constructing CODs with multi-dimensional stratifica-

tions by rotating symmetric and asymmetric OAs. By rotating regular fractional factorial designs with

any prime power number of levels, we can construct orthogonal and second-order orthogonal LHDs with

multi-dimensional stratifications.

The rest of this paper is organized as follows. Section 2 presents some useful notation and definitions.

Section 3 provides a method for constructing CODs with multi-dimensional stratifications using symmet-

ric OAs. Section 4 proposes an approach to constructing CODs with multi-dimensional stratifications by

rotating asymmetric OAs. Orthogonal LHDs with multi-dimensional stratifications obtained by rotat-

ing grouped regular factorial designs are given in Section 5. Some concluding remarks are provided in

Section 6. All proofs are deferred to Appendix A.

2 Definitions and notation

This section provides some useful notation and definitions. Let D(n; q1q2 · · · qm) be the design of n runs

and m factors each of q1, q2, . . . , qm levels, respectively, which is represented by an n×m matrix

D = (d1, d2, . . . , dm).

For convenience, the qj levels of the j-th column are taken to be −(qj−1),−(qj−3), . . . , (qj−3), (qj−1),

where j = 1, 2, . . . ,m. The qj ’s are not necessarily distinct; for example, a D(n; (q1)
m1(q2)

m2 · · · (qu)mu)

is a design that has mj factors of qj levels, where m =
∑u

i=1 mi. A design D(n; q1q2 · · · qm) is called an

OA of strength e, denoted by OA(n;m, q1q2 · · · qm, e), if all possible level-combinations for any e columns

occur with the same frequency. When all qj ’s are equal to q, the array is symmetric and denoted by

OA(n; qm, e). Here, this orthogonality is called combinatorial orthogonality. If all levels are equally

replicated in each column and the inner product of any two distinct columns of a design D(n; q1q2 · · · qm)

is zero, then this design is called a COD, denoted by COD(n; q1q2 · · · qm). For a first-order model,

orthogonal designs ensure independent estimates of linear effects. For a second-order model, however,

an orthogonal design requires (a) each design column is orthogonal to all the others, and (b) the sum of

elementwise products of any three columns (whether they are distinct or not) is zero. A design is called

second-order orthogonal if it satisfies Properties (a) and (b) (see [3]). If each factor includes n uniformly

spaced levels, then the design D(n;nm) is called an LHD, denoted by L(n,m).
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3 Construction of CODs with multi-dimensional stratifications from sym-
metric OAs

This section provides a method for constructing CODs with multi-dimensional stratifications by rotating

symmetric OAs.

Let

A = (A1, . . . , Av, A
∗) (3.1)

be an OA(n; qm, e) (e > 2) with Ai being an OA(n; qfi , ti) for i = 1, 2, . . . , v and A∗ being an

OA(n; qr, tv+1), where

m =
v∑

i=1

fi + r, ti > e, tv+1 < e

and

fi =

{
ti, ti is even,

ti + 1, ti is odd

for i = 1, 2, . . . , v. Define

X1 = Rq
(t1,t2,...,tv,1)

= diag{Hq
t1 ,H

q
t2 , . . . ,H

q
tv , Ir}, (3.2)

where Hq
ti is an fi × 2 column-orthogonal matrix with the form(

1 q · · · q
ti−3

2 q
ti−1

2 q
ti+1

2 · · · qti−1 0

qti−1 qti−2 · · · q
ti+1

2 0 −q
ti−3

2 · · · −1 q
ti−1

2

)T

(3.3)

for odd ti, (
1 q · · · q

ti
2 −1 q

ti
2 · · · qti−1

qti−1 qti−2 · · · q
ti
2 −q

ti
2 −1 · · · −1

)T

(3.4)

for even ti, and Ir is the identity matrix of order r. The following theorem provides a construction and

the property of stratifications of the resulting designs.

Theorem 3.1. For the A in (3.1) and X1 in (3.2), define D = AX1.

(i) If e > 3, then D is a second-order orthogonal COD(n; (qt1)2(qt2)2 · · · (qtv )2qr) which achieves

stratifications on qu1 × qu2 × · · · × qug grids in g-dimensional projections, where g 6 e and
∑g

l=1 ul = e.

In particular, the two qti-level columns achieve stratifications on qu1 × qu2 grids in a two-dimensional

projection, where u1 + u2 = ti, i = 1, 2, . . . , v.

(ii) If e = 2, then D is a COD(n; (qt1)2(qt2)2 · · · (qtv )2qr) in which the two qti-level columns achieve

stratifications on qu1 × qu2 grids in a two-dimensional projection, where u1 + u2 = ti, i = 1, 2, . . . , v.

The designs constructed above have flexible stratifications which cannot be guaranteed by other CODs

from existing methods. Also, the parameter settings (the run size n, the number of factors m and the

number of levels q) in the resulting designs are very flexible, since we have no strict requirement for

the original OA A in (3.1). The following two examples illustrate how to construct CODs with multi-

dimensional stratifications by rotating symmetric OAs.

Example 3.2. Suppose A is an OA(16; 28, 3) with the strength of the first four columns being four

and the strength of the next four columns being three. From Theorem 3.1, D = AR2
(4,3) is a second-order

orthogonal COD(16; (16)282) in which the sum of the elementwise products of any three columns is zero,

where

R2
(4,3) = diag{H2

4 ,H
2
3}, H2

4 =

(
1 2 4 8

8 4 −2 −1

)T
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Table 1 OA(16; 28, 3) and COD(16; (16)282) in Example 3.2

Run OA(16; 28, 3) COD(16; (16)282)

1 −1 −1 −1 −1 −1 −1 −1 −1 −15 −9 −7 −5

2 −1 −1 1 −1 1 1 1 −1 −7 −13 7 1

3 −1 1 −1 1 −1 1 1 −1 5 −3 5 −7

4 −1 1 1 1 1 −1 −1 −1 13 −7 −5 3

5 1 −1 −1 1 1 −1 1 −1 3 5 3 1

6 1 −1 1 1 −1 1 −1 −1 11 1 −3 −5

7 1 1 −1 −1 1 1 −1 −1 −9 15 −1 3

8 1 1 1 −1 −1 −1 1 −1 −1 11 1 −7

9 1 1 1 1 1 1 1 1 15 9 7 5

10 1 1 −1 1 −1 −1 −1 1 7 13 −7 −1

11 1 −1 1 −1 1 −1 −1 1 −5 3 −5 7

12 1 −1 −1 −1 −1 1 1 1 −13 7 5 −3

13 −1 1 1 −1 −1 1 −1 1 −3 −5 −3 −1

14 −1 1 −1 −1 1 −1 1 1 −11 −1 3 5

15 −1 −1 1 1 −1 −1 1 1 9 −15 1 −3

16 −1 −1 −1 1 1 1 −1 1 1 −11 −1 7

and

H2
3 =

(
1 2 4 0

4 0 −1 2

)T

.

The OA(16; 28, 3) and COD(16; (16)282) are listed in Table 1. In the generated design, the two 16-level

columns achieve stratifications on 8 × 2, 2 × 8 and 4 × 4 grids in a two-dimensional projection; the two

8-level columns achieve stratifications on 4× 2 and 2× 4 grids in a two-dimensional projection; and the

whole design achieves stratifications on 4× 2 and 2× 4 grids in two-dimensional projections and achieves

stratifications on 2× 2× 2 grids in three-dimensional projections.

Example 3.3. Suppose A is an OA(16; 215, 2), where the columns 1–4, 5–8 and 9–12 form three full

24 factorial designs, respectively. Let A1 consist of the first 14 columns of A, A2 consist of the first 12

columns of A, and

H2
4 =

(
1 2 4 8

8 4 −2 −1

)T

and H2
2 =

(
1 2

2 −1

)
.

ThenD = AR2
(4,4,4,2,1), D1 = A1R

2
(4,4,4,2) andD2 = A2R

2
(4,4,4) are COD(16; (16)64221), COD(16; (16)642)

and COD(16; (16)6), respectively, where

R2
(4,4,4,2) = diag{H2

4 ,H
2
4 ,H

2
4 ,H

2
2}, R2

(4,4,4) = diag{H2
4 ,H

2
4 ,H

2
4}

and

R2
(4,4,4,2,1) =



H2
4

H2
4

H2
4

H2
2

1


.

The OA(16; 215, 2) and COD(16; (16)64221) are listed in Table 2. Furthermore, any two columns of D,

D1 and D2 are orthogonal and the two 16-level columns obtained by rotating a full 24 factorial design

achieve stratifications on 2× 8, 8× 2 and 4× 4 grids in a two-dimensional projection.
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Table 2 OA(16; 215, 2) and COD(16; (16)64221) in Example 3.3

Run OA(16; 215, 2) COD(16; (16)64221)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 9 15 9 15 9 3 1 1

2 1 1 1 −1 1 1 1 −1 1 −1 −1 −1 −1 −1 −1 −1 11 −1 11 −13 7 −3 −1 −1

3 1 1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 −1 −1 7 13 3 5 −3 −5 −3 −1 −1

4 1 1 −1 −1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 −9 15 −13 7 1 −11 3 1 1

5 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 11 1 5 −3 −15 −9 3 1 −1

6 1 −1 1 −1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 −5 3 −11 −1 13 −7 −3 −1 1

7 1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1 −1 1 3 5 9 −15 3 5 −3 −1 1

8 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1 1 1 −1 −13 7 −7 −13 −1 11 3 1 −1

9 −1 1 1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 13 −7 −15 −9 7 13 −1 3 −1

10 −1 1 1 −1 −1 −1 −1 1 1 −1 1 −1 −1 1 1 −3 −5 1 −11 −5 3 1 −3 1

11 −1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 5 −3 −3 −5 −11 −1 1 −3 1

12 −1 1 −1 −1 −1 1 1 1 −1 −1 1 1 1 −1 −1 −11 −1 13 −7 9 −15 −1 3 −1

13 −1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 1 −1 1 9 −15 −5 3 −7 −13 −1 3 1

14 −1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −7 −13 11 1 5 −3 1 −3 −1

15 −1 −1 −1 1 1 1 −1 −1 1 −1 1 1 −1 1 −1 1 −11 −9 15 11 1 1 −3 −1

16 −1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 1 −15 −9 7 13 −9 15 −1 3 1

Note. The first 14 columns of OA(16; 215, 2) can generate a COD(16; (16)642) and the first 12 columns can generate a
COD(16; (16)6).

4 Construction of CODs with multi-dimensional stratifications from asym-
metric OAs

This section provides a method to construct CODs with multi-dimensional stratifications by rotating

asymmetric OAs. Suppose B is an OA(n;m, (q1)
m1(q2)

m2 · · · (qu)mu , e) with e > 2 and m =
∑u

i=1 mi.

Without loss of generality, we only consider the situation of u = 2 (i.e., OA(n;m, (q1)
m1(q2)

m2 , e)) in this

section. The results can be straightly extended to the case of u > 3.

Let

B = (B1, B2) (4.1)

be an OA(n;m, (q1)
m1(q2)

m2 , e) with Bi = (B1
i , . . . , B

vi
i , B∗

i ), where for i = 1, 2 and j = 1, 2, . . . , vi, B
j
i

is an OA(n; (qi)
fi
j , tij), B

∗
i is an OA(n; (qi)

ri , tivi+1), t
i
j > e, tivi+1 < e and

f i
j =

{
tij , tij is even,

tij + 1, tij is odd.

Define X2 as

X2 = Rq1q2
(t11,...,t

1
v1

,1r1 ,t
2
1,...,t

2
v2

,1r2 )
= diag{Hq1

t11
, . . . ,Hq1

t1v1
, Ir1 ,H

q2
t21
, . . . , Hq2

t2v2
, Ir2}, (4.2)

where Hqi
tij

has the same form as in (3.3) or (3.4).

Theorem 4.1. For the B in (4.1) and X2 in (4.2), define D = BX2.

(i) If e > 3, then D is a second-order orthogonal COD(n; (s1)
2 · · · (sv1)2(sv1+1)

2 · · · (sv1+v2)
2(q1)

r1

(q2)
r2) which achieves stratifications on qu1

i × · · · × q
ug

i′ (i, i′ ∈ {1, 2}) grids in g-dimensional projections,

where sj = (q1)
t1j for 1 6 j 6 v1 and sv1+j = (q2)

t2j for 1 6 j 6 v2, g 6 e,
∑g

l=1 ul = e. The two (qi)
tij -

level columns achieve stratifications on qu1
i ×qu2

i grids in a two-dimensional projection, where u1+u2 = tij,

i = 1, 2, j = 1, 2, . . . , vi.

(ii) If e = 2, then D is a COD(n; (s1)
2 · · · (sv1)2(sv1+1)

2 · · · (sv1+v2)
2(q1)

r1(q2)
r2), where sj = (q1)

t1j

for 1 6 j 6 v1 and sv1+j = (q2)
t2j for 1 6 j 6 v2. The two (qi)

tij -level columns achieve stratifications on

qu1
i × qu2

i grids in a two-dimensional projection, where u1 + u2 = tij, i = 1, 2, j = 1, 2, . . . , vi.

The following example is used to illustrate the construction.
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Example 4.2. Suppose B is an OA(64; 10, 4426, 3), which is shown in Table 3. Let

R4,2
(3,3,12)

=


H4

3

H2
3

I2

 ,

where

H4
3 =

(
1 4 16 0

16 0 −1 4

)T

and H2
3 =

(
1 2 4 0

4 0 −1 2

)T

.

Following Theorem 4.1, D = BR4,2
(3,3,12)

is a second-order orthogonal COD(64; (64)28222) design, as shown

in Table 4, and it possesses the following property of stratifications: (i) the two 64-level columns achieve

stratifications on 4u1 × 4u2 grids in a two-dimensional projection for u1 + u2 = 3; (ii) the two 8-level

columns achieve stratifications on 2u1 ×2u2 grids in a two-dimensional projection for u1+u2 = 3; (iii) any

two columns with different levels (e.g., a 64-level column and an 8-level column) achieve stratifications

on 4u1 × 2u2 grids in a two-dimensional projection for u1 + u2 = 3; and (iv) any three columns achieve a

stratification on a 2× 2× 2 grid in a three-dimensional projection.

Table 3 OA(64; 10, 4426, 3) in Example 4.2

Run 1 2 3 4 5 6 7 8 9 10 Run 1 2 3 4 5 6 7 8 9 10

1 −3 −3 −3 −3 −1 −1 −1 −1 −1 −1 33 1 −3 −3 1 1 −1 1 1 −1 1

2 −3 −3 −1 −1 −1 −1 1 1 1 1 34 1 −3 −1 3 1 −1 −1 −1 1 −1

3 −3 −3 1 1 1 1 −1 −1 1 1 35 1 −3 1 −1 −1 1 −1 1 −1 −1

4 −3 −3 3 3 1 1 1 1 −1 −1 36 1 −3 3 −3 −1 1 1 −1 1 1

5 −3 −1 −3 −1 1 1 −1 1 −1 1 37 1 −1 −3 3 −1 1 1 −1 −1 −1

6 −3 −1 −1 −3 1 1 1 −1 1 −1 38 1 −1 −1 1 −1 1 −1 1 1 1

7 −3 −1 1 3 −1 −1 −1 1 1 −1 39 1 −1 1 −3 1 −1 −1 −1 −1 1

8 −3 −1 3 1 −1 −1 1 −1 −1 1 40 1 −1 3 −1 1 −1 1 1 1 −1

9 −3 1 −3 1 −1 1 1 1 1 −1 41 1 1 −3 −1 −1 −1 −1 −1 1 1

10 −3 1 −1 3 −1 1 −1 −1 −1 1 42 1 1 −1 −3 −1 −1 1 1 −1 −1

11 −3 1 1 −1 1 −1 1 −1 −1 −1 43 1 1 1 3 1 1 1 1 1 1

12 −3 1 3 −3 1 −1 −1 1 1 1 44 1 1 3 1 1 1 −1 −1 −1 −1

13 −3 3 −3 3 1 −1 1 −1 1 1 45 1 3 −3 −3 1 1 −1 1 1 −1

14 −3 3 −1 1 1 −1 −1 1 −1 −1 46 1 3 −1 −1 1 1 1 −1 −1 1

15 −3 3 1 −3 −1 1 1 1 −1 1 47 1 3 1 1 −1 −1 1 −1 1 −1

16 −3 3 3 −1 −1 1 −1 −1 1 −1 48 1 3 3 3 −1 −1 −1 1 −1 1

17 −1 −3 −3 −1 1 1 1 −1 1 −1 49 3 −3 −3 3 −1 1 −1 1 1 1

18 −1 −3 −1 −3 1 1 −1 1 −1 1 50 3 −3 −1 1 −1 1 1 −1 −1 −1

19 −1 −3 1 3 −1 −1 1 −1 −1 1 51 3 −3 1 −3 1 −1 1 1 1 −1

20 −1 −3 3 1 −1 −1 −1 1 1 −1 52 3 −3 3 −1 1 −1 −1 −1 −1 1

21 −1 −1 −3 −3 −1 −1 1 1 1 1 53 3 −1 −3 1 1 −1 −1 −1 1 −1

22 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 54 3 −1 −1 3 1 −1 1 1 −1 1

23 −1 −1 1 1 1 1 1 1 −1 −1 55 3 −1 1 −1 −1 1 1 −1 1 1

24 −1 −1 3 3 1 1 −1 −1 1 1 56 3 −1 3 −3 −1 1 −1 1 −1 −1

25 −1 1 −3 3 1 −1 −1 1 −1 −1 57 3 1 −3 −3 1 1 1 −1 −1 1

26 −1 1 −1 1 1 −1 1 −1 1 1 58 3 1 −1 −1 1 1 −1 1 1 −1

27 −1 1 1 −3 −1 1 −1 −1 1 −1 59 3 1 1 1 −1 −1 −1 1 −1 1

28 −1 1 3 −1 −1 1 1 1 −1 1 60 3 1 3 3 −1 −1 1 −1 1 −1

29 −1 3 −3 1 −1 1 −1 −1 −1 1 61 3 3 −3 −1 −1 −1 1 1 −1 −1

30 −1 3 −1 3 −1 1 1 1 1 −1 62 3 3 −1 −3 −1 −1 −1 −1 1 1

31 −1 3 1 −1 1 −1 −1 1 1 1 63 3 3 1 3 1 1 −1 −1 −1 −1

32 −1 3 3 −3 1 −1 1 −1 −1 −1 64 3 3 3 1 1 1 1 1 1 1
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Table 4 COD(64; (64)28222) in Example 4.2

Run 1 2 3 4 5 6 Run 1 2 3 4 5 6

1 −63 −57 −7 −5 −1 −1 33 −59 23 3 5 −1 1

2 −31 −51 1 −3 1 1 34 −27 29 −5 3 1 −1

3 1 −45 −1 3 1 1 35 5 11 −3 −1 −1 −1

4 33 −39 7 5 −1 −1 36 37 1 5 −7 1 1

5 −55 −49 −1 7 −1 1 37 −51 31 5 −7 −1 −1

6 −23 −59 7 1 1 −1 38 −19 21 −3 −1 1 1

7 9 −37 −7 −1 1 −1 39 13 3 −5 3 −1 1

8 41 −47 1 −7 −1 1 40 45 9 3 5 1 −1

9 −47 −41 5 −3 1 −1 41 −43 15 −7 −5 1 1

10 −15 −35 −3 −5 −1 1 42 −11 5 1 −3 −1 −1

11 17 −53 3 1 −1 −1 43 21 27 7 5 1 1

12 49 −63 −5 7 1 1 44 53 17 −1 3 −1 −1

13 −39 −33 3 1 1 1 45 −35 7 −1 7 1 −1

14 −7 −43 −5 7 −1 −1 46 −3 13 7 1 −1 1

15 25 −61 5 −3 −1 1 47 29 19 1 −7 1 −1

16 57 −55 −3 −5 1 −1 48 61 25 −7 −1 −1 1

17 −61 −17 7 1 1 −1 49 −57 63 −3 −1 1 1

18 −29 −27 −1 7 −1 1 50 −25 53 5 −7 −1 −1

19 3 −5 1 −7 −1 1 51 7 35 3 5 1 −1

20 35 −15 −7 −1 1 −1 52 39 41 −5 3 −1 1

21 −53 −25 1 −3 1 1 53 −49 55 −5 3 1 −1

22 −21 −19 −7 −5 −1 −1 54 −17 61 3 5 −1 1

23 11 −13 7 5 −1 −1 55 15 43 5 −7 1 1

24 43 −7 −1 3 1 1 56 47 33 −3 −1 −1 −1

25 −45 −1 −5 7 −1 −1 57 −41 39 7 1 −1 1

26 −13 −11 3 1 1 1 58 −9 45 −1 7 1 −1

27 19 −29 −3 −5 1 −1 59 23 51 −7 −1 −1 1

28 51 −23 5 −3 −1 1 60 55 57 1 −7 1 −1

29 −37 −9 −3 −5 −1 1 61 −33 47 1 −3 −1 −1

30 −5 −3 5 −3 1 −1 62 −1 37 −7 −5 1 1

31 27 −21 −5 7 1 1 63 31 59 −1 3 −1 −1

32 59 −31 3 1 −1 −1 64 63 49 7 5 1 1

5 Construction of orthogonal LHDs with multi-dimensional stratifications

In this section, we will propose a method to construct orthogonal LHDs with multi-dimensional stratifi-

cations using regular factorial designs with prime power levels.

For a regular saturated factorial design of strength two with prime power levels, Ai et al. [1] provided

a general scheme to partition the columns into groups each being a full factorial design. But for a

regular factorial design of strength larger than two, there is no general partition scheme and thus the

grouping process has to be carried out by the computer. In particular, the OA(q3; qq+1, 3), constructed

through the Bush’s method (see [9]), can be partitioned into ⌊(q + 1)/3⌋ groups each being a q3 × 3 full

factorial design with q levels. By using a grouped design, we can construct orthogonal LHDs with multi-

dimensional stratifications. Moreover, if there exists a small orthogonal LHD, then a larger orthogonal

LHD with multi-dimensional stratifications can be obtained.

For a prime power q, assume that the regular factorial design of strength e > 2,

C = OA(qm; qkm, e) (5.1)

can be partitioned into k groups C = (C1, C2, . . . , Ck) with each Ci (i = 1, . . . , k) being a full factorial
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design OA(qm; qm,m). For an even m, define

X3 = Ik ⊗Hq
m, (5.2)

where ⊗ denotes the Kronecker product and Hq
m has the same form as in (3.4). Then we can obtain the

following results.

Theorem 5.1. For the C in (5.1) and X3 in (5.2), define D = CX3.

(i) If e > 3, then D is a second-order orthogonal L(qm, 2k) which achieves stratifications on qu1 ×
· · · × qug grids in g-dimensional projections, where g 6 e and

∑g
l=1 ul = e. The two columns in the same

rotation part (i.e., the (2i− 1)-th and (2i)-th columns of D, where i = 1, 2, . . . , k) achieve stratifications

on qu1 × qu2 grids in a two-dimensional projection, where u1 + u2 = m.

(ii) If e = 2, then D is an orthogonal L(qm, 2k). The two columns in the same rotation part (i.e., the

(2i− 1)-th and (2i)-th columns of D, where i = 1, 2, . . . , k) achieve stratifications on qu1 × qu2 grids in a

two-dimensional projection, where u1 + u2 = m.

Remark 5.2. For the case of odd m in C with strength two, we can construct orthogonal L(qm, k),

which only achieves stratifications on q × q grids when projected onto two dimensions if we take Hq
m =

(1, q, . . . , qm−2, qm−1). On the other hand, for the case of odd m in C with strength e > 3, a second-order

orthogonal L(qm, k) can be obtained which achieves stratifications on qu1×· · ·×qug grids in g-dimensional

projections, where g 6 e and
∑g

l=1 ul = e.

Let C be of the form in (5.1) and E = (γ1, γ2, . . . , γd) be an orthogonal L(q, d). For l = 1, 2, . . . , d, the

matrix C(l) is obtained by replacing the q levels of C with γ1l, . . . , γql in γl. Construct a qm×2kd matrix

D = (C(1)X3, C
(2)X3, . . . , C

(d)X3). (5.3)

According to [1, Theorem 2.2], we have the following results.

Corollary 5.3. (i) If C is an OA of strength three and E is a second-order orthogonal LHD, then

the D constructed in (5.3) is a second-order orthogonal L(qm, 2kd).

(ii) If C is an OA of strength two and E is an orthogonal LHD, then the D constructed in (5.3) is an

orthogonal L(qm, 2kd).

According to Corollary 5.3, we can construct larger (second-order) orthogonal LHDs with multi-

dimensional stratifications. An example is presented to illustrate the details of the construction.

Example 5.4. Consider the construction of a second-order orthogonal LHD of 94 runs. For the case

of m > 4, it is hard to partition an OA of strength three into groups of qm-run full factorial designs

for m factors. Therefore, the needed regular factorial designs have to be obtained by computer search.

In this example, we use C = OA(94; 936, 3), which can be partitioned into 9 groups each being a 94 × 4

full factorial design with 9 levels (see [1]), to construct a second-order orthogonal LHD of 94 runs with

multi-dimensional stratifications.

Let X3 = I9⊗H9
4 . From Theorem 5.1, we know that D = CX3 is a second-order orthogonal L(94, 18).

If E is taken to be the second-order orthogonal L(9, 4) (see [17]) of the form

E = 2


1 2 3 4 0 −1 −2 −3 −4

2 −1 4 −3 0 −2 1 −4 3

3 −4 −1 2 0 −3 4 1 −2

4 3 −2 −1 0 −4 −3 2 1


T

,

according to Corollary 5.3, theD constructed in (5.3) is a second-order orthogonal L(94, 72). In particular,

the (2i − 1)-th and (2i)-th columns (i = 1, 2, . . . , 36) of D achieve stratifications on 9 × 93, 92 × 92 and

93 × 9 grids in a two-dimensional projection.

Some new (second-order) orthogonal LHDs with multi-dimensional stratifications are listed in Table 5.

In this table, the first column displays the newly constructed orthogonal or second-order orthogonal LHDs.
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Table 5 New (second-order) orthogonal LHDs with multi-dimensional stratifications

LHD (D) Grouped OA (C) Hq
m in X3 Small LHD (E) Methods

L(94, 2050)∗ OA(94; 9820, 2) (9, 4) L(9, 5) Th 5.1(ii) and Cor 5.3(ii)

L(54, 156)∗ OA(54; 5156, 2) (5, 4) L(5, 2) Th 5.1(ii) and Cor 5.3(ii)

L(74, 600)∗ OA(74; 7400, 2) (7, 4) L(7, 3) Th 5.1(ii) and Cor 5.3(ii)

L((11)4, 5124)∗ OA((11)4; (11)1464, 2) (11, 4) L(11, 7) Th 5.1(ii) and Cor 5.3(ii)

L(34, 4) OA(34; 38, 3) (3, 4) Th 5.1(i)

L(35, 4) OA(35; 320, 3) (3, 5) Th 5.1(i)

L(93, 12) OA(93; 99, 3) (9, 3) L(9, 4) Th 5.1(i) and Cor 5.3(i)

L(94, 72) OA(94; 936, 3) (9, 4) L(9, 4) Th 5.1(i) and Cor 5.3(i)

L(53, 4) OA(53; 56, 3) (5, 3) L(5, 2) Th 5.1(i) and Cor 5.3(i)

L(54, 24) OA(54; 524, 3) (5, 4) L(5, 2) Th 5.1(i) and Cor 5.3(i)

L(55, 22) OA(55; 555, 3) (5, 5) L(5, 2) Th 5.1(i) and Cor 5.3(i)

L((25)3, 32) OA((25)3; (25)24, 3) (25, 3) L(25, 4) Th 5.1(i) and Cor 5.3(i)

L(73, 6) OA(73; 76, 3) (7, 3) L(7, 3) Th 5.1(i) and Cor 5.3(i)

L(74, 66) OA(74; 744, 3) (7, 4) L(7, 3) Th 5.1(i) and Cor 5.3(i)

L(75, 42) OA(75; 770, 3) (7, 5) L(7, 3) Th 5.1(i) and Cor 5.3(i)

L((11)3, 12) OA((11)3; (11)12, 3) (11, 3) L(11, 3) Th 5.1(i) and Cor 5.3(i)

L((11)4, 174) OA((11)4; (11)116, 3) (11, 4) L(11, 3) Th 5.1(i) and Cor 5.3(i)

Note. In the first column, designs with ∗ are orthogonal LHDs, and designs without ∗ are second-order orthogonal
LHDs. In the third column, we list “(q,m)” to represent Hq

m, where Hq
m takes the form of (3.4) for even m and

(1, q, . . . , qm−2, qm−1)T for odd m.

All of these designs are new and possess the multi-dimensional stratifications as described above. The

second column displays the needed OAs of strength two or three, abbreviated as “Grouped OA”, which

can be partitioned into groups each being a full factorial design. In particular, the OAs of strength two are

all regular saturated factorial designs. The OAs of the form OA(q3; qq+1, 3) can be constructed by Bush’s

method and the others are obtained by computer search. The third column lists the parameters (q,m) to

represent the Hq
m for X3 in (5.2), where Hq

m takes the form of (3.4) for even m and (1, q, . . . , qm−2, qm−1)T

for oddm. Small orthogonal LHDs are listed in the forth column, which can be obtained from [5,11,15,17].

The used methods are listed in the last column, where we use “Th” and “Cor” to denote “Theorem” and

“Corollary”, respectively.

6 Concluding remarks

In this paper, we propose some methods to construct column-orthogonal designs (CODs) and orthogonal

Latin hypercube designs (LHDs) with good stratifications by rotating symmetric and asymmetric orthog-

onal arrays (OAs). These methods are easy to implement and the resulting designs have many attractive

properties. The newly constructed CODs not only guarantee that the estimate of each linear effect is

uncorrelated with all other linear effects and the second-order effects if an OA with strength larger than

two is rotated, but also preserve stratifications on multiple dimensions. Therefore, such designs can be

used for computer experiments especially for the case where some factors need to be studied in more

details than others (see [3]). Orthogonal and second-order orthogonal LHDs can be obtained by rotating

a class of grouped regular prime power-level factorial designs. In addition, the regular factorial designs

used for constructing orthogonal LHDs (not for second-order orthogonal LHDs) are all saturated.

Before ending this section, it should be mentioned that there are plenty of alternative projection designs

from a given OA when constructing CODs. To make it clear, we take the saturated OA(16; 215, 2) (in

Example 3.3) for an illustration. Without loss of generality, we suppose that a COD with 16-level factors

and multi-dimensional stratifications is required. Following our construction, we need to partition the

columns of the saturated OA(16; 215, 2) to get three four-factor projection designs of strength four as
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the rotation parts. We now focus on the number of such partitions. There are altogether 2,627,625

(=
(
15
4

)
×
(
11
4

)
×
(
7
4

)
/6) partition candidates. Here, we use the generalized word length pattern (GWLP),

{B1(D), B2(D), . . . , Bm(D)}, proposed by [22] to obtain the strength of each projection design. The

value Bj(D) measures the overall aliasing between all j-factor interactions and the general mean in

design D, where j = 1, 2, . . . ,m and m denotes the number of factors. If Bt(D) = 0 for t = 1, 2, . . . , e and

Be+1(D) ̸= 0, then design D has strength e. With the above method, we use a MATLAB program to

search the partitions which result in three full 24 factorial designs, and finally 594,160 such partitions are

found. That is to say, 594,160 CODs with the same orthogonality and the property of multi-dimensional

stratifications can be constructed. The ratio is 594,160/2,627,625 = 0.2261. One can arbitrarily choose

one of these CODs for practical use. Note that the uniformity and column-orthogonality do not necessarily

agree with each other, i.e., the low correlations among the effects of a design cannot guarantee the

uniformity of its points, and vice versa (see [19]). Although the newly constructed CODs guarantee the

nice column-orthogonality and property of stratifications, they may not be optimal under some uniformity

criteria. Therefore, if we want to further evaluate these resulting CODs, an additional uniformity criterion

can be adopted alternatively such as one of the discrepancy measures (see [6]) and distance criteria

(see [10]). In this sense, the COD with the best uniformity is preferred. Once the levels of CODs are

given (say COD(n; (qt1)2(qt2)2 · · · (qtv )2qr)), it is not hard to find the projection designs (or rotation

parts) by a searching program.

In the following, an exhaustive partition algorithm is provided for illustrating how to divide an

OA(n; qm, e) with e > 2 (denoted by A) into projection designs with different strengths, i.e., A =

(A1, . . . , Av, A
∗) with Ai being an OA(n; qfi , ti) for i = 1, 2, . . . , v and A∗ being an OA(n; qr, tv+1).

Algorithm 6.1 (Partition algorithm for symmetric OAs). Step 1. Give an OA(n; qm, e), fi and ti
with qti |n, where qti |n means “qti divides n”. Set f0 = 0 and i = 1.

Step 2. Choose fi columns from the remaining m−
∑i−1

j=0 fj columns of the OA(n; qm, e) and generate

Ni =

(
m−

∑i−1
j=0 fj

fi

)
possible projection designs A1

i , . . . , A
Ni
i .

Step 3. For j = 1 to Ni, check whether Aj
i has strength ti by GWLP. If yes, retain this Aj

i . If no,

drop this Aj
i .

Step 4. If i < v, for each retained Aj
i in the above step, set i = i + 1 and go to Step 2. If i = v,

record the current partitions (A1, . . . , Av, A
∗) for all retained Aj

v with A∗ consisting of the remaining

m−
∑v

j=0 fj columns of the OA(n; qm, e).

Note that the partition algorithm for asymmetric OAs is similar and thus omitted. Algorithm 6.1

along with the above illustration example shows that, for a given OA and the parameter settings of the

needed COD, the number of partition candidates is usually very large, and it will be a time-costing task

if we want to enumerate all these candidates.
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Appendix A Proofs of theorems

The following lemmas will be helpful in proving the theorems in this paper.

Lemma A.1 (See [19]). Suppose A is an n×m matrix with

1TnA = 01×m and ATA = cIm,

where 1n denotes an n× 1 vector with all entries being unity and c is a constant. Let D = AX, where X

is a matrix with m rows. Then

(i) if X is a column-orthogonal matrix, then D is also a column-orthogonal matrix; and

(ii) if A is a second-order orthogonal design, then the estimates of all linear main effects of D are

uncorrelated with the estimates of all quadratic effects and bilinear interactions. Furthermore, if X is a

column-orthogonal matrix, then D is a second-order orthogonal matrix.
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Lemma A.2 (See [12]). Let A = (a1, a2, . . . , am) be an OA(sm; sm,m), and

dk = (dk1 , dk2 , . . . , dkk
)T

be a vector of (sk−1, sk−2, . . . , s, 1)T up to sign changes, where k is a positive integer with k 6 m. Then

(i) if
∑m

r=1 ardmr is collapsed into su levels, it becomes
∑u

r=1 sgn(dmr )ars
u−r, where sgn(x) means

the sign of x, 1 6 u 6 m − 1. In particular, if
∑m

r=1 ars
m−r is collapsed into su levels, it becomes∑u

r=1 ars
u−r;

(ii) for g 6 m and u1 + · · ·+ ug = m,( u1∑
r=1

ardu1r
,

u2∑
r=1

au1+rdu2r
, . . . ,

ug∑
r=1

a∑g−1
j=1 uj+rdugr

)
is an OA(sm; g, (su1)1 · · · (sug )1, g). In particular,( u1∑

r=1

ars
u1−r,

u2∑
r=1

au1+rs
u2−r, . . . ,

ug∑
r=1

a∑g−1
j=1 uj+rs

ug−r

)
is an OA(sm; g, (su1)1 · · · (sug )1, g).

Remark A.3. Following the proof of Lemma A.2, the level collapsed in this paper is also done by

2⌊(i+ qt)/(2qt−u)⌋ − qu + 1,

if qt levels are collapsed into qu levels.

Lemma A.4 (See [2]). Let A be a full factorial design with m factors each of s levels and u be an

m-dimensional vector. Then the vector Au is equally spaced if and only if u is a permutation of

{±λ,±λs,±λs2, . . . ,±λsm−1}

up to sign specification, where λ is any nonzero constant.

Proof of Theorem 3.1. (i) Since X1 is column-orthogonal and A = (a1, a2, . . . , am) is an OA(n; qm, e) of

strength e > 3,

D = AX1 = (d1, d2, . . . , d2v+r)

is a second-order orthogonal COD according to Lemma A.1. Let

D = (D1, D2, . . . , Dv, D
∗),

where Di = (d2i−1, d2i), i = 1, 2, . . . , v, and D∗ contains the remaining r columns. Moreover, let Hq
ti =

(hti
1 , h

ti
2 ), where hti

k = (hti
k1
, hti

k2
, . . . , hti

kfi
)′, i = 1, 2, . . . , v, k = 1, 2.

For the case of even ti, i = 1, 2, . . . , v, the two columns in D, d2i−1 and d2i, can be expressed as

d2i−1 =

ti∑
l=1

sgn(hti
1l
)a∑i−1

j=1 fj+lq
l−1 and d2i =

ti∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
ti−l.

According to Lemma A.2, when columns d2i−1 and d2i are collapsed into qu1 levels and qu2 levels,

respectively, they become

ti∑
l=ti−u1+1

sgn(hti
1l
)a∑i−1

j=1 fj+lq
l−ti+u1−1 and

u2∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l.

Now we only need to consider the stratifications of Di obtained by rotating Ai = OA(n; qfi , ti). For

u1 + u2 = ti, when qti-level columns d2i−1 and d2i are collapsed into qu1 and qu2 levels respectively, they

can be expressed as

ti∑
l=u2+1

sgn(hti
1l
)a∑i−1

j=1 fj+lq
l−u2−1 and

u2∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l.
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For the case of odd ti, the two columns in D, d2i−1 and d2i, can be expressed as

d2i−1 =

ti∑
l=1

sgn(hti
1l
)a∑i−1

j=1 fj+lq
l−1

and

d2i =

ti−1

2∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
ti−l +

ti∑
l=

ti+3

2

sgn(hti
2l
)a∑i−1

j=1 fj+lq
ti−l + a∑i−1

j=1 fj+ti+1q
ti−1

2 .

For u1 + u2 = ti, when the qti-level column d2i−1 is collapsed into qu1 levels, it can be expressed as

2

⌊
d2i−1 + qti

2qti−u1

⌋
− qu1 + 1 =

ti∑
l=u2+1

sgn(hti
1l
)a∑i−1

j=1 fj+lq
l−u2−1,

and when the qti-level column d2i is collapsed into qu2 levels, it can be expressed as

2

⌊
d2i + qti

2qti−u2

⌋
− qu2 + 1 =



u2∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l, u2 6 ti − 1

2
,

u2−1∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l + a∑i−1

j=1 fj+ti+1, u2 =
ti + 1

2
,

ti−1

2∑
l=1

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l + a∑i−1

j=1 fj+ti+1q
u2−

ti+1

2

+

u2∑
l=

ti+3

2

sgn(hti
2l
)a∑i−1

j=1 fj+lq
u2−l, u2 >

ti + 1

2
.

Meanwhile, since

Ai = (a∑i−1
j=1 fj+1, a

∑i−1
j=1 fj+2, . . . , a

∑i−1
j=1 fj+fi

)

is an OA(n; qfi , ti), following Lemma A.2 and the above discussion, Di = (d2i−1, d2i) can be collapsed

into an OA(n; 2, qu1qu2 , 2) for any given ti. Hence, the two qti-level columns achieve stratifications on

qu1 × qu2 (u1 + u2 = ti) grids in a two-dimensional projection. For the case of
∑g

l=1 ul = e where

2 6 g 6 e, if any g columns come from different groups Di1, Di2, . . . , Dig, it is easy to verify that these g

columns can be collapsed into an OA(n; g, qu1qu2 · · · qug , g) because any e columns ai1, ai2, . . . , aie of A

form an OA(n; qe, e). Thus D achieves stratifications on qu1 × qu2 × · · · × qug (
∑g

l=1 ul = e) grids in

g-dimensional projections.

(ii) The condition of (ii) is a special case of (i) for e = 2; therefore we omit the details of proof. This

completes the proof.

Proof of Theorem 4.1. (i) As B is an OA(n;m, (q1)
m1(q2)

m2 , e) of e > 3 and X2 is a column-orthogonal

matrix, we know that D = BX2 is a second-order orthogonal COD(n; (s1)
2 · · · (sv1+v2)

2(q1)
r1(q2)

r2),

where sj = (q1)
t1j for 1 6 j 6 v1 and sv1+j = (q2)

t2j for 1 6 j 6 v2. We just need to prove the

multi-dimensional stratifications of D.

Here, we only prove the property of stratifications of D when any g columns come from different groups

(Di1, Di2, . . . , Dig), where 2 6 g 6 e. Note that any e columns (ai1, ai2, . . . , aie) of

B = OA(n;m, (q1)
m1(q2)

m2 , e)

form an OA(n; e, (q1)
k1(q2)

k2 , e) with k1 + k2 = e. According to Lemma A.2, these g columns can be

collapsed into an OA(n; g, (qi)
u1 · · · (qi′)ug , g) where i, i′ ∈ {1, 2} and

∑g
l=1 ul = e. Thus D achieves

stratifications on qu1
i ×· · ·×q

ug

i′ (i, i′ ∈ {1, 2},
∑g

l=1 ul = e) grids in g-dimensional projections. The other

case is similar to that of Theorem 3.1(i) and we omit its proof here.



1304 Yang X et al. Sci China Math June 2021 Vol. 64 No. 6

(ii) The proof of (ii) is similar to that of (i) and is thus omitted. This completes the proof of

Theorem 4.1.

Proof of Theorem 5.1. (i) For the resulting design D, its second-order orthogonality and property of

stratifications can be easily obtained from Theorem 3.1. Next, what we only need to prove is that D is

an LHD. To show this, we note that C can be partitioned into k groups C = (C1, C2, . . . , Ck) with Ci

being a full factorial design OA(qm; qm,m) for i = 1, 2, . . . , k. Following Lemma A.4, each column of D

has qm equally spaced levels, so D is an LHD.

(ii) Part (ii) is a special case of Part (i), so the proof is omitted. This completes the proof of

Theorem 5.1.
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