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a b s t r a c t

Composite designs are frequently utilized for fitting response surfaces in practice.
This paper proposes a new type of composite designs, orthogonal uniform composite
designs (OUCDs), which combine orthogonal arrays and uniform designs. Such designs
not only inherit the advantages of orthogonal-array composite designs such as high
estimation efficiencies and ability for multiple analysis for cross validation, but also have
more flexible run sizes than central composite designs and orthogonal-array composite
designs. Moreover, OUCDs are more robust than other types of composite designs under
certain conditions. Some construction methods for OUCDs under the maximin distance
criterion are provided and their properties are also studied. It is shown that many
constructed OUCDs are maximin distance designs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The response surface methodology, proposed by Box and Wilson (1951), is widely applied to explore the unknown
relationship between explanatory variables and interesting responses. Second-order models can be used to fit such a
nonlinear relationship. A design is called a second-order design if it can be used to fit the second-order model. Several
types of second-order designs have been proposed in the literature, such as central composite designs (CCDs) proposed
by Box and Wilson (1951), small composite designs (Draper and Lin, 1990), subset designs (Gilmour, 2006), augmented
pairs designs (Morris, 2000), definitive screening composite designs (DSCDs) proposed by Zhou and Xu (2017) and
orthogonal-array composite designs (OACDs) introduced by Xu et al. (2014). Among them, OACDs which combine two-
level and three-level orthogonal arrays (OAs) have appealing properties, for example, they have higher D-efficiencies than
many other types of designs under second-order models and can perform separate analysis for the two-level OAs and
three-level OAs. When second-order models are insufficient to describe the relationship between variables of importance
and responses, Zhang et al. (2018b) studied OACDs which combine two-level and four-level OAs and can be used for
fitting third-order models. However, the three-level or four-level OAs in the OACDs often have large number of runs.

This paper proposes a new type of composite designs, called orthogonal uniform composite designs (OUCDs), which
combine two-level OAs and uniform designs (UDs), to provide more flexible run sizes than OACDs and still keep the good
properties of OACDs. Roughly speaking, OUCDs replace the three-level or four-level OAs in OACDs by UDs. The main idea
of UDs is to scatter design points uniformly in the experimental region (Fang et al., 2018). Discrepancy is often used to
measure the uniformity of designs, such as the warp-around L2-discrepancy (Hickernell, 1998) and mixture discrepancy
(MD) proposed by Zhou et al. (2013). The MD can overcome the shortcomings of other discrepancies and is employed in
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this paper. It will be shown that OUCDs are robust under certain conditions. We will discuss D-efficiencies, T -efficiencies
and their lower bounds for OUCDs under second-order models. Moreover, space-filling properties of OUCDs under the
maximin distance criterion (Johnson et al., 1990) will be investigated, and the corresponding construction methods for
maximin OUCDs will be provided. Furthermore, OUCDs will be compared with other types of composite designs such as
OACDs, CCDs and DSCDs. The run sizes in OUCDs are more flexible than other types of composite designs. It will be shown
that OUCDs always have larger L1-distances and larger estimation efficiencies than CCDs. The two different parts of an
OUCD can be used for cross validation.

The remainder of this paper is organized as follows. In Section 2, the definition of OUCDs and some examples are
provided. Section 3 shows the appealing properties of OUCDs in terms of robustness, maximin distance criterion and
estimation efficiency. Section 4 compares OUCDs with other composite designs such as CCDs, OACDs and DSCDs, as
well as UDs. Both empirical and theoretical results are provided in this section. The concluding remarks are provided
in Section 5, and the proofs of theorems and propositions are shown in Appendix A. All the detailed designs are given in
the Supplementary Material.

2. Orthogonal uniform composite designs

Let the experimental region X be [−1, 1]k. Let OA(N, sk, t) be an orthogonal array (OA) with N runs, k factors, s levels
and strength t . In general, t is omitted when an OA has the strength t = 2. An OUCD has three parts: (i) n1 cube points
xi = (xi1, . . . , xik) with all xij = 1 or −1, i = 1, . . . , n1, j = 1, . . . , k, denoted by d1; (ii) n2 additional points with all
xi ∈ X which are uniformly scattered in X , i = 1, . . . , n2, denoted by d2; (iii) n0 center points with all xi = (0, . . . , 0),
i = 1, . . . , n0, denoted by d0. In comparison, a CCD combines d1, some center points and the n2 = 2k axial points with
one of xi = α or −α and the other xi = 0; an OACD combines d1, some center points and a high-level OA in X . Therefore,
the most difference among OUCD, CCD and OACD is the part of d2.

A two-level regular or nonregular OA, such as a full factorial or an OA with strength 2 or higher, is chosen as d1 in
an OUCD. To decrease the run size of d1, Draper and Lin (1990) recommended to use the Plackett–Burman designs. One
choice of d1 is to choose a best design under the generalized minimum aberration which was proposed by Xu and Wu
(2001). It was shown that generalized minimum aberration designs minimize the overall contamination of nonnegligible
interactions on the estimation of main effects and tend to be model-robust under traditional model dependent efficiency
criteria, see Cheng et al. (2002) and Xu et al. (2004). Another choice of d1 is to find a best OA under the maximin distance
criterion proposed by Johnson et al. (1990). Since the run sizes of UDs can be chosen flexibly, we use a UD as the second
part d2 in the OUCD such that the total number of runs in the OUCD can be less than that of the OACD.

Let U(N, s1, . . . , sk) be a k-factor U-type design in which each of the sj levels, {1, . . . , sj}, appears N/sj times in the jth
column, j = 1, . . . , k. Denoted by U(N, sk) when s1 = · · · = sk = s. Then, a uniform U-type design under MD can be
used as d2 and its number of levels is more flexible. When s = N , as a special type of U-type designs, a good lattice point
(GLP) set is a suitable choice for d2 due to its simple structure and good uniformity. A GLP set D = (xij) with N runs and
k columns is determined by the generator vector h = (h1, . . . , hk) with each hi ∈ {1, . . . ,N} being coprime to N , where
xij = ihj (mod N), i = 1, . . . ,N, j = 1, . . . , k, and the multiplication operation modulo N is modified so that the result
falls into [1,N]. Moreover, the leave-one-out GLP method is often used to improve the uniformity. A leave-one-out GLP
set is obtained by deleting the last row of a GLP set. All points in a U-type design D are transformed into X = [−1, 1]k by
mapping: f : ℓ → −1+ 2(ℓ− 1)/(sj − 1) for the level ℓ in the jth column of D with ℓ = 1, . . . , sj and j = 1, . . . , k. Denote
the transformed design by D∗. Moreover, the center points in an OUCD are useful to estimate the pure error. Combining
d1 and d2 to form an OUCD, we have k! distinct combinations in terms of column alignments.

Example 1. Consider two OUCDs. The first one is the 3-factor OUCD illustrated in Table 1 which combines an OA(8, 23, 3),
the 5-run GLP set with generator vector h = (1, 2, 4), and 3 center points. The second one is the 9-factor OUCD illustrated
in Table 2 which combines the 29−3 design with I = 127 = 348 = 13569, the 10-run leave-one-out GLP set with generator
vector h = (2, . . . , 10), and 4 center points. The d1 in the second design is not a minimum aberration OA but a maximin
OA among all regular 29−3 designs.

If we decrease the strength of the two-level parts, the run sizes of the OUCDs in Example 1 can be reduced. The run
size of d2 can also be changed. Then, OUCDs have more flexibility in terms of the number of runs since UD is more flexible.
More OUCDs are listed in Table 3. Furthermore, an OUCD provides more information than a CCD for a second-order model,
since d2 in an OUCD can be used for estimating the bilinear terms, while the axial points in a CCD cannot.

3. Properties of OUCDs

3.1. Robustness

Fixed the two-level part d1 and the number of center points n0, we now select the optimal d2 in the composite design
in the sense of robustness. Consider the following generalized linear model,

y =

p∑
j=1

gj(x)βj + ε, (1)
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Table 1
A 3-factor OUCD.
Part Factor

1 2 3

d1

1 1 1
1 1 −1
1 −1 1
1 −1 −1

−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1

d2

−1 −
1
2

1
2

−
1
2

1
2 0

0 −1 −
1
2

1
2 0 −1

1 1 1

d0
0 0 0
0 0 0
0 0 0

Table 2
A 9-factor OUCD.
Part Factor

1 2 3 4 5 6 7 8 9

d1 29−3 with I = 127 = 348 = 13569

d2

−
7
9 −

5
9 −

3
9 −

1
9

1
9

3
9

5
9

7
9 1

−
3
9

1
9

5
9 1 −1 −

5
9 −

1
9

3
9

7
9

1
9

7
9 −1 −

3
9

3
9 1 −

7
9 −

1
9

5
9

5
9 −1 −

1
9

7
9 −

7
9

1
9 1 −

5
9

3
9

1 −
3
9

7
9 −

5
9

5
9 −

7
9

3
9 −1 1

9

−1 3
9 −

7
9

5
9 −

5
9

7
9 −

3
9 1 −

1
9

−
5
9 1 1

9 −
7
9

7
9 −

1
9 −1 5

9 −
3
9

−
1
9 −

7
9 1 3

9 −
3
9 −1 7

9
1
9 −

5
9

3
9 −

1
9 −

5
9 −1 1 5

9
1
9 −

3
9 −

7
9

7
9

5
9

3
9

1
9 −

1
9 −

3
9 −

5
9 −

7
9 −1

d0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

where x ∈ X = [−1, 1]k, g1, . . . , gp are specified and linearly independent functions, β1, . . . , βp are regression parameters
and ε has mean 0 and variance σ 2. If the model is true, we can estimate the regression parameters β1, . . . , βp in (1) by
some optimal designs. However, there may exist some misspecifications from the generalized linear model (1) in many
cases, and one may need a robust composite design.

Suppose the true model is

y =

p∑
j=1

gj(x)βj + h(x) + ε, (2)

where h is an unknown function from a class H. Assume h is orthogonal to each gj, i.e.,
∫
X gj(x)h(x)dx = 0 for j = 1, . . . , p,

H is a reproducing kernel Hilbert space with an inner product ⟨·, ·⟩ and a reproducing kernel K(x, ω) which is a real-
valued function defined on X 2

= X × X satisfying two properties: (i) K(x, ω) = K(ω, x), for any x, ω ∈ X , and (ii)∑n
i=1
∑n

j=1 cicjK(xi, xj) ≥ 0, for any ci ∈ R, xi ∈ X , n = 1, 2, . . .. The inner product ⟨·, ·⟩ of the reproducing kernel
Hilbert space H depends on a reproducing kernel K(·, ·) and satisfies two conditions: (i) K(·, x) ∈ H, for all x ∈ X ,
and (ii) h(ω) = ⟨h,K(·, ω)⟩, for every h ∈ H and all ω ∈ X . Let d be an n-run design in X , xi ∈ d, y be the column
vector of response, and g(xi) = (g1(xi), . . . , gp(xi))T , i = 1, . . . , n. Under the generalized linear model (1), the least square
estimator of β = (β1, . . . , βp)T is β̂ = (X TX)−1X Ty, where X = (g(x1), . . . , g(xn))T is the design matrix. If there exists the
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misspecification h and the true model is (2), then y = Xβ + h + ε where h = (h(x1), . . . , h(xn))T and ε = (ε1, . . . , εn)T .
Let the loss function L(d, h) be the integrated mean squared error in X , then under model (2),

L(d, h) =

∫
X
E[β̂

T
g(x) − βTg(x)]2dx

= σ 2tr
(
(X TX)−1G

)
+ hTX(X TX)−1G(X TX)−1X Th, (3)

where G =
∫
X g(x)g(x)Tdx. When σ 2

= 0, L(d, h) only depends on the misspecification part h. If there is no
misspecification from the generalized linear model (1), L(d, h) only depends on the variance part σ 2tr

(
(X TX)−1G

)
.

Yue and Hickernell (1999) gave an upper bound of the loss function L(d, h) for a design d. We extend it to a composite
design d when β is estimable, h ∈ H. Let d = (dTf , d

T
u )

T , where the nf -run part df is fixed. Let the corresponding design
matrix of the generalized linear model (1) be X = (X T

f ,X
T
u )

T . Let k f and ku be the vectors of nf and nu kernel functions
based on df and du, respectively, i.e., kℓ = (K(·, xℓ

1), . . . ,K(·, xℓ
nℓ
))T where xℓ

1, . . . , x
ℓ
nℓ

∈ dℓ, and K ℓs = kℓkT
s , ℓ, s = f , u.

Theorem 1. For the design matrix X = (X T
f ,X

T
u )

T , suppose that β is estimable, then

L(d, h) ≤ γ (d, h) =σ 2λ−1
min

(
X T

f X f
)
tr (G) + λmax (G) λ−2

min

(
X T

f X f
) (

λmax
(
X T

f K ff X f
)

+λmax (Q ) + λmax
(
X T

uK uuXu
))

∥h∥2, (4)

where Q = X T
f K fuXu + X T

uK uf X f , λmax(Y ) and λmin(Y ) are the maximum and minimum eigenvalues of any square
matrix Y , respectively. The equality holds when du is empty, X T

f X f = aIp, G = bIp, h = cνT
max(T )G

1/2(X T
f X f )−1X T

f k f ,
where a, b, c ∈ R, a, b > 0, and νmax(T ) is the (scaled) eigenvector corresponding to the maximum eigenvalue of T =

G1/2(X T
f X f )−1X T

f K ff X f (X T
f X f )−1G1/2.

It is difficult to search a robust n-run exact design because of its discrete structure. Similar to the continuous design
theory in Kiefer (1959), we consider the continuous design measure. For a design with n runs and the probability
distribution ξ , define X TX = n

∫
X g(x)g(x)Tdξ (x), and H(ξ ) = X TKX = n2

∫
X×X g(x)g(ω)TK(x, ω)dξ (x)dξ (ω). Assume

that du has the probability distribution ξu, and denote the corresponding composite design by dξu . Denote Huu(ξu) =

n2
u

∫
X×X g(x)g(ω)TK(x, ω) dξu(x)dξu(ω), H fu(ξu) = X T

f K fuXu = nuX T
f

∫
X ⟨k f ,K(·, ω)⟩g(ω)Tdξu(ω) and Huf (ξu) = HT

fu(ξu).
Next, we want to find the best du with the probability distribution ξu such that the composite design dξu is robust. The
following theorem shows that the design du with the uniform distribution ξu is most robust when df is fixed.

Theorem 2. For any composite design dξu , the upper bound (4) becomes

γ (dξu , h) =σ 2λ−1
min

(
X T

f X f
)
tr(G) + λmax (G) λ−2

min

(
X T

f X f
) (

λmax
(
X T

f K ff X f
)

+ λmax
(
H S(ξu)

)
+ λmax (Huu(ξu))

)
∥h∥2, (5)

where H S(ξu) = H fu(ξu)+Huf (ξu). If H S(ξu) is not a negative definite matrix, γ (dξu , h) can reach the minimum value γmin(dξu , h)
when ξu is the uniform measure in X , namely,

γmin(dξu , h) = σ 2λ−1
min

(
X T

f X f
)
tr(G) + λmax (G) λ−2

min

(
X T

f X f
)
λmax

(
X T

f K ff X f
)
∥h∥2. (6)

From Theorem 2, γmin(dξu , h) can be reached when ξu is the uniform measure in X among the class C which contains
all the measures ξu satisfying that H S(ξu) is not a negative matrix. In the sense of approximate designs, a UD should be
selected as du of the design d, especially when ∥h∥ is large. The condition that H S(ξu) is not a negative definite matrix in
Theorem 2 can always be satisfied. See the following example.

Example 2. Let X = [−1, 1] and consider the location model g(x) = 1. In this case, choose

K(x, ω) =

{
x + 2 − 3(x − x2/2 + 7/2)(ω − ω2/2 + 7/2)/20, if x ≤ ω,

ω + 2 − 3(x − x2/2 + 7/2)(ω − ω2/2 + 7/2)/20, if x > ω,

as the reproducing kernel for H. Moreover, choose (−1, 1, 0, 0)T as df where d1 = (−1, 1)T and two center points are
chosen. Let the probability distribution function ξu be 3ω2/2 and 5ω4/2, respectively. Then the corresponding values of
H S(ξu) are nu/50 and 8nu/105, respectively. Both of them are larger than zero since nu > 0. If ξu is the uniform measure
in X , H S(ξu) equals 0.

From Theorem 2, a composite design combining a two-level OA d1, center points d0 and a UD d2, is more robust than
any other composite design with the same d0 and d1 in the sense of approximate designs. Therefore, an OUCD combining
a two-level OA d1, a UD d2 and center points d0 has a similar property, i.e., OUCDs are robust.
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3.2. Estimation efficiency

We now compare OUCDs with other composite designs with respect to estimation efficiency for the following
second-order model

y = β0 +

k∑
i=1

βixi +
∑
i<j

βijxixj +
k∑

i=1

βiix2i + ε, (7)

where β0, βi, βii and βij are the coefficients of intercept, linear, quadratic and bilinear terms, respectively, and ϵ ∼ N(0, σ 2).
For an n-run design, let X be the design matrix and M = X TX/n be the information matrix. Let ξopt be the continuous
D-optimal design over X =[−1, 1]k and denote MaxDk = |M(ξopt)|. The D-efficiency and Ds-value of the subset of the
second-order model (7) for a k-factor, n-run design d are respectively defined by

Deff(d) =

(
|M(d)|

|M(ξopt)|

)1/p

=
1
n

(
|X TX |

MaxDk

)1/p

, (8)

Ds(d) =
1
n

(
|X TX |

|X T
(s)X (s)|

)1/|s|

=
1
n
|X T

s X s − X T
s X (s)(X T

(s)X (s))−1X T
(s)X s|

1/|s|
, (9)

where p = (k + 1)(k + 2)/2 is the number of parameters, X s and X (s) are the submatrices of X corresponding to
the parameters in s and not in s, respectively, and |s| is the number of the parameters in s. Kiefer (1961) gave the
approximate D-optimal and Ds-optimal designs over X for the second-order model (7). The optimal Ds-values with respect
to linear L, bilinear B and quadratic Q terms are 1, 1 and 0.25, respectively. Then, the Ds-efficiency can be calculated by
DL,eff(d) = DL(d), DB,eff(d) = DB(d) and DQ ,eff(d) = 4DQ (d).

Unfortunately, the D-efficiency and Ds-efficiency of the subset of the second-order model (7) do not have the explicit
expressions in terms of OUCD. Then, we consider the T -criterion which represents the average of the diagonal elements of
the information matrix to measure the estimation efficiency of OUCDs for the second-order model (7). Define T -efficiency
for a k-factor, n-run design d by

Teff(d) =
1
p
tr(M) =

1
np

tr(X TX), (10)

where p = (k + 1)(k + 2)/2. Silvey and Titterington (1974) showed that the T -optimal design τ only has the cube points
over X , and the maximum value of T -criterion is 1.

Proposition 1. The T-efficiencies of a CCD and an OACD are

Teff(CCD) =
2
Nk1

[
n1 + 2k + n0 + 2k(n1 + 2) +

k(k − 1)
2

n1

]
, (11)

Teff(OACD) =
2
Nk2

[
n1 + n2 + n0 + 2k

(
n1 +

2
3
n2

)
+

k(k − 1)
2

×

(
n1 +

4
9
n2

)]
, (12)

respectively, where Nk1 = (k+ 1)(k+ 2)(n1 + 2k+ n0) and Nk2 = (k+ 1)(k+ 2)(n1 + n2 + n0). Moreover, let d2 of the OUCD
be a uniform U(n2, 3k). The T-efficiency of the OUCD has the lower and upper bounds,

δeff(OUCD) =
2
Nk2

[
n1 + n2 + n0 + 2k

(
n1 +

2
3
n2

)
+

k(k − 1)
2

×

(
n1 +

1
3
n2

)]
, (13)

γeff(OUCD) =
2
Nk2

[
n1 + n2 + n0 + 2k

(
n1 +

2
3
n2

)
+

k(k − 1)
2

×

(
n1 +

2
3
n2

)]
, (14)

respectively.

The proof of Proposition 1 is straightforward and we omit it. It is obvious that Teff(OACD) and δeff (OUCD) are larger
than Teff (CCD) in Proposition 1 when all types of composite designs have the same n0, n1 and n2 with n2 > 3. Then,
the OUCD has a better T -efficiency than the CCD. And Teff(OACD) falls in [δeff(OUCD), γeff(OUCD). From (11)–(14), all of
Teff(CCD), Teff(OACD), δeff(OUCD) and γeff(OUCD) decrease as n0 increases. Given that n0 = 0, δeff(OUCD) and γeff(OUCD)
monotonically increase in regard to the ratio r = n1/n2. Moreover, the difference between Teff(OACD) and δeff(OUCD) or
λeff (OUCD) decreases along with the increase of r for each k. An OUCD with a large r may be chosen in the sense of
T -efficiency. Therefore, given n1, we choose a small n2 ensuring that the OUCD is a second-order design.

3.3. Space-filling property

In this subsection, the space-filling property of an OUCD under the maximin distance criterion is discussed. Define
L1(x1, x2) =

∑k
i=1 |x1i − x2i| as the L1-distance of any two rows x1 = (x11, . . . , x1k) and x2 = (x21, . . . , x2k) in a k-factor
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design d. Define the L1-distance of d as L1(d) = min{L1(x1, x2) : x1 ̸= x2, x1, x2 ∈ d}. The maximin OUCD is the optimal
one under the maximin distance criterion. Without loss of generality, the center points are ignored in this subsection
since L1(OUCD) = 0 if it has more than one center point.

If a GLP set D is chosen as the d2 of an OUCD, there may exist a run whose elements are ones as in d1. For avoiding
the repeated runs in the OUCD, one method is to use the leave-one-out GLP set, another method is the linear level
permutation method. For an N × k GLP set D, denote Du = D + 1Nu = {xi + u, xi ∈ D} (mod N), where u = (u1, . . . , uk),
uj ∈ {1, . . . ,N}, j = 1, . . . , k, 1N is the N × 1 column vector of ones and Du is modified by replacing 0 by N . Zhou
and Xu (2015) showed that any linear level permutation of a GLP set Du does not decrease the L1-distance. When
u1 = · · · = uk = u, Du becomes the simple linear level permutation D+ uJN×k, we denote the corresponding transformed
design D∗

u by D∗
u and one can quickly find a design with a better L1-distance. For an OUCD in X , consider the simple linear

level permutation for a GLP set D such that D∗
u is used for its n2-run d2 where u = 1, . . . , n2, and denote the permuted

design by OUCDu.

Example 3. Consider the OUCD shown in Table 1 after deleting the center points, and denote the 5-run GLP set in
Example 1 by D. Since both d1 and d2 in the OUCD have a row vector of ones, L1(OUCD) = 0. Consider the simple linear
level permutation of D. When u = 2, 3, 4, L1(OUCDu) = 0.5.

Proposition 2. If the d1 in an OUCD is the two-level full factorial and d2 is a GLP set, then L1(OUCDu) = L1(OUCDυ ), where
υ = n2 + 1 − u.

From Proposition 2, L1(OUCDu) is symmetric in regard to u = (n2+1)/2 if n2 is odd or u = n2/2 if n2 is even. Therefore,
we only need to calculate (n2 + 1)/2 or n2/2L1-distances of the OUCDu and choose the best OUCDu under the maximin
distance criterion. Moreover, different column alignments of d1 and d2 may lead to different L1-distances. We directly
have the following result and omit its proof.

Proposition 3. If the d1 in an OUCD is the full factorial or the OA(2k−1, 2k, k− 1) defined by I = 1 · · · k, then the L1-distance
is invariant among all column alignments.

It is obvious that L1(OUCD) is not larger than either L1(d1) or L1(d2) of an OUCD. It is not easy to find a common
tight upper bound of L1(OUCD) for any OUCD, and some maximin two-level designs can be distinguished as d1 and their
L1-distances can be the upper bounds of the resulting OUCDs.

Lemma 1. If the d1 in an OUCD is the two-level full factorial, L1(OUCD) has the upper bound 2. And if d1 is a regular 2k−1 or
2k−2 design, L1(OUCD) has the upper bound 4 for every k ≥ 3 or every k ≥ 5, respectively.

The proof of Lemma 1 is straightforward and omitted here. We now provide some conditions under which the OUCDs
are the maximin distance designs as follows.

Theorem 3. Let the d1 in an OUCD be an OA(2k, 2k, k) or OA(2k−1, 2k, k−1), and d2 be an n2 ×k leave-one-out GLP set with
k = φ(n2 + 1). Let p1 and p2 be two odd primes with p1 < p2 and t be a positive integer. The OUCD is a maximin distance
design if it satisfies any of the following conditions.

(i) Let n2 = pt1 − 1. If d1 is the OA(2k, 2k, k), 3 ≤ p1 ≤ 5 and t ≥ 2; or p1 ≥ 7. Otherwise, p1 = 3 and t ≥ 3; 5 ≤ p1 ≤ 7
and t ≥ 2; or p1 ≥ 11.

(ii) Let n2 = 2p1 − 1. If d1 is the OA(2k, 2k, k), p1 ≥ 7. Otherwise, p1 ≥ 11.
(iii) Let n2 = p1p2 − 1. If d1 is the OA(2k, 2k, k), p1 and p2 are free. Otherwise, p1p2 > 15.
(iv) Let n2 = 2t

− 1. If d1 is the OA(2k, 2k, k), t ≥ 4. Otherwise, t ≥ 5.

Theorem 3 discusses the cases of k = φ(n2 + 1). We now consider the cases of k = φ(n2 + 1)/2. Let h1, . . . , hφ(n2+1)
be the integers coprime to n2 + 1 with 1 = h1 < · · · < hφ(n2+1) ≤ n2.

Theorem 4. Let k = φ(n2 + 1)/2, p1 and p2 be two odd primes with p1 < p2 and t be a positive integer. Let the d1 in an
OUCD be an OA(2k, 2k, k) or OA(2k−1, 2k, k− 1), and d2 be an n2 × k leave-one-out GLP set generated by h = (h1, . . . , hk) or
(hk+1, . . . , hφ(n2+1)). The OUCD is a maximin distance design if it satisfies any of the following conditions.

(i) Let n2 = pt1 − 1. If d1 is the OA(2k, 2k, k), p1 = 3 and t ≥ 3; 5 ≤ p1 ≤ 7 and t ≥ 2; or p1 ≥ 11. Otherwise, p1 = 3 and
t ≥ 3; 5 ≤ p1 < 19 and t ≥ 2; or p1 ≥ 19.

(ii) Let n2 = 2p1 − 1. If d1 is the OA(2k, 2k, k), p1 ≥ 11. Otherwise, p1 ≥ 19.
(iii) Let n2 = p1p2 − 1. If d1 is the OA(2k, 2k, k), p1p2 > 15. Otherwise, p1 = 3 and p2 ≥ 11; or p1 > 3.
(iv) Let n2 = 2t

− 1. If d1 is the OA(2k, 2k, k), t ≥ 5. Otherwise, t ≥ 6.

The proof of Theorem 4 is similar to that of Theorem 3 and thus omitted. Moreover, some maximin OUCDs which have
maximin regular 2k−2 designs as d1 can also be constructed, and their L1-distances reach the upper bound 4.
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Table 3
The D-efficiencies of OACD, OUCD-I, OUCD-II, CCD, DSCD and UD.
k d1 Generators OACD OUCD-I OUCD-II CCD DSCD UD

d2 Deff n2 Deff n2 Deff Deff Deff Deff

4 24 – OA(9, 34) 0.931 9 0.891 5 0.818 0.936 0.891 0.324

5 25−1
V E = ABCD OA(18, 35) 0.953 18 0.944 7 0.779 0.869 0.846 0.257

6 26−1
VI F = ABCDE OA(18, 36) 0.966 18 0.948 7 0.777 0.868 0.837 0.241

7 27−1
VII G = ABCDEF OA(18, 37) 0.945 18 0.937 11 0.752 0.853 0.821 0.239

8 28−2
V G = ABCDE, H = ABCF OA(27, 38) 0.963 27 0.957 11 0.754 0.842 0.817 0.207

9 29−2
V H = ABCDE, J = ABCFG OA(27, 39) 0.950 27 0.946 11 0.727 0.829 0.802 0.207

10 210−3
V H = ABCDE, OA(27, 310) 0.952 27 0.948 11 0.738 0.830 0.808 0.190

J = ABCFG, K = ABDF

11 211−4
V H = ABCDE, J = ABCFG, OA (27, 311) 0.954 27 0.949 13 0.752 0.828 0.811 0.173

K = ABDF, L = ACEG
12 OA(128, 212, 4) OA(27, 312) 0.953 27 0.946 13 0.757 0.825 0.811 0.159

Theorem 5. Consider any of the maximin OUCDs with d1 being regular 2k−1 designs in Theorems 3 and 4. Let distinct
κ1, . . . , κℓ ∈ {1, . . . , k − 2} and 2 ≤ ℓ < k − 2. Replacing d1 by the regular 2k−2 design defined by (k − 1) = 1 · · · (k − 2)
and k = κ1 · · · κℓ, the corresponding OUCD is also a maximin OUCD.

Theorems 3–5 consider the d1 as the two-level full factorials, regular 2k−1 and 2k−2 designs. However, they may still
have too many runs to use in practice, and some regular 2k−m designs with m ≥ 3 may be considered for d1. Small number
of runs in d1 often results in large L1-distance of the corresponding OUCD when d2 is fixed. Unfortunately, there is no clear
relationship between the L1-distance of the maximin regular 2k−m design with m ≥ 3 and its resolution. For searching a
maximin OUCD with given k and m ≥ 3, we first find a maximin 2k−m design among all defining words to form d1. Let its
L1-distance be the upper bound of the L1-distance of an OUCD whose d1 is the regular 2k−m design. Then choose a suitable
leave-one-out GLP set as d2 such that the corresponding OUCD reaches the upper bound. For instance, the 9-factor OUCD
with m = 3 in Table 2 is a maximin OUCD. With the increasing of m, it is hard to find a UD d2 such that L1(OUCD) reaches
the upper bound. However, when d1 is the regular two-level saturated OA, Mukerjee and Wu (1995) summarized that the
number of different elements between any two rows of the two-level saturated OA is n1/2. Therefore, the L1-distance of
the saturated OA equals n1, which is beneficial to be an upper bound for OUCDs.

4. Comparisons with other types of designs

4.1. D-Efficiency and T-efficiency

We now compare OUCDs with the OACDs, CCDs, DSCDs and UDs for k = 4, . . . , 12 in terms of the D-efficiency and the
Ds-efficiency, s = L, B,Q . Suppose n0 = 0 for each type of those composite designs. For OUCDs, we keep the two-level OA
d1 as that in Table 1 of Zhou and Xu (2017), and have two choices of d2, i.e., one is a three-level uniform U(n2, 3k), the
other is an n2-level GLP set, the two corresponding OUCDs are denoted by OUCD-I and OUCD-II, respectively. Let OUCD-I
have the same number of runs as the corresponding OACD has, and OUCD-II select the smallest GLP set such that it is a
second-order design. The UD is constructed under the uniformity criterion MD directly, and it has the same number of
runs as the OACD has for each k. Both the d2 of OUCD-I and UD are constructed by the R package named UniDOE by Zhang
et al. (2018a) with arguments init = ‘‘rand", crit = ‘‘MD2" and maxiter = 100. All GLP sets are constructed by optimal
generator vectors under MD. All of the UDs and the d2 in each of the two types of OUCDs are shown in the supplementary
material.

Table 3 illustrates the D-efficiency of every design for k = 4, . . . , 12. It shows that each OUCD-I has a larger D-efficiency
than the CCD and DSCD when k > 4, and both the OUCD-I and OUCD-II have larger D-efficiencies than the UD. Moreover,
D-efficiencies of OUCD-I are close to that of OACDs. The reason is that each OUCD-I has many runs on the boundary of X
which is like the optimal design ξopt. Next, we compare the OUCDs with the OACDs, DSCDs, CCDs and UDs in Table 3 in
terms of Ds-efficiency, s = L, B,Q . It is shown that the DL-efficiencies of OUCD-I are larger than that of the CCDs and UDs
for k = 4, . . . , 12, and than the OACDs when k = 4, . . . , 9. Moreover, each OUCD-II also has a larger DL-efficiency than the
CCD and UD. For DQ -efficiency, each OUCD-I has a larger one than the CCD except when k = 4, 5, and the DSCD except
when k = 4. For DB-efficiency, the OUCD-II has a larger one than other types of designs for each k, and each OUCD-I has
a larger one than the DSCD except when k = 8 and the UD. In conclusion, OUCDs perform well in terms of D-efficiency,
DL-efficiency and DB-efficiency.

In addition, we also compare the OUCD with the OACD, CCD, DSCD and UD in terms of T -efficiency for every
k = 4, . . . , 12. Both δeff(OUCD-I) and Teff(OUCD-II) are larger than Teff(CCD) and Teff(UD) for each k. Each Teff(OUCD-II)
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Table 4
The D-efficiencies among all possible projection designs of the OUCD-I and OUCD-II.
k 9-factor OUCDs 10-factor OUCDs

OUCD-I OUCD-II OUCD-I OUCD-II

mean min max mean min max mean min max mean min max

4 0.983 0.981 0.985 0.778 0.777 0.779 0.952 0.948 0.955 0.756 0.581 0.784
5 0.991 0.989 0.993 0.775 0.774 0.775 0.969 0.965 0.972 0.756 0.639 0.790
6 0.992 0.990 0.993 0.772 0.772 0.773 0.977 0.974 0.980 0.756 0.679 0.795
7 0.989 0.987 0.990 0.769 0.769 0.770 0.980 0.978 0.982 0.756 0.707 0.798
8 0.983 0.981 0.983 0.767 0.767 0.767 0.979 0.978 0.981 0.755 0.727 0.801
9 – – – – – – 0.976 0.976 0.977 0.754 0.742 0.802

Table 5
The ρ2 and ϱ of the OUCDs in Table 3.
k 4 5 6 7 8 9 10 11 12

ρ2(OUCD-I) 0 0 0 0 0.000 0.000 0.000 0.000 0.000

ρ2(OUCD-II) 0.003 0.004 0.001 0.000 0.001 0.000 0.000 0.000 0.000

ϱ(OUCD-II) 0.012 0.021 0.006 0.004 0.004 0.001 0.001 0.001 0.001

is larger than Teff(OACD) except when k = 7, and the Teff(OUCD-I) and Teff(OACD) for each k are close to each other.
Therefore, OUCDs also have good performances in terms of T -efficiency.

It should be mentioned that each OUCD-II listed in Table 3 is not a maximin OUCD. One can also use a leave-one-out
GLP as d2 which has a smaller number of runs than that of OUCD-I to construct a maximin OUCD when d1 is a 2k−m design
with maximin distance. For example, when d1 is the 29−2 in Table 3, d1 is a maximin distance design and its L1-distance
equals 4. Let d2 be a 18-run 9-factor leave-one-out GLP set with the generator vector h = (1, . . . , 9). The composite
design d combining the d1 and d2 is a maximin OUCD with L1-distance 4, and its D-efficiency Deff(d) = 0.832, T -efficiency
Teff(d) = 0.902 and Ds-efficiencies DL(d) = 0.922, DB(d) = 0.877 and DQ (d) = 0.079. Then d has a larger D-efficiency
than the OUCD-II, CCD, DSCD and UD in Table 3, and has a larger DQ -efficiency than the OUCD-II and DSCD and also has a
larger DB-efficiency than the OUCD-I and DSCD. Therefore, the maximin OUCD may have appealing space-filling property
and high estimation efficiency.

Furthermore, consider the projection property of OUCDs. For a fair comparison, let the OUCD-I and OUCD-II have the
same d1 part and the run size n2 as the corresponding OACD in Table 5 of Zhou and Xu (2017) has for each k = 9, 10.
Here, the 9-factor d2 is constructed by the GLP method with power generator (Fang et al., 2018) under MD criterion. The
d2 in each of the two types of OUCDs is shown in the supplementary material. We calculate the mean, maximum and
minimum D-efficiencies among all possible projection designs of each OUCD. The results are shown in Table 4. It can
be easily seen that all the projection designs of the OUCD-I have appealing D-efficiencies. For the mean, maximum and
minimum D-efficiencies, the OUCD-I performs similarly as the OACD in Table 5 of Zhou and Xu (2017) for each k = 9, 10.
Then, OUCD-I is a better choice among OUCDs in terms of projection property in D-efficiency.

4.2. Orthogonality

The orthogonality of OUCD is discussed in this subsection. Owen (1994) proposed a criterion ρ2 to measure the
orthogonality of a k-factor design with respect to pairwise correlation between columns of the design, i.e.,

ρ2
=

2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

ρ2
ij , (15)

where ρij is the linear correlation coefficient between the ith and jth columns of the design with i ̸= j. The ρ2 of each
OUCD in Table 3 is shown in Table 5. It can be seen that all the values of ρ2 are equal to 0 or close to 0, which means that
the OUCDs are nearly orthogonal and have small linear correlations between columns. For example, ρ2(OUCD-I) equals 0
for each k = 4, . . . , 7 since the d2 of each OUCD-I is not only uniform but also orthogonal. The following result gives an
upper bound of ρ2.

Proposition 4. If n2 is an odd prime, let the d2 in an OUCD be an n2-run GLP set, then the upper bound of ρ2(OUCD) is
ϱ(OUCD) = α2/η2, where α = 2−n2+4n2(n2−2)/[3(n2−1)] and η = (n2

2+n2)/(3n2−3)+n1. Let d2 be an n2-run leave-one-
out GLP set if n2 + 1 is an odd prime, then ρ2(OUCD) ≤ ϱ(OUCD) = θ2/ϑ2, where θ = n2[(n2 + 1)(n2 − 1)− 6]/[3(n2 − 1)2]
and ϑ = 2n2(2n2 − 1)/[3(n2 − 1)] + n1 − n2.

The ϱ(OUCD) of each OUCD-II listed in Table 3 is also shown in Table 5. It can be seen that those values of upper bound
are also very small. In addition, the linear level permutation is a useful technique for GLP sets to improve their ρ2 as well
as that of the OUCDs with the GLP sets as d2. If u = (u, . . . , u), we have the following result.
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Proposition 5. Let the d1 in an OUCD be a two-level OA and d2 be an n2-run GLP set. Then, ρ2(OUCDu) = ρ2(OUCDυ ), where
u+υ = n2 +1 and u ∈ {1, . . . , n2}. If n2 is even, ρ2(OUCDς ) = ρ2(OUCDν), where ς +ν = n2/2+1 and ς ∈ {1, . . . , n2/2}.

Example 4. Consider the OUCD shown in Example 3, and replace the d2 by the 10-run GLP set with h = (1, 3, 7), it
holds that ρ2(OUCD1) = ρ2(OUCD5) = ρ2(OUCD6) = ρ2(OUCD10) = 0.014, ρ2(OUCD2) = ρ2(OUCD4) = ρ2(OUCD7) =

ρ2(OUCD9) = 0.003 and ρ2(OUCD3) = ρ2(OUCD8) = 0.026. Then ρ2(OUCD2) < ρ2(OUCD1) which means that the simple
linear level permutation may decrease ρ2 of OUCDs.

5. Conclusions

This paper proposes a new type of composite designs, orthogonal uniform composite designs (OUCDs), which combine
orthogonal arrays and uniform designs. OUCDs have more flexible numbers of runs than OACDs, CCDs and DSCDs. It is
shown that OUCDs are more robust than other types of composite designs. The space-filling property of OUCDs under
the maximin distance criterion is discussed, and construction methods for the k-factor maximin OUCD whose d1 part
is the two-level full factorial, regular 2k−1 or 2k−2 design are provided. Moreover, for the estimation efficiency for the
second-order model (7), OUCDs have larger D-efficiencies than CCDs, DSCDs and UDs, larger T -efficiencies than CCDs and
UDs, and have larger DB-efficiencies than other types of composite designs. Moreover, OUCDs are nearly orthogonal. They
can also be used to perform multiple analysis for cross, i.e., the d1 part and d2 part can be analyzed separately.
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Appendix A. Proofs

The following lemma from linear algebra is used to prove Theorems 1 and 2, and one can refer to Wang et al. (2006)
for the detailed proof.

Lemma A.1 (Wang et al., 2006). Let λ1(A), . . . , λN (A) be N eigenvalues of an N × N square matrix A which are listed in
descending order, particularly where λ1(A) is the maximum eigenvalue and λN (A) is the minimum eigenvalue. Let A and B be
two N × N Hermite matrices. We have the following results.

(a) If A ≤ B, then λi(A) ≤ λi(B).
(b) λi(A) + λN (B) ≤ λi(A + B) ≤ λi(A) + λ1(B).
(c) Additionally, B is positive semidefinite, then λi(A2)λN (B) ≤ λi(ABA) ≤ λi(A2)λ1(B).
(d) Additionally, A and B are positive semidefinite, then λN (A)λi(B) ≤ λi(AB) ≤ λ1(A)λi(B) and λi(A)λN (B) ≤ λi(AB) ≤

λi(A)λ1(B).
(e) Additionally, A and B are positive semidefinite, then 0 ≤ tr(AB) ≤ λ1(B)tr(A) ≤ tr(A)tr(B).

Proof of Theorem 1. According to Theorem 1 of Yue and Hickernell (1999), L(d, h) in (3) has the upper bound, namely,

L(d, h) ≤ σ 2tr
((

X TX
)−1 G

)
+ λmax (T ) ∥h∥2. (A.1)

Moreover, the upper bound (A.1) can be reached when h = cνT
max(T )G

1/2 (X TX
)−1 X Tk, c ∈ R. Since

(
X TX

)−1
and G are

two p × p positive definite matrices and X TX ≥ X T
f X f , from Lemma A.1(a) and (e), it holds

σ 2tr
((

X TX
)−1 G

)
= σ 2tr

(
G
(
X TX

)−1
)

≤ σ 2λ−1
min

(
X TX

)
tr(G) ≤ σ 2λ−1

min

(
X T

f X f
)
tr(G).

(A.2)

The equality holds when the unfixed part du is empty in d and X T
f X f = aIp, a ∈ R and a > 0. In addition, from

Lemma A.1(a)–(d), we have

λmax (T ) = λmax

((
X TX

)−1 G
(
X TX

)−1 X TKX
)

≤ λmax

((
X TX

)−1 G
(
X TX

)−1
)

λmax
(
X TKX

)
≤ λmax(G)λ−2

min

(
X T

f X f
) (

λmax
(
X T

f K ff X f
)
+ λmax (Q ) + λmax

(
X T

uK uuXu
)) (A.3)
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According to (A.1)–(A.3), we obtain (4) and the equality holds when the unfixed part du is empty in d, X T
f X f = aIp,G =

bIp, h = cνT
max(T )G

1/2 (X TX
)−1 X Tk, where a, b, c ∈ R, a, b > 0, and νmax(T ) is the (scaled) eigenvector of T corresponding

to the maximum eigenvalue.

Proof of Theorem 2. Extending discrete distribution of du to the continuous design measure ξu, we can obtain γ (dξu , h)
in (5) based on (4), the definitions of H fu (ξu), Huf (ξu), Huu(ξu) and H S(ξu). If H S(ξu) is not a negative definite matrix,
from Lemma A.1(a) and Huu(ξu) ≥ 0 for any ξu, it holds that γ (dξu , h) ≥ γmin(ξu, h) = σ 2λ−1

min

(
X T

f X f
)
tr(G) + λmax (G)

λ−2
min

(
X T

f X f
)
λmax

(
X T

f K ff X f
)
∥h∥2, the equality holds when λmax

(
H S(ξu)

)
= 0 and λmax (Huu (ξu)) = 0. Moreover,

λmax
(
H S (ξu)

)
≥ 0 when H S(ξu) is not a negative definite matrix. If ξu is the uniform measure in X , H S(ξu) = 0 and

Huu(ξu) = 0 since
∫
X gj(x)K(·, x)dx = 0, j = 1, . . . , p. Then, the equality holds when ξu is the uniform measure in X , and

(6) follows.

Proof of Proposition 2. For convenience, we transform the design region X of an OUCD into [1, n2]
k, i.e., change the levels

−1 and 1 in d1 to 1 and n2 respectively, and the levels in d2 are over [1, n2]. In terms of the two-level full factorial design
d1 in the OUCD, the linear level permutation for d2 does not change L1(d1). Since xn2 = n21T

k and xi + xn2−i = n21T
k ,

i = 1, . . . , n2 − 1, for any ith row vector xi ∈ d2, i = 1, . . . , n2, it holds that xi + u1T
k (mod n2) + (xn2−i + υ1T

k
(mod n2)) = (n2 + 1)1T

k , u = 1, . . . , n2. Then, for each xj ∈ d2 with j ̸= i, it holds that the L1-distance between xi + u1T
k

(mod n2) and xj + u1T
k (mod n2) is the same as the L1-distance between xn2−i +υ1T

k (mod n2) and xn2−j +υ1T
k (mod n2).

Therefore, L1(d2 + uJn2×k) ≥ L1(d2 + υJn2×k). In addition, we have L1(d2 + uJn2×k) ≤ L1(d2 + υJn2×k) when exchange u1T
k

and υ1T
k . Then, L1(d2 + uJn2×k) = L1(d2 + υJn2×k).

Moreover, let L1(d1, d2) be the smallest L1-distance between xi ∈ d2 and yℓ ∈ d1. If L1(d1, d2 + uJn2×k) = L1(yℓ, xi +
u1T

k ) = z, it holds that L1((n2 + 1)1T
k − yℓ, xn2−i + υ1T

k ) = z. Then, L1(d1, d2 + uJn2×k) ≥ L1(d1, d2 + υJn2×k) since
(n2+1)1T

k−yℓ ∈ d1. Similarly, it is easy to know that L1(d1, d2+uJn2×k) ≤ L1(d1, d2+υJn2×k). Therefore, L1(d1, d2+uJn2×k) =

L1(d1, d2 + υJn2×k), such that L1(OUCDu) = L1(OUCDυ ).

Proof of Theorem 3. Let k = φ(n2+1). And denote the greatest common divisor of N and h by gcd(N, h). Consider the case
(i). If a k-factor OUCD has the OA(2k, 2k, k) as d1, then L1(d1) = 2. According to Theorem 4 of Zhou and Xu (2015), L1(d2) =

[(n2+1)2+p1](p1−1)/[2(n2−1)p1]. If gcd(i, n2+1) = 1, i = 1, . . . , n2, L1(d1, xi) = [(n2+1)2+p1−4(n2+1)](p1−1)/[2(n2−

1)p1] for each xi ∈ d2. If gcd (i, n2) = pm1 , i = 1, . . . , n2, L1(d1, xi) = [(n2 + 1)2 + p2m+1
1 − 4(n2 + 1)](p1 − 1)/[2(n2 − 1)p1]

for each xi ∈ d2 and m = 1, . . . , t − 1. Then, L1(d1, d2) = [(n2 + 1)2 + p1 − 4(n2 + 1)](p1 − 1)/[2(n2 − 1)p1] and
L1(d1, d2) < L1(d2). It is obvious that L1(d1, d2) does not decrease as t increases when we fix p. When p1 = 3, 5 and t ≥ 2;
or p1 ≥ 7, L1(d1, d2) ≥ 2 and L1(OUCD) = 2 where the OUCD has the maximin L1-distance of 2.

If a k-factor OUCD has the maximin OA(2k−1, 2k, k − 1) as d1, L1(d1) = 4. Otherwise, L1(d1) = 2. If d2 in the OUCD is
an n2 × k leave-one-out GLP set, then

L1(d1, d2) =

{
[(n2+1)2+p1−4(n2+1)](p1−1)+4p1

2(n2−1)p1
, if (p1 − 1)/2 is odd,

[(n2+1)2+p1−4(n2+1)](p1−1)
2(n2−1)p1

, if (p1 − 1)/2 is even.

Then, L1(d2) > L1(d1, d2). When p1 = 3 and t ≥ 3; p1 = 5, 7 and t ≥ 2; or p1 ≥ 11, L1(d1, d2) ≥ 4 such that the OUCD is a
maximin OUCD since L1(OUCD) reaches the upper bound 4. The remaining cases can be similarly proved and their proofs
are omitted.

Proof of Theorem 5. Consider the maximin OUCD combining the regular 2k−1 design and n2-run d2 under the case (i)
in Theorem 3. Let us replace the regular 2k−1 design by the regular 2k−2 design defined by (k − 1) = 1 · · · (k − 2) and
k = κ1 · · · κℓ as d1 and dnew1 be the OA(2k, 2k, k), then L1(d1, d2) ≥ L1(dnew1 , d2). And L1(dnew1 , d2) = [(n2 + 1)2 + p1 − 4(n2 +

1)](p1 − 1)/[2(n2 − 1)p1] ≥ 4 and L1(d2) ≥ 4 such that the OUCD combining d1 and d2 is also a maximin OUCD. The
remaining cases can be similarly proved and their proofs are omitted.

Proof of Proposition 4. If d2 is an n2-run GLP set with odd prime n2, there does not exist the same level in each
row except the last row. Let xj be the jth column of the OUCD and xij be its ith element. The mean of any column
in the OUCD denoted by x̄1 is 0. Besides, any two columns of both d1 and d0 are linearly independent. Each of
levels 1 and −1 appears n1/2 times in d1 and level 0 appears n0 times in d0. Due to the fact that each row of d2
has distinct levels except the last row, then

[∑n
i=1(xiℓ − x̄1)(xij − x̄1)

]2
=
[∑n2

i=1(x(i+n0+n1)ℓ − x̄1)(x(i+n0+n1)j − x̄1)
]2

≤{
1 + 2

∑(n2−3)/2
i=0 [−1 + 4i/(n2 − 1)][−1 + 2(2i + 1)/(n2 − 1)]

}2
= {2 − n2 + 4n2(n2 − 2)/[3(n2 − 1)]}2, where xℓ and xj

are any two distinct columns of the OUCD, and n = n1 + n2 + n0. Also,
∑n

i=1(xiℓ − x̄1)2 = (xℓ)Txℓ
= (n2

2 +

n2)/(3n2 − 3) + n1 for ℓ = 1, . . . , k. Thus, for the linear correlation ρℓj between the distinct ℓth and jth columns, it
holds that ρ2

ℓj =
[∑n

i=1(xiℓ − x̄1)(xij − x̄1)/
∑n

i=1(xiℓ − x̄1)2
]2

≤ α2/η2, where α = 2 − n2 + 4n2(n2 − 2)/[3(n2 − 1)] and
η = (n2

2 + n2)/(3n2 − 3)+ n1. Then, from (15), the upper bound ϱ(OUCD) follows directly. If d2 is an n2-run leave-one-out
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GLP set, there does not exist the row vector of ones. Similarly, we can prove the upper bound ϱ(OUCD) and its proof is
omitted.

Proof of Proposition 5. The d1 in the OUCD is an OA so that we only focus on d2, the GLP set D. Denote x0 = xn2 where
xn2 is the last row in D. For each ith row vector xi ∈ D with i = 1, . . . , n2, it holds that xi + u1T

k (mod n2) + (xn2−i + υ1T
k

(mod n2)) = (n2 + 1)1T
k where the multiplication operation modulo n2 is modified so that the result falls into [1, n2]

by replacing 0 by n2. Through the linear mapping f for D, it holds that
(
χ
(u)
i

)∗

+

(
χ
(υ)
n2−i

)∗

= 0 where χ
(u)
i = xi + u1T

n2
(mod n2), υ = n2 + 1 − u and u ∈ {1, . . . , n2}. Then, D∗

u can be obtained by −D∗
υ under the row permutation. Since the

permutation does not affect ρ2, it holds that ρ2(OUCDu) = ρ2(OUCDυ ).
If n2 is even, there exists an ℓ such that i + ℓ (mod n2) = n2/2 for any i, where both i and ℓ belong to {1, . . . , n2}.

Then, xi + ς1T
k (mod n2) + (xℓ + ν1T

k (mod n2)) = (n2 + 1)1T
k . Similarly, it holds that ρ2(OUCDς ) = ρ2(OUCDν).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2019.08.007.
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