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Summary

An attractive type of space-filling design for computer experiments is the class of maximin
distance designs.Algorithmic search is commonly used for finding such designs, but this approach
becomes ineffective for large problems. Theoretical construction of maximin distance designs is
challenging; some results have been obtained recently, often using highly specialized techniques.
This article presents an easy-to-use method for constructing maximin distance designs. The
method is versatile as it works with any distance measure. The basic idea is to construct large
designs from small designs, and the method is effective because the quality of large designs is
guaranteed by that of small designs, as evaluated by the maximin distance criterion.

Some key words: Computer experiment; Orthogonal array; Space-filling design.

1. Introduction

Computer experiments are powerful tools for investigating complex systems in the sciences
and engineering. The most commonly used designs for computer experiments are space-filling
designs (Santner et al., 2003; Fang et al., 2006), which aim to distribute the design points over
the design space as uniformly as possible. One can construct designs that are space-filling in
low dimensions by using orthogonal arrays or stronger versions of such arrays. Research in this
area originated from the work of McKay et al. (1979), was continued by Owen (1992) and Tang
(1993), and remains very active to the present day. For some recent developments, see Mukerjee
et al. (2014) and He et al. (2018).

Maximin distance designs, first introduced by Johnson et al. (1990), are also popular choices in
the design of computer experiments. Johnson et al. (1990) showed that maximin distance designs
are asymptotically optimal in a Bayesian setting when Gaussian process models are considered.
But finding maximin distance designs is no simple matter. One may resort to algorithmic search
as in Ba (2013). An algorithmic search method is flexible in its choices of a distance criterion
and the numbers of runs and factors, but its performance deteriorates for large problems, as is
the case for all computational algorithms. Theoretical construction of maximin distance designs
is challenging, and recent efforts are rather technical. Zhou & Xu (2015) examined good lattice
point designs with linear transformations, and Wang et al. (2018) further considered nonlinear
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Williams transformations of linearly transformed good lattice points. Xiao & Xu (2017) made
use of highly specialized objects called Costas arrays.

In this paper we propose a simple method of constructing maximin distance designs. The
method is easy to use as it requires only some small maximin distance designs, which can
be obtained by either algorithmic search or theoretical construction. Large designs are then
constructed using the small designs, and the quality of these large designs, as measured by a
maximin distance criterion, is guaranteed by the quality of the small designs. Another appealing
feature of our method is that it can be used in conjunction with any distance measure. Application
of the method to design construction is demonstrated in a number of scenarios.

2. Notation, definitions and background

A design with N runs, n factors and s levels can be represented by an N × n matrix with
entries from {0, 1, . . . , s − 1}, and is said to be of U-type if the number of each level appears
equally often in every column. We denote such a design by U(N, sn). If a U(N, sn) has the property
that all s2 ordered pairs of levels occur equally often in any of its N × 2 subarrays, then it is
an orthogonal array of strength 2 and will be denoted by oa(N, sn). When N = s, a U(N, sn)

becomes an lh(N, n), a Latin hypercube of N runs for n factors.
Let D be a U(N, sn), and let xi = (xi1, . . . , xin) be the ith row of D. The Lp-distance between

rows xi and xj is defined to be dp(xi, xj) = ∑n
k=1 |xik − xjk |p for p � 1. Define the Lp-distance of

D to be dp(D) = mini |=j dp(xi, xj); that is, dp(D) is the minimum Lp-distance between any two
distinct rows of D. The above definition of Lp-distance, which does not take the pth root as in the
standard (

∑n
k=1 |xik − xjk |p)1/p definition, is convenient to use and hence adopted in this work.

The maximin distance criteria resulting from our definition and the standard one are equivalent.
The maximin Lp-distance criterion requires us to select a design that maximizes dp(D) among

all competing designs, which are U(N, sn) designs in this paper. Zhou & Xu (2015) derived an
upper bound on dp(D) for this class of designs. For any U(N, sn), the average Lp-distance between
all pairs of points is

dp, ave = n Cp

N 2 − N
, Cp =

∑
i |=j

|xik − xjk |p. (1)

The dp, ave value is constant in the sense that it depends only on N, n and s, but not on any particular
design under consideration. We therefore have dp(D) � �dp,ave�, where �x� denotes the largest
integer not exceeding x. In particular, we have d1(D) � �N (s2 − 1)n/(3Ns − 3s)� for p = 1 and
d2(D) � �N (s2 − 1)n/(6N − 6)� for p = 2.

To evaluate a design under the maximin Lp-distance criterion, one can use a distance effi-
ciency defined by dp(D)/�dp,ave�, as recommended in Wang et al. (2018). For general theoretical
considerations, however, it is more convenient to use

dp,eff (D) = dp(D)/dp,ave, (2)

which is the distance efficiency we adopt here. Except for very small designs, there is only a
minute difference between these two versions of distance efficiency. When dp, eff (D) = 1, the
design D is equidistant and is a maximin Lp-distance design. If the design D has a dp, eff (D) value
close to 1, it must be a very good design according to the maximin Lp-distance criterion. On the
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Maximin distance designs 847

other hand, a maximin Lp-distance design may not have a large dp, eff (D) value, which occurs
when it is impossible to achieve equidistance or near-equidistance.

Our goal is to construct maximin Lp-distance designs. In the process of construction, the
Hamming distance will play a supporting role. Consider a U(N, sn) design D as introduced above.
The Hamming distance dH(xi, xj) between xi and xj, the ith and jth rows of D, is the number of
components in which they differ. The Hamming distance of design D, denoted by dH(D), is the
minimum Hamming distance between any two distinct rows of D. We can easily find the average
of all the Hamming distances between all pairs of rows,

dH,ave = N (s − 1)n/{(N − 1)s}. (3)

Similarly, we define

dH,eff (D) = dH(D)/dH,ave. (4)

3. Method and results

Consider two U-type designs A and B, where A is a U(N, sn1) and B a U(s, qn2). From A and
B we construct a U-type design D by replacing the uth level of A by the (u + 1)th row of B for
u = 0, 1, . . . , s − 1. Then D is a U(N, qn1n2). This method of replacement has its origin in the
construction of orthogonal arrays, where it is called an expansive replacement method (Hedayat
et al., 1999), and has also been used for different purposes in Mukerjee et al. (2014) and Sun &
Tang (2017). It had not, however, previously been considered for the construction of maximin
distance designs.

It turns out that very useful results, as shown below, can be obtained regarding the distance
properties of design D in relation to those of designs A and B. Although the results are perhaps
not surprising, their simplicity and usefulness are unexpected advantages.

Theorem 1. Suppose that A is a U(N, sn1) and B is a U(s, qn2). Let D be a U(N, qn1n2) obtained
by replacing the uth level of A by the (u + 1)th row of B, for u = 0, 1, . . . , s − 1. Then:

(i) dp(D) � dH(A) dp(B);
(ii) dp,eff (D) � dH,eff (A) dp,eff (B).

If B is equidistant under the Lp-distance, then the equalities in (i) and (ii) are both attained.

The proofs of Theorem 1 and other theoretical results are provided in the Appendix. Although
the Hamming distance of design A enters the picture, the distance measure for designs B and D
is the Lp-distance for any p � 1. From the proof we see that Theorem 1 actually holds for any
additive distance measure, by which we mean a distance of the form d(x, y) = ∑n

k=1 d(xk , yk)

for x = (x1, . . . , xn) and y = (y1, . . . , yn). This feature makes our method very versatile, as one
can construct large designs D from small designs B using the L1-, L2- or any additive distance.

Theorem 1(i) states that the Lp-distance of D is bounded below by the product of the Hamming
distance of A and the Lp-distance of B. If A has a large Hamming distance and B has a large Lp-
distance, then design D must also have a large Lp-distance. Theorem 1(ii) says that the distance
efficiency of D is bounded below by the product of the distance efficiencies of A and B. If A and
B both have distance efficiencies close to 1, then D must also have a distance efficiency close
to 1.
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848 W. Li, M.-Q. Liu and B. Tang

Table 1. Some equidistant maximin designs U(N, sn)
A B D

oa(9, 34) lh(3,3) U(9,312)

oa(27,313) lh(3,3) U(27,339)

oa(81,340) lh(3,3) U(81,3120)

oa(243,3121) lh(3,3) U(243,3363)

oa(729,3364) lh(3,3) U(729,31092)

oa(25,56) lh(5,5) U(25,330)

oa(125,531) lh(5,5) U(125,5155)

oa(625,5156) lh(5,5) U(625,5780)

oa(64,89) lh(8,8) U(64,872)

oa(512,873) lh(8,8) U(512,8584)

oa(81,910) lh(9,9) U(81,990)

oa(729,991) lh(9,9) U(729,9819)

oa(121,1112) lh(11,11) U(121,11132)

oa(1331,11133) lh(11,11) U(1331,111463)

The quality of design D is generally better than what is guaranteed by the lower bounds in
Theorem 1. The equalities in parts (i) and (ii) of the theorem hold when B is equidistant, but
seldom hold otherwise. To see this, observe that the Lp-distance of two rows of design D is the
sum of the Lp-distances between a list of pairs of points of design B, with the list corresponding
to the different components of the two rows of A that give rise to the two rows of D. To attain
the lower bounds in Theorem 1, there must exist two rows of A that, not only have the smallest
Hamming distance, as given by dH(A), but also render, via their different components, a list of
pairs of points of B that all have the smallest Lp-distance, as given by dp(B). These requirements
are difficult to meet unless B is equidistant or nearly equidistant.

In Theorem 1, if dH,eff (A) = dp,eff (B) = 1, then dp, eff (D) = 1, in which case all three designs
are equidistant.

Corollary 1. If A and B in Theorem 1 are both equidistant, then D is equidistant and hence
a maximin distance design.

If we choose A to be a saturated orthogonal array oa(N, sn1), then it is equidistant with dH(A) =
N/s according to Cheng (2014, Theorem 8.6). The Rao–Hamming construction gives a saturated
oa(N, sn1) with N = sk and n1 = (N −1)/(s−1), and is applicable whenever s is a prime power.
Under the L1-distance, Wang et al. (2018, Theorem 4) showed that an equidistant lh(s, s), a Latin
hypercube of s runs for s factors, can be constructed if 2s + 1 is a prime. We choose this lh(s, s)
as B. Then we can establish the next theorem.

Theorem 2. If s is a prime power and 2s + 1 is a prime, then an equidistant maximin design
U(N, sn) where N = sk and n = s(sk − 1)/(s − 1) can be constructed under the L1-distance for
every integer k � 2.

Some designs obtained by applying Theorem 2 are presented in Table 1.
The equidistant maximin designs in Theorem 2 and Table 1 are supersaturated in that n =

sk + sk−1 + · · · + s > N = sk . The rest of the section is devoted to the construction of designs
that are not supersaturated. We will examine three other choices of B, while still using the saturated
oa(sk , sn1) with n1 = (sk − 1)/(s − 1) as A.

From the lh(s, s) above, Wang et al. (2018) constructed an lh(s + 1, s) with d1,eff =
(s + 1)/(s + 2). Replacing s by s − 1, we obtain an lh(s, s − 1) with d1,eff = s/(s + 1).
Using this Latin hypercube as B, we obtain the next result.
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Maximin distance designs 849

Table 2. Some U(N, sn)designs with high L1-distance efficiencies
A B D d1,eff (D) Source

oa(16,45) lh(4,3) U(16,415) 0.800 Proposition 1
oa(64,421) lh(4,3) U(64,463) 0.800 Proposition 1

oa(256,485) lh(4,3) U(256,4255) 0.800 Proposition 1
oa(25,56) lh(5,4) U(25,524) 0.875 Proposition 2

oa(125,531) lh(5,4) U(125,5124) 0.875 Proposition 2
oa(625,5156) lh(5,4) U(625,5624) 0.875 Proposition 2
oa(49,78) lh(7,6) U(49,748) 1 Proposition 2

oa(343,757) lh(7,6) U(343,7342) 1 Proposition 2
oa(81,910) lh(9,8) U(81,980) 0.900 Proposition 1

oa(729,991) lh(9,8) U(729,9728) 0.900 Proposition 1
oa(121,1112) lh(11,10) U(121,11120) 0.975 Proposition 2
oa(169,1314) lh(13,12) U(169,13168) 0.929 Proposition 2
oa(256,1617) lh(16,15) U(256,16255) 0.941 Proposition 1
oa(289,1718) lh(17,16) U(289,17288) 0.979 Proposition 2
oa(361,1920) lh(19,18) U(361,19360) 0.958 Proposition 2

Proposition 1. If s is a prime power and 2s − 1 is a prime, then a U(N, sn) design D, where
N = sk and n = sk −1, can be constructed to have d1,eff (D) � s/(s+1) for every integer k � 2.

Proposition 1 provides a class of designs with high distance efficiency. We see that d1,eff (D) �
0.9 for s � 9 and that d1,eff (D) � 0.8 even for s = 4. Wang et al. (2018, Theorem 2) constructed
another lh(s, s − 1) when s is prime. If we take this design as our choice of B, then it has
d1,eff (B) � 1 − 2/(3s2 − 3)1/2 according to Wang et al. (2018, Theorem 2), leading to another
construction of designs with high distance efficiency.

Proposition 2. If s is a prime, then a U(N, sn) design D where N = sk and n = sk − 1 can be
constructed to have d1,eff (D) � 1 − 2/(3s2 − 3)1/2 for every integer k � 2.

Propositions 1 and 2 together cover many s values for a U(N, sn) with high distance efficiency to
be constructed. We give some examples. For s = 5, Proposition 2 is applicable, but Proposition 1
is not. In contrast, for s = 9, Proposition 1 is applicable, but Proposition 2 is not. For s = 7, both
Propositions 1 and 2 are applicable. Proposition 1 gives a design with d1,eff (D) � 0.875 while
Proposition 2 gives a design with d1,eff (D) � 0.833. Upon examining the two lh(7, 6) designs
used in Propositions 1 and 2, we were pleasantly surprised to find that the lh(7, 6) constructed
by Theorem 2 of Wang et al. (2018) is equidistant. This means that the design from Proposition 2
for s = 7 actually has d1,eff (D) = 1. The equidistant lh(7, 6) is displayed below:

3 1 0 2 4 6
1 2 6 3 0 4
0 6 1 4 3 2
2 3 4 1 6 0
4 0 3 6 2 1
6 4 2 0 1 3
5 5 5 5 5 5

Table 2 presents some designs obtained by Propositions 1 and 2.
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850 W. Li, M.-Q. Liu and B. Tang

We conclude this section with a result under the L2-distance. Zhou et al. (2020) constructed
an lh(2k , 2k−1) with L2-distance efficiency d2,eff � 1 − 1/2k for any k � 2. We now use this
design as B while still taking a saturated orthogonal array as A.

Proposition 3. A U(N, sn) design D where s = 2k2 , N = 2k1k2 and n = 2k2−1(2k1k2 −1)/(2k2 −
1) can be constructed to have d2,eff (D) � 1 − 1/2k2 for all k1 � 2 and k2 � 2.

Taking k1 = 2 and k2 = 3 gives a U(64, 836) with d2,eff (D) � 7/8. If we take k1 = 2 and
k2 = 4, we obtain a U(256, 16136) with d2,eff (D) � 15/16.

4. Further results

In the previous section following the main result, Theorem 1, we focused on the construction
of design D under the condition that A is a saturated orthogonal array, which is equidistant under
the Hamming distance. We shift gears in this section and consider the construction of a design D
with B chosen to be equidistant under the Lp-distance. Our candidate choices for A here are the
subarrays of a saturated orthogonal array.

Let S denote a saturated orthogonal array oa(N, sn1) where n1 = (N − 1)/(s − 1), given
by the Rao–Hamming construction, which is available whenever s is a prime power. Let design
A be obtained by selecting some columns from S. Those columns not selected by A form a
complementary design of A, which we denote by Ā = S\A. Let Ā and A have j and n1−j columns,
respectively. As S is equidistant with dH(S) = N/s, we have that dH(A) = N/s − d∗

H(Ā), where
d∗

H(Ā) is the maximum Hamming distance between any two rows of Ā.

Lemma 1. Let B be an equidistant U(s, qn2) according to the Lp-distance for any p � 1, and
let A be a subarray of S as given above. Then design D in Theorem 1 is a U(N, q(n1−j)n2) with
Lp-distance efficiency

dp,eff (D) = dH,eff (A) =
(

N − 1

N

)(
N − s d∗

H(Ā)

N − js + j − 1

)
,

where j is the number of columns of Ā and n1 = (N − 1)/(s − 1).

Obviously, for j = 1, 2 we have d∗
H(Ā) = j for any choice of Ā with j columns. For j � 3 we

have d∗
H(Ā) � j. We therefore have that for j � 1,

dp,eff (D) = dH,eff (A) �
(

N − 1

N

)(
N − js

N − js + j − 1

)
,

which is close to 1 provided that j is small.
For given j, we want to find an Ā that minimizes d∗

H(Ā), thus maximizing dp, eff (D) = dH,eff (A)

owing to Lemma 1. We have seen already that any Ā minimizes d∗
H(Ā) if j = 1, 2. Although it

may be too difficult to solve this optimization problem for all j, it is possible to find a solution
for certain j values. We discuss this next.

The saturated orthogonal array S, the oa(N, sn1) with N = sk and n1 = (N − 1)/

(s − 1) introduced above, is generated by k independent columns e1, . . . , ek , and it collects
these k independent columns and all their possible interaction columns. The columns of S can be
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Maximin distance designs 851

represented by eu1
1 · · · euk

k , with the first nonzero entry uj in the vector (u1, . . . , uk) equal to 1. For
any k0 = 1, . . . , k − 1, let S0 be obtained by collecting all those columns in S that correspond to
uk0+1 = · · · = uk = 0. Effectively, S0 is generated by k0 independent columns e1, . . . , ek0 . We
see that S0 is a saturated orthogonal array oa(N0, sn0) where N0 = sk0 and n0 = (sk0 −1)/(s−1),
with its runs all replicated sk−k0 times. This shows that d∗

H(S0) = N0/s = sk0−1. Taking Ā = S0
gives the main result of this section.

Theorem 3. Let B be an equidistant U(s, qn2) under the Lp-distance. Take Ā = S0 so that
A = S \ S0. Then design D in Theorem 1 is a U(N, q(n1−n0)n2) that has

dp,eff (D) = dH,eff (A) = 1 − 1/N,

where n1 − n0 = (sk − sk0)/(s − 1). This choice of Ā is optimal in that no other Ā can give a
higher value of dH,eff (A).

We now take B to be the lh(s, s) from Wang et al. (2018), which is equidistant under the
L1-distance.

Corollary 2. Let s be a prime power such that 2s + 1 is prime. If we take B to be the lh(s, s)
from Wang et al. (2018) and A to be S \ S0 as in Theorem 3, then we obtain a U(N, sn) with
n = s(sk − sk0)/(s − 1) that has d1,eff (D) = 1 − 1/N. Of special interest is the case where
k0 = k − 1, for which we obtain a U(N, sN ) with d1,eff (D) = 1 − 1/N.

Example 1. Take s = 3 and k = 3 in Corollary 2. Then design S is a saturated oa(27, 313)

whose set of 13 columns is

S = {e1, e2, e1e2, e1e2
2, e3, e1e3, e1e2

3, e2e3, e2e2
3, e1e2e3, e1e2

2e3, e1e2e2
3, e1e2

2e2
3}.

If we take k0 = 2, then Ā = S0 = {e1, e2, e1e2, e1e2
2}; so A = S \ Ā is an oa(27, 39). Using

this A in conjunction with an equidistant lh(3, 3) as B, we obtain design D, a U(27, 327) with
d1,eff (D) = 26/27 = 0.963. Design D is actually a maximin L1-distance design because we can
calculate that d1(D) = 24 and d1,ave(D) = 324/13 < 25, showing that the L1-distance of D
attains the upper bound �324/13� = 24.

Table 3 provides a list of U(N, sN ) designs that can be constructed by Corollary 2. These
U(N, sN ) are supersaturated, so deleting one column gives a U(N, sN−1). The last column of
Table 3 gives information on the distance efficiency for these U(N, sN−1).

Theorem 3 provides an optimal choice of Ā for a set of selected j values, j = (sk0 − 1)/(s − 1)

for k0 = 1, . . . , k − 1, where j denotes the number of columns in Ā. For any other j value, a
sensible strategy of connecting the dots, as suggested by the same theorem, is to construct Ā by
selecting the columns of S in Yates order. We use an example to illustrate this idea.

Example 2. For s = 5 and k = 3, S is a saturated oa(125, 531) whose 31 columns are given
in Yates order in Table 4, where column eu1

1 · · · euk
k is replaced by 1u1 · · · kuk for simplicity. We

sequentially delete the first j columns in S according to Yates order and take the remaining
n = 31 − j columns as A. Using this A together with the equidistant lh(5, 5), we obtain a
U(125, 55n) for n = 31, 30, 29, . . . . Table 5 gives the L1-distance efficiencies of these designs for
n = 31, 30, . . . , 19.
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Table 3. The L1-distance efficiencies of an N × N design D in Corollary 2 and an N × (N − 1)

design D−1 upon deleting any one column of D
A B D d1,eff (D) d1,eff (D−1)

oa(9,33) lh(3,3) U(9,39) 0.889 0.750
oa(27,39) lh(3,3) U(27,327) 0.963 0.917
oa(81,327) lh(3,3) U(81,381) 0.988 0.972

oa(243,381) lh(3,3) U(243,3243) 0.996 0.991
oa(729,3243) lh(3,3) U(729,3729) 0.999 0.997
oa(25,55) lh(5,5) U(25,525) 0.960 0.900

oa(125,525) lh(5,5) U(125,5125) 0.992 0.980
oa(625,5125) lh(5,5) U(625,5625) 0.998 0.996
oa(64,88) lh(8,8) U(64,864) 0.984 0.958

oa(512,864) lh(8,8) U(512,8512) 0.998 0.995
oa(81,99) lh(9,9) U(81,981) 0.988 0.967

oa(729,981) lh(9,9) U(729,9729) 0.999 0.996
oa(121,1111) lh(11,11) U(121,11121) 0.992 0.977

oa(1331,11121) lh(11,11) U(1331,111331) 0.999 0.998

Table 4. The 31 columns of oa(125, 531)
1 2 12 122 123 124 3 13 132 133 134 23 232 233 234 123

1223 1233 1243 1232 12232 12332 12432 1233 12233 12333 12433 1234 12234 12334 12434

Table 5. The L1-distance efficiencies of U(125, 55n) for n = 31, 30, . . . , 19
5n 155 150 145 140 135 130 125 120 115 110 105 100 95

d1,eff (D) 1 0.992 0.983 0.974 0.964 0.954 0.992 0.982 0.970 0.958 0.945 0.930 0.914

In the remainder of this section, we compare our designs with existing designs in the literature.
We consider good lattice point designs and their linear transformations (Zhou & Xu, 2015),
designs obtained by further Williams transformations (Wang et al., 2018), and designs from the
R (R Development Core Team, 2021) packages SLHD (Ba, 2013) and lhs (Carnell, 2020). All
designs are scaled into [0,1]n and the L1-distance is used for comparison. The results, given in
Table 6, show that our designs are uniformly better, which is somewhat surprising even to us.

Our designs are obtained in the same manner as in Example 2, where A is obtained by deleting
columns in Yates order from a saturated orthogonal array and B is taken to be an L1-equidistant
U(s, sn2). To use the R package SLHD (Ba, 2013), we run the R command maximinSLHD 100
times and then select the best design out of the 100 generated designs. For N � 125 the default
setting of 106 iterations is used, but for N > 125 the algorithm is considerably slower so we
use 104 iterations to save time. For the R package lhs (Carnell, 2020), we run the R command
maximinLHS 100 times with default settings and choose the best sample under the L1-distance.

If B is equidistant, then (B, B) is also equidistant. Therefore, designs with larger n for a given
N are readily available. Table 7 compares our designs with those constructed by the R packages
SLHD and lhs in the range N/5 � n < N . Selected n values are such that the ratio N/n is
approximately equal to 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5. We see that SLHD is always better than
lhs. Our method underperforms SLHD for small n values, but becomes dominant as soon as
the ratio N/n exceeds a certain threshold. This phenomenon also occurs for designs of other N
values that are not reported here to save space.
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Table 6. L1-distances of various N × n designs
N s n Ours GLP LGLP WGLP SLHD lhs

25 5 20 7.5 5.3 6.1 6.8 6.3 5.1
49 7 42 16.0 10.8 12.3 14.3 13.0 10.7
64 8 32 10.3 8.1 8.1 9.3 9.3 7.1
81 9 54 18.8 13.7 15.2 17.7 16.3 13.0

121 11 110 39.6 27.8 33.2 36.9 34.4 27.8
125 5 100 37.5 25.2 29.4 32.7 30.8 24.7
343 7 294 112.0 73.7 84.3 97.8 85.8 76.5
512 8 256 85.7 64.1 64.1 74.4 72.6 63.2
729 9 486 172.5 121.7 135.2 157.5 142.4 127.2

Ours, our designs; GLP, good lattice point designs; LGLP, linear transformation of GLP; WGLP, Williams
transformation of LGLP; SLHD, R package SLHD; lhs, R package lhs.

Table 7. L1-distances of N × n designs with varying N/n ratios
N s n 25 25 30 35 40 50 60 80 124

125 5 Ours 2.5 2.5 5.0 7.5 10.0 15.0 20.0 30.0 49.0
SLHD 6.2 6.2 7.7 9.3 11.2 14.5 17.7 24.1 39.1

lhs 4.5 4.5 5.7 7.3 8.2 11.1 13.7 19.1 32.0

n 66 72 84 96 114 132 168 228 342
343 7 Ours 13.3 16.0 21.3 26.7 34.7 42.7 58.7 82.7 131.0

SLHD 16.1 17.7 21.1 24.6 31.1 36.4 47.4 65.5 101.0
lhs 12.8 14.2 17.2 20.6 25.3 30.1 40.4 57.5 91.2

He (2019) introduced interleaved lattice-based maximin L2-distance designs and provided an
R package InterleavedMaximinD for implementation of his method. Table 8 compares our
designs obtained from Proposition 3 with the designs generated by InterleavedMaximinD,
for N = 256 and n = 136, 170 under both L2- and L1-distances. For reference, corres-
ponding designs from the R package SLHD are also included. We see that the designs from
InterleavedMaximinD are the best under the L2-distance while our designs are the best
under the L1-distance. The superior performance of InterleavedMaximinD under the L2-
distance appears to be due to the corresponding designs having only two levels, which may be an
undesirable feature for computer experiments. We have also attempted, but found it infeasible, to
compare our designs with interleaved lattice-based maximin distance designs for other run sizes,
as InterleavedMaximinD very frequently does not generate designs with the required run
sizes. For example, InterleavedMaximinD outputs a design with 128 runs when one inputs
N = 64 and n = 36, and a design with 567 runs when one inputs N = 512 and n = 192.

In recent work, He (2020) examined another attractive class of lattice-based designs that aim
for a large separation distance on all projections. These designs are most suitable when there are
relatively small numbers of factors compared to run sizes. He (2020) considered n = 4, 8, 16, but
the method became difficult and slow to implement for n = 16 factors.

5. Concluding remarks

The central theme of this article is the construction of designs with large distances. Besides
having large distances, our constructed designs also enjoy some other space-filling properties. It
is obvious that, given an orthogonal array A, if B has orthogonal columns, then design D must
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Table 8. Comparisons with designs obtained from InterleavedMaximinD
in terms of both the L1-distance d1 and the L2-distance d2

N n Design s d2 d1

256 136 SLHD 256 17.5 37.9
Ours 16 24.2 38.4

Lattice 2 30 30

256 170 SLHD 256 22.6 48.4
Ours 4 35.6 64

Lattice 2 37 37

SLHD, R package SLHD; Ours, our designs; Lattice, R package InterleavedMaximinD.

also have orthogonal columns. Moreover, our designs have a property that resembles mappable
nearly orthogonal arrays (Mukerjee et al., 2014), in that any two columns of D that come from
two different columns of A form an orthogonal array, implying that the design D is space-filling
in most of two dimensions.

There are a number of further issues that would be interesting to explore. The present paper
has focused on designs constructed when at least one of A and B is equidistant. Theorem 1
guarantees that the resulting design has a large distance efficiency when A and B both have large
distance efficiencies, but detailed and in-depth studies could potentially shed more light on the
construction of maximin distance designs. Unless B is equidistant, level permutation of A has
an effect on the distance of D, a point alluded to, somewhat implicitly, in the discussion after
Theorem 1, and this effect becomes more pronounced if B is far from being equidistant. It would
be very interesting to investigate this important scenario in the future.
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Appendix

Proof of Theorem 1

Let ci and cj be two rows of D where i |= j, and let ai and aj be the corresponding two rows of A.A moment
of thought gives that dp(ci, cj) � dH(ai, aj)dp(B) � dH(A)dp(B). This shows that dp(D) � dH(A)dp(B).
Thus part (i) of Theorem 1 is established.

To prove part (ii), recall from § 2 the average distance for a U(N, qn) given in (1). Since

Cp =
∑
i |=j

|xik − xjk |p = 2N 2{1p × (q − 1) + 2p × (q − 2) + · · · + (q − 1)p × 1}/q2,

we have dp, ave = nNW (q)/(N − 1) where W (q) = 2
∑q−1

i=1 ip(q − i)/q2. Applying this to designs B and
D, we obtain dp, ave(B) = n2sW (q)/(s − 1) and dp, ave(D) = (n1n2)NW (q)/(N − 1). For design A, we have
from (3) in § 2 that dH,ave(A) = N (s − 1)n1/{(N − 1)s}. Therefore dp, ave(D) = dH,ave(A)dp,ave(B). This
implies that dp, eff (D) = dp(D)/dp,ave(D) � dH,eff (A)dp,eff (B) by part (i) and the definitions of dH,eff (A) in
(4) and dp,eff (B) in (2). The last statement in the theorem is obvious from the proof of part (i).
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Proof of Lemma 1

Since B is equidistant under the Lp-distance, we have that dp, eff (B) = 1. Therefore dp, eff (D) = dH,eff (A).
We also know that dH(A) = N/s − d∗

H(Ā).
As A is a U(N, s(n1−j)) where n1 = (N − 1)/(s − 1) and j is the number of columns in Ā, again by (3)

we have dH,ave(A) = N (s − 1)(n1 − j)/{(N − 1)s}. Therefore

dp,eff (D) = dH,eff (A) = dH(A)/dH,ave(A) =
(

N − 1

N

)(
N − s d∗

H(Ā)

N − js + j − 1

)
,

where n1(s − 1) = N − 1 has helped with the simplification in the last step.

Proof of Theorem 3

It is easy to see that dH,eff (A) = (N − 1)/N , because dH(A) = N/s − N0/s and dH,ave(A) =
N (s − 1){(N − 1)/(s − 1) − (N0 − 1)/(s − 1)}/{(N − 1)s} = N (N − N0)/{(N − 1)s}. No better Ā can
be found because dH,ave(A) − dH(A) = (N − N0)/{(N − 1)s} < 1.
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