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a b s t r a c t

Missing observations can hardly be avoided even by a well-planned experiment. Based
on the orthogonal-array based composite designs proposed by Xu et al. (2014), new
orthogonal-array based composite minimax loss designs are constructed. Comparisons
between the proposed designs and other composite designs, including orthogonal-array
based composite designs, augmented pairs designs, augmented pairsminimax loss designs,
central composite designs, and small composite designs are made in detail, which show
that the new composite designs aremore robust to onemissing design point in terms of the
D-efficiency and generalized scaled standard deviation. Moreover, it is demonstrated that
the D-efficiency remains unchanged for both level permutation and column permutation
in some special cases.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

In statistics, missing data is a common occurrence and can have a significant effect on the conclusions drawn from the 2

data. The effect of missing observations can be of particular concern when the design is nearly saturated, saturated, or 3

supersaturated. Many authors have discussed the robustness of statistical designs against missing data. For example, Akhtar 4

and Prescott (1986) studied the robustness of central composite designs to one or two design pointsmissing and constructed 5

minimax loss central composite designs. Morris (2000) constructed augmented pairs designs — a class of nearly saturated 6

experimental designs, with three equally spaced levels, for use in response surface modeling. The purpose was to construct 7

some efficient designs that can estimate a second-order model by using fewer runs as compared with other second-order 8

designs. Ahmad andGilmour (2010) studied the robustness of subset response surface designs tomissing observations. Later, 9

by theminimax loss criterion, Ahmad et al. (2012) constructed augmented pairsminimax loss designs,which aremore robust 10

to one missing observation than the original augmented pairs designs. 11

Recently, motivated by an antiviral drug experiment, Ding et al. (2013), and Xu et al. (2014) suggested a new class of 12

composite design based on a two-level factorial design and a three-level orthogonal array. Xu et al. (2014) illustrated that the 13

new orthogonal-array based composite designs (OACDs) have many desirable features and are effective for factor screening 14

and response surface modeling. More recently, Zhou and Xu (2016) derived bounds of their efficiencies for estimating 15

parameters in a second-order model. In this paper, based on OACDs, we develop a new class of second-order design, called 16

orthogonal-array based composite minimax loss design (OACM), which minimizes the maximum loss of a missing design 17

point and is more robust to one missing observation than other composite designs for estimating parameters in a second 18
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ordermodel. On amore convenientway, the proposed designs can be seen as to choose the best value ofα under theminimax1

loss criterion for OACD when α ̸= 1.2

The paper proceeds as follows. In Section 2, we first give a brief introduction of all composite designs used in this paper.3

A construction procedure of OACMs and the choice of α (the distance of a nonzero coordinate in an additional design point4

from the center) for the designs are also discussed in this section. In Section 3, the new designs are compared with the other5

composite designs under theD-efficiency and the precision of regression coefficient estimates by calculating the generalized6

scaled standard deviations for full model, linear terms, quadratic terms, and bilinear terms, respectively. The robustness in7

terms of losses for various composite designs with α = 1 is also provided in this section. Concluding remarks are provided8

in Section 4. All the proofs are deferred to Appendix.9

2. Orthogonal-array based composite minimax loss designs10

2.1. Composite designs11

We first give a brief introduction of composite designs (Box and Draper, 2007). For k factors, denoted by x1, . . . , xk,12

a composite design consists of three parts: (i) nf cube points with all xi = −1 or 1; (ii) nα additional points with all13

xi = −α, 0, α; and (iii) n0 center points with all xi = 0. A composite design has a total of n = nf + nα + n0 points and14

has 3 or 5 different levels depending on whether α = 1 or not.15

Different structures of additional points contribute to different composite designs. Box and Hunter (1957) originally16

proposed to use a full factorial or a fractional factorial design of resolution V in a central composite design. Thus the run17

size of the standard central composite design becomes very large especially for k > 5. To reduce the run size, Draper and18

Lin (1990) proposed the small composite designs by using Plackett–Burman designs as the factorial portion. In both central19

composite design and small composite design, nα = 2k axial points (with one xi = α or −α and xj = 0 for j ̸= i) are20

chosen as the additional points. Morris (2000) introduced the augmented pairs design by adding one point for each pair of21

the cube points. An augmented pairs design has nα = nf (nf − 1)/2 additional points. An augmented pairs minimax loss22

design (Ahmad et al., 2012) carefully chooses a value of α based on the minimax loss criterion. Hence, augmented pairs23

designs and augmented pairs minimax loss designs possess the same design structure but may have different α values. An24

orthogonal-array based composite design (OACD, Xu et al., 2014) is a composite design such that its nα additional points25

form a 3-level orthogonal array. An orthogonal array of N runs, k columns, s levels and strength t , denoted by OA(N, sk, t), is26

an N × k matrix in which all st level-combinations appear equally often in every N × t submatrix.27

2.2. Model description and minimax loss criterion28

In this paper, an orthogonal-array based composite minimax loss design (OACM) is constructed by finding a new value of29

α by employing theminimax loss criterion presented by Akhtar and Prescott (1986). This criterion is popular for constructing30

designs that are more robust to missing observations. The value of α will be chosen so that the maximum loss of a missing31

design point is minimized. In order to use the minimax loss criterion, we proceed as follows.32

Composite designs are often used to fit a second-order model. For k quantitative factors, the second-order model is33

yi = β0 +

k∑
j=1

βjxij +
k∑

j=1

βjjx2ij +
k−1∑
j1=1

k∑
j2=j1+1

βj1j2xij1xij2 + ϵi, i = 1, . . . , n, (1)34

where β0, βj, βjj and βj1j2 are the intercept, linear, quadratic and bilinear (or interaction) terms, respectively, and ϵi is a35

random error, with mean zero, variance σ 2 and independence between any pair of runs. Let p = (k + 1)(k + 2)/2, and X be36

the n × p model matrix in which the ith row xTi = (1, xi1, . . . , xik, x2i1, . . . , x
2
ik, xi1xi2, . . . , xi(k−1)xik). Then, the above model37

(1) can be rewritten in matrix notation as38

Y = Xβ + ϵ,39

where Y = (y1, . . . , yn)T , β = (β0, β1, . . . , βk, β11, . . . , βkk, β12, . . . , βk−1,k)T , and error term ϵ = (ϵ1, . . . , ϵn)T . Here40

notation ‘‘T ’’ stands for the transpose.41

In general, ifm observations aremissing from an experiment, thenm rows inmatrixXwill bemissing. Particularly, let the42

ith row corresponding to the ithmissing observation be represented by xTi for 1 ≤ i ≤ n, andX−i be the n−1 remaining rows43

of X for the reduced design, excluding the missing data. Then XTX and XT
−iX−i are the information matrices for the complete44

design and the reduced design, respectively. Now we may partition the whole model matrix as X =

(
xTi
X−i

)
. Obviously,45

XTX = xixTi + XT
−iX−i.46

The relative reduction in d = |XTX| due to a missing observation is called loss. The loss due to the ith observation being47

missing (Akhtar and Prescott, 1986; Andrews and Herzberg, 1979) is defined by48

li =
|XTX| − |XT

−iX−i|

|XTX|
.49
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Table 1
OACDs used in this paper for k = 3, . . . , 9.

k Two-level portion Three-level portion

Design nf Columns Design Columns

3 23 8 – OA(9) (1–3)
4 24 16 – OA(9) (1–4)
5 25−1

V 16 E = ABCD OA(18) (2–6)
6 26−1

V I 32 F = ABCDE OA(18) (1–6)
7 27−2

IV 32 F = ABCD,G = ABE OA(18) (3,1,5,7,4,2,6)
8 28−3

IV 32 F = ABCD,G = ABE, OA(27) (1,3,4,5,2,7,8,6)
H = ACE

9 29−4
IV 32 F = ABCD,G = ABE, OA(27) (5,6,1,7,2,4,9,3,8)

H = ACE, J = ADE

It can be easily shown that li = xTi (X
TX)−1xi. Then, 1

n∑
i=1

li =

n∑
i=1

xTi (X
TX)−1xi = tr(X(XTX)−1XT ). (2) 2

Remark 1. Eq. (2) implies that the sum of all losses from the first run to the last run is a constant for a specific design with 3

given run size n and number of parameters p, which implies that a particular loss can be reduced at the cost of increases 4

in other losses. Thus, the most useful criterion for reducing the loss of a single missing observation is to minimize the 5

maximum loss due to the ith observation being missing, which is called the minimax loss criterion. Now the loss due to 6

the ith observation being missing for a given n-run design D can be written as li(D), 1 ≤ i ≤ n. Following the minimax loss 7

criterion, the minimax loss design D∗ for a set of designs D satisfies 8

max
1≤i≤n

{li(D∗)} = min
D∈D

max
1≤i≤n

{li(D)}. (3) 9

For augmented pairs minimax loss designs, Ahmad et al. (2012) showed that all specific types of losses are invariant to 10

which one design point is missing. For instance, let k = 5, all the losses in an augmented pairs design can be classified into 11

four types: Lf loss for a factorial point missing; Lα3 loss for an α3-type [(α, α, α, 0, 0), (α, α, 0, α, 0), etc.] point missing; Lα2 12

loss for anα2-type [(α, α, 0, 0, 0), (α, 0, α, 0, 0), etc.] pointmissing; L0 loss for a center point (0,0,0,0,0)missing.More details 13

can be found in Ahmad et al. (2012). 14

For OACDs with k ≤ 5, we apply the same method in Ahmad et al. (2012) to classify the losses. However, the number of 15

types of missing will increase as the number of factors k increases, which leads the classification to be not proper in practice. 16

Thus, due to the composite structure of an OACD, we classify all losses into three types for k > 5: Lf loss for a factorial point 17

missing; Lα loss for a point of three-level portion missing, and L0 loss for a center point missing. In each type, the losses are 18

averaged to one value, since empirical studies show that there was little difference among the losses in each type. 19

2.3. A step-by-step procedure for constructing OACMs 20

Based on the previous discussion, we now present a step-by-step procedure for constructing the proposed OACMs: 21

Algorithm 1. 22

Step 1. Choose an OACDH =

(
H2
H3

)
with k columns, whereH2 is the two-level portionwith nf runs andH3 is the three-level 23

(i.e., −1, 0, 1) portion with nα runs. Let H′
=

(
H2
αH3

)
. Note that we may add n0 center points in an OACD; 24

Step 2. Calculate the lose functions Lf , L0, and Lαi for k ≤ 5 (or Lα for k > 5) based on H′ for the second-order polynomial 25

model (1); 26

Step 3. Find α0 such that the maximum loss of {Lf , Lαi , L0} for k ≤ 5 (or {Lf , Lα, L0} for k > 5) is minimized; 27

Step 4. Substitute α = α0 in H′, an OACM with n = nf + nα + n0 runs and k columns is constructed. 28

Remark 2. Note that there aremany OACDs for given parameters k, nf , nα, n0 in Step 1. First, theremay exist nonisomorphic 29

fractional factorial designs for us to choose. Second, the properties of the resulting design may depend on which two-level 30

column is aligned with which three-level column. In this paper, we use the D-optimal OACDs under the second-order model 31

from Xu et al. (2014), which are listed in Table 1. Note that the D-optimal OACDs are only referred to different column 32

alignments. In this table,OA(9),OA(18) andOA(27) represent orthogonal arraysOA(9, 34, 2),OA(18, 37, 2) andOA(27, 313, 2), 33

respectively; 2k means a full factorial design for k 2-level factors, 2k−p
R is a 2k−p fractional factorial design of resolution R. As 34

an example, consider the OACD listed for k = 5. For the 2-level factorial portion we use a 25−1
V (i.e., a 16-run fractional 35

factorial design of resolution V) with generator E = ABCD, and for the 3-level design we use an OA(18) with columns (2–6), 36

which results in the 34-run OACD in Table 2 with nf = 16, nα = 18 and n0 = 0. 37
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Table 2
A 34-runs OACD with five factors and n0 = 0.

Runs x1 x2 x3 x4 x5
1 1 −1 −1 −1 −1
2 −1 1 −1 −1 −1
3 −1 −1 1 −1 −1
4 −1 −1 −1 1 −1
5 −1 −1 −1 −1 1
6 1 1 1 −1 −1
7 1 1 −1 1 −1
8 1 1 −1 −1 1
9 1 −1 1 1 −1

10 1 −1 1 −1 1
11 1 −1 −1 1 1
12 −1 1 1 1 −1
13 −1 1 −1 1 1
14 −1 1 1 −1 1
15 −1 −1 1 1 1
16 1 1 1 1 1
17 −α −α −α −α −α

18 0 0 0 0 0
19 α α α α α

20 −α −α 0 0 α

21 0 0 α α −α

22 α α −α −α 0
23 −α 0 −α α 0
24 0 α 0 −α α

25 α −α α 0 −α

26 −α α α 0 0
27 0 −α −α α α

28 α 0 0 −α −α

29 −α 0 α −α α

30 0 α −α 0 −α

31 α −α 0 α 0
32 −α α 0 α −α

33 0 −α α −α 0
34 α 0 −α 0 α

Remark 3. In Step 3 of Algorithm1,wemay useGauss–Newton iterativemethod, bisectionmethod or other classical optimal1

algorithm (cf., Pillo and Giannessi, 1996) to search α0 from 0.50 to 2.00 (cf., Ahmad and Gilmour, 2010; Ahmad et al., 2012).2

Example 1. Consider an example to illustrate the construction of an OACM for five factors using five center runs based on3

the OACD in Table 2.4

Fig. 1 shows a curve for each kind of the loss values. It can be seen from Fig. 1 that when α increases from 0.50 to 2.00,5

Lf decreases while Lα5 , Lα4 , Lα3 have an increasing sharp, and L0 keeps more robust and smaller comparing to others. It is6

interesting to note that losses Lα3 , Lα4 , Lα5 tend to coincide as α increases. In order to compute the value of α at which this7

maximum loss is minimized, Lf loss is equated with Lα4 , Lα3 , Lα5 turn by turn, and it is observed that the values of α at8

which Lf is equal to the other three losses (Lα5 , Lα4 , Lα3 ) are quite similar. Fig. 1 shows that Lf and Lα4 are equal for some9

1.15 ≤ α ≤ 1.20. By bisection method, the maximum loss of missing one design point will be minimized at α0 = 1.164810

for the OACD with five factors and five center runs.11

Remark 4. For other cases, the values of α can be obtained similarly following the previous steps. Note that for comparing12

the values of {Lf , Lα, L0}, we only need to choose the larger value between Lf and Lα , since L0 are smaller than others in all13

cases (see Section 3.3). All these α values can be found in the square brackets of Table 3.14

3. Comparison results15

In this section, the proposed OACMs are compared with other composite designs based on the D-efficiency and Ds-16

optimality.17

3.1. Comparison based on D-efficiency18

Nowwe consider the relative (overall) D-efficiency of an OACM as compared with the corresponding OACD for 3 ≤ k ≤ 919

and 1 ≤ n0 ≤ 5. The results are shown in Table 3. Here the relative D-efficiency is defined to be20

Deff =

(
|XTX|OACM

|XTX|OACD

)1/p

,21
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Fig. 1. Choice of α for the OACD with k = 5, n0 = 5.

Table 3
D-efficiencies of OACMs relative to OACDs.

n0 Number of factors k

3 4 5 6 7 8 9

1 1.0497 0.9879 1.2851 1.1126 1.0856 1.1821 1.1978
[1.0486] [0.9877] [1.1775] [1.1056] [1.0727] [1.1139] [1.1155]

2 1.0757 1.0155 1.2946 1.1307 1.1068 1.1967 1.2297
[1.0652] [1.0148] [1.1799] [1.1178] [1.0876] [1.1203] [1.1305]

3 1.0840 1.0272 1.2998 1.1408 1.1178 1.2061 1.2436
[1.0754] [1.0251] [1.1811] [1.1241] [1.0948] [1.1244] [1.1365]

4 1.0910 1.0387 1.3032 1.1442 1.1243 1.2096 1.2511
[1.0804] [1.0350] [1.1819] [1.1256] [1.0989] [1.1255] [1.1395]

5 1.0967 1.0400 1.2717 1.1476 1.1291 1.2135 1.2563
[1.0845] [1.0358] [1.1648] [1.1274] [1.1019] [1.1271] [1.1416]

Note: The α values used to construct the corresponding OACMs are presented in the square brackets.

where p = (k + 1)(k + 2)/2. Designs with high relative D-efficiency are often preferred, especially among the designs with 1

the same number of runs. From Table 3, it can be seen that OACMs perform relatively better than the corresponding OACDs 2

for all cases except for the case when k = 4, n0 = 1. For this special case, the OACM with α = 0.9877 has only less than 2% 3

D-efficiency loss compared with the corresponding OACD. 4

For two-level fractional factorial designs, level permutations will not change the determinant of the full information 5

matrix |XTX|. However, for OACDs, it can be easily verified that level permutations for different portions may change the 6

value of |XTX|. Here, level permutations are limited within each portion of an OACD to keep the orthogonal structure 7

unchanged. Moreover, for a given OACD, Xu et al. (2014) noted that the D-efficiency may also depend on which two- 8

level column is aligned with which three-level column. Hence, for a given OACD or OACM, the determinant of the 9

information matrix may be changed due to both level permutations and column permutations, which makes the situation 10

for investigating D-optimal OACMs more complex. However, the determinant remains unchanged for some special cases as 11

shown below. 12

Theorem 1. Under the condition that the two-level portion of an OACD or OACM has resolution V, the value of |XTX|OACD or 13

|XTX|OACM will be a constant regardless of any column permutation or level permutation for the two-level portion. 14

Theorem 2. Under the same condition as in Theorem 1, the value of |XTX|OACD or |XTX|OACM will be a constant regardless of 15

any column permutation or under some restricted level permutations for the three-level portion. Here the level permutations are 16

restricted to two cases: mapping (−1, 0, 1) to (1, 0, −1), and mapping (1, 0, −1) to (−1, 0, 1). 17

FromTheorems 1 and 2, the determinant of informationmatrix remains unchanged under level permutations and column 18

permutations of both two-level and three-level portions in some special cases. 19
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Remark 5. The trace of information matrix remains unchanged for any level permutation of the two-level portion. Actually,1

under the same notations in the proof of Theorem 1, let X2 be the original two-level portion of model matrix, X∗

2 be the new2

two-level portion after level permutation, we have3

tr(X∗T
2 X∗

2) = tr(diagT (e)XT
2X2diag(e)) = tr(XT

2X2diagT (e)diag(e)) = tr(XT
2X2)4

for any level permutation of the two-level portion, which does not require the two-level portion to have resolution at least V.5

More details on ‘‘diag(e)′′ can be found in the Appendix. A similar conclusion can be obtained for the column permutations.6

3.2. Comparison based on Ds-optimality7

In this subsection, we will compare the design efficiencies in estimating a subset of the model parameters. First we8

divide the model parameters into three groups: the k linear parameters (βj, j = 1, . . . , k), the k pure quadratic parameters9

(βjj, j = 1, . . . , k), and the k(k− 1)/2 bilinear parameters (βij, 1 ≤ i < j ≤ k). Corresponding to the parameter partition, the10

n × p model matrix can be partitioned as11

X = (1,Xl,Xq,Xb),12

where 1 is an n×1 vectorwith all elements unity, representing the constant term in themodel, andXl,Xq,Xb are the portions13

ofmodelmatrix representing the linear, quadratic, and bilinear (linear× linear) termswith orders n×k, n×k, n×(k−1)k/2,14

respectively. Let Xs be the remaining portion of X by deleting Xs. Here, the OACMs are compared with the central composite15

designs, small composite designs, augmented pairs designs, augmented pairs minimax loss designs, and OACDs in terms of16

generalized scaled deviations (Morris, 2000; Ahmad et al., 2012) for the full model (̃D), linear terms (̃Dl), quadratic terms17

(̃Dq), and bilinear terms (̃Db), respectively. These measures are defined by18

D̃ =

√
(n|XTX|

−1/p
),19

and20

D̃s =

√
(n|XT

s Xs − XT
s Xs(X

T
s Xs)−1X

T
s Xs|

−1/ps
), for s = l, q, b,21

where pl = k, pq = k, pb = k(k − 1)/2. It is clear that the generalized scaled deviations used here are equivalent to the22

square roots of reciprocals of the overall D-efficiency and Ds-efficiency in Xu et al. (2014). Hence, for a fixed value of α,23

designs which minimize D̃ are D-optimal for the second-order polynomial model, whereas those that minimize D̃l, D̃q, and24

D̃b are Ds-optimal for estimating the corresponding subsets of coefficients.25

Table 4 provides details of the generalized scaled deviations D̃, D̃l, D̃q, and D̃b for all composite designs with 3 ≤ k ≤ 926

and n0 = 5. The values of α obtained by minimax loss criterion for the corresponding designs are listed in the first column.27

Note that the values of α for APMs were derived by Ahmad et al. (2012). The small composite designs employed here are28

constructed by taking columns fromPlackett–Burmandesigns of Draper and Lin (1990). In general, central composite designs29

have a well performance on generalized scaled deviations except for D̃q but suffer larger run sizes especially for k > 7. To30

compare the results of designs with nearly the same run sizes, we drop central composite designs in Fig. 2, which shows a31

graphical representation of the various generalized scaled deviations of the designs under consideration for k = 3, . . . , 9.32

Only values for OACMs are represented in solid line, and others are in dotted lines.33

Fig. 2(a) compares the overall D-efficiencies for all designs. It is clear that in general the OACMs have the lowest D̃ values,34

followed by the OACDs, augmented pairs minimax loss designs, augmented pairs designs, and small composite designs. For35

k = 9, the D̃ value of the OACM is only 0.1323 (about 8.9%) higher than that of the corresponding augmented pairs minimax36

loss design. However, the OACM has a smaller run size, i.e. n = 64, than the corresponding augmented pairs minimax loss37

design whose run size is n = 83.38

Fig. 2(b) compares the D̃l values for estimating the linear parameters. It is clear that the general pattern is similar to the39

generalized scaled deviation for the full model considered in Fig. 2(a): the OACMs have the best D̃l values, followed by the40

OACDs, augmented pairs minimax loss designs, augmented pairs designs, small composite designs, except for the case of41

k = 9. For k = 9, the D̃l values of the OACM and augmented pairs minimax loss design are 1.3617 and 1.2435, respectively.42

However, the OACM has a smaller run size as discussed previously.43

Fig. 2(c) shows the D̃q values for the pure quadratic terms. Unlike other generalized scaled deviations, the OACMs and44

OACDs perform not so well. As noted in Xu et al. (2014), more design points located at the corners will lead to higher D, Dl,45

and Db-efficiency while more design points located at the mid-sides and center will increase the quadratic efficiency. The46

OACDs and OACMs have relatively more corner points and less center point replicates than the corresponding augmented47

pairs designs, augmented pairs minimax loss designs, and small composite designs. This is the reason why the OACDs and48

OACMs have larger D̃q’s (equivalently smaller Dq-efficiency in Xu et al. (2014)).49

Fig. 2(d) shows the performance of the D̃b values for estimating the bilinear coefficients. Both OACDs and OACMs perform50

better than others. Moreover, the OACMs have the best D̃b values among almost all cases for 3 ≤ k ≤ 9.51
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Table 4
Generalized scaled deviations of different designs with n0 = 5.

Design n D̃ D̃l D̃q D̃b

k = 3 CCD 19 1.6196 1.3784 2.3489 1.5411
SCD 15 2.0992 2.7386 2.2333 3.3541
APD 15 2.0992 2.7386 2.2333 3.3541

α = 1.4142 APM 15 1.6423 1.9365 1.3936 2.7386
OACD 22 1.5411 1.1941 3.1086 1.2913

α = 1.0845 OACM 22 1.4715 1.1779 2.7901 1.2707

k = 4 CCD 29 1.5844 1.2693 2.8329 1.3463
SCD 21 2.0124 2.6499 2.5199 2.4227
APD 41 1.7180 1.4693 2.0606 1.8806

α = 1.0353 APM 41 1.6648 1.4281 1.9541 1.8266
OACD 30 1.5411 1.1941 3.1087 1.2913

α = 1.0358 OACM 30 1.5111 1.1870 2.9669 1.2828

k = 5 CCD 31 1.6229 1.3123 3.0056 1.3919
SCD 27 2.1451 3.0715 2.8462 2.4980
APD 41 1.8261 1.4842 2.0739 2.0554

α = 1.0997 APM 41 1.6474 1.3662 1.7819 1.8398
OACD 39 1.4987 1.2331 2.6651 1.3310

α = 1.1824 OACM 39 1.3117 1.1866 2.0316 1.2077

k = 6 CCD 49 1.5491 1.2005 3.7701 1.2374
SCD 33 2.0992 4.0620 3.1707 2.2287
APD 41 1.9338 1.4927 2.0851 2.2113

α = 1.0692 APM 41 1.7819 1.4038 1.8701 2.0154
OACD 55 1.4450 1.1489 3.2660 1.2151

α = 1.1274 OACM 55 1.3535 1.1302 2.7454 1.1737

k = 7 CCD 83 1.5048 1.1214 4.9384 1.1388
SCD 43 2.2091 3.7007 3.6369 2.3268
APD 41 2.0378 1.4974 2.0948 2.3496

α = 0.8165 APM 41 2.6731 1.8442 2.9282 3.2239
OACD 55 1.5402 1.2050 3.6393 1.3767

α = 1.1019 OACM 55 1.4494 1.1971 3.1728 1.3228

k = 8 CCD 85 1.4921 1.1348 5.0926 1.1524
SCD 57 1.9580 2.6464 4.2161 1.8419
APD 83 1.9701 1.4058 2.0429 2.1998

α = 1.2659 APM 83 1.4163 1.2288 1.3502 1.5332
OACD 64 1.5715 1.2533 3.2149 1.4859

α = 1.1271 OACM 64 1.4266 1.2341 2.6924 1.3585

k = 9 CCD 151 1.4639 1.0777 6.8444 1.0861
SCD 63 2.1524 4.3787 4.4929 2.1062
APD 83 2.0424 1.4058 2.0467 2.2861

α = 1.2429 APM 83 1.4868 1.2435 1.3964 1.6135
OACD 64 1.8148 1.3692 4.3663 1.8465

α = 1.1416 OACM 64 1.6191 1.3617 3.6401 1.6660

Note: APD: augmented design; APM: pairs augmented pairs minimax loss design;
CCD: central composite design; SCD: small composite design.

Remark 6. In conclusion, OACMs can be seen as special cases of OACDs by carefully choosing the α values. Hence among the 1

small composite designs, augmented pairs designs, augmented pairs minimax loss designs, OACDs, and OACMs with nearly 2

the same run sizes, the OACMs usually possess best generalized scaled deviation values D̃, D̃l, D̃b for estimating the constant, 3

linear, and bilinear terms. 4

3.3. Comparison results when α = 1 5

Based on the empirical experience from Tables 3 and 4, the determinants of the information matrices of APDs, APMs, 6

OACDs and OACMs depend on the values of α. Now we consider the robustness in terms of losses (i.e., Lf , Lα, L0) for various 7

composite designs (CCD, SCD, APD and OACD) with α = 1. 8

The losses Lf , Lα, L0 of various composite designs with n0 = 5 and 3 ≤ k ≤ 9 have different patterns as displayed in 9

panels (a), (b) and (c) in Fig. 3, respectively. Firstly, losses Lf and Lα are larger than loss L0 for all kinds of composite designs. 10

That is, cube points and additional points provide more information for estimating parameters in model (1). Secondly, from 11

Fig. 3(a) and 3(b), for most of the composite designs, the Lf as well as Lα values differ greatly for different values of k. The L0 12

values of all kinds of composite designs in Fig. 3(c) have a stable pattern, especially for the L0 of OACDs. And the L0 values of 13

CCDs are almost the same as that of SCDs. Moreover, the L0 values of OACDs are larger than those of other composite designs 14

for 3 ≤ k ≤ 9. 15
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Fig. 2. Comparisons on D̃ (a), D̃l (b), D̃q (c), and D̃b (d) of some composite designs with 3 ≤ k ≤ 9 and n0 = 5.

Fig. 3. Comparisons on Lf (a), Lα (b), and L0 (c) of composite designs with 3 ≤ k ≤ 9 and n0 = 5.

In fact, from Remark 1, the sum of all losses from the first run to the last run equals the number of parameters p. So a1

certain loss will generally decrease as n increases. Fig. 4 shows the performances of losses Lf , Lα, L0 of various composite2

designs with k = 5 for 1 ≤ n0 ≤ 9. Now the run size n increases as the number of center point n0 increases, which leads to3

a decreasing pattern of L0 as shown in Fig. 4(c). However, this influence becomes quite small for cube points and additional4

points. As shown in Fig. 4(a) and 4(b), all losses are quite consistent for different values of n0. Note that OACDs have relatively5

smaller values of Lf and Lα , but larger values of L0.6

4. Discussion and further work7

In this paper, the issue of orthogonal-array based composite design (OACD) with missing observations is considered.8

Orthogonal-array based composite minimax loss designs (OACMs) are constructed, which are more robust to missing9

observations. The construction uses the minimax loss criterion to choose the α value for a whole set of OACD points in10

the experimental region. The OACMs in general, perform better than the OACDs, small composite designs, augmented pairs11



JSPI: 5608

Please cite this article in press as: Chen X., et al., Robustness of orthogonal-array based composite designs to missing data. J. Statist. Plann. Inference
(2017), https://doi.org/10.1016/j.jspi.2017.10.004.

X. Chen et al. / Journal of Statistical Planning and Inference xx (xxxx) xxx–xxx 9

Fig. 4. Comparisons on Lf (a), Lα (b), and L0 (c) of composite designs with 1 ≤ n0 ≤ 9 and k = 5.

designs, augmented pairs minimax loss designs, and are more efficient for estimating linear and bilinear coefficients of the 1

second-order model. For estimating the linear and bilinear terms, OACMs perform the best in almost all cases as shown in 2

Section 3. For estimating the quadratic terms, the augmented pairs designs and augmented pairs minimax loss designs have 3

the best D̃q values for all cases as in Morris (2000) and Xu et al. (2014). 4

The optimal α values of OACMs are carefully chosen by comparing losses Lf , Lα and L0 in this paper. The reason is that the 5

losses are always equal in each type and the comparison for various composite designs can be more convenient in this way. 6

Actually, from Section 3.3, since loss l0 is quite smaller than Lf and Lα , we only need to compare the losses Lf and Lα based on 7

the minimax loss criterion. As an anonymous reviewer suggested, we may generalize the optimization procedure in various 8

ways. For instance, the minimax criterion (3) is equivalent to 9

min
D∈D

∑
1≤i≤n

lti (D) (4) 10

as t tends to infinity. Thus the minimax lose criterion can also be done via (4). Moreover, we may combine the three types 11

of losses into one objective function by some weight methods as follows. 12

min
D∈D

w1Lf + w2Lα + w3L0, (5) 13

where w1, w2, w3 are some weight functions. However, this alternative way is not necessarily equivalent to the minimax 14

loss criterion. 15

Note that the constructions of OACDs and OACMs usually are not unique for given parameters nf , nα, n0, k due to their 16

column alignments or level permutations. One issue needs to consider is to construct OACMs from OAs with other optimal 17

properties, such as uniform OAs (Tang et al., 2012; Tang and Xu, 2014), and space-filling OAs (Zhou and Xu, 2014). This is 18

under progress. 19
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Appendix 28

Proof of Theorem 1. Without loss of generality, let n0 = 0. We now divide the model matrix X as 29

X =

(
X2

X3

)
, 30

where X2 denotes the first nf runs corresponding to the two-level portion, and X3 denotes the remaining nα runs 31

corresponding to the three-level portion. Hence, we have 32

XTX = XT
2X2 + XT

3X3. 33
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Since the two-level fractional factorial design has resolution at least V, XT
2X2 = nf Ip. For any column permutation, let X∗

2 be1

the new two-level portion of model matrix, P be the corresponding permutation matrix. Then, X∗

2 = X2P, and2

X∗T
2 X∗

2 = PTXT
2X2P = nf PT IpP = nf Ip.3

For any level permutation of two-level columns, we have4

X∗

2 = X2diag(e),5

where e is a vector with entries 1 or −1, diag(e) is a diagonal matrix with the elements from vector e. So6

X∗T
2 X∗

2 = diagT (e)XT
2X2diag(e) = nf diagT (e)Ipdiag(e) = nf Ip.7

That is, due to this orthogonal structure between any pair of columns, XT
2X2 remains unchanged for any level permutation8

or column permutation of the two-level columns. ■9

Proof of Theorem 2. Following the same notations in the proof of Theorem 1, letX∗

3 be the new three-level portion of model10

matrix after a certain column permutation of the three-level portion, and P be the corresponding permutation matrix. Then,11

we have X∗

3 = X3P. Let X∗
=

(
X2
X∗
3

)
. It can be shown that the determinant of information matrix |X∗TX∗

| will not be changed12

after the column permutation. In fact,13

|X∗TX∗
| = |XT

2X2 + X∗T
3 X∗

3|14

= |nf Ip + PTXT
3X3P|15

= |PT (nf Ip + XT
3X3)P|16

= |nf Ip + XT
3X3||PTP|17

= |XTX|.18

Level permutations are restricted to two cases: (1, 0, −1) to (−1, 0, 1) or vice versa. In both cases, we still let X∗

3 be the19

new three-level portion of model matrix. Hence, we have X∗

3 = X3diag(e), With the similar steps, we have20

|X∗TX∗
| = |XT

2X2 + X∗T
3 X∗

3|21

= |nf Ip + diagT (e)XT
3X3diag(e)|22

= |diagT (e)(nf Ip + XT
3X3)diag(e)|23

= |nf Ip + XT
3X3||diagT (e)diag(e)|24

= |XTX|.25

This ends the proof. ■26
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