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a b s t r a c t

Strong orthogonal arrays enjoy more attractive space-filling properties than ordinary
orthogonal arrays for computer experiments. In this paper, we propose two methods for
constructing column-orthogonal nearly strong orthogonal arrays. These designs enjoy
column orthogonality, inherit the attractive two-dimensional space-filling property of
strong orthogonal arrays, and can accommodate twice or more number of factors than
the existing strong orthogonal arrays. In addition, the proposed designs with four levels
enjoy an attractive space-filling property under the maximin distance criterion. The
construction methods are convenient and flexible, and the resulting designs are useful
in computer experiments.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Computer experiment is a popular and powerful tool to investigate the complex phenomena and systems in engi-
eering and sciences. The implementation of computer experiments needs space-filling designs (Santner et al., 2013;
ang et al., 2006). A commonly used approach for constructing space-filling designs is to adopt orthogonal arrays and
imilar structures. Randomized orthogonal arrays (Owen, 1992) and orthogonal array-based Latin hypercubes (Tang, 1993)
mploy orthogonal arrays of strength t to realize t-dimensional space-filling property. Motivated by (t,m, s)-nets from

quasi-Monte Carlo (Niederreiter, 1992, Chap. 4), He and Tang (2013) introduced the concept of strong orthogonal arrays
(SOAs) and found their attractive space-filling property for computer experiments. These arrays of strength t are more
space-filling than ordinary orthogonal arrays in less than t dimensions and have the same space-filling property as the
latter ones in t dimensions. However, SOAs, to enjoy more attractive space-filling property than orthogonal arrays, must
have strength three or higher. He and Tang (2014) examined the characterizations of SOAs of strength 3. Given the number
of runs, the number of factors for an SOA of strength 3 is very small because such arrays are based on orthogonal arrays
of strength 3. In order to increase the number of factors and retain the two-dimensional space-filling property of SOAs of
strength 3, He et al. (2018) proposed a new class of arrays, called SOAs of strength 2+.

Obviously, both the SOAs of strength 3 in He and Tang (2014) and SOAs of strength 2+ in He et al. (2018) have no
column orthogonality. Nevertheless, the column orthogonality is of great importance. Joseph and Hung (2008) argued that
minimizing the correlations among the columns will help in estimating the linear trends efficiently when the universal
kriging model with linear trends is considered. Furthermore, the column orthogonality, viewed as a stepping stone, helps
finding space-filling designs when Gaussian process models are considered (Bingham et al., 2009). Many researchers have
discussed the column orthogonality of Latin hypercube designs including Ye (1998), Steinberg and Lin (2006), Sun et al.
(2009), Lin et al. (2009), and so on. Liu and Liu (2015) constructed column-orthogonal strong orthogonal arrays (OSOAs)
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of strength t based on orthogonal arrays of strength t while the numbers of factors are still very small. Zhou and Tang
(2019) further examined OSOAs of strength 2+ with relatively more factors.

In this paper, we propose column-orthogonal nearly strong orthogonal arrays (ONSOAs) to accommodate much more
actors than the existing ones. The resulting designs have the column orthogonality, attractive stratifications in two
imensions and flexible run sizes with very high factor-to-run ratios, almost equal to that of the orthogonal arrays. Such
tratifications, as shown in Definition 1, are a type of space-filling property. In addition, the proposed ONSOAs with four
evels enjoy an attractive space-filling property under the maximin distance criterion. The construction methods involve
wo key ideas. The first is that the specific three-column submatrices form orthogonal arrays of strength three. The second,
ue to Steinberg and Lin (2006) and Lin et al. (2009), is that rotating the points in an orthogonal array will preserve the
olumn orthogonality of the original orthogonal array.
Compared to stratifications in Definition 1, any two columns of an orthogonal Latin hypercube design from Pang et al.

2009) only achieve a stratification on an s× s grid, and their designs have a severe restriction of run sizes. Many pairwise
columns of orthogonal Latin hypercube designs from Lin et al. (2009) cannot achieve such stratifications. Thus the above
two works can be regarded as a motivation for constructing column-orthogonal designs with good stratifications. The
proposed ONSOAs with many levels, not requiring the number of levels for each factor to be the same as the number of
runs, enjoy good stratifications as shown in Definition 1. In addition, Bingham et al. (2009) discussed the rationale and
usefulness for constructing exactly or nearly column-orthogonal designs that are not Latin hypercube designs but still
have many levels.

The remainder of this paper is organized as follows. Section 2 provides some preliminaries and defines the ONSOA.
Section 3 investigates two construction methods for the ONSOAs. Section 4 is devoted to some comparisons between the
ONSOAs and other types of SOAs. Section 5 examines the space-filling property of the constructed ONSOAs under the
maximin distance criterion. Section 6 contains some concluding remarks.

2. Definitions and preliminaries

An n × m matrix with entries from {0, 1, . . . , sj − 1} in the jth column is an orthogonal array of n runs, m factors
nd strength t if, in any n × t subarray, all possible level combinations occur equally often. We denote such an array
y OA(n,m, s1 × · · · × sm, t). The array is symmetric if s1 = · · · = sm = s, simply denoted by OA(n,m, s, t), and
symmetric otherwise. An n × m matrix with entries from {0, 1, . . . , st − 1} is called a strong orthogonal array of n
uns, m factors, st levels and strength t if any subarray of g columns for any g with 1 ≤ g ≤ t can be collapsed into an
OA(n, g, su1 × · · · × sug , g) for any positive integers u1, . . . , ug with u1 + · · · + ug = t , where collapsing st levels into suj
evels is according to ⌊x/st−uj⌋ for x = 0, 1, . . . , st − 1, and ⌊x⌋ is the largest integer not exceeding x. Denote this array
by SOA(n,m, st , t). As a consequence, any SOA(n,m, s3, 3) can achieve stratifications on s2 × s and s × s2 grids in two
imensions and on s × s × s grids in three dimensions. See He and Tang (2014) for more details of SOAs.
An n×m matrix with entries from {0, 1, . . . , s2−1} is called a strong orthogonal array of strength 2+ with n runs and m

actors of s2 levels, denoted by SOA(n,m, s2, 2+), if any subarray of two columns can be collapsed into an OA(n, 2, s2×s, 2)
nd an OA(n, 2, s× s2, 2). An SOA(n,m, s2, 2+) enjoys the same attractive two-dimensional space-filling property as that

of an SOA(n,m, s3, 3), while the former can accommodate more factors.
A design D is called column-orthogonal if the inner product of any two columns of the centered design is zero. Centering

a design means that the s levels are converted into x − (s − 1)/2 for x = 0, 1, . . . , s − 1, and then labeled as in the set
Ω(s) = {−(s − 1)/2, −(s − 3)/2, . . . , (s − 3)/2, (s − 1)/2}. For example, the levels are −1/2, 1/2 if s = 2 and −1, 0, 1 if
s = 3. We denote a column-orthogonal SOA(n,m, s2, 2+) by OSOA(n,m, s2, 2+).

Definition 1. A column-orthogonal nearly strong orthogonal array ONSOA(R,
∑m

j=1 cj, s
2, 2+) is an R × C array with s2

levels in Ω(s2), whose C =
∑m

j=1 cj columns can be partitioned into m disjoint groups of c1, . . . , cm columns respectively
such that

(a) the whole array is column-orthogonal;
(b) any two columns from different groups achieve stratifications on s2 × s and s × s2 grids;
(c) any two columns from the same group achieve a stratification on an s × s grid.

By Definition 1(a) and (c), an ONSOA(R,
∑m

j=1 cj, s
2, 2+) is column-orthogonal and can be collapsed into an OA(R,∑m

j=1 cj, s, 2). In particular, if cj = c for each j, then an ONSOA in Definition 1 will be denoted by ONSOA(R, c ×m, s2, 2+).
Obviously, this array becomes an OSOA when c = 1.

From Definition 1(b), in an ONSOA(R,
∑m

j=1 cj, s
2, 2+), each of the cj columns in the jth group together with any column

in other groups as a whole achieves the stratifications on s2 × s and s × s2 grids. This implies the following measure of
the degree of such stratifications among columns

π =

⎛⎝C2
−

m∑
c2j

⎞⎠/
(C(C − 1)) .
j=1
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Table 1
An ONSOA(16, 2 × 7, 4, 2+) multiplied by 2.
D1 D2 D3 D4 D5 D6 D7

3 1 3 1 3 1 3 1 3 1 3 1 3 1
3 1 3 1 −3 −1 3 1 −3 −1 −3 −1 −3 −1
3 1 −3 −1 3 1 −3 −1 3 1 −3 −1 −3 −1
3 1 −3 −1 −3 −1 −3 −1 −3 −1 3 1 3 1

−3 −1 3 1 3 1 −3 −1 −3 −1 3 1 −3 −1
−3 −1 3 1 −3 −1 −3 −1 3 1 −3 −1 3 1
−3 −1 −3 −1 3 1 3 1 −3 −1 −3 −1 3 1
−3 −1 −3 −1 −3 −1 3 1 3 1 3 1 −3 −1
1 −3 1 −3 1 −3 1 −3 1 −3 1 −3 1 −3
1 −3 1 −3 −1 3 1 −3 −1 3 −1 3 −1 3
1 −3 −1 3 1 −3 −1 3 1 −3 −1 3 −1 3
1 −3 −1 3 −1 3 −1 3 −1 3 1 −3 1 −3

−1 3 1 −3 1 −3 −1 3 −1 3 1 −3 −1 3
−1 3 1 −3 −1 3 −1 3 1 −3 −1 3 1 −3
−1 3 −1 3 1 −3 1 −3 −1 3 −1 3 1 −3
−1 3 −1 3 −1 3 1 −3 1 −3 1 −3 −1 3

When cj = c for any j, we have that

π = (m − 1)c/(cm − 1), (1)

which is very high and close to 1 as m gets larger. If c = 2, we have π = 92.31%, 96.55%, 98.36%, 99.20% for
= 7, 15, 31, 63. This implies that the property of stratifications in two dimensions is almost the same as the SOA

of strength 2+. An illustrative example is given below.

Example 1. Table 1 shows an ONSOA(16, 2 × 7, 4, 2+). The whole design is column-orthogonal. All 14 columns are
artitioned into 7 disjoint groups (denoted by D1, . . . ,D7) of two columns each such that any two columns from distinct
roups achieve stratifications on 4 × 2 and 2 × 4 grids and any two columns from the same group achieve a stratification
n a 2 × 2 grid. With m = 7 in (1), we have the degree of stratifications on 4 × 2 and 2 × 4 grids of π = 92.31%. This
mplies that the ONSOA(16, 2 × 7, 4, 2+) enjoys almost the same two-dimensional space-filling property as those of an
OA(16, 7, 8, 3) in He and Tang (2014), an OSOA(16, 4, 8, 3) in Liu and Liu (2015) and an OSOA(16, 7, 4, 2+) in Zhou and

Tang (2019), while the former has much more factors.

3. Construction methods

3.1. Column-orthogonal nearly strong orthogonal arrays with sn runs and 2m factors

Throughout this paper, suppose A is an OA(n,m, s, 2). The following algorithm gives the construction of an ONSOA(sn,
2 × m, s2, 2+).

Construction 1.
Step 1. Define two sn×mmatrices F1 = (AT , . . . , AT )T , F2 = (AT , AT

+1, . . . , AT
+s−1)T (mod s) and write Fi = (fi1, . . . , fim)

for i = 1, 2, where T denotes the transpose of a matrix.
Step 2. Center the s levels of two matrices F1 and F2 by x− (s−1)/2 for x ∈ {0, 1, . . . , s−1} such that they are from Ω(s).

Then arrange the 2m centered columns fij’s as (F (1), . . . , F (m)), where F (j)
= (f1j, f2j) has two columns for j = 1, . . . ,m.

Step 3. Define

D = (D1, . . . ,Dm), (2)

where Dj = F (j)V for j = 1, . . . ,m, and

V =

(
s −1
1 s

)
. (3)

A theoretical property of the proposed design D in (2) can be stated as follows.

Theorem 1. If there exists an OA(n,m, s, 2), then the design D in (2) is an ONSOA(sn, 2 × m, s2, 2+).

Example 2. Let A be an OA(8, 7, 2, 2), F1 = (AT , AT )T and F2 = (AT , AT
+ 1)T (mod 2). Write Fi = (fi1, . . . , fi7) for i = 1, 2.

Center the levels of F1 and F2 to be {−1/2, 1/2}. Next, arrange the 14 centered columns fij’s as (F (1), . . . , F (7)), where
F (j)

= (f1j, f2j) for j = 1, . . . , 7. Then D = (F (1)V , . . . , F (7)V ) is an ONSOA(16, 2 × 7, 4, 2+) with π = 92.31%, as shown in

Table 1.
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Based on Construction 1 and Theorem 1, various ONSOAs can be constructed from orthogonal arrays of strength 2.
ere we summarize three families from distinct existence and construction results of the orthogonal arrays (Hedayat
t al., 1999, Chaps. 3 & 7). (i) From a Hadamard matrix of order m, we can obtain an OA(m,m− 1, 2, 2). Then Theorem 1

can produce an ONSOA(2m, 2× (m− 1), 4, 2+). The number of columns (2m− 2) for the resulting design is closer to the
aximum number of columns (2m − 1) for a column-orthogonal design. (ii) For a prime power s, the Rao–Hamming
onstruction gives a saturated regular design OA(sk−1,m, s, 2) with m = (sk−1

− 1)/(s − 1). Based on this, we can
btain an ONSOA(sk, 2 × m, s2, 2+). (iii) The Addelman–Kempthorne construction provides an OA(2sk−1,m, s, 2) with
= 2(sk−1

− 1)/(s− 1)− 1 for any odd prime power s. So, we can obtain an ONSOA(2sk, 2×m, s2, 2+) correspondingly.
Note that Zhou and Tang (2019) obtained the OSOA(sn,m, s2, 2+) by sF1 + F2 in our symbols. This is a special

ase of our method if we take V = (s, 1)T in Step 3, while our designs can accommodate double number of factors.
ote that the proposed method works for any s ≥ 2, which is not limited to a prime power. According to the
lexible choices of orthogonal arrays and simple construction, Theorem 1 provides a very powerful method to construct
NSOA(sn, 2 × m, s2, 2+) designs.

.2. Column-orthogonal nearly strong orthogonal arrays with sn runs and cm factors

This subsection provides a construction of ONSOAs with more columns using difference schemes. For a prime power
, suppose the s levels are taken from the Galois field GF(s) = {α0 = 0, α1 = 1, . . . , αs−1}, which is simplified as

{0, 1, . . . , s − 1} if s is a prime. Let ω = (α0, α1, . . . , αs−1)T and gi = αi−1ω for i = 1, . . . , s. Consequently, (g1, . . . , gs)
is a difference scheme, see Hedayat et al. (1999, Chap. 6.2). Let A be an OA(n,m, s, 2) and c = 2⌊s/2⌋. The construction
method is as follows.

Construction 2.
Step 1. For i = 1, . . . , c , define an sn × m matrix Fi = gi ⊕ A and write Fi = (fi1, . . . , fim), where gi ⊕ A is the Kronecker

sum of gi and A.

tep 2. For i = 1, . . . , c , replace the s levels {α0, α1, . . . , αs−1} of Fi by {0, 1, . . . , s−1} and then center them by x−(s−1)/2
for x ∈ {0, 1, . . . , s− 1} such that they are from Ω(s). Then arrange the cm centered columns fij’s as (F (1), . . . , F (m)),
where F (j)

= (f1j, . . . , fcj) has c columns for j = 1, . . . ,m.

Step 3. Define

D = (D1, . . . ,Dm), (4)

where Dj = F (j)R for j = 1, . . . ,m, and R = diag{V , . . . , V } with V repeating c/2 times in the diagonal.

Similar to Theorem 1, a theoretical property of the design D in (4) is stated as follows.

Theorem 2. If there exists an OA(n,m, s, 2), then the design D in (4) is an ONSOA(sn, c × m, s2, 2+), where s is a prime
power and c = 2⌊s/2⌋.

Compared with the condition in Theorem 1, Theorem 2 requires that s is a prime power. In fact, this is not a strong
condition for the existence of orthogonal arrays. For s = 2, 3, Construction 2 is equivalent to Construction 1. For s ≥ 4,
however, Construction 2 will generate ONSOAs with much more factors than Construction 1.

Both the design D in (4) and a mappable nearly orthogonal array (Mukerjee et al., 2014) can be collapsed into an
orthogonal array of strength 2, while the latter does not enjoy column orthogonality. In a word, the former possesses
both the attractive two-dimensional stratifications and column orthogonality.

Example 3. Let A be an OA(16, 5, 4, 2) and GF(4) = {α0, α1, α2, α3}. For i = 1, . . . , 4, let Fi = gi ⊕ A, where
gi = αi−1(α0, α1, α2, α3)T , and write Fi = (fi1, . . . , fi5). Replace the levels of each Fi by {0, 1, 2, 3} and then center them
to be {−3/2, −1/2, 1/2, 3/2}. Next, arrange the 20 centered columns fij’s as (F (1), . . . , F (5)), where F (j)

= (f1j, . . . , f4j) for
j = 1, . . . , 5. Then we have that D = (D1, . . . ,D5) = (F (1)R, . . . , F (5)R) is an ONSOA(64, 4 × 5, 16, 2+) with π = 84.21%,
where R = diag{V , V }.

For a prime power s, the Bush construction (Hedayat et al., 1999, Chap. 3.2) and an ovoid provide an OA(s3, s+ 1, s, 3)
and an OA(s4, s2 + 1, s, 3), respectively, where a set of s2 + 1 points {(w, x, y, z)} in projective geometry PG(3, s) is called
an ovoid if any three points of the set are not collinear; see Hedayat et al. (1999, Chap. 5.9) and Calderbank and Kantor
(1986) for further details. Based on the two orthogonal arrays, He and Tang (2014) obtained an SOA(s3, s+1, s3, 3) and an
SOA(s4, s2+1, s3, 3). For comparison, based on the OA(sk−1, (sk−1

−1)/(s−1), s, 2) from the Rao–Hamming construction, our
method can generate an ONSOA(s3, c(s+1), s2, 2+) and an ONSOA(s4, c(s2+s+1), s2, 2+) with c = 2⌊s/2⌋. Take s = 4 as
an example. Our design ONSOA(64, 4×5, 16, 2+) has almost the same two-dimensional stratifications (with π = 84.21%)
as that of the SOA(64, 5, 64, 3), while the former enjoys much more columns and additional column orthogonality. Similar

observations can also be obtained from the comparison between the ONSOA(256, 4×21, 16, 2+) and SOA(256, 17, 64, 3).
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Table 2
Comparisons of the number of factors for SOA(n,m1, s3, 3), OSOA(n,m2, s3, 3), OSOA(n,m3, s2, 2+) and ONSOA(n,m4, s2, 2+), and the degree of
tratifications π .
Families s k n m1 m2 m3 m4 π (%)

HM 2 −
8, 16, 24, 32, 40, 48,
56, 64, 72, 80, 88, 96 n/2 − 1 n/4 n/2 − 1 n − 2 1 − 1/(n − 3)

RH 2 4 16 7 4 7 14 92.31
RH 2 5 32 15 8 15 30 96.55
RH 2 6 64 31 16 31 62 98.36
RH 2 7 128 63 32 63 126 99.20
RH 2 8 256 127 64 127 254 99.60
RH 3 3 27 4 2 4 8 85.71
RH 3 4 81 10 5 13 26 96.00
RH 3 5 243 19 10 40 80 98.73
RH 4 3 64 5 2 5 20 84.21
RH 4 4 256 17 8 21 84 96.39
RH 4 5 1024 − − 85 340 99.12
RH 5 3 125 6 3 6 24 86.96
RH 5 4 625 26 13 31 124 97.56
RH 7 3 343 8 4 8 48 89.36
RH 8 3 512 9 4 9 72 90.14
RH 9 3 729 10 5 10 80 91.14
RH 10 3 1000 11 5 11 110 91.74
AK 3 3 54 5 − 7 14 92.31
AK 3 4 162 − − 25 50 97.96
AK 5 3 250 − − 11 44 93.02
AK 7 3 686 − − 15 90 94.38

Note: HM, Hadamard matrix; RH, the Rao–Hamming construction; AK, the Addelman–Kempthorne construction.

4. Comparisons with existing SOAs

This section employs Constructions 1 and 2 to obtain ONSOAs based on the three families of orthogonal arrays
entioned in Section 3.1. For the run sizes n ≤ 1000, some of the resulting designs are shown in Table 2 and many
thers, which can be obtained similarly, are omitted.
Table 2 shows some comparisons of the numbers of factors, denoted by m1,m2,m3 and m4, respectively for the four

inds of designs, including the SOA(n,m1, s3, 3) from He and Tang (2014), OSOA(n,m2, s3, 3) from Liu and Liu (2015),
SOA(n, m3, s2, 2+) from Zhou and Tang (2019) and ONSOA(n,m4, s2, 2+) from our methods, where n = sk for the
ao–Hamming construction and n = 2sk for the Addelman–Kempthorne construction. The numbers of columns for the
irst three kinds of designs can be calculated accordingly, and m4 = c × m3 with c = 2⌊s/2⌋. The second row of Table 2
hows the cases of n ≤ 100 being a multiple of eight (n = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96) with s = 2, where
he designs are constructed from Hadamard matrices. Many other cases of n > 100 can be similarly obtained accordingly,
nd a library of Hadamard matrices can be found from Dr. N. J. A. Sloane’s website, http://neilsloane.com/hadamard/. The
ast column of Table 2 lists the degree of stratifications π in (1) for our designs. For simplicity, the four kinds of designs
re denoted by SOA(3), OSOA(3), OSOA(2+) and ONSOA(2+) respectively.
We summarize the following observations from Table 2. Compared with SOA(3), our design ONSOA(2+) possesses

olumn orthogonality. Compared with SOA(3) and OSOA(3), if they exist, our design ONSOA(2+) can accommodate
uch more columns with column orthogonality and comparable two-dimensional stratifications, although the three-
imensional stratifications cannot be guaranteed. Compared with OSOA(2+), our design ONSOA(2+) can accommodate
uch more columns, with column orthogonality retained and two-dimensional stratifications not sacrificed too much.
ompared with SOA(3) and OSOA(3), OSOA(2+) and ONSOA(2+) gain column orthogonality and/or more columns with
lmost the same two-dimensional stratifications, although the number of levels decreases from s3 to s2.

. Space-filling property

This section is devoted to studying the space-filling property of the resulting ONSOAs under the maximin distance
riterion. A theoretical justification for the space-filling property is provided.
Let U(n, sm) denote a balanced design with n runs, m factors, and s levels from {0, 1, . . . , s − 1} where the s levels

ppear equally often for each factor. Let D be a U(n, sm). The L2-distance between two distinct rows xi = (xi1, . . . , xim) and
j = (xj1, . . . , xjm) in D is defined to be d(xi, xj) =

∑m
k=1 |xik − xjk|2. Define the L2-distance of D to be d(D) = mini̸=jd(xi, xj).

maximin distance design is to maximize the d(D) value (Johnson et al., 1990). For a D ∈ U(n, sm), its average pairwise
2-distance between rows is dave(D) = n(s2 −1)m/(6n−6) (Zhou and Xu, 2015). Since the minimum pairwise L2-distance
annot exceed the integer part of the average, we have d(D) ≤ ⌊dave(D)⌋, where ⌊dave(D)⌋ is called the upper bound for
he L2-distance of D. Based on this, we define the distance efficiency as

d (D) = d(D)/⌊d (D)⌋ = d(D)/⌊n(s2 − 1)m/(6n − 6)⌋. (5)
eff ave
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Table 3
The distance efficiencies of our designs and L2-distances of 32 × m designs with m = 2k columns, k = 4, 5, . . . , 15.
m 8 10 12 14 16 18 20 22 24 26 28 30

deff 0.50 0.48 0.67 0.61 0.73 0.72 0.80 0.82 0.85 0.90 0.97 0.97
Ours 1.11 1.33 2.22 2.44 3.33 3.67 4.56 5.11 5.78 6.67 7.78 8.33
SLHD 0.91 1.26 1.62 2.00 2.37 2.75 3.20 3.47 3.86 4.23 4.61 5.04

Note: Ours, our designs; SLHD, R package ‘‘SLHD’’.

The larger deff(D), the better. Because of strict restrictions on the numbers of runs, levels and factors, the upper bound
for an ONSOA may be not attainable. In many situations, even though the dave(D) in (5) is an integer, this upper bound
may not be achieved and there is still a need for further research. Before we introduce the space-filling property of the
proposed ONSOAs, we need the following.

In Step 2 of Construction 1, write F = (F (1), . . . , F (m)), where each F (j) has two columns. We know that F must be an
OA(sn, 2m, s, 2) with entries from Ω(s). Since the D in (2) can be rewritten as D = FR1, where R1 = diag{V , . . . , V } with
V in (3) repeating m times in the diagonal, we have the following result.

Lemma 1. Let D = FR1, where F is an OA(sn, 2m, s, 2) and R1 = diag{V , . . . , V } with V repeating m times in the diagonal.
Then we have that

d(D) = (s2 + 1)d(F ) and deff(D) ≥ d(F )/dave(F ).

Lemma 1 shows that the L2-distance of D is determined by that of F , and the distance efficiency of D also relies on
that of F since a large deff(F ) must lead to a large d(F )/dave(F ).

We now investigate the L2-distance and distance efficiency of an ONSOA(2n, 2×(n−1), 4, 2+), which is constructed by
taking A to be an OA(n, n−1, 2, 2) via Construction 1. Note that F = (F (1), . . . , F (n−1)) is an OA(2n, 2(n−1), 2, 2). According
to the structure of F , a saturated OA(2n, 2n − 1, 2, 2) can be obtained if we add to F a 2n × 1 two-level column with the
first n entries being 1/2 and the next n entries being −1/2. Since such a saturated OA(2n, 2n−1, 2, 2) has an L2-distance
of n with any two distinct rows being equidistant, we have that F must have an L2-distance of n − 1, i.e., d(F ) = n − 1.
Taking s = 2 and m = n − 1 in Lemma 1, we have the following result.

Theorem 3. Let D be an ONSOA(2n, 2 × (n − 1), 4, 2+) constructed in (2) via Construction 1. Then we have that

d(D) = 5(n − 1) and deff(D) ≥ (2n − 1)/(2n).

From Theorem 3, we can see that deff(D) converges to one as n goes to infinity. This shows that the proposed ONSOAs
with four levels perform well in terms of the maximin distance criterion. Thus an ONSOA(2n, 2× (n− 1), 4, 2+) achieves
the attractive space-filling properties not only in two-dimensional projections, but also in the full space.

As suggested by one referee, we next consider the L2-distances of our designs with m ≤ 2(n − 1) columns. Some
comparisons are also made with the designs generated by the R package ‘‘SLHD’’ (Ba et al., 2015). For a fair comparison,
the L2-distance here is calculated after the levels are scaled into the interval [0, 1]. For our designs with m ≤ 2(n − 1)
columns, we randomly generate m-dimensional projections 100 times based on the ONSOA(2n, 2 × (n − 1), 4, 2+) and
choose the best one. For the designs by the R package ‘‘SLHD’’, we run the R command maximinLHS 100 times with default
settings and choose the best design for each m. Table 3 shows the distance efficiencies of our designs and L2-distances of
both 32×m designs with m = 2k columns, k = 4, 5, . . . , 15. It can be seen that our designs have high distance efficiencies
for large values of m. For small values of m, although the distance efficiencies get small, our designs still have slightly
larger L2-distances than SLHDs. Similar phenomenon also occurs for designs with other run sizes.

To study the space-filling property of the ONSOA D constructed via Construction 2, we first introduce a strategy to
improve the distance efficiency. Let F be (F (1), . . . , F (m)) in Step 2 of Construction 2. We use the linear level permutation
on F to obtain a new F , where the levels of F are adaptively chosen to be {0, 1, . . . , s−1} for the linear level permutation
and Ω(s) for Construction 2. For example, write F = (f1, . . . , fcm) and u = (u1, . . . , ucm) with uj ∈ {0, 1, . . . , s − 1},
and define F + u = (f1 + u1, . . . , fcm + ucm) (mod s) as the new F . Based on this new F , we obtain a new ONSOA via
Construction 2. Repeat the linear level permutation 100 times by randomly generating a u each time, and then select the
best one (say D∗) among the 100 generated ONSOAs in terms of the distance efficiency. Since a systematic study on this
point is out of the scope of the paper, we just give an illustrative example below.

Example 4. According to the above strategy, let D be an ONSOA(256, 4×21, 16, 2+) constructed via Construction 2 and
D∗ be the improved one, which have the distance efficiencies of 0.30 and 0.65, respectively. Therefore, D∗ is preferred.
Similar to the discussion in Table 3, we also consider the L2-distances of m-dimensional projections of D∗, in comparison
with those generated by the R package ‘‘SLHD’’ (Ba et al., 2015), where the setting of 104 iterations is utilized in the R
command maximinLHS. The results in Table 4 indicate that the distance efficiency decreases as the number of columns
gets smaller, while our designs are relatively comparable to those from the R package ‘‘SLHD’’ in terms of the L -distance.
2
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Table 4
The distance efficiencies of our designs and L2-distances of 256 × m designs with m = 6k columns, k = 2, 3, . . . , 14.
m 12 18 24 30 36 42 48 54 60 66 72 78 84

deff 0.19 0.28 0.34 0.42 0.45 0.50 0.52 0.55 0.58 0.60 0.63 0.64 0.65
Ours 0.44 0.95 1.55 2.37 3.07 4.00 4.78 5.64 6.62 7.52 8.54 9.46 10.28
SLHD 0.54 1.19 1.92 2.67 3.44 4.23 5.18 5.92 6.67 7.50 8.35 9.30 10.17

Fig. 1. Bivariate projections of (a) the first four columns of ONSOA(27, 2×4, 9, 2+) and (b) the columns (d1, d2, d5, d6) of ONSOA(64, 4×5, 16, 2+).

As the number of levels s2 increases, the upper bound in (5) is hard to achieve. In such cases, the space-filling property
of an ONSOA can be partly explained by the stratification properties given in Definition 1. Such stratification properties
have motivated the development of strong orthogonal arrays (He and Tang, 2013, 2014; He et al., 2018; Zhou and Tang,
2019). We now use an example to illustrate the stratification property of ONSOAs with more than four levels.

Example 5. For s = 3 and s = 4, let D1 and D2 be an ONSOA(27, 2 × 4, 9, 2+) and an ONSOA(64, 4 × 5, 16, 2+),
respectively. Their stratification properties can be seen intuitively in Fig. 1(a) and (b), respectively, where dj stands for
the jth column of each design. More specifically, the 8 columns of D1 can be partitioned into 4 groups of 2 successive
columns each such that any two columns achieve stratifications on 9 × 3 and 3 × 9 grids if they are from distinct groups
(e.g., (d1, d3)), and on a 3 × 3 grid if they are from the same group (e.g., (d1, d2)). Similarly, the 20 columns of D2 can
be partitioned into 5 groups of 4 successive columns each such that any two columns achieve stratifications on 16 × 4
and 4 × 16 grids if they are from distinct groups (e.g., (d1, d5)), and on a 4 × 4 grid if they are from the same group
(e.g., (d1, d2)). From the bivariate projections of D1 and D2, they enjoy appealing space-filling properties in terms of the
stratifications.

6. Concluding remarks

This paper presents two methods for constructing column-orthogonal nearly strong orthogonal arrays (ONSOAs).
The resulting designs enjoy column orthogonality, large number of factors, and attractive two-dimensional space-filling
properties. These designs are based on orthogonal arrays (regular or nonregular) and have flexible run sizes. In addition,
the proposed ONSOAs with four levels enjoy an attractive space-filling property under the maximin distance criterion.

One interesting research issue is to construct higher-strength versions of ONSOAs based on orthogonal arrays of
strength three or more. It would be interesting to explore a new type of arrays with two-dimensional stratification on
finer grids and/or even higher-dimensional space-filling property. If second-order effects exist, a 3-orthogonal ONSOA is
more suitable. Such a design can be constructed by (DT , −DT )T , where D is an ONSOA. A column-orthogonal design with
centered levels is called 3-orthogonal if the sum of elementwise products of any three columns, whether they are distinct
or not, is zero (Bingham et al., 2009).
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Appendix. Proofs

In the following proofs, according to the specific cases, the levels of OA(sn,m, s, t) can be adaptively chosen to be
{0, 1, . . . , s − 1} or Ω(s). To prove Theorems 1 and 2, Lemma 3 in Sun and Tang (2017) is rewritten in our symbols as
follows.

Lemma 2. A three-column submatrix, given by (f1i, f2i, f1j) in Constructions 1 and 2, is an OA(sn, 3, s, 3) for any i ̸= j.

.1. Proof of Theorem 1

From the construction of D in (2), we have D = FR1, where F = (F (1), . . . , F (m)) and R1 = diag{V , . . . , V } with V
epeating m times in the diagonal. By Lemma 2, F is an orthogonal array of strength 2. Therefore, DTD = (FR1)T FR1 =

RT
1(F

T F )R1 = e1RT
1R1 = e2I2m, where e1 and e2 are two constants, and I2m is the identity matrix of order 2m. This shows

that D is column-orthogonal.
Next, we will show the stratifications of D in Definition 1(c). Note that any column d of D has the following form:

d = bs ± b′, where (b, b′) up to a column permutation is (f1j, f2j) for j = 1, . . . ,m. Consider the mapping

h(x) =
⌊
{x + (s2 − 1)/2}/s

⌋
− (s − 1)/2 with x ∈ Ω(s2),

hich collapses the s2 levels in Ω(s2) into the s levels in Ω(s). According to the structures of V and F , we only need
o show that h(d) = b, which means that the column d becomes the column b after the mapping h is applied to each
omponent of d. By letting r = b + (s − 1)/2 and r ′

= ±b′
+ (s − 1)/2, we have

h(d) =
⌊
{bs ± b′

+ (s2 − 1)/2}/s
⌋

− (s − 1)/2

=
⌊
(rs + r ′)/s

⌋
− (s − 1)/2.

ince all entries of (b, b′) are in Ω(s), all entries of (r, r ′) must take values from {0, 1, . . . , s − 1}. We thus have
h(d) = r − (s − 1)/2 = b. This shows that D satisfies Definition 1(c).

Finally, we need to prove the stratifications of D in Definition 1(b). Write Di = (di1, di2) and Dj = (dj1, dj2). Without
loss of generality, we only prove that (di1, dj1) can be collapsed into an OA(sn, 2, s2 × s, 2) and an OA(sn, 2, s× s2, 2), that
is to say, (di1, h(dj1)) and (h(di1), dj1) are an OA(sn, 2, s2 × s, 2) and an OA(sn, 2, s× s2, 2), respectively. In fact, this is true
by noting the following two facts: (i) from Lemma 2, (f1i, f2i, f1j) is an OA(sn, 3, s, 3) for any i ̸= j; (ii) sx1 + x2 establishes
a one-to-one correspondence between the s2 pairs (x1, x2) with x1, x2 ∈ Ω(s) and the s2 levels in Ω(s2). □

A.2. Proof of Theorem 2

Note that (g1, . . . , gc) is a difference scheme and A is an orthogonal array. From Hedayat et al. (1999), we know that
(F1, . . . , Fc) = (g1, . . . , gc)⊕A is an orthogonal array. This also means that (F (1), . . . , F (m)) is an orthogonal array. According
to the proof of Theorem 1, by noting that h(D) = (F (1), . . . , F (m)), Definition 1(a) and (c) can be verified easily for the D in
(4).

Next, we will show the stratifications of D in Definition 1(b). Write two different groups as Di = (di1, . . . , dic)
and Dj = (dj1, . . . , djc) for any i ̸= j. We only need to prove that (di1, djk) (k = 1, . . . , c) satisfies the property in
Definition 1(b). Theorem 1 guarantees the cases of k = 1, 2. We now verify that (di1, djk) (k = 3, . . . , c) satisfies
Definition 1(b). For simplicity, we only consider the case of (di1, dj3) since other cases follow similarly. That is, we only
need to prove that (di1, h(dj3)) and (h(di1), dj3) are an OA(sn, 2, s2 × s, 2) and an OA(sn, 2, s × s2, 2), respectively. Note
that di1 = sf1i + f2i, dj3 = sf3j + f4j, h(di1) = f1i and h(dj3) = f3j. So, the results follow if we can show that both

(f1i, f2i, f3j) and (f1i, f3j, f4j) are orthogonal arrays of strength three. To do so, write A = (a1, . . . , am) to be the OA(n,m, s, 2).
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From Step 1 of Construction 2, we have f1i = g1 ⊕ ai, f2i = g2 ⊕ ai and f3j = g3 ⊕ aj. Let γ1 = (α0, . . . , αs−1)T ⊕ 0s,
γ2 = 0s ⊕ (α0, . . . , αs−1)T , β1 = 0n/s ⊕γ1 and β2 = 0n/s ⊕γ2, where 0s means an s×1 column vector with all entries zero.
Note that f1i = (g1 − g2) ⊕ 0n + f2i and (f2i, f3j) is an OA(sn, 2, s, 2). Hence, the rows of (f1i, f2i, f3j) can be rearranged to
be ((g1 − g2)⊕ 0n + β1, β1, β2) based on the last two columns. This form implies that (f1i, f2i, f3j) has strength three since
g1 − g2 contains each entry of GF(s) exactly once. A similar discussion can also show that (f1i, f3j, f4j) has strength three.
This completes the proof. □

A.3. Proof of Lemma 1

Let m′
= 2m and R1 = (rij). Define any two rows of F to be y1 = (y11, . . . , y1m′ ) and y2 = (y21, . . . , y2m′ ). Since

D = FR1, the resulting two rows of D are x1 = y1R1 and x2 = y2R1. Due to x1 − x2 = (y1 − y1)R1, we have
d(x1, x2) = (x1 − x2)(x1 − x2)T = (y1 − y2)R1RT

1(y1 − y2)T = (s2 + 1)(y1 − y2)(y1 − y2)T = (s2 + 1)d(y1, y2). By the
efinition of the L2-distance, we have d(D) = (s2 + 1)d(F ). From (5), we have

deff(D) ≥ d(D)/dave(D)

= (s2 + 1)d(F )/[sn(s4 − 1)m′/(6sn − 6)]

= d(F )/[sn(s2 − 1)m′/(6sn − 6)]
= d(F )/dave(F ).

his completes the proof. □

eferences

a, S., Myers, W.R., Brenneman, W.A., 2015. Optimal sliced latin hypercube designs. Technometrics 57, 479–487.
ingham, D., Sitter, R.R., Tang, B., 2009. Orthogonal and nearly orthogonal designs for computer experiments. Biometrika 96, 51–65.
alderbank, R., Kantor, W.M., 1986. The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122.
ang, K.T., Li, R., Sudjianto, A., 2006. Design and Modeling for Computer Experiments. Chapman and Hall/CRC, Boca Raton.
e, Y., Cheng, C.S., Tang, B., 2018. Strong orthogonal arrays of strength two plus. Ann. Statist. 46, 457–468.
e, Y., Tang, B., 2013. Strong orthogonal arrays and associated latin hypercubes for computer experiments. Biometrika 100, 254–260.
e, Y., Tang, B., 2014. A characterization of strong orthogonal arrays of strength three. Ann. Statist 42, 1347–1360.
edayat, A.S., Sloane, N.J.A., Stufken, J., 1999. Orthogonal Arrays: Theory and Applications. Springer, New York.
ohnson, M.E., Moore, L.M., Ylvisaker, D., 1990. Minimax and maximin distance designs. J. Statist. Plann. Inference 26, 31–148.
oseph, V.R., Hung, Y., 2008. Orthogonal-maximin latin hypercube designs. Statist. Sinica 18, 171–186.
in, C.D., Mukerjee, R., Tang, B., 2009. Construction of orthogonal and nearly orthogonal latin hypercubes. Biometrika 96, 243–247.
iu, H., Liu, M.Q., 2015. Column-orthogonal strong orthogonal arrays and sliced strong orthogonal arrays. Statist. Sinica 25, 1713–1734.
ukerjee, R., Sun, F., Tang, B., 2014. Nearly orthogonal arrays mappable into fully orthogonal arrays. Biometrika 101, 957–963.
iederreiter, H., 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia.
wen, A.B., 1992. Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica 2, 439–452.
ang, F., Liu, M.Q., Lin, D.K.J., 2009. A construction method for orthogonal latin hypercube designs with prime power levels. Statist. Sinica 19,

1721–1728.
antner, T.J., Williams, B.J., Notz, W.I., 2013. The Design and Analysis of Computer Experiments. Springer, New York.
teinberg, D.M., Lin, D.K.J., 2006. A construction method for orthogonal latin hypercube designs. Biometrika 93, 279–288.
un, F., Liu, M.Q., Lin, D.K.J., 2009. Construction of orthogonal latin hypercube designs. Biometrika 96, 971–974.
un, F., Tang, B., 2017. A general rotation method for orthogonal latin hypercubes. Biometrika 104, 465–472.
ang, B., 1993. Orthogonal array-based latin hypercubes. J. Amer. Statist. Assoc. 88, 1392–1397.
e, K.Q., 1998. Orthogonal column latin hypercubes and their application in computer experiments. J. Amer. Statist. Assoc. 93, 1430–1439.
hou, Y.D., Tang, B., 2019. Column–orthogonal strong orthogonal arrays of strength two plus and three minus. Biometrika 106, 997–1004.
hou, Y.D., Xu, H., 2015. Space-filling properties of good lattice point sets. Biometrika 102, 959–966.
192

http://refhub.elsevier.com/S0378-3758(21)00034-3/sb1
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb2
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb3
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb4
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb5
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb6
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb7
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb8
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb9
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb10
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb11
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb12
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb13
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb14
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb15
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb16
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb16
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb16
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb17
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb18
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb19
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb20
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb21
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb22
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb23
http://refhub.elsevier.com/S0378-3758(21)00034-3/sb24

	Column-orthogonal nearly strong orthogonal arrays
	Introduction
	Definitions and preliminaries
	Construction methods
	Column-orthogonal nearly strong orthogonal arrays with sn runs and 2m factors
	Column-orthogonal nearly strong orthogonal arrays with sn runs and cm factors

	Comparisons with existing SOAs
	Space-filling property
	Concluding remarks
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 1

	References


