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a b s t r a c t

Fractional factorial split-plot (FFSP) designs are often used when the levels of some
factors are difficult to change or control. If not all experimental factors have the same
number of levels, mixed-level designs are natural choices. This paper provides the
necessary and sufficient conditions for mixed 2- and 2r -level FFSP designs of resolution
III or IV to contain clear main effects or two-factor interaction components. Particularly,
the sufficient conditions are proved through constructing the corresponding designs.
The new results here are more general and include Zhao and Chen (2012a,b)’s results
as special cases for r = 2.
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1. Introduction

Fractional factorial (FF) designs, due to the run size economy, are commonly used for factorial experiments in many
fields, such as agriculture, medicine, chemistry, and high-tech industry. A 2n−k design denotes a regular fraction with
2n−k runs and n two-level factors, which has n − k independent columns and is determined by k independent defining
words. Such designs have a simple aliasing structure in that any two effects are either orthogonal to or fully aliased with
each other. If the levels of some factors in an experiment are difficult to change or control, it may be impractical or
even impossible to conduct the runs in a completely random order, which makes one consider a special design called
the fractional factorial split-plot (FFSP) design. In general, an FFSP experiment has two types of factors: hard-to-change
factors named whole-plot (WP) factors and the rest factors named sub-plot (SP) factors. One can randomly choose one
of the level-settings of WP factors and then run all of the level-combinations of the SP factors in a random order with
the WP factors fixed. The procedure above is repeated for other WP factor-level combinations until the experiment is
complete.

In terms of ranking designs, minimum aberration and clear effects are two most commonly used criteria. Minimum
aberration criterion was first introduced by Fries and Hunter (1980) for distinguishing FF designs and was studied
extensively by Chen (1992), Chen and Hedayat (1996), Tang and Wu (1996) and others. Huang et al. (1998) and Bingham
and Sitter (1999a,b) extended this criterion to ranking FFSP designs. The notion of clear effect was proposed by Wu and
Chen (1992). A main effect or a two-factor interaction (2FI) of a 2n−k design is said to be clear if it is not aliased with
any other main effect or 2FI. A clear effect can be estimated unbiasedly under the weak assumption that effects involving
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three or more factors can be ignored. In any resolution IV 2n−k design, all the main effects are clear. Then, a resolution IV
2n−k design with the most clear two-factor interactions is preferred, see Wu and Hamada (2009, p. 217). For a resolution
III 2n−k design, we can assume the magnitude of the main effect is much larger than that of the 2FI according to effect
hierarchy principle (Wu and Hamada, 2009, p. 172). When some background knowledge suggests that certain effects are
potentially important, we will choose the designs with more clear effects. Yang et al. (2006) gave necessary and sufficient
conditions for the existence of two-level FFSP designs containing various clear effects. Zi et al. (2006) derived the upper
and lower bounds on the maximum numbers of clear effects for FFSP designs. For comprehensive discussions on the
theory of clear effects, we refer the readers to Tang et al. (2002), Wu and Wu (2002), Ai and Zhang (2004), and Chen
et al. (2006). Cheng and Tsai (2009) proposed a general and unified approach to the selection of regular FF designs with
split-plot designs as a special case.

In practice, mixed-level FF designs are commonly used in the experiments when the numbers of levels of the factors are
not all equal to each other. Zhao et al. (2008), Zhao and Zhang (2008) and Zhao and Zhao (2015) studied the mixed-level
designs containing clear effects. Zhao and Chen (2012a,b) investigated the mixed-level split-plot designs with a four-level
and some two-level factors and gave the conditions for such designs to have various clear effects.

High-level factors are often encountered in real life. One such example can be found in Example 1.6 of Montgomery
(2013), which considers an eight-level factor in an experiment of designing a web page. If frequently changing the levels
of the factor is not allowed, we will need an FFSP design with one eight-level factor in WP part. Usually, for designs
containing clear effects, there are two main research topics. The first one considers the conditions for a design to have
clear effects, and the second one is about the construction of the design with the most clear effects. This paper focuses on
the first one and considers the 2(n1+n2)−(k1+k2)(2r )1 regular mixed-level FFSP design that contains n1 2-level WP factors,
n2 2-level SP factors and one 2r -level WP or SP factor. Section 2 gives such notation and definitions. Section 3 provides
the conditions for 2(n1+n2)−(k1+k2)(2r )1s designs to contain clear main effects and two-factor interaction components, and
Section 4 discusses when 2(n1+n2)−(k1+k2)(2r )1w designs contain clear main effects and two-factor interaction components,
where the subscript s or w means the 2r -level factor is an SP or WP factor. Section 5 contains some concluding remarks.

2. Notation and definitions

We first consider the construction of 2(n1+n2)−(k1+k2) FFSP designs with p = p1 + p2 independent columns, where
p1 = n1 − k1, p2 = n2 − k2. Such a design contains n1 WP factors, n2 SP factors, and 2p runs. Let

H = H(a1, . . . , ap1 , b1, . . . , bp2 )

be the saturated design generated by the independent columns a1, . . . , ap1 , b1, . . . , bp2 . A 2(n1+n2)−(k1+k2) FFSP design
corresponds to two subsets of columns of H . Let Ha = H(a1, . . . , ap1 ) be the closed subset of 2p1 − 1 columns of H
generated by a1, . . . , ap1 . Hereafter, a closed subset of H means that the interaction of any two columns of it is still a
column of it. We can choose n1 columns with p1 independent ones in Ha(⊂ H) as WP factors, and n2 columns with
another p2 independent ones from H\Ha as SP factors. Denote the selected n1 and n2 columns by B1 = {c1, . . . , cn1} and
B2 = {cn1+1, . . . , cn1+n2}, respectively. Then (B1, B2) corresponds to a 2(n1+n2)−(k1+k2) FFSP design, where k1 = n1 − p1 and
k2 = n2 − p2.

Now, we consider the construction of a 2(n1+n2)−(k1+k2)(2r )1s FFSP design. A 2r -level column can be obtained from 2r
−1

two-level columns, which compose a closed subset of H , using the method of replacement introduced by Addelman (1962)
and developed by Wu (1989). For illustration of the replacement method, we consider replacing two-level columns by
an eight-level column. Because an eight-level column has seven degrees of freedom, we need seven two-level columns
each having one degree of freedom. Three independent two-level columns a, b, c and all their possible interaction columns
ab, ac, bc, abc just compose the closed subset with seven two-level columns. Then the replacement can be done according
to the rule in Table 1. Suppose (B1, B2) corresponds to a 2(n′

1+n′
2)−(k′1+k′2) FFSP design D. If there are t(= 2r

− 1) two-level
columns of B2 which compose a closed subset, then replacing them with a 2r -level column we can get a 2(n1+n2)−(k1+k2)(2r )1s
design with n1 = n′

1, k1 = k′

1, n2 = n′

2 − t , and k2 = k′

2 − t + r . Similarly, if there are t(= 2r
− 1) two-level columns of

B1 which compose a closed subset, then replacing them with a 2r -level column we can get a 2(n1+n2)−(k1+k2)(2r )1w design
with n1 = n′

1 − t , k1 = k′

1 − t + r , n2 = n′

2, and k2 = k′

2. Denote the 2r -level column as E.
We call the 2r

− 1 columns replaced with the 2r -level column as the components of the 2r -level factor E. For
convenience, both the main effects of the two-level factors and the components of the 2r -level factor are called the main
effect components. For the same reason, both the two-factor interaction of two two-level factors and the two-factor
interaction components (2FICs) of a two-level factor and a 2r -level factor are called 2FICs. We divide the 2FICs into three
types: WP2FIC, SP2FIC and WS2FIC, where a WP2FIC (or SP2FIC) means a 2FIC in which both factors are WP (or SP) factors,
and similarly a WS2FIC means a 2FIC in which one factor is a WP factor and the other is an SP factor.

Wu and Zhang (1993) proposed an extension of the minimum aberration criterion for designs with two-level and
four-level factors. We extend their idea here. For a 2(n1+n2)−(k1+k2)(2r )1 design, there are two types of defining words:
type 0, which involves only the two-level factors, and type 1, which involves one component of the 2r -level factor and
some of the two-level factors. We introduce two important definitions as follows.
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Table 1
Rule for replacing seven two-level columns by an eight-level column.
a b c ab ac bc abc 8-level column

0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1
0 1 0 1 0 1 1 2
0 1 1 1 1 0 0 3
1 0 0 1 1 0 1 4
1 0 1 1 0 1 0 5
1 1 0 0 1 1 0 6
1 1 1 0 0 0 1 7

Definition 1. Let Ai0 and Ai1 be the numbers of type 0 and type 1 words of length i in the defining contrasts subgroup of
a 2(n1+n2)−(k1+k2)(2r )1 design D, respectively. The resolution of D is defined to be the smallest i such that Ai0(D)+ Ai1(D) is
positive.

Definition 2. A main effect component of a factor is said to be clear if it is not aliased with any main effect component
of the other factors or any 2FIC. A 2FIC is said to be clear if it is not aliased with any main effect component or any other
2FIC. A main effect or two-factor interaction is said to be clear if all its components are clear.

Hereafter, let 2(n1+n2)−(k1+k2)
R (2r )1 denote a 2(n1+n2)−(k1+k2)(2r )1 design with resolution R.

We introduce a lemma which will be used in the proofs of theorems. Its proof is obvious and thus omitted here.

Lemma 1. Let Q1 = {a1} ∪ H(a2, . . . , ap1 ) and Q2 = H(a2, . . . , ap1 , b1, . . . , bp2 )\H(a2, . . . , ap1 ). Then Q = (Q1,Q2) is a
2(n1+n2)−(k1+k2)
III design D with n1 = 2p1−1 and n2 = 2p−1

− 2p1−1, and the WP main effect a1 and WP2FIC a1c (c ∈ Q1\{a1})
are clear in D.

3. 2(n1+n2)−(k1+k2)(2r )1s designs containing clear effects

This section discusses the conditions for the existence of 2(n1+n2)−(k1+k2)(2r )1s designs containing various clear effects.
A 2(n1+n2)−(k1+k2)(2r )1s design D can be denoted by

C = {c1, . . . , cn1; cn1+1, . . . , cn1+n2; d1, . . . , dt},

where B1 = {c1, . . . , cn1}(⊂ Ha) consists of the WP factors, B2 = {cn1+1, . . . , cn1+n2}(⊂ H\Ha) consists of the two-level SP
factors, and E = {d1, . . . , dt}(⊂ H\Ha) consists of t(= 2r

− 1) two-level columns replaced by a 2r -level factor. Here, we
denote p1 = n1 − k1, p2 = (n2 + t) − (k2 + t − r) and p = p1 + p2 for simplicity.

In this section, without loss of generality, we say that a 2(n1+n2)−(k1+k2)(2r )1s design D is determined by C with
Hbr = H(b1, . . . , br ) = {d1, . . . , dt} ⊂ H\Ha being substituted by a 2r -level factor denoted as E. Let us first give the
necessary and sufficient conditions for 2(n1+n2)−(k1+k2)

III (2r )1s designs to contain clear WP main effects or WP2FICs.

Theorem 1. There exist 2(n1+n2)−(k1+k2)
III (2r )1s designs containing clear WP main effects or WP2FICs if and only if n1 ≤ 2p1−1

and n2 ≤ 2p−1
− 2p1−1

− t.

Proof. Suppose that a 2(n1+n2)−(k1+k2)
III (2r )1s design D is determined by C and a two-level WP main effect, say c1, is clear in

D. Then we have

c1ci ∈ Ha\B1, i = 2, . . . , n1;

c1cj ∈ (H\Ha)\(B2 ∪ Hbr ), j = n1 + 1, . . . , n1 + n2; and
c1dl ∈ (H\Ha)\(B2 ∪ Hbr ), l = 1, . . . , t .

The above columns are different from each other, which implies that

n1 − 1 ≤ 2p1 − 1 − n1, i.e., n1 ≤ 2p1−1, and

n2 + t ≤ 2p
− 1 − (2p1 − 1) − n2 − t, i.e., n2 ≤ 2p−1

− 2p1−1
− t.

One can easily obtain the same result by similar arguments when D has a clear WP2FIC.
When n1 = 2p1−1 and n′

2 = 2p−1
− 2p1−1, we can get a 2

(n1+n′
2)−(k1+k′2)

III design D with the clear WP main effect a1
and WP2FIC a1c (c ∈ Q1\{a1}) according to Lemma 1. Replacing Hbr with a 2r -level factor E in Q2, we can obtain a
2(n1+n2)−(k1+k2)
III (2r )1s design with the same types of clear effects as D, where n2 = 2p−1

− 2p1−1
− t . When n1 < 2p1−1

and/or n2 < 2p−1
− 2p1−1

− t , we can get the designs with clear WP main effects or WP2FICs by deleting any 2p1−1
− n1

columns from Q1\{a1} and/or any 2p−1
− 2p1−1

− t − n2 columns from Q2\Hbr . This completes the proof. □
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The proof of Theorem 1, in fact, provides us a method to construct such 2(n1+n2)−(k1+k2)
III (2r )1s designs containing clear

WP main effects or WP2FICs. The following theorem shows when a 2(n1+n2)−(k1+k2)
III (2r )1s design can have the clear 2r -level

SP main effect and illustrates the corresponding construction.

Theorem 2. There exist 2(n1+n2)−(k1+k2)
III (2r )1s designs containing the clear 2r -level SP main effect if and only if n1 ≤ 2p1 − 1

and n2 ≤ 2p−r
− n1 − 1.

Proof. Suppose that a 2(n1+n2)−(k1+k2)
III (2r )1s design D is determined by C . Obviously, n1 ≤ 2p1 − 1, since {c1, . . . , cn1} ⊂ Ha.

If the 2r -level factor E is clear, then we have dicj ∈ H\C, for i = 1, . . . , t, j = 1, . . . , n1 + n2. Note that the columns dicj
are different from each other (otherwise di is not clear) and t = 2r

− 1, we can conclude that

t(n1 + n2) ≤ 2p
− 1 − n1 − n2 − t, i.e., n2 ≤ 2p−r

− n1 − 1.

When n1 ≤ 2p1 − 1 and n2 = 2p−r
− n1 − 1, let M1 ⊂ Ha such that #{M1} = n1 and M1 has p1 independent columns, and

M2 = Hbr ∪
(
{b1} ⊗ (H(a1, . . . , ap1 , br+1, . . . , bp2 )\M1)

)
.

Hereafter, #{·} denotes the cardinality of the set, and T1 ⊗ T2 = {t1t2 : t1 ∈ T1, t2 ∈ T2} for two sets T1 and T2.
Then, n1 ≤ 2p1 − 1 and #{M2} = 2p−r

− 1 − n1 + t . Replacing Hbr with a 2r -level factor E in M2, we can get a
2(n1+n2)−(k1+k2)
III (2r )1s design with n1 ≤ 2p1 − 1 and n2 = 2p−r

− 1 − n1. Obviously, the 2r -level factor E is clear. For
n1 ≤ 2p1 − 1 and n2 < 2p−r

− n1 − 1, we can delete any 2p−r
− n1 − 1 − n2 columns from M2\Hbr to get the required

designs. This completes the proof. □

Next, we will discuss the conditions that the 2(n1+n2)−(k1+k2)
III (2r )1s design contains clear WS2FICs, two-level SP main

effects or SP2FICs, respectively.

Theorem 3.
(a) For p2 ≥ r, there exist 2(n1+n2)−(k1+k2)

III (2r )1s designs containing clear WS2FICs if and only if n1 ≤ 2p1 − 1 and n2 ≤

2p−1
− n1 − t.

(b) For p2 ≥ r + 1, there exist 2(n1+n2)−(k1+k2)
III (2r )1s designs containing clear two-level SP main effects or SP2FICs if and only if

n1 ≤ 2p1 − 1 and n2 ≤ 2p−1
− n1 − t.

(c) For p2 = r, there exist 2(n1+n2)−(k1+k2)
III (2r )1s designs containing clear two-level SP main effects or SP2FICs if and only if

n1 ≤ 2p1 − 2 and n2 ≤ 2p−1
− n1 − t.

The proof of Theorem 3 is lengthy and we give it in Appendix. The following two examples help us to better understand
the structure of the designs constructed in the proof.

Example 1. Let p1 = 2, p2 = 3, r = 2 and B1 = H2 = {1, 2, 12}. There are altogether 14 disjoint column
pairs in H5, which join {1, 3} to form distinct words with length four. Among them, there are two pairs, {2, 123} and
{12, 23}, with one column from H2 and the other from H5\H2. Apart from these, the remaining twelve pairs have
both columns from H5\H2. They are {4, 134}, {34, 14}, {24, 1234}, {124, 234}, {5, 135}, {15, 35}, {25, 1235}, {125, 235},
{45, 1345}, {145, 345}, {245, 12345}, {1245, 2345}. By choosing one column from each of these pairs (say the first
element) as the element of B2 and adding {3} into B2, we have

B2 = {3, 4, 34, 24, 124, 5, 15, 25, 125, 45, 145, 245, 1245}.

Replacing {3, 4, 34} in B2 with a four-level factor, we get a 2(3+10)−(1+9)
III 41

s design with a clear WS2FIC {1, 3}.
We can also get a 2(2+11)−(0+10)

III 41
s design with a clear WS2FIC {1, 3} by deleting {12} from B1 and adding {23} into B2.

Similarly, we can get the designs with the same p1 and p2. □

Example 2. Suppose p1 = 2, p2 = 3, r = 2 and B1 = {1, 2, 12}, B2 = {3, 4, 5, 45, 14, 15, 145, 24, 25, 245, 124, 125, 1245}.
After replacing {4, 5, 45} with a four-level factor, we have a 2(3+10)−(1+9)

III 41
s design with clear SP main effect {3} and clear

SP2FIC {3, 5}. Similarly, we can get a 2(2+11)−(0+10)
III 41

s design with same clear effects by deleting {12} from B1 and adding
{1235} into B2. □

As we know, designs with resolution IV are vital in practice because the main effects are all clear. In the following two
theorems, we provide the conditions for a 2(n1+n2)−(k1+k2)

IV (2r )1s design to contain clear all kinds of 2FICs.

Theorem 4.
(a) If there exist 2(n1+n2)−(k1+k2)

IV (2r )1s designs containing clear WS2FICs or SP2FICs involving some 2r -level factor component,
then n1 ≤ 2p1−1 and n2 ≤ 2p−2

− n1 − 2r−1
+ 1.

(b) If there exist 2(n1+n2)−(k1+k2)
IV (2r )1s designs containing clear WS2FICs or SP2FICs involving only two-level factors, then

n1 ≤ 2p1−1 and n2 ≤ 2p−2
− n1 − t + 1.
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Proof. For both cases (a) and (b), the WP part of a 2(n1+n2)−(k1+k2)
IV (2r )1s design is a 2n1−k1

IV design and there does not exist
2n1−k1
IV design when n1 > 2p1−1.
For (a), we now show n2 ≤ 2p−2

− n1 − 2r−1
+ 1. Suppose that a 2(n1+n2)−(k1+k2)

IV (2r )1s design is determined by C and
SP2FIC cn1+1d1 is clear. Then we have

cn1+1ci ∈ H\C, i = 1, . . . , n1 + n2, i ̸= n1 + 1;
cn1+1dj ∈ H\C, j = 1, . . . , t;
d1cl ∈ H\C, l = 1, . . . , n1, n1 + 2, . . . , n1 + n2; and
cn1+1d1ck ∈ H\C, k = 1, . . . , n1, n1 + 2, . . . , n1 + n2.

Because the above columns are different from each other, we get

3(n1 + n2 − 1) + t ≤ 2p
− 1 − n1 − n2 − t,

which implies n2 ≤ 2p−2
− n1 − 2r−1

+ 1. For the conditions for a 2(n1+n2)−(k1+k2)
IV (2r )1s design to contain the same type of

clear WS2FICs, the proof is similar.
For (b), we now show n2 ≤ 2p−2

− n1 − t + 1. Similar to the above, suppose that a 2(n1+n2)−(k1+k2)
IV (2r )1s design is

determined by C and SP2FIC cn1+1cn1+2 is clear. Then we have

cn1+1ci1 ∈ H\C, i1 = 1, . . . , n1 + n2, i1 ̸= n1 + 1;
cn1+2ci2 ∈ H\C, i2 = 1, . . . , n1 + n2, i2 ̸= n1 + 1, n1 + 2;
cn1+1di3 ∈ H\C, i3 = 1, . . . , t;
cn1+2di4 ∈ H\C, i4 = 1, . . . , t;
cn1+1cn1+2ci5 ∈ H\C, i5 = 1, . . . , n1 + n2, i5 ̸= n1 + 1, n1 + 2; and
cn1+1cn1+2di6 ∈ H\C, i6 = 1, . . . , t .

Since the above columns are different from each other, we get

(n1 + n2 − 1) + 2(n1 + n2 − 2) + 3t ≤ 2p
− 1 − n1 − n2 − t,

which implies that n2 ≤ 2p−2
− n1 − t + 1. This completes the proof. □

Theorem 5. If there exist 2(n1+n2)−(k1+k2)
IV (2r )1s designs containing clear WP2FICs, then n1 ≤ 2p1−2

+1 and n2 ≤ 2p−2
−2p1−2

−t.

Proof. Suppose that a 2(n1+n2)−(k1+k2)
IV (2r )1s design is determined by C and WP2FIC c1c2 is clear. Then we have

c1ci1 ∈ Ha\B1, i1 = 2, . . . , n1;

c2ci2 ∈ Ha\B1, i2 = 3, . . . , n1; and
c1c2ci3 ∈ Ha\B1, i3 = 3, . . . , n1.

Because the above columns are different from each other, we can get

(n1 − 1) + 2(n1 − 2) ≤ 2p1 − 1 − n1, i.e., n1 ≤ 2p1−2
+ 1.

Note that

c1ci4 ∈ H\Ha\B2, i4 = n1 + 1, . . . , n1 + n2;

c2ci5 ∈ H\Ha\B2, i5 = n1 + 1, . . . , n1 + n2;

c1c2ci6 ∈ H\Ha\B2, i6 = n1 + 1, . . . , n1 + n2;

c1di7 ∈ H\Ha\B2, i7 = 1, . . . , t;
c2di8 ∈ H\Ha\B2, i8 = 1, . . . , t; and
c1c2di9 ∈ H\Ha\B2, i9 = 1, . . . , t .

Since the above columns are different from each other, we have

3(n2 + t) ≤ 2p
− 1 − (2p1 − 1) − n2 − t, i.e., n2 ≤ 2p−2

− 2p1−2
− t.

This completes the proof. □

4. 2(n1+n2)−(k1+k2)(2r )1w designs containing clear effects

In this section, we will discuss the conditions for 2(n1+n2)−(k1+k2)(2r )1w designs to contain clear effects. A 2(n1+n2)−(k1+k2)

(2r )1w design D can be denoted by

C ′
= {c1, . . . , cn1; d1, . . . , dt; cn1+1, . . . , cn1+n2},
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where c1, . . . , cn1 are the two-level WP factors, d1, . . . , dt are the components of the 2r -level WP factor, and cn1+1, . . . ,
cn1+n2 are the two-level SP factors. Let B′

1 = {c1, . . . , cn1 , d1, . . . , dt} and B′

2 = {cn1+1, . . . , cn1+n2}. For simplicity, we
denote p1 = (n1 + t) − (k1 + (t − r)), p2 = n2 − k2, p = p1 + p2 and t = 2r

− 1.
Without loss of generality, we say that a 2(n1+n2)−(k1+k2)(2r )1w design D is determined by C ′ with Har = H(a1, . . . , ar ) =

{d1, . . . , dt} being replaced by a 2r -level factor denoted as F . First, Theorems 6 and 7 give necessary and sufficient
conditions for the existence of a 2(n1+n2)−(k1+k2)

III (2r )1w design with clear WP main effects or WP2FICs. The proof of the
existence of designs is also by construction.

Theorem 6. There exist 2(n1+n2)−(k1+k2)
III (2r )1w designs containing clear two-level WP main effects or WP2FICs if and only if

n1 ≤ 2p1−1
− t and n2 ≤ 2p−1

− 2p1−1.

Proof. Suppose that a 2(n1+n2)−(k1+k2)
III (2r )1w design D is determined by C ′ and a two-level WP main effect c1 is clear. Then

we have

c1ci ∈ Ha\B′

1, i = 2, . . . , n1;
c1dj ∈ Ha\B′

1, j = 1, . . . , t; and
c1cl ∈ H\Ha\B′

2, l = n1 + 1, . . . , n1 + n2.

Since the columns above are different from each other, we have

n1 + t − 1 ≤ 2p1 − 1 − n1 − t, i.e., n1 ≤ 2p1−1
− t, and

n2 ≤ (2p
− 1) − (2p1 − 1) − n2, i.e., n2 ≤ 2p−1

− 2p1−1.

The proof of the necessity conditions for designs to contain clear WP2FICs is similar and omitted here.
We can easily get a 2

(n′
1+n2)−(k′1+k2)

III design with the clear WP main effect a1 and WP2FIC a1c (c ∈ Q1\{a1}) according
to Lemma 1, where n′

1 = 2p1−1 and n2 = 2p−1
− 2p1−1. Replacing H(a2, . . . , ar+1) with a 2r -level factor F , we can get a

2(n1+n2)−(k1+k2)
III (2r )1w design with n1 = 2p1−1

− t . From the construction, it is obvious that the two-level WP main effect
a1 is clear. For any c ∈ Q1\{a1}, the WP2FIC a1c is clear. When n1 < 2p1−1

− t and/or n2 < 2p−1
− 2p1−1, we only need

to delete any 2p1−1
− t − n1 columns from Q1\({a1} ∪ F ) and/or any 2p−1

− 2p1−1
− n2 columns from Q2 to obtain the

required designs. The proof is completed. □

Theorem 7. There exist 2(n1+n2)−(k1+k2)
III (2r )1w designs containing the clear 2r -level WP main effect if and only if n1 ≤ 2p1−r

−1
and n2 ≤ 2p−r

− 2p1−r .

Proof. Suppose that the design is determined by C ′ and the 2r -level WP main effect F = H(a1, . . . , ar ) = {d1, . . . , dt} is
clear. Then we have

dicj ∈ Ha\B′

1, i = 1, . . . , t, j = 1, . . . , n1; and
dick ∈ H\Ha\B′

2, i = 1, . . . , t, k = n1 + 1, . . . , n1 + n2.

Note that the above columns are different from each other and t = 2r
− 1, we can conclude that

tn1 ≤ 2p1 − 1 − n1 − t, i.e., n1 ≤ 2p1−r
− 1, and

tn2 ≤ 2p
− 2p1 − n2, i.e., n2 ≤ 2p−r

− 2p1−r .

Let F = H(a1, . . . , ar ) be the 2r -level factor, W1 ⊂ H(ar+1, . . . , ap1 ) and

W2 ⊂ H(ar+1, . . . , ap1 , b1, . . . , bp2 )\H(ar+1, . . . , ap1 ),

such that #{W1} = n1 ≤ 2p1−r
− 1 and #{W2} = n2 ≤ 2p−r

− 2p1−r . Then we can get a 2(n1+n2)−(k1+k2)
III (2r )1w design with F

being clear. This completes the proof. □

Remark 1. The proofs of Theorems 1 and 6 share some common features shown in Lemma 1. For Theorems 2 and
7, it looks as if they are similar, but the structures of the designs constructed in the proofs are totally different.
Theorem 7 constructs a design containing the clear 2r -level WP main effect while Theorem 2 constructs a design
containing the clear 2r -level SP main effect. If we apply the method in the proof of Theorem 7 to that of Theorem 2,
some factors in H(a1, . . . , ap1 , br+1, . . . , bp2 )\M1 may not belong to the SP part. So we put b1 to each element of
H(a1, . . . , ap1 , br+1, . . . , bp2 )\M1 in the proof of Theorem 2 to make sure they are in the SP part.

According to Theorems 6 and 7, we can get the results with clear WP factors. The following theorem considers the
condition that a 2(n1+n2)−(k1+k2)

III (2r )1w design can have clear SP main effects.

Theorem 8. For p2 ≥ 2, there exist 2(n1+n2)−(k1+k2)
III (2r )1w designs containing clear SP main effects if and only if n1 ≤ 2p1 −t−1

and n2 ≤ 2p−1
− n1 − t.
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Proof. First, since the WP factors belong to Ha, we have

n1 + t ≤ 2p1 − 1, i.e., n1 ≤ 2p1 − t − 1.

Suppose the design is determined by C ′ and SP main effect cn1+1 is clear. Then we have

cn1+1ci ∈ H\C ′, i = 1, . . . , n1, n1 + 2, . . . , n1 + n2; and
cn1+1dj ∈ H\C ′, j = 1, . . . , t .

Since the above columns are different from each other, we can get

n1 + n2 − 1 + t ≤ 2p
− 1 − n1 − n2 − t, i.e., n2 ≤ 2p−1

− n1 − t.

Let W1 = H(a1, . . . , ap1 ) and

W2 = {b1} ∪
(
{b1} ⊗ (H(a1, . . . , ap1 , b2, . . . , bp2 )\W1)

)
.

Then W = (W1,W2) is a 2
(n′

1+n2)−(k′1+k2)
III design with n′

1 = 2p1 − 1 and n2 = 2p−1
− n′

1. Replacing H(a1, . . . , ar ) with a
2r -level factor F , we can get a 2(n1+n2)−(k1+k2)

III (2r )1w design with n1 = 2p1 − t − 1 and n2 = 2p−1
− 2p1 + 1 = 2p−1

− n1 − t .
From the construction of the design, it is obvious that the two-level SP main effect b1 is clear. When n1 < 2p1 − t −1 and
n2 = 2p−1

− n1 − t , we only need to delete any 2p1 − t − 1 − n1 columns ci from W1\F and add cib1 into W2 to get the
required designs. Furthermore, when n2 < 2p−1

−n1 − t , we need to delete any 2p−1
−n1 − t −n2 columns from W2\{b1}

to get the required designs. This completes the proof. □

The following theorem considers the case of 2(n1+n2)−(k1+k2)
III (2r )1w designs containing clear WS2FICs or SP2FICs. Its proof

is also lengthy and thus given in Appendix.

Theorem 9. For p2 ≥ 2, there exist 2(n1+n2)−(k1+k2)
III (2r )1w designs containing clear WS2FICs or SP2FICs if and only if

n1 ≤ 2p1 − t − 1 and n2 ≤ 2p−1
− n1 − t.

The following example illustrates the construction method in the proof of Theorem 9.

Example 3. Consider the construction of a 2(4+9)−(3+7)
III (4)1w design with a clear WS2FIC. First, we have p1 = 3, p2 =

2, r = 2, n1 = 4 and n2 = 9. Let B′

1 = H3 = {1, 2, 12, 3, 13, 23, 123}, c1 = {1} and cn1+1 = {4}. There are altogether
14 disjoint column pairs in H5, which join {1, 4} to form distinct words with length four. Then, among the pairs which
join {1, 4} to form length four words, there are eight ones with both columns from H5\H3, which are {5, 145}, {15, 45},
{25, 1245}, {125, 245}, {35, 1345}, {135, 345}, {235, 12345}, {1235, 2345}. Choosing one column from each of these pairs
as the element of B′

2 and adding {4} into B′

2, we get B′

2, say

B′

2 = {4, 5, 45, 25, 125, 35, 135, 235, 1235}.

By replacing {1, 2, 12} with a four-level factor, we can get a 2(4+9)−(3+7)
III (4)1w design with a clear WS2FIC {1, 4}. In the same

manner, we can get the designs with the same p1 and p2. For instance, we can obtain a 2(3+10)−(2+8)
III (4)1w design with a

clear WS2FIC {1, 4} by deleting {123} from B1 and adding {234} into B2. □

Since the main effects are all clear in a design of resolution IV, we now discuss the conditions for a 2(n1+n2)−(k1+k2)
IV (2r )1w

design to contain various clear 2FICs in the following two theorems.

Theorem 10. There exist 2(n1+n2)−(k1+k2)
IV (2r )1w designs with clear WP2FICs or WS2FICs if and only if n1 ≤ 2p1−r

− 1 and
n2 ≤ 2p−r

− 2p1−r .

Proof. Let

H(ar+1, . . . , ap1 ) = {α1, . . . , α2p1−r
−1},

H(ar+1, . . . , ap1 , b1, . . . , bp2 )\H(ar+1, . . . , ap1 ) = {α2p1−r , . . . , α2p−r−1},

and Si = {αi} ∪ ({αi} ⊗ H(a1, . . . , ar )) for i = 1, . . . , 2p−r
− 1. Then

H = H(a1, . . . , ap1 , b1, . . . , bp2 ) = H(a1, . . . , ar ) ∪

(
∪

2p−r
−1

i=1 Si
)

.

Clearly, the components of the 2r -level WP factor belong to H(a1, . . . , ar ), the two-level WP factors belong to Si, i =

1, . . . , 2p1−r
− 1, and the SP factors belong to Si, i = 2p1−r , . . . , 2p−r

− 1. Note that each Si contains at most one column
of the design, otherwise, the design would have resolution III. Thus, we have n1 ≤ 2p1−r

− 1 and n2 ≤ 2p−r
− 2p1−r .
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Let

Ea = {a1, . . . , ar} ∪ ({ar} ⊗ H(ar+1, . . . , ap1 )),

W1 = Ea,W2 = (Ea\{a1, . . . , ar−1}) ⊗ H(b1, . . . , bp2 ).

Then W = (W1,W2) is a 2
(n′

1+n2)−(k′1+k2)
IV design with n′

1 = 2p1−r
− 1 + r and n2 = 2p−r

− 2p1−r . Adding the columns
of H(a1, . . . , ar )\(a1, . . . , ar ) into W , we get a new design W ∗. Replacing H(a1, . . . , ar ) with a 2r -level factor F , we get
a 2(n1+n2)−(k1+k2)

IV (2r )1w design with n1 = 2p1−r
− 1 and n2 = 2p−r

− 2p1−r . For any c1 ∈ W1\{a1, . . . , ar} and c2 ∈ W2,
all of the WP2FICs a1c1 and WS2FICs a1c2 are clear. For n1 < 2p1−r

− 1 and/or n2 < 2p−r
− 2p1−r , we can delete any

2p1−r
− 1 − n1 columns from W1\F and/or any 2p−r

− 2p1−r
− n2 columns from W2 to get the required designs. This

completes the proof. □

Theorem 10 provides a necessary and sufficient condition for a 2(n1+n2)−(k1+k2)
IV (2r )1w design to have clear WP2FICs

or WS2FICs. Similarly, the conditions for a 2(n1+n2)−(k1+k2)
IV (2r )1w design to have clear SP2FICs are given in the following

theorem.

Theorem 11.

(a) For p2 ≥ 2, there exist 2(n1+n2)−(k1+k2)
IV (2r )1w designs containing clear SP2FICs if and only if n1 ≤ 2p1−r

−1, n2 ≤ 2p−r
−2p1−r

and the equalities cannot hold at the same time.

(b) For p2 = 1, there exist 2(n1+n2)−(k1+k2)
IV (2r )1w designs containing clear SP2FICs if and only if n1 ≤ 2p1−r

− 2 and
n2 ≤ 2p−1

− 2p1−r .

The following two examples are used to illustrate the construction of Theorem 11(a).

Example 4. For p1 = 4, p2 = 2 and r = 2, let Ea = {1, 2}∪ {2⊗H(3, 4)} and Eab = {2, 23, 24, 234}⊗H(5, 6). Define B′

1 =

Ea ∪{12} = {1, 2, 12, 23, 24, 234} and B′

2 = (Eab \{25, 256})∪{15} = {15, 235, 245, 2345, 26, 236, 246, 2346, 2356, 2456,
23456}. Then, after replacing {1, 2, 12} with a four-level factor, (B′

1, B
′

2) corresponds to a 2(3+11)−(1+9)
IV 41

w design with clear
SP2FIC {15, 26}. Similarly, we can construct the designs with same p1 and p2. □

Example 5. Let us see another example with larger p1 and p2 values. For p1 = 8, p2 = 7 and r = 3, we denote
the 15 independent columns as 1, 2, 3, 4, 5, 6, 7, 8, 9, t0, t1, t2, t3, t4 and t5. Let Ea = {1, 2, 3} ∪ {3 ⊗ H(4, 5, 6, 7, 8)},
and Eab = (Ea \ {1, 2}) ⊗ H(9, t0, t1, t2, t3, t4, t5). We get W1 = Ea and W2 = (Eab \ {39, 39t0}) ∪ {19}. Then adding
H(1, 2, 3) \ {1, 2, 3} into W1 and replacing H(1, 2, 3) with an eight-level factor, we can get a design 2(31+4063)−(26+4056)

IV 81
w

with the clear SP2FIC {19, 3t0}. If n1 = 31 and n2 < 4063, say n2 = 300, we just need to delete any 3763 (= 4063− 300)
columns from W2 \ {19, 3t0} to get the required design. □

5. Concluding remarks

We have discussed the existence and construction of mixed-level FFSP designs with clear main effects or 2FICs. The
necessary and sufficient conditions for 2(n1+n2)−(k1+k2)

R (2r )1s and 2(n1+n2)−(k1+k2)
R (2r )1w designs with R = III or IV to have clear

main effects or 2FICs are obtained. Meanwhile, the structures of these designs are revealed and some useful construction
methods are developed. Zhao and Chen (2012a,b) investigated the FFSP designs with some two-level factors and one
four-level factor which is in the whole-plot and sub-plot, respectively, and gave the conditions for such designs to have
various clear effects. It is obvious that their results are special cases of the results here for r = 2. In practice, one may
need mixed-level FFSP designs with more than one high-level factor. The methods in this paper can be extended to such
designs, but the extension will be more complex since more cases have to be considered. For example, the cases are
different depending on whether the 2r -level factors are in only WP part, only SP part or in both WP and SP parts. We will
leave this for further study.
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Appendix. Proofs of theorems

A.1. Proof of Theorem 3

For cases (a) and (b), since the WP factors belong to Ha, we have n1 ≤ 2p1 − 1. Suppose that a 2(n1+n2)−(k1+k2)
III (2r )1s

design D has clear WS2FICs (or SP2FICs). Regarding D as a 2(n1+n2+t)−(k1+k2+(t−r))
III FF design D′, the clear WS2FICs (or

SP2FICs) of D are clear two-factor interaction of D′. According to Chen and Hedayat (1998), we have n1 + n2 + t ≤ 2p−1,
i.e., n2 ≤ 2p−1

−n1−t . Using a similar method to Theorem 2, it is easy to get that n1+n2+t ≤ 2p−1, i.e., n2 ≤ 2p−1
−n1−t ,

if a 2(n1+n2)−(k1+k2)
III (2r )1s design has clear two-level SP main effect.

For case (c), by similar arguments to cases (a) and (b), we can get that n2 ≤ 2p−1
− n1 − t , so we only need to prove

n1 ≤ 2p1 − 2. If n1 = 2p1 − 1, then every element in Ha belongs to B1, i.e., every element in Ha is a WP factor. Recall that
each column of Hbr is a component of the 2r -level SP factor. Note that when p2 = r , H = Ha ∪ Hbr ∪ (Ha ⊗ Hbr ), which
implies that all of the two-level SP factors come from Ha ⊗ Hbr , i.e., each two-level SP main effect (or SP2FIC) is aliased
with the interaction of a WP factor and a component of the 2r -level factor. Obviously, the two-level SP main effect (or
SP2FIC) is not clear. Thus, we get n1 ≤ 2p1 − 2.

Now, it comes to prove the ‘‘if’’ parts. We need to construct 2(n1+n2)−(k1+k2)
III (2r )1s designs containing clear two-level SP

main effects, WS2FICs or SP2FICs.
For (a), let E = Hbr = H(b1, . . . , br ) and M1 = Ha = {c1, . . . , c2p1−1}. Without loss of generality, let c1 = a1

and d1 = b1. Then c1d1 = a1b1 ∈ H\Ha. There are altogether 2p−1
− 2 different pairs of columns in H which join

{c1, d1} to form 2p−1
− 2 distinct words of length four (Chen and Hedayat, 1998). Among them, 2p1 − 2 pairs have the

form of {ci, c1d1ci}, where ci ∈ Ha\{c1} and c1d1ci ∈ H\Ha, i = 2, . . . , 2p1 − 1. The remaining 2p−1
− 2p1 pairs have

the form of {fsi , fti}, i = 1, . . . , 2p−1
− 2p1 , where both of them are from H\Ha. Note that the pairs with the form of

{di, c1d1di}, i = 2, . . . , t , are from the latter 2p−1
−2p1 pairs. From each pair {fsi , fti}, we choose one column as an element

of M2, such that Hbr ⊂ M2. Also adding d1 into M2, we have #{M2} = 2p−1
− 2p1 + 1. Then replacing Hbr with a 2r -level

factor, we obtain a 2(n1+n2)−(k1+k2)
III (2r )1s design D with n1 = 2p1 − 1 and n2 = 2p−1

− n1 − t . Obviously, the WS2FIC c1d1 is
clear. When n1 < 2p1 − 1 and n2 = 2p−1

− n1 − t , we only need to delete the column of ci(i ̸= 1) from M1 and add c1d1ci
into M2 to get the required design. Furthermore, when n2 < 2p−1

− n1 − t , we can delete some columns from M2\Hbr to
get the required design.

For (b), let E = H(b2, . . . , br+1), M1 be any n1-subset of Ha and

M2 = {b1} ∪
(
{b1} ⊗ (Ha\M1)) ∪ H(b2, . . . , bp2 ) ∪ (Ha ⊗ H(b2, . . . , bp2 )

)
.

Then #{M1} = n1 ≤ 2p1 −1 and #{M2} = 2p−1
−n1. Replacing H(b2, . . . , bp2 ) with a 2r -level factor in (M1,M2), we obtain

a 2(n1+n2)−(k1+k2)
III (2r )1s design D with n1 ≤ 2p1 − 1 and n2 = 2p−1

− n1 − t . Obviously, the two-level SP main effect b1 is
clear. For n2 < 2p−1

− n1 − t , we only need to delete some columns from M2\(E ∪ {b1}) to get the required design.
Let M1 = Ha = {c1, . . . , c2p1−1}, E = H(b1, . . . , br ) = {d1, . . . , dt} and cn1+1 = br+1. Without loss of generality,

let d1 = b1. Then cn1+1d1 = b1br+1 ∈ H\Ha. Similar to the above proof, there are 2p−1
− 2 disjoint pairs in H

which join {cn1+1, d1} to form 2p−1
− 2 distinct words of length four. Among them, 2p1 − 1 pairs have the form of

{ci, cicn1+1d1}, where ci ∈ Ha and cicn1+1d1 ∈ H\Ha, i = 1, . . . , 2p1 − 1. The remaining 2p−1
− 2p1 − 1 pairs have the

form of {fsi , fti}, i = 1, . . . , 2p−1
− 2p1 − 1, with both columns coming from H\Ha. Note that the pairs with the form of

{di, cn1+1d1di}(i = 2, . . . , t) belong to the latter 2p−1
−2p1 −1 pairs. From each of {fsi , fti}, i = 1, . . . , 2p−1

−2p1 −1, choose
one column as an element ofM2, such that {d2, . . . , dt} ⊂ M2. Adding cn1+1 and d1 intoM2, we have #{M2} = 2p−1

−2p1+1.
Replacing E = H(b1, . . . , br ) with a 2r -level factor, we get the 2(n1+n2)−(k1+k2)

III (2r )1s design D with n1 = 2p1 − 1 and
n2 = 2p−1

−n1 − t . From the construction of D, the SP2FIC cn1+1d1 is clear. When n1 < 2p1 −1 and n2 = 2p−1
−n1 − t , we

only need to delete some columns ci from M1 and add cn1+1d1ci into M2 to get the required design. We can delete some
columns from M2\(E ∪ {cn1+1}) to get the design when n2 < 2p−1

− n1 − t .
For (c), let Hbr = H(b1, . . . , br ), M1 = Ha\{a1} = {c1, . . . , c2p1−2}, d1 = b1 and cn1+1 = a1b2. Then we can get

cn1+1d1 = a1b1b2 ∈ H\Ha. There are altogether 2p−1
− 2 disjoint pairs of columns in H which join {cn1+1, d1} to form

2p−1
− 2 distinct words of length four. Among them, 2p1 − 1 pairs have the form of {ci, cn1+1d1ci}, i = 1, . . . , 2p1 − 1,

where ci ∈ Ha and cn1+1d1ci ∈ H\Ha. The remaining 2p−1
− 2p1 − 1 pairs with both columns in H\Ha are denoted as

{fsi , fti}, i = 1, . . . , 2p−1
− 2p1 − 1. Note that {b1b2, b2cn1+1} belongs to the former 2p1 − 1 pairs since b2cn1+1 = a1 ∈ Ha,

and the columns of H(b1, . . . , br )\{b1b2, b1} belong to the latter 2p−1
− 2p1 − 1 pairs. We choose one column from each

pair {fsi , fti} as an element of M2 such that Hbr \{b1, b1b2} ⊂ M2. Then adding the elements of {cn1+1, b1, b1b2} into M2,
we have #{M2} = 2 + 2p−1

− 2p1 . Replacing Hbr with a 2r -level factor, we can obtain a 2(n1+n2)−(k1+k2)
III (2r )1s design D with

n1 = 2p1 − 2 and n2 = 2p−1
− n1 − t . From the above construction of D, the SP2FIC cn1+1d1 is clear. When n1 < 2p1 − 2

and n2 = 2p−1
− n1 − t , we only need to delete some columns ci from M1 and add cn1+1d1ci into M2 to get the required

design. Furthermore, when n2 < 2p−1
− n1 − t , we can delete some columns from M2\({cn1+1} ∪ Hbr ) to get the design

with clear SP2FIC cn1+1d1.
Deleting cn1+1 and adding cn1+1d1 into the design constructed above, the SP main effect cn1+1d1 is still clear in the new

design. The proof is completed. □
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A.2. Proof of Theorem 9

Suppose that a 2(n1+n2)−(k1+k2)
III (2r )1w design is determined by C ′ and the WS2FIC c1cn1+1 is clear. Since the WP factors

belong to Ha, we have

n1 + t ≤ 2p1 − 1, i.e., n1 ≤ 2p1 − t − 1.

Then we have

c1cn1+1 ∈ H\C ′
;

c1cn1+1ci ∈ H\C ′, i = 2, . . . , n1, n1 + 2, . . . , n1 + n2; and
c1cn1+1dj ∈ H\C ′, j = 1, . . . , t .

Since the above columns are different from each other, we can get

1 + n1 + n2 − 2 + t ≤ 2p
− 1 − n1 − n2 − t, i.e., n2 ≤ 2p−1

− n1 − t.

The conditions for a design to contain clear SP2FICs can be proved similarly.
Without loss of generality, suppose W1 = Ha = H(a1, . . . , ap1 ), c1 = a1 and cn1+1 = b1. Then c1cn1+1 = a1b1 ∈ H\Ha.

There are altogether 2p−1
− 2 disjoint pairs of columns in H which join {c1, cn1+1} to form 2p−1

− 2 distinct words of
length four (Chen and Hedayat, 1998). Among them, 2p1 − 2 pairs have the form of {ci, c1cn1+1ci} with ci ∈ Ha\{a1}
and c1cn1+1ci ∈ H\Ha, i = 2, . . . , n1. The remaining 2p−1

− 2p1 pairs with both columns in H\Ha are denoted by
{fsi , fti}, i = 1, . . . , 2p−1

− 2p1 . Choose either one from each pair of the latter 2p−1
− 2p1 ones as an element of W2. Also

by adding cn1+1 into W2, we have #{W2} = 2p−1
− 2p1 + 1. Then replacing H(a1, . . . , ar ) with a 2r -level factor F , we can

obtain a 2(n1+n2)−(k1+k2)
III (2r )1w design with n1 = 2p1 − 1 − t and n2 = 2p−1

− n1 − t . It is obvious that the WS2FIC c1cn1+1
is clear. For n1 < 2p1 − 1− t and n2 = 2p−1

− n1 − t , we only need to delete some ci(i ̸= 1) from W1\F and add c1cn1+1ci
into W2 to get the required design. Furthermore, when n2 < 2p−1

− n1 − t , we can delete some columns from M2\{cn1+1}

to get the design. The construction of designs with clear SP2FICs is similar. We omit the proof for saving space. The proof
is completed. □

A.3. Proof of Theorem 11

(a) Without loss of generality, let F = H(a1, . . . , ar ) be the 2r -level factor. With a discussion similar to that in the proof
of Theorem 10, we can get n1 ≤ 2p1−r

−1 and n2 ≤ 2p−r
−2p1−r . Now we prove that the equalities cannot hold at the same

time. If n1 = 2p1−r
−1 and n2 = 2p−r

−2p1−r , then there is exactly one column of each of Si (i = 1, . . . , 2p−r
−1) belonging

to the design. Suppose these columns are ei ∈ Si (i = 1, . . . , 2p−r
− 1). For any SP2FIC eiej (2p1−r

≤ i < j ≤ 2p−r
− 1).

If eiej ∈ Sk for some k (1 ≤ k ≤ 2p−r
− 1), then eiejek ∈ H(a1, . . . , ar ), which implies that eiej is not clear. Hence, the

equalities cannot hold at the same time.
For p2 ≥ 2, n1 = 2p1−r

− 1 and n2 = 2p−r
− 2p1−r

− 1, let

Ea = {a1, . . . , ar} ∪ ({ar} ⊗ H(ar+1, . . . , ap1 )),
Eab = (Ea\{a1, . . . , ar−1}) ⊗ H(b1, . . . , bp2 ),
W1 = Ea and W2 = (Eab\{arb1, arb1b2}) ∪ {a1b1}.

Then, W = (W1,W2) is a 2
(n′

1+n2)−(k′1+k2)
IV design with n′

1 = 2p1−r
− 1 + r and n2 = 2p−r

− 2p1−r
− 1. Adding the

columns H(a1, . . . , ar )\(a1, . . . , ar ) into the design W and replacing H(a1, . . . , ar ) with a 2r -level factor F , we can get a
2(n1+n2)−(k1+k2)
IV (2r )1w design with n1 = 2p1−r

−1 and n2 = 2p−r
−2p1−r

−1. Then we can check that the SP2FIC {a1b1, arb2}
is clear in the design. For n1 ≤ 2p1−r

− 1 and/or n2 < 2p−r
− 2p1−r

− 1, we delete some columns from W1\F and/or
W2\{a1b1, arb2} to get the required designs.

Now we consider the construction of 2(n1+n2)−(k1+k2)
IV (2r )1w designs with n1 ≤ 2p1−r

− 2 and n2 ≤ 2p−1
− 2p1−r . Let

W ′

1 = Ea\{arar+1} and W ′

2 = (Eab\{arb1}) ∪ {a1b1}. Then, the design W ′
= (W ′

1,W
′

2) is a 2
(n′

1+n2)−(k′1+k2)
IV design with

n′

1 = 2p1−r
+r−2 and n2 = 2p−r

−2p1−r . Adding the columns H(a1, . . . , ar )\{a1, . . . , ar} intoW ′ and replacing H(a1, . . . , ar )
with a 2r -level factor F , we get a 2(n1+n2)−(k1+k2)

IV (2r )1w design with n1 = 2p1−r
− 2 and n2 = 2p−r

− 2p1−r . The SP2FIC
{a1b1, arar+1b1} is clear in the design. For n1 < 2p1−r

− 2 and/or n2 < 2p−r
− 2p1−r , we only need to delete some columns

from W ′

1\H(a1, . . . , ar ) and/or W ′

2\{a1b1, arar+1b1} to get the required designs.
(b) By the proof of (a), we need only to prove n1 ≤ 2p1−r

− 2. If n1 = 2p1−r
− 1, then there is exactly one column of

each Si(i = 1, . . . , 2p1−r
− 1) belonging to the design. When p2 = 1, for any SP2FIC eiej(2p1−r

≤ i < j ≤ 2p−r
− 1), we

have eiej ∈ Sk for some k(1 ≤ k ≤ 2p1−r
− 1), which leads to eiejek ∈ H(a1, . . . , ar ). Thus, eiej cannot be clear. So, we

get n1 ≤ 2p1−r
− 2. The construction of 2(n1+n2)−(k1+k2)

IV (2r )1w designs containing clear SP2FICs in (a) also applies here. This
completes the proof. □
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