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Abstract Completely random allocation of the treatment combinations to
the experimental units is appropriate only if the experimental units are
homogeneous. Such homogeneity may not always be guaranteed when the size
of the experiment is relatively large. Suitably partitioning inhomogeneous units
into homogeneous groups, known as blocks, is a practical design strategy. How
to partition the experimental units for a given design is an important issue.
The blocked general minimum lower order confounding is a new criterion for
selecting blocked designs. With the help of doubling theory and second order
saturated design, we present a theory on constructing optimal blocked designs
under the blocked general minimum lower order confounding criterion.
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1 Introduction

Regular two-level designs are often used in factorial experiments due to their
simple structure. Such a design usually involves a completely random allocation
of the selected treatment combinations to the experimental units. This kind
of allocation is appropriate only if the experimental units are homogeneous.
However, when the size of the experiment is relatively large, it is difficult or
impossible to keep the homogeneity of the experimental units. A practical
design strategy is to partition the experimental units into homogeneous groups,
known as blocks. It is an important issue to study the optimal way on blocking
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the experimental units.
Three types of optimality criteria have received significant attention in

investigating this issue in the passed three decades. The first one extends the
idea of the minimum aberration to the blocked case (see [4,10,12,16,17,22,23]).
The second one is based on the clear effects criterion [1,3,15,24]. The last one
is based on the maximum estimation capacity criterion [7,13].

Zhang et al. [19] proposed the general minimum lower order confounding
(GMC for short) criterion for ranking 2n−m designs, where the meaning of 2n−m

designs will be given in Section 2. The construction of the GMC 2n−m designs
were discussed in [6,8,11,18,20]. Zhang and Mukerjee [21] established a blocked
GMC (B-GMC) criterion for selecting s-level regular blocked designs. Also for
selecting optimal blocked designs, Wei et al. [14] extended the GMC idea with
a different consideration from that in [21], and proposed another blocked GMC
(B1-GMC) criterion. The optimal designs with respect to B-GMC and B1-GMC
are different sometimes, but both are very useful in practice. The former is more
suitable in the situation that the experimenter has no prior knowledge about
the order of the importance of the treatment factors, while the latter is more
suitable in the situation that the experimenter has such prior knowledge. For
more explanation on the differences of the two criteria, please refer to [14,25].

Wei et al. [14] tabulated the B1-GMC designs with 16, 32, and 64 runs,
which are obtained by computer search. It is a time-consuming task to obtain
the B1-GMC designs in such a way, and necessary to establish a theory to
systematically and completely construct B1-GMC designs. Zhao et al. [25]
developed a theory for constructing B1-GMC 2n−m : 2r designs with

5N
16

+ 1 � n � N − 1,

where N = 2n−m. The detailed definition of ‘2n−m : 2r design’ will be given
in Section 2. The present paper develops a theory for constructing B1-GMC
2n−m : 2r designs with

17N
64

+ 1 � n � 5N
16

.

The rest of this paper is organized as follows. In Section 2, we first introduce
the doubling theory which is useful for constructing the B1-GMC designs and
then give the definition of the B1-GMC criterion. Sections 3 and 4 develop a
theory for constructing B1-GMC 2n−m : 2r designs with

9N
32

+ 1 � n � 5N
16

and
17N
64

+ 1 � n � 9N
32

,

respectively. In Appendix, we give the proofs and tabulate some B1-GMC
designs with small run sizes.
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2 Preliminaries: doubling and B1-GMC criterion

Doubling is a simple but powerful method for constructing two-level fractional
factorial designs of resolution IV (see [5]). The definition of resolution will
be given in the following. Let X be a matrix with entries 1 and −1. Denote
J0 = (1, 1)T and J1 = (1,−1)T. Then the double of X can be written as

D(X) = (J0 J1) ⊗ X =
(

X X
X −X

)
,

where ⊗ is the Kronecker product. Let Du(X) denote the matrix obtained by
repeatedly doubling X u times. Then Du(X) can be written as

Du(X) = (J0 J1) ⊗ (J0 J1) ⊗ · · · ⊗ (J0 J1)︸ ︷︷ ︸
u times

⊗X.

Especially, for X = (1), we have

Du(1) = (I, 1, 2, 12, 3, 13, 23, 123, . . . , 12 · · · u)2u ,

where the subscript 2u stands for the dimension of the columns in Du(1), and

I = (1, . . . , 1)T2u ,

1 = (1,−1, 1,−1, . . . , 1,−1, 1,−1)T2u ,

2 = (1, 1,−1,−1, . . . , 1, 1,−1,−1)T2u ,

3 = (1, 1, 1, 1,−1,−1,−1,−1, . . . , 1, 1, 1, 1,−1,−1,−1,−1)T2u ,

. . . , u = (1, 1, . . . , 1, 1,−1,−1, . . . ,−1,−1)T2u ,

and ij · · · k is the component-wise product of i, j, . . . , k, where i, j, k = 1, 2, . . . , u.
For example,

12 = (1,−1,−1, 1, . . . , 1,−1,−1, 1)T2u ,

23 = (1, 1,−1,−1, . . . ,−1,−1, 1, 1)T2u .

In the following, to avoid confusion, we sometimes use I2u , 12u , 22u , (12)2u

instead of I, 1, 2, 12, and so on.
Let

Hu = (1, 2, 12, . . . , 12 · · · u)2u .

Then Hu is a 2u × (2u − 1) matrix and the columns of Hu are in Yates order.
Let Hr,u denote the matrix which consists of the first 2r −1 columns of Hu with
Yates order. For example,

H1,u = (1)2u , H2,u = (1, 2, 12)2u .

In the following, let q = n − m. The matrix Hq is just a two-level regular
saturated 2(N−1)−(N−1−q) design, where N = 2q. A regular 2n−m design Dt
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consists of n columns of Hq with q of them being independent. The remaining
m columns are expressed by the q independent columns and determine m
independent defining words. The m defining words generate the defining
contrast subgroup of the design. Each element in the defining contrast
subgroup except for I, the grand mean, is called a defining word. The number
of letters in a defining word is called its length. The resolution of a 2n−m design
Dt is the length of the shortest defining word. Two 2n−m designs are said to
be isomorphic if the defining contrast subgroup of one of them can be obtained
from that of the other by permuting the factor labels.

A blocked 2n−m : 2r design is to arrange a regular 2n−m design Dt into 2r

groups (blocks) of size 2n−m−r by selecting r independent columns from Hq\Dt

as the r block factors. Hereafter, A\B denotes the matrix which consists of
the columns of A but not those of B. The 2r − 1 columns including the r
independent columns and the component-wise products of any v (2 � v � r) of
the r columns constitute a closed submatrix of Hq, denoted as Db. Hereafter, a
closed matrix means that the component-wise product of any two columns of
the matrix is still a column of the matrix. Let D = (Dt : Db) denote a blocked
2n−m : 2r design with the columns of Db corresponding to 2r −1 block effects of
D. Hereafter, A∩B denotes the matrix which consists of the common columns
of A and B, and A ∩ B = ∅ means that A and B have no common column. A
design with Dt∩Db �= ∅ is not a good selection, since it will lead to confounding
of some main treatment effects with the block effects which can usually be quite
nontrivial. Thus, we consider only the designs D = (Dt : Db) with Dt∩Db = ∅.

For a 2n−m : 2r design D = (Dt : Db), let #
i C

(k)
j (D) denote the number

of ith-order treatment effects which are aliased with k jth-order treatment
effects, but not with I and the block effects. Under the assumption that all
the interactions involving three or more treatment factors are negligible, we
consider only the main effects and two-factor interactions. Denote

#
1C2(D) = (#1C

(0)
2 (D), #

1C
(1)
2 (D), . . . , #

1C
(K2)
2 (D))

and
#
2C2(D) = (#2C

(0)
2 (D), #

2C
(1)
2 (D), . . . , #

2C
(K2)
2 (D)),

where K2 = n(n − 1)/2. Let

#C(D) = (#1C2(D), #
2C2(D)). (1)

Pattern (1) is called the blocked aliased-effect number pattern (B1-AENP). Zhao
et al. [25] defined the B1-GMC designs as follows.

Definition 1 Let #Cl be the l-th component of #C, and let #C(D1) and
#C(D2) be the B1-AENPs of designs D1 and D2, respectively. Suppose that
#Ct is the first component such that #Ct(D1) and #Ct(D2) are different. If
#Ct(D1) > #Ct(D2), then D1 is said to have less blocked general lower order
confounding (B1-GLOC for short) than D2. A blocked design D is said to have
blocked general minimum lower order confounding (B1-GMC for short) if no
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other blocked design has less B1-GLOC than D and such a design is called a
B1-GMC design.

3 B1-GMC 2n−m : 2r designs with 9N
32

+ 1 � n � 5N/16

A 2n−m fractional factorial design is called a second order saturated (SOS)
design if all its degrees of freedom are completely used to estimate the main
effects and two-factor interactions (see [2]). In terms of coding theory, Davydov
and Tombak [9] showed that, for n � N

4 + 1, only when

n =
N

2
,

5N
16

,
9N
32

,
17N
64

,
33N
128

, . . . ,

the SOS designs exist, and the SOS designs with N
4 + 1 � n � N/2 can be

obtained by doubling some given SOS designs. Denote the SOS designs as
S(N/2), S(5N/16), S(9N/32), . . . , respectively. For example, let

X1 = (x1, x2, x3, x4, x5)24 ,

where xi, i = 1, 2, 3, 4, are four independent columns of H4 and x5 = x1x2x3x4.
Then X1 is the unique 25−1 SOS design up to isomorphism. Thus, when N � 32,
the SOS design S(5N/16) can be uniquely obtained by doubling X1 log2(N/16) (=
q − 4) times, i.e.,

S(5N/16) = Dq−4(X1), N = 2q.

Clearly, we have

Dq(1) = Dq−u(Du(1)), ∀u < q.

Suppose that the columns of X = (x1, . . . , xt) are taken from Du(1). Then
Dq(1) can be written as

Dq
RC(1) = (Dq−u(Du(1)\X),Dq−u(x1), . . . ,Dq−u(xt))

up to a permutation upon the columns. We say that Dq
RC(1) is in a re-changed

Yates order (RC-Yates order, for short) related to X.
With an exchange of columns, we can write Dq(1)\IN as

Dq(1)\IN

= (Dq−4(D4(1)\X1)\IN ,Dq−4(x1),Dq−4(x2),Dq−4(x3),Dq−4(x4),Dq−4(x5))
= (Dq−4(I16)\IN ,Dq−4(x1),Dq−4(x2),Dq−4(x3),Dq−4(x4),Dq−4(x5), Z), (2)

where

Z = (Dq−4(x1x2),Dq−4(x1x3),Dq−4(x1x4),Dq−4(x1x5),Dq−4(x2x3),
Dq−4(x2x4),Dq−4(x2x5),Dq−4(x3x4),Dq−4(x3x5),Dq−4(x4x5)), (3)
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and we have

S(5N/16) = (Dq−4(x1),Dq−4(x2),Dq−4(x3),Dq−4(x4),Dq−4(x5))

in RC-Yates order.
If a 2n−m : 2r design D = (Dt : Db) has B1-GMC, then D sequentially

maximizes (1). Let #
1C

(k)
2 (Dt) denote the number of main effects aliased with

k two-factor interactions in the unblocked 2n−m design Dt. We have

#
1C

(k)
2 (Dt) = #

1C
(k)
2 (D)

for any k by noting that Dt ∩ Db = ∅.
According to (1) and the B1-GMC criterion, if D = (Dt : Db) has B1-GMC,

then D must maximize #
1C2(D), the first part of (1). Note that

#
1C2(D) = #

1C2(Dt),

and hence, #
1C2(D) only depends on Dt. We should consider the part Dt of D as

an unblocked design and optimally choose it first. When n � 5N/16, Dt must
have resolution at least IV if it maximizes #

1C2(Dt) (see [19]). Furthermore,
when

9N
32

+ 1 � n � 5N
16

, (4)

Dt must be an n-projection of S(N/2) or S(5N/16) if it has resolution at least
IV (see [5]). Hereafter, the statement ‘A is an n-projection of B’, denoted as
A ⊂ B, implies that A is a submatrix of B with the n columns of A coming
from B. For example, X1 is a 5-projection of H4. The following lemma shows
that Dt must be an n-projection of S(5N/16) and, up to isomorphism,

Dt = S(5N/16)\Dt ⊂ Dq−4(x1)

if D = (Dt : Db) has B1-GMC.

Lemma 1 When r � q − 2, if a 2n−m : 2r design D = (Dt : Db) with (4) has
B1-GMC, then we have

(a) Dt must be an n-projection of S(5N/16) but not an n-projection of S(N/2);

(b) up to isomorphism, Dt ⊂ Dq−4(x1), where Dt = S(5N/16)\Dt.

To give the construction of B1-GMC designs D = (Dt : Db) with (4),
according to Lemma 1, we can assume that Dt ⊂ S(5N/16) and Dt ⊂ Dq−4(x1),
and should consider the selection of Db. Hereafter, the term a ∈ A means that
a is a column of the matrix A. For easy presentation, we introduce two more
pieces of notation. For given q and x ∈ Du(1)\I2u with q − u � r, let

Gr,u = Hr,q−u ⊗ I2u , (5)
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and
Fx,r = (I2q−u ,Hr−1,q−u) ⊗ x = (I2q−u ⊗ x, (I2q−u ⊗ x)Gr−1,u), (6)

which consists of the first 2r−1 columns of Dq−u(x), where Hr,q−u consists of
the first 2r − 1 columns of Hq−u, and (I2q−u ⊗ x)Gr−1,u denotes the matrix
obtained by taking the component-wise products of I2q−u ⊗ x and the columns
of Gr−1,u.

Lemma 2 Suppose that

Dt ⊂ S(5N/16), Dt ⊂ Dq−4(x1),

where Dt = S(5N/16)\Dt. Up to isomorphism, there are two classes of the
possibilities for the block effects matrix Db :

(a)

Db = (Gr−1,4, Fx1,r), or
(Gr−2,4, Fx1,r−1, Fx2x3,r−1, Fx4x5,r−1), or
(Gr−3,4, Fx1,r−2, Fx2x3,r−2, Fx2x4,r−2, Fx2x5,r−2, Fx3x4,r−2,

Fx3x5,r−2, Fx4x5,r−2),

(b)

Db = Gr,4, or
(Gr−1,4, Fxixj ,r) (with {i, j} = {1, 2} or {2, 3}), or

(Gr−2,4, Fxuxv,r−1, Fxuxw,r−1, Fxvxw,r−1)
(with {u, v,w} = {1, 2, 3} or {2, 3, 4}).

Suppose Dt ⊂ S(5N/16) with Dt ⊂ Dq−4(x1). For all the cases of Db in
Lemma 2, let

Db0 = Db ∩ (Dq−4(I16)\IN ), (7)

Db1 = Db ∩ (Dq−4(x1x2),Dq−4(x1x3),Dq−4(x1x4),Dq−4(x1x5)),

Db2 = Db ∩ S,

where

S = (Dq−4(x2x3),Dq−4(x2x4),Dq−4(x2x5),Dq−4(x3x4),
Dq−4(x3x5),Dq−4(x4x5)). (8)

Denote D∗ = (Dt : Db0). The following lemma establishes the relation between
the B1-AENPs of D = (Dt : Db) and D∗ = (Dt : Db0), which plays an important
role in the construction of B1-GMC designs with (4). Before presenting the
lemma, we introduce two more pieces of notation. Let

B2(Dt, γ) = #{(d1, d2) : d1, d2 ∈ Dt, γ ∈ Hq, d1d2 = γ}
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and
f(D∗) = #(Db0) + #{γ : γ ∈ Hq\Db0 , B2(Dt, γ) > 0},

where # denotes the number of columns of a matrix or the cardinality of a set.

Lemma 3 Let D = (Dt : Db) be a 2n−m : 2r design with

Dt ⊂ S(5N/16), Dt ⊂ Dq−4(x1), n − m � 5,

and (4). Then
(a)

B2(Dt, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, γ ∈ S(5N/16),

N

16
− l, γ ∈ Dq−4(x1xi), i = 2, 3, 4, 5,

N

16
, γ ∈ Dq−4(xixj), 2 � i �= j � 5,

5N
32

− l + B2(Dt, γ), γ ∈ Dq−4(I16)\IN ;

(b)

#
1C

(k)
2 (D) =

{
n, k = 0,

0, k �= 0;

(c)

#
2C

(k)
2 (D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k + 1)
(N

4
− #(Db1)

)
, k =

N

16
− l − 1,

(k + 1)
(3N

8
− #(Db2)

)
, k =

N

16
− 1,

(k + 1)
(N

16
− 1 − f(D∗)

)
, k =

5N
32

− l − 1,

k + 1
k + 1 − 5N

32 + l

#
2C

(k− 5N
32

+l)
2 (D∗), k >

5N
32

− l − 1,

0, otherwise,

where
l = #(Dt) =

5N
16

− n.

Lemma 3 implies that a 2n−m : 2r design D = (Dt : Db) with (4) has
B1-GMC if and only if it sequentially maximizes

(−#(Db1),−#(Db2),−f(D∗), #
2C2(D∗)). (9)

With the help of (9), the following theorem constructs B1-GMC 2n−m : 2r

designs with (4).
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Theorem 1 Suppose that D = (Dt : Db) is a 2n−m : 2r design with (4). Then
D has B1-GMC if Dt consists of the last n columns of S(5N/16) with RC-Yates
order and

(a) Db = Gr,4 when r � q − 4 and

5N
16

− 2r−1 + 1 � n � 5N
16

;

(b) Db = (Gr−1,4, Fx1,r) when r � q − 4 and

9N
32

+ 1 � n � 5N
16

− 2r−1;

(c) Db = (Gq−4,4, Fx2x3,q−3) when r = q − 3;
(d) Db = (Gq−4,4, Fx2x3,q−3, Fx2x4,q−3, Fx3x4,q−3) when r = q − 2,

where G·,· and F·,· are as defined in (5) and (6), respectively.

The following example illustrates the construction method in Theorem 1.
In the example, we take

X1 = (x1, x2, x3, x4, x5)24 = (1, 2, 3, 4, 1234)24 .

Example 1 Consider the construction of 238−31 : 2r B1-GMC designs. Then
q = 7, and N = 27. Take the last 38 columns of S(5N/16) (= Dq−4(X1)) with
RC-Yates order as Dt. Next, we consider the block effects matrices Db for
r = 1, 2, 3, 4, 5, respectively. For r = 1, 2, which correspond to case (b) of
Theorem 1, we can get

Db =

{
Fx1,1, r = 1,

(G1,4, Fx1,2), r = 2.

For r = 3, 4, 5, which correspond to cases (a), (c), and (d) of Theorem 1,
respectively, we can get

Db =

⎧⎪⎨⎪⎩
G3,4, r = 3,

(G3,4, Fx2x3,4), r = 4,

(G3,4, Fx2x3,4, Fx2x4,4, Fx3x4,4), r = 5.

The constructed designs are all B1-GMC designs by Theorem 1.

4 B1-GMC 2n−m : 2r designs with 17N
64

+ 1 � n � 9N/32

This section studies the theory of constructing B1-GMC 2n−m : 2r designs with

17N
64

+ 1 � n � 9N
32

. (10)
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Let
X2 = (x1, x2, x3, x4, x5, x6, x7, x8, x9)25

be the 29−4 design determined by

x6 = x1x2x3x4, x7 = x1x2x3x5, x8 = x1x2x4x5, x9 = x3x4x5,

where xi, i = 1, 2, . . . , 5, are five independent columns of H5. Then X2 is the
unique 29−4 SOS design up to isomorphism. Thus, when N � 64, the SOS
design S(9N/32) can be uniquely obtained by doubling X2 log2(N/32) (= q − 5)
times, i.e.,

S(9N/32) = Dq−5(X2), N = 2q.

With an exchange of columns, we can write Dq(1)\IN as

Dq(1)\IN = (Dq−5(D5(1)\X2)\IN ,Dq−5(x1), . . . ,Dq−5(x9))

= (Dq−5(I32)\IN ,Dq−5(x1), . . . ,Dq−5(x9), Z ′),

where Z ′ consists of the remaining columns of Dq(1)\IN . Then we have

S(9N/32) = (Dq−5(x1), . . . ,Dq−5(x9))

in RC-Yates order.
Suppose that D = (Dt : Db) is a 2n−m : 2r blocked design with (10). If D

has B1-GMC, then D must maximize #
1C2(D), the first part of (1). Noting that

#
1C2(D) = #

1C2(Dt),

Dt must maximize #
1C2(Dt) and have resolution at least IV (see [19]).

Furthermore, when (10) is satisfied, Dt must be an n-projection of S(N/2),
S(5N/16), or S(9N/32) if it has resolution at least IV (see [5]). The following
lemma shows that Dt must be an n-projection of S(9N/32) and, up to
isomorphism,

Dt = S(9N/32)\Dt ⊂ Dq−5(x1)

if D = (Dt : Db) has B1-GMC.

Lemma 4 When r � q− 2, if a 2n−m : 2r design D = (Dt : Db) with (10) has
B1-GMC, then we have

(a) Dt must be an n-projection of S(9N/32) but not an n-projection of S(N/2)

or S(5N/16);

(b) up to isomorphism, Dt ⊂ Dq−5(x1), where Dt = S(9N/32)\Dt.

To give the construction of B1-GMC designs D = (Dt : Db) with (10), by
Lemma 4, we can suppose that Dt ⊂ S(9N/32) and Dt ⊂ Dq−5(x1) and should
consider the selection of Db as follows.



A theory on constructing blocked two-level designs with GMC 217

Lemma 5 Suppose that Dt ⊂ S(9N/32) and Dt ⊂ Dq−5(x1), where Dt =
S(9N/32)\Dt. Up to isomorphism, there are two classes of the possibilities for
the block effects matrix Db :

(a)

Db = (Gr−1,5, Fx1,r), or
(Gr−2,5, Fx1,r−1, Fx2x3,r−1, Fx4x6,r−1), or
(Gr−3,5, Fx1,r−2, Fx2x3,r−2, Fx2x4,r−2, Fx2x6,r−2,

Fx3x4,r−2, Fx3x6,r−2, Fx4x6,r−2), or
(Gr−4,5, Fx1,r−3, Fx2x3,r−3, Fx2x4,r−3, Fx2x5,r−3, Fx2x6,r−3,

Fx2x7,r−3, Fx2x8,r−3, Fx2x9,r−3, Fx3x4,r−3, Fx3x5,r−3,

Fx3x6,r−3, Fx3x7,r−3, Fx3x8,r−3, Fx3x9,r−3Fx4x6,r−3),

(b)

Db = Gr,5, or
(Gr−1,5, Fxixj ,r) (with {i, j} = {1, 2}, {2, 3}, or {3, 4}), or

(Gr−2,5, Fxuxv,r−1, Fxuxw,r−1, Fxvxw,r−1)
(with {u, v,w} = {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, or {3, 4, 5}), or

(Gr−3,5, Fxix3,r−2, Fxix4,r−2, Fxix5,r−2, Fxix9,r−2, Fx3x4,r−2,

Fx3x5,r−2, Fx3x9,r−2) ( with i = 1, 2, or 6).

Suppose Dt ⊂ S(9N/32) with Dt ⊂ Dq−5(x1). Let A ∪ B denote the matrix
with columns coming from A or B. For example, if

A = (a1, a2), B = (b1, b2),

then
A ∪ B = (a1, a2, b1, b2).

For all the cases of Db in Lemma 5, denote

Db0 = Db ∩ (Dq−5(I32)\IN ), Db1 = Db ∩
( 9⋃

i=2

Dq−5(x1xi)
)

, (11)

Db2 = Db ∩
( 9⋃

i=3

Dq−5(x2xi)
)

, Db3 = Db ∩
( ⋃

3�i�=j�9

Dq−5(xixj)
)

.

Let D∗ = (Dt : Db0). The following lemma establishes the relation between the
B1-AENPs of D = (Dt : Db) and D∗ = (Dt : Db0), which plays an important
role in the construction of B1-GMC designs with (10).

Lemma 6 Let D = (Dt : Db) be a 2n−m : 2r design with

Dt ⊂ S(9N/32), Dt ⊂ Dq−5(x1), n − m � 6,
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and (10). Then
(a)

B2(Dt, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, γ ∈ S(9N/32),

N

32
− l, γ ∈ Dq−5(x1xi), i = 2, 3, . . . , 9,

N

32
, γ ∈ Dq−5(x2xj), j = 3, 4, . . . , 9,

3N
32

, γ ∈ Dq−5(xixj), 3 � i �= j � 9,

9N
64

− l + B2(Dt, γ), γ ∈ Dq−5(I32)\IN ;

(b)

#
1C

(k)
2 (D) =

{
n, k = 0,

0, k �= 0;

(c)

#
2C

(k)
2 (D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k + 1)
(N

4
− #(Db1)

)
, k =

N

32
− l − 1,

(k + 1)
(7N

32
− #(Db2)

)
, k =

N

32
− 1,

(k + 1)
(7N

32
− #(Db3)

)
, k =

3N
32

− 1,

(k + 1)
(N

32
− 1 − f(D∗)

)
, k =

9N
64

− l − 1,

k + 1
k + 1 − 9N

64 + l

#
2C

(k− 9N
64

+l)

2 (D∗), k >
9N
64

− l − 1,

0, otherwise,

where
l = #(Dt) =

9N
32

− n.

Lemma 6 implies that a 2n−m : 2r design D = (Dt : Db) with (10) has
B1-GMC if and only if it sequentially maximizes

(−#(Db1),−#(Db2),−#(Db3),−f(D∗), #
2C2(D∗)). (12)

With the help of (12), the following theorem constructs the B1-GMC 2n−m : 2r

designs with (10).

Theorem 2 Suppose that D = (Dt : Db) is a 2n−m : 2r design with (10). Then
D has B1-GMC if Dt consists of the last n columns of S(9N/32) with RC-Yates
order and
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(a) Db = Gr,5 when r � q − 5 and

9N
32

− 2r−1 + 1 � n � 9N
32

;

(b) Db = (Gr−1,5, Fx1,r) when r � q − 5 and

17N
64

+ 1 � n � 9N
32

− 2r−1;

(c) Db = (Gq−5,5, Fx3x4,q−4) when r = q − 4;
(d) Db = (Gq−5,5, Fx3x4,q−4, Fx3x5,q−4, Fx4x5,q−4) when r = q − 3;
(e)

Db = (Gq−5,5, Fx3x4,q−4, Fx3x5,q−4, Fx3x6,q−4, Fx3x9,q−4, Fx4x6,q−4,

Fx5x6,q−4, Fx6x9,q−4)

when r = q − 2,
where G·,· and F·,· are as defined in (5) and (6), respectively.

The following example shows an application of Theorem 2.

Example 2 Consider the construction of 270−62 : 2r B1-GMC designs. Here,

X2 = (x1, x2, x3, x4, x5, x6, x7, x8, x9)25

= (1, 2, 3, 4, 5, 6 (= 1234), 7 (= 1235), 8 (= 1245), 9 (= 345))32,

q = 8, and N = 28. Take the last 70 columns of S(9N/32) (= Dq−5(X2)) with
RC-Yates order as Dt. Next, we consider the block effects matrices Db for
r = 1, 2, 3, 4, 5, 6, respectively. For r = 1, 2, which correspond to case (b) of
Theorem 2, we can get

Db =

{
Fx1,1, r = 1,

(G1,5, Fx1,2), r = 2.

For r = 3, 4, 5, 6, which correspond to cases (a), (c), (d), and (e) of Theorem 2,
respectively, we can get

Db =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G3,5, r = 3,

(G3,5, Fx3x4,4), r = 4,

(G3,5, Fx3x4,4, Fx3x5,4, Fx4x5,4), r = 5,

(G3,5, Fx3x4,4, Fx3x5,4, Fx3x6,4, Fx3x9,4, Fx4x6,4, Fx5x6,4, Fx6x9,4), r = 6.

The constructed designs are all B1-GMC designs by Theorem 2.
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Appendix

Table A1 B1-GMC 2n−m : 2r designs with small run sizes

N n Dt r independent columns of Db Theorem

32 9 X2 1 {34}32 2 (c)

32 9 X2 2 {34, 35}32 2 (d)

32 9 X2 3 {34, 35, 124}32 2 (e)

32 10 D(X1) 1 12 ⊗ I16 1 (a)

32 10 D(X1) 2 12 ⊗ I16, I2 ⊗ (23)16 1 (c)

32 10 D(X1) 3 12 ⊗ I16, I2 ⊗ (23)16, I2 ⊗ (24)16 1 (d)

64 18 D(X2) 1 12 ⊗ I32 2 (a)

64 18 D(X2) 2 12 ⊗ I32, I2 ⊗ (34)32 2 (c)

64 18 D(X2) 3 12 ⊗ I32, I2 ⊗ (34)32, I2 ⊗ (35)32 2 (d)

64 18 D(X2) 4 12 ⊗ I32, I2 ⊗ (34)32, I2 ⊗ (35)32, I2 ⊗ (124)32 2 (e)

64 19 D2(X1)\(I4 ⊗ 116) 1 I4 ⊗ 116 1 (b)

64 19 D2(X1)\(I4 ⊗ 116) 2 14 ⊗ I16, 24 ⊗ I16 1 (a)

64 19 D2(X1)\(I4 ⊗ 116) 3 14 ⊗ I16, 24 ⊗ I16, I4 ⊗ (23)16 1 (c)

64 19 D2(X1)\(I4 ⊗ 116) 4 14 ⊗ I16, 24 ⊗ I16, I4 ⊗ (23)16, I4 ⊗ (24)16 1 (d)

64 20 D2(X1) 1 14 ⊗ I16 1 (a)

64 20 D2(X1) 2 14 ⊗ I16, 24 ⊗ I16 1 (a)

64 20 D2(X1) 3 14 ⊗ I16, 24 ⊗ I16, I4 ⊗ (23)16 1 (c)

64 20 D2(X1) 4 14 ⊗ I16, 24 ⊗ I16, I4 ⊗ (23)16, I4 ⊗ (24)16 1 (d)

X1 = {1, 2, 3, 4, 5(= 1234)}16

X2 = {1, 2, 3, 4, 5, 6 (= 1234), 7 (= 1235), 8 (= 1245), 9 (= 345)}32

Proof of Lemma 1 As discussed above Lemma 1, when (4) is satisfied, if D =
(Dt : Db) has B1-GMC, then Dt is an n-projection of S(5N/16) or S(N/2). Note
that both S(5N/16) and S(N/2) have resolution at least IV. If D = (Dt : Db) has
B1-GMC, then it is necessary that D has the maximum number of alias sets
that contain the minimum number of two-factor interactions but none of the
block effects.

For a 2n−m : 2r design D = (Dt : Db) with Dt ⊂ S(5N/16), let Dt =
S(5N/16)\Dt. According to [18, Theorem 4], Dt has two nonisomorphic choices
when it is the projection of S(5N/16) :

(i) Dt ⊂ Dq−4(xi) for some i = 1, 2, 3, 4, 5 (since xi, i = 1, 2, 3, 4, 5, play the
same role in S(5N/16), without loss of generality, we assume Dt ⊂ Dq−4(x1));

(ii) Dt contains columns from at least two of Dq−4(xi), i = 1, 2, 3, 4, 5.
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We first consider case (i), i.e., Dt ⊂ S(5N/16) and Dt ⊂ Dq−4(x1).
For any column γ ∈ Dq(1)\IN as defined in (2), γ corresponds to an alias set

of Dt. When γ ∈ Dt, the alias set contains a main effect. When γ ∈ Dt, the alias
set contains only interactions involving three or more factors. According to [18,
Theorem 4], for any γ ∈ Dq−4(x1xi), i = 2, 3, 4, 5, there are n − N

4 two-factor
interactions of Dt aliased with γ. There are N/4 alias sets with γ ∈ Dq−4(x1xi),
i = 2, 3, 4, 5. For any γ ∈ Dq−4(xixj), 2 � i �= j � 5, there are N/16 two-factor
interactions of Dt aliased with it. There are altogether 3N/8 alias sets with
γ ∈ Dq−4(xixj), 2 � i �= j � 5. For any γ ∈ Dq−4(I16)\IN , there are at least
n− 5N

32 two-factor interactions of Dt aliased with it. There are altogether N
16 −1

alias sets with γ ∈ Dq−4(I16)\IN and these γ form a closed submatrix of Hq.
When we choose columns from Dq(1)\IN as block effects, we should first

choose the columns which are neither aliased with the main effects nor with
the two-factor interactions, and then the columns which are aliased with the
two-factor interactions of Dt in the most serious degree. Note that

#
{ ⋃

2�i�=j�4

Dq−4(xixj) ∪ (Dq−4(I16)\IN )
}

=
N

4
− 1.

For any r � q − 2, it is available to choose 2r − 1 columns from⋃
2�i�=j�4

Dq−4(xixj) ∪ (Dq−4(I16)\IN )

to form a closed matrix as Db. With doing that, for any γ ∈ Dq−4(x1xi), i =
2, 3, 4, 5, there are still n− N

4 two-factor interactions of Dt aliased with γ. There
are N/4 alias sets with γ ∈ Dq−4(x1xi), i = 2, 3, 4, 5. For any γ ∈ Dq−4(xix5),
i = 2, 3, 4, there are still N/16 two-factor interactions of Dt aliased with γ.
There are 3N/16 alias sets with γ ∈ Dq−4(xix5), i = 2, 3, 4.

Now, we consider case (ii), i.e., Dt contains columns from at least two of
Dq−4(xi), i = 1, 2, 3, 4, 5.

According to [18, Theorem 4 (ii)], Dt has no more than N/16 alias sets, each
of which contains n − N

4 two-factor interactions. Suppose that the columns in
Db do not occupy any alias set containing n − N

4 two-factor interactions. The
blocked design D = (Dt : Db) just has no more than N/16 alias sets, each of
which contains n − N

4 two-factor interactions.
If Dt ⊂ S(N/2), according to [18, Theorem 3], besides the N/4 alias sets

each of which containing n − N
4 two-factor interactions, there are at least N/8

two-factor interactions in each of the other alias sets of Dt containing two-factor
interactions. Comparing with cases (i) and (ii) above, when Dt is the projection
of S(5N/16) with Dt ⊂ Dq−4(x1), D has the maximum number of alias sets that
contain the minimum number of two-factor interactions but none of the block
effects. This completes the proof of Lemma 1. �
Proof of Lemma 2 (a) Suppose Dt ⊂ S(5N/16) and Dt ⊂ Dq−4(x1). Consider
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the selection of Db. Up to isomorphism, there are two possibilities for Db :

Db ∩ Dq−4(x1) �= ∅, Db ∩ Dq−4(x1) = ∅.
If Db ∩ Dq−4(x1) �= ∅, then Db has at least one column taken from Dq−4(x1).
Without loss of generality, we assume I2q−4 ⊗ x1 ⊂ Db. Then

Dq−4(x1xi) ∩ Db = ∅, i = 2, 3, 4, 5.

Otherwise, without loss of generality, suppose γ ⊗ x1x2 ∈ Dq−4(x1x2) ∩ Db,
where γ ∈ Dq−4(1). Then

(I2q−4 ⊗ x1)(γ ⊗ x1x2) = γ ⊗ x2 ∈ Dt ∩ Db,

which contradicts Dt ∩ Db = ∅. Thus,

Db ⊂ (Dq−4(I16)\IN ,Dq−4(x1), S),

where S is as defined in (8) and Db can be expressed as

Db = (Db ∩ (Dq−4(I16)\IN ),Db ∩ Dq−4(x1),Db ∩ S) (A1)

= (I2q−4 ⊗ x1,Db ∩ (Dq−4(I16)\IN ),

Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1)),Db ∩ S). (A2)

The defining relation I = x1x2x3x4x5 implies

(I2q−4 ⊗ x1)S = ((I2q−4 ⊗ x1)s : s ∈ S) = S.

By the structure of Dq−4(I16), we have

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN , S)) ⊂ (Dq−4(x1)\(I2q−4 ⊗ x1), S).

Note that the interaction of any two columns of Db is still in Db. Then

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN , S)) ⊂ Db,

and therefore,

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN , S)) ⊂ Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S). (A3)

Similarly, we have

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S)) ⊂ Db,

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S)) ⊂ (Dq−4(I16)\IN , S),

which imply

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S)) ⊂ Db ∩ (Dq−4(I16)\IN , S),
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and hence,

Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S) ⊂ (I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN , S)). (A4)

From (A3) and (A4), we get

Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1), S) = (I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN , S)),

i.e.,
((I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN )), (I2q−4 ⊗ x1)(Db ∩ S))

= (Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1)),Db ∩ S). (A5)

The structures of Db and S imply that

(I2q−4 ⊗ x1)(Db ∩ S) = (I2q−4 ⊗ x1)Db ∩ (I2q−4 ⊗ x1)S = Db ∩ S,

which simplifies (A5) to

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN )) = Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1)) (A6)

by noting that, in (A5),

(I2q−4 ⊗ x1)(Db ∩ (Dq−4(I16)\IN )) ∩ (I2q−4 ⊗ x1)(Db ∩ S) = ∅,
(Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1))) ∩ (Db ∩ S) = ∅.

Note that the four terms in the right-hand side of (A2) are mutually
exclusive. Thus, we have

2r − 1 = #(Db)

= 1 + #(Db ∩ (Dq−4(I16)\IN ))

+ #(Db ∩ (Dq−4(x1)\(I2q−4 ⊗ x1))) + #(Db ∩ S)

= 1 + 2#(Db ∩ (Dq−4(I16)\IN )) + #(Db ∩ S), (A7)

where the third equation follows from (A6). Suppose that b1 and b2 are two
columns of Db ∩ (Dq−4(I16)\IN ). The interaction of any two columns of Db (or
Dq−4(I16)\IN ) is still in Db (or Dq−4(I16)\IN ), i.e., b1b2 ∈ Db∩(Dq−4(I16)\IN ).
Then Db ∩ (Dq−4(I16)\IN ) is isomorphic to Gr1−1,4 for some r1, where G·,· is
as defined in (5). Up to isomorphism, suppose

Db ∩ (Dq−4(I16)\IN ) = Gr1−1,4. (A8)

Then, by (6) and (A6), we have

Db ∩ Dq−4(x1) = (I2q−4 ⊗ x1, (I2q−4 ⊗ x1)Gr1−1,4) = Fx1,r1 . (A9)

With the help of (A9), the equations in (a) can be established as follows.
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(i) If Db ∩ S = ∅, then

#(Db ∩ (Dq−4(I16)\IN )) = 2r−1 − 1

and r1 = r by (A7) and (A8). Then, from (A1), (A8), and (A9), we obtain
Db = (Gr−1,4, Fx1,r). The first equation of (a) follows.

(ii) When Db∩S �= ∅, without loss of generality, suppose Db∩Dq−4(x2x3) �=
∅ and I2q−4 ⊗ x2x3 ∈ Db. Then

I2q−4 ⊗ x4x5 = (I2q−4 ⊗ x1)(I2q−4 ⊗ x2x3) ∈ Db.

Similar to (A9), we have

Db ∩ Dq−4(x2x3) = Fx2x3,r1 and Db ∩ Dq−4(x4x5) = Fx4x5,r1.

Furthermore, if

Db∩Dq−4(x2x4) = Db∩Dq−4(x2x5) = Db∩Dq−4(x3x4) = Db∩Dq−4(x3x5) = ∅,
then

Db ∩ S = (Fx2x3,r1, Fx4x5,r1)

and
2r − 1 = 1 + 2(2r1−1 − 1) + 2 · 2r1−1

by (A7). Thus, r1 = r − 1 and the second equation of (a) follows from (A1),
(A8), and (A9).

(iii) Based on (ii), when

Db ∩ Dq−4(x2x3) �= ∅, Db ∩ Dq−4(x2x4) �= ∅,
without loss of generality, suppose

I2q−4 ⊗ x2x3 ∈ Db, I2q−4 ⊗ x2x4 ∈ Db.

Then
I2q−4 ⊗ x3x4 = (I2q−4 ⊗ x2x3)(I2q−4 ⊗ x2x4) ∈ Db,

I2q−4 ⊗ x3x5 = (I2q−4 ⊗ x1)(I2q−4 ⊗ x2x4) ∈ Db,

I2q−4 ⊗ x2x5 = (I2q−4 ⊗ x1)(I2q−4 ⊗ x3x4) ∈ Db.

Similar to (A9), we also have

Db ∩ Dq−4(x2x4) = Fx2x4,r1 , Db ∩ Dq−4(x3x4) = Fx3x4,r1 ,

Db ∩ Dq−4(x3x5) = Fx3x5,r1 , Db ∩ Dq−4(x2x5) = Fx2x5,r1 .

Then

Db ∩ S = (Fx2x3,r1, Fx4x5,r1, Fx2x4,r1 , Fx3x5,r1, Fx3x4,r1, Fx2x5,r1),
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and
2r − 1 = 1 + 2(2r1−1 − 1) + 6 · 2r1−1

by (A7). Thus, r1 = r − 2 and the third equation of (a) follows from (A1),
(A8), and (A9).

(b) From (2), if Db ∩ Dq−4(x1) = ∅, then

Db ⊂ (Dq−4(I16)\IN , Z),

where Z is as defined in (3). The following proof is similar to that of (a). We
only provide the outline for saving space. Consider the following three mutually
exclusive cases:

(i) Db ∩ Z = ∅;
(ii) Db ∩ Z �= ∅ and Db ∩ Z ⊂ Dq−4(xixj) with {i, j} = {1, 2} or {2, 3};
(iii) Db ∩ Z �= ∅, Db ∩ Dq−4(xuxv) �= ∅, Db ∩ Dq−4(xuxw) �= ∅, Db ∩

Dq−4(xvxw) �= ∅, and Db ∩ Z ⊂ (Dq−4(xuxv),Dq−4(xuxw),Dq−4(xvxw)) with
{u, v,w} = {1, 2, 3} or {2, 3, 4}.
Except the cases which will result in Dt ∩Db �= ∅, any other case is isomorphic
to one of the three cases above.

For (i), it is easy to see that Db ⊂ Dq−4(I16)\IN . Up to isomorphism, we
can assume that Db = Gr,4. The first equation of (b) follows.

For (ii), without loss of generality, suppose I2q−4 ⊗ xixj ∈ Db. Similar to
(A8) and (A9), we can assume

Db ∩ (Dq−4(I16)\IN ) = Gr1−1,4,

and then obtain

Db ∩ Dq−4(xixj) = (I2q−4 ⊗ xixj , (I2q−4 ⊗ xixj)Gr1−1,4) = Fxixj ,r1,

with r1 = r. The second equation of (b) follows.
For (iii), without loss of generality, suppose

I2q−4 ⊗ xuxv, I2q−4 ⊗ xuxw, I2q−4 ⊗ xvxw ∈ Db.

Similar to case (ii), we can assume

Db ∩ (Dq−4(I16)\IN ) = Gr1−1,4,

and then obtain

Db ∩ Dq−4(xuxv) = (I2q−4 ⊗ xuxv, (I2q−4 ⊗ xuxv)Gr1−1,4) = Fxuxv,r1,

Db ∩ Dq−4(xuxw) = (I2q−4 ⊗ xuxw, (I2q−4 ⊗ xuxw)Gr1−1,4) = Fxuxw,r1 ,

Db ∩ Dq−4(xvxw) = (I2q−4 ⊗ xvxw, (I2q−4 ⊗ xvxw)Gr1−1,4) = Fxvxw,r1 ,

with r1 = r − 1. Then the third equation of (b) follows. This completes the
proof of Lemma 2. �
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Proof of Lemma 3 (a) It can be obtained from the proof of [18, Theorem 4].

(b) It follows by noting that #
1C

(k)
2 (D) = #

1C
(k)
2 (Dt) and Dt has resolution

at least IV.
(c) By the definition of #

2C
(k)
2 (D), we have

#
2C

(k)
2 (D) = (k + 1)#{γ : γ ∈ Hq\Db, B2(Dt, γ) = k + 1} =: Δ0 + Δ1 + Δ2,

where

Δ0 = (k + 1)#{γ : γ ∈ (Dq−4(I16)\IN )\Db0 , B2(Dt, γ) = k + 1},

Δ1 = (k + 1)#
{

γ : γ ∈
( 5⋃

i=2

Dq−4(x1xi)
)∖

Db1 , B2(Dt, γ) = k + 1
}

,

Δ2 = (k + 1)#{γ : γ ∈ S\Db2 , B2(Dt, γ) = k + 1}.
By (a), we have the following results:

1◦ for k + 1 < N
16 − l, Δ0 = Δ1 = Δ2 = 0;

2◦ for k + 1 = N
16 − l, Δ0 = Δ2 = 0, and

Δ1 = (k + 1)#
{

γ : γ ∈
( 5⋃

i=2

Dq−4(x1xi)
)∖

Db1 , B2(Dt, γ) =
N

16
− l

}
= (k + 1)

(N

4
− #(Db1)

)
;

3◦ for N
16 − l < k + 1 < N/16, Δ0 = Δ1 = Δ2 = 0;

4◦ for k + 1 = N/16, Δ0 = Δ1 = 0, and

Δ2 = (k + 1)#
{

γ : γ ∈ S\Db2 , B2(Dt, γ) =
N

16

}
= (k + 1)

(3N
8

− #(Db2)
)
;

5◦ for N/16 < k + 1 < 5N
32 − l, Δ0 = Δ1 = Δ2 = 0;

6◦ for k + 1 = 5N
32 − l, Δ1 = Δ2 = 0, and

Δ0 = (k + 1)#
{

γ : γ ∈ (Dq−4(I16)\IN )\Db0 , B2(Dt, γ) =
5N
32

− l
}

= (k + 1)#{γ : γ ∈ (Dq−4(I16)\IN )\Db0 , B2(Dt, γ) = 0}
= (k + 1)

(N

16
− 1 − #(Db0)

)
− (k + 1)#{γ : γ ∈ (Dq−4(I16)\IN )\Db0 , B2(Dt, γ) > 0}

= (k + 1)
(N

16
− 1 − #(Db0)

)
− (k + 1)#{γ : γ ∈ Hq\Db0 , B2(Dt, γ) > 0}

= (k + 1)
(N

16
− 1 − f(D∗)

)
,
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where the second equality is from (a), and the forth equality is from the fact
that γ1γ2 ∈ Dq−4(I16)\IN for any two different columns γ1 and γ2 of Dt;

7◦ for k + 1 > 5N
32 − l, Δ1 = Δ2 = 0, and

Δ0 = (k + 1)#
{

γ : γ ∈ (Dq−4(I16)\IN )\Db0 , B2(Dt, γ) = (k + 1) − 5N
32

+ l
}

= (k + 1)#
{

γ : γ ∈ Hq\Db0 , B2(Dt, γ) = (k + 1) − 5N
32

+ l
}

=
k + 1

k + 1 − 5N
32 + l

#
2C

(k− 5N
32

+l)

2 (D∗),

where the first equality is from (a) and the second equality is from the same
fact as in 6◦.

Then (c) follows from 1◦–7◦. �
Before proving Theorem 1, let us first see a lemma in [25].

Lemma A1 Let S̃ = (S̃t : Sb) with S̃t consisting of the first or the last s

columns of S(N/2) with Yates order and Sb = Ha,q. Then S̃ maximizes

(−f(S), #
2C2(S))

among all S = (St : Sb) with St being an s-projection of S(N/2), where

S(N/2) = Hq\Hq−1,q.

By Lemma A1, we can obtain the following result.

Lemma A2 Let Sb = Ga,u and S̃t consist of the first s columns of Dq−u(x)
with RC-Yates order, where x ∈ Du(1)\I2u for some u � q − a. Then S̃ = (S̃t :
Sb) maximizes

(−f(S), #
2C2(S)) (A10)

among all S = (St : Sb) with St being an s-projection of Dq−u(x).

Proof Recall the definition of doubling in Section 2, for any x ∈ Du(1)\I2u ,
we have

Gq−u,u = Hq−u,q−u ⊗ I2u = Hq−u ⊗ I2u ,

Dq−u(x) = (I2q−u ⊗ x, (I2q−u ⊗ x)Gq−u,u).

Let F be the matrix consisting of the first 2q−u columns of S(N/2), i.e.,

F = (q2q , q2qHq−u,q),

where
q2q = (1, . . . , 1,−1 . . . ,−1)T2q

is the q-th independent column of Hq. Note that Gq−u,u is isomorphic to Hq−u,q.
Then Dq−u(x) and F are isomorphic. Thus, the two designs (Ga,u : Dq−u(x))
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and (Ha,q : F ) are isomorphic, since Ga,u ⊂ Gq−u,u and Ha,q ⊂ Hq−u,q.

Therefore, the two designs S̃ in Lemmas A1 and A2 are also isomorphic. Then
the result follows from Lemma A1. �

With the help of Lemma A2, we now prove Theorem 1.

Proof of Theorem 1 Let D∗ = (Dt : Db0), where

Dt = S(5N/16)\Dt(⊂ Dq−4(x1))

and Db0 is as defined in (7). By (9), if D = (Dt : Db) is a B1-GMC 2n−m : 2r

design with (4), then D should sequentially minimize #(Db1) and #(Db2) first.
(a) When r � q − 4 and

5N
16

− 2r−1 + 1 � n � 5N
16

,

by Lemma 2, we can select Db = Gr,4 or Db = (Gr−1,4, Fx1,r) since only the two
cases have #(Db1) = 0 and #(Db2) = 0. Note that Dt = S(5N/16)\Dt consists of
l = 5N

16 −n (< 2r−1) columns of Dq−4(x1). Then Fx1,r, which has 2r−1 columns,
cannot be accommodated into Dt. Therefore, it is impossible to have the case
of Db = (Gr−1,4, Fx1,r). Thus, Db = Gr,4. Let D̃ = (D̃t : D̃b) with D̃t consisting
of the last n columns of S(5N/16) and D̃b = Gr,4. Let

D̃∗
t = S(5N/16)\D̃t (⊂ Dq−4(x1)), D̃∗

b = D̃b ∩ (Dq−4(I16)\IN ) = Gr,4,

and let
D̃∗ = (D̃∗

t : D̃∗
b ).

By Lemma A2, D̃∗ maximizes (A10) among all the designs D∗ = (D∗
t : D∗

b )
with D∗

t ⊂ Dq−4(x1) and D∗
b = Gr,4. Then (a) follows immediately from (9).

(b) Similar to (a), when r � q − 4 and

9N
32

+ 1 � n � 5N
16

− 2r−1,

by Lemma 2, we can also select Db = Gr,4 or Db = (Gr−1,4, Fx1,r).
Let D̃ = (D̃t : D̃b) with D̃t consists of the last n columns of S(5N/16) and

D̃b = Gr,4. Let D̃∗ = (D̃∗
t : D̃∗

b ) with

D̃∗
t = S(5N/16)\D̃t, D̃∗

b = D̃b ∩ (Dq−4(I16)\IN ) = Gr,4.

Then D̃∗
t consists of the first l columns of Dq−4(x1). By Lemma A2, D̃∗

maximizes (A10) among all the designs D∗ = (D∗
t : D∗

b ) with D∗
t ⊂ Dq−4(x1)

and D∗
b = Gr,4. Therefore, D̃ has B1-GMC among all the designs D = (Dt : Db)

with Dt ⊂ S(5N/16), Dt ⊂ Dq−4(x1), and Db = Gr,4.
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Let Ẽ = (D̃t : Ẽb) with Ẽb = (Gr−1,4, Fx1,r). Let

Ẽ∗
b = Ẽb ∩ (Dq−4(I16)\IN ) = Gr−1,4

and Ẽ∗ = (D̃∗
t : Ẽ∗

b ). By Lemma A2, Ẽ∗ maximizes (A10) among all the designs
E∗ = (D∗

t : E∗
b ) with D∗

t ⊂ Dq−4(x1) and E∗
b = Gr−1,4. Therefore, Ẽ has B1-

GMC among all the designs E = (Dt : Eb) with Dt ⊂ S(5N/16), Dt ⊂ Dq−4(x1),
and Eb = (Gr−1,4, Fx1,r).

Now, since #
1C

(k)
2 (D̃) = #

1C
(k)
2 (Ẽ) for each k � 0, to show the validity of (b),

it suffices to show that #
2C

(k)
2 (Ẽ) � #

2C
(k)
2 (D̃) for each k � 0 and there exists a

k0 such that
#
2C

(k0)
2 (Ẽ) > #

2C
(k0)
2 (D̃). (A11)

By the definition of #
2 C

(k)
2 (Ẽ) and #

2 C
(k)
2 (D̃), we have

#
2C

(k)
2 (Ẽ) − #

2C
(k)
2 (D̃) = (k + 1)#{γ : γ ∈ Hq\Ẽb, B2(D̃t, γ) = k + 1}

− (k + 1)#{γ : γ ∈ Hq\D̃b, B2(D̃t, γ) = k + 1}.

Note that B2(D̃t, γ) = 0 for any γ ∈ Fx1,r. Then

#
2C

(k)
2 (Ẽ) − #

2C
(k)
2 (D̃) = (k + 1)#{γ : γ ∈ Hq\Gr−1,4, B2(D̃t, γ) = k + 1}

− (k + 1)#{γ : γ ∈ Hq\Gr,4, B2(D̃t, γ) = k + 1}
= (k + 1)#{γ : γ ∈ Gr,4\Gr−1,4, B2(D̃t, γ) = k + 1}.

So, #
2C

(k)
2 (D̃) � #

2C
(k)
2 (Ẽ) for each k � 0. Next, we show that there exists a k0

such that (A11) holds. It suffices to show that there exists a γ ∈ Gr,4\Gr−1,4

such that B2(D̃t, γ) > 0. Recall that x1, x2, x3, x4 are four independent columns
of D4(1)\I24 . Suppose

Dq−4(1) = (I, 1, 2, 12, . . . , 12 · · · (q − 4))2q−4 .

Note that r � q − 4. Then r2q−4 ∈ Dq−4(1) and

Gr,4 = (1 ⊗ I24 , 2 ⊗ I24 , 12 ⊗ I24 , . . . , r ⊗ I24 , 1r ⊗ I24 , . . . , 12 · · · r ⊗ I24)2q

consists of the first 2r−1 columns of (Dq−4(1)\I2q−4)⊗I24 . Recall that Dq−4(x2)
⊂ D̃t. Then I2q−4⊗x2 and r2q−4⊗x2 are two columns of D̃t, and their interaction

γ = (I2q−4 ⊗ x2)(r2q−4 ⊗ x2) = r2q−4 ⊗ I24 ∈ Gr,4\Gr−1,4.

This completes the proof of (b).
(c) Suppose r = q − 3. In this case, Db has q − 3 independent columns, but

Gr,4 = Hr,q−4 ⊗ I24 has at most q − 4 independent columns, thus Db �= Gr,4.
Note that when (4) is satisfied, we have

l =
5N
16

− n <
N

32
.
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Thus, we delete less than N/32 columns from Dq−4(x1). As a result,

Db �= (Gr−1,4, Fx1,r), Db �= (Gr−2,4, Fx1,r−1, Fx2x3,r−1, Fx4x5,r−1)

since neither Fx1,r nor Fx1,r−1 can be accommodated into Dt. Then by Lemma
2, up to isomorphism, we can select

Db = (Gq−4,4, Fx1x2,q−3), or

(Gq−4,4, Fx2x3,q−3), or (A12)

(Gq−5,4, Fx1x2,q−4, Fx1x3,q−4, Fx2x3,q−4), or
(Gq−5,4, Fx2x3,q−4, Fx2x4,q−4, Fx3x4,q−4), or
(Gq−6,4, Fx1,q−5, Fx2x3,q−5, Fx2x4,q−5, Fx2x5,q−5,

Fx3x4,q−5, Fx3x5,q−5, Fx4x5,q−5)

as the block effects matrix, where for these matrices,

(#(Db1),#(Db2)) =
(N

16
, 0

)
,

(
0,

N

16

)
,

(N

16
,
N

32

)
,

(
0,

3N
32

)
,

(
0,

3N
32

)
,

respectively. We should choose (A12) as Db since it sequentially minimizes
#(Db1) and #(Db2). Then (c) follows from a similar argument to (a).

(d) Suppose r = q − 2. Note that l < N/32. Then, similar to (c),

Db = (Gq−4,4, Fx1x2,q−3, Fx1x3,q−3, Fx2x3,q−3) or

(Gq−4,4, Fx2x3,q−3, Fx2x4,q−3, Fx3x4,q−3) (A13)

can be selected as the block effects matrix by Lemma 2. We should choose
(A13) as the block effects matrix since it sequentially minimizes #(Db1) and
#(Db2). Then (d) follows from a similar argument to (a).

This completes the proof of Theorem 1. �
Proof of Lemma 4 As discussed above Lemma 4, when (10) is satisfied, if
D = (Dt : Db) has B1-GMC, then Dt is an n-projection of S(9N/32), S(5N/16),
or S(N/2).

For a 2n−m : 2r design D = (Dt : Db) with Dt ⊂ S(9N/32), let Dt =
S(9N/32)\Dt. There are three kinds of choices for Dt (see [18]):

(i) Dt ⊂ Dq−5(xi), i = 1 or 2;
(ii) Dt ⊂ Dq−5(xi), i = 3, 4, . . . , 9;
(iii) Dt contains columns from at least two of Dq−5(xi), i = 1, 2, . . . , 9.
Note that, for (i), since x1 and x2 play the same role in S(9N/32), without

loss of generality, we assume that Dt ⊂ Dq−5(x1). While for (ii), from the
defining contrast subgroup of X2, we find that x3, x4, . . . , x9 play the same role
in S(9N/32). So, without loss of generality, we assume that Dt ⊂ Dq−5(x3).
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We first consider case (i), i.e., Dt ⊂ S(9N/32) and Dt ⊂ Dq−5(x1). Let

l = #(Dt) =
9N
32

− n.

For any column γ ∈ Dq(1)\IN , γ corresponds to an alias set of Dt. When γ ∈ Dt,
each alias set contains a main effect. When γ ∈ Dt, each alias set contains only
interactions involving three or more factors. According to [18, Theorem 6], for
any γ ∈ Dq−5(x1xj), j = 2, 3, . . . , 9, there are n−N

4 two-factor interactions of Dt

aliased with γ. There are 8N/32 alias sets with γ ∈ Dq−5(x1xj), j = 2, 3, . . . , 9.
For any γ ∈ Dq−5(x2xj), j = 3, 4, . . . , 9, there are N/32 two-factor interactions
of Dt aliased with γ. There are 7N/32 alias sets with γ ∈ Dq−5(x2xj), j =
3, 4, . . . , 9. For any γ ∈ Dq−5(xixj), i, j = 3, 4, . . . , 9, i �= j, there are 3N/32
two-factor interactions of Dt aliased with γ. There are altogether 7N/32 alias
sets with γ ∈ Dq−5(xixj), 3 � i �= j � 9. For any γ ∈ Dq−5(I32)\IN , there are
at least n− 9N

64 two-factor interactions of Dt aliased with γ. There are altogether
N
32 − 1 alias sets with γ ∈ Dq−5(I32)\IN and these γ form a closed submatrix
of Hq.

When we choose columns from Dq(1)\IN as block effects, we should first
choose the columns which are neither aliased with the main effects nor with the
two-factor interactions, then the columns which are aliased with the two-factor
interactions of Dt in the most serious degree. Note that

#
{ ⋃

3�i�=j�9

Dq−5(xixj) ∪ (Dq−5(I32)\IN )
}

=
N

4
− 1.

For any r � q − 2, it is available to choose 2r − 1 columns from⋃
3�i�=j�9

Dq−5(xixj) ∪ (Dq−5(I32)\IN )

to form a closed matrix as Db. With doing that, for any γ ∈ Dq−5(x1xi),
i = 2, 3, . . . , 9, there are still n − N

4 two-factor interactions of Dt aliased with
γ. There are 8N/32 alias sets with γ ∈ Dq−5(x1xi), i = 2, 3, . . . , 9. For any
γ ∈ Dq−5(x2xi), i = 3, 4, . . . , 9, there are still N/32 two-factor interactions of Dt

aliased with γ. There are 7N/32 alias sets with γ ∈ Dq−5(x2xi), i = 3, 4, . . . , 9.
Consider case (ii), i.e., Dt ⊂ S(9N/32) and Dt ⊂ Dq−5(x3). For any γ ∈

(Dq−5(x1x3),Dq−5(x2x3)), there are n− N
4 two-factor interactions of Dt aliased

with γ. There are 2N/32 alias sets with γ ∈ (Dq−5(x1x3),Dq−5(x2x3)). For any
other γ ∈ Dq−5(xixj), there are at least N/32 two-factor interactions of Dt

aliased with γ.
We now turns to consider case (iii), i.e., Dt contains columns from at least

two of Dq−5(xi), i = 1, 2, . . . , 9. Let

Dti = Dt ∩ Dq−5(xi), li = #(Dti), i = 1, 2, . . . , 9.
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Clearly, we have
li + lj � l, 1 � i �= j � 9.

For any γ ∈ Dq−5(xixj), there are at least N
32 − li − lj (� N

32 − l = n − N
4 )

two-factor interactions of Dt aliased with γ. There is at most one pair of (i, j)
such that γ ∈ Dq−5(xixj) and n− N

4 two-factor interactions of Dt aliased with
γ. Therefore, there are at most N/32 alias sets each containing exactly n − N

4
two-factor interactions of Dt. For any other γ ∈ Dq−5(xixj), there are more
than n − N

4 two-factor interactions of Dt aliased with γ.
When Dt ⊂ S(5N/16), according to the proof of Lemma 1, besides the N/4

alias sets each of which containing n − N
4 two-factor interactions, there are at

least N/16 two-factor interactions in each of the other alias sets of Dt containing
two-factor interactions. When Dt ⊂ S(N/2), according to [18, Theorem 3],
besides the N/4 alias sets each of which containing n−N

4 two-factor interactions,
there are at least N/8 two-factor interactions in each of the other alias sets
of Dt containing two-factor interactions. Comparing with the three cases of
Dt ⊂ S(9N/32), if D = (Dt : Db) has B1-GMC, then Dt must be the projection
of S(9N/32) with Dt ⊂ Dq−5(x1) but not the projection of S(N/2) or S(5N/16).
This completes the proof of Lemma 4. �
Proof of Lemma 5 Up to isomorphism, there are two possibilities for Db : Db∩
Dq−5(x1) �= ∅ and Db ∩Dq−5(x1) = ∅, which result in (a) and (b), respectively,
with a similar deduction method to the proof of Lemma 2. We omit the proof
for saving space. �
Proof of Lemma 6 (a) It is the result of [18, Theorem 6].

(b) It follows by noting that #
1C

(k)
2 (D) = #

1C
(k)
2 (Dt) and Dt has resolution

at least IV.
(c) The definition of #

2C
(k)
2 (D) means that

#
2C

(k)
2 (D) = (k+1)#{γ : γ ∈ Hq\Db, B2(Dt, γ) = k+1} =: Δ′

0 +Δ′
1 +Δ′

2 +Δ′
3,

where

Δ′
0 = (k + 1)#{γ : γ ∈ (Dq−5(I32)\IN )\Db0 , B2(Dt, γ) = k + 1},

Δ′
1 = (k + 1)#

{
γ : γ ∈

9⋃
i=2

Dq−5(x1xi)\Db1 , B2(Dt, γ) = k + 1
}

,

Δ′
2 = (k + 1)#

{
γ : γ ∈

9⋃
i=3

Dq−5(x2xi)\Db2 , B2(Dt, γ) = k + 1
}

,

Δ′
3 = (k + 1)#

{
γ : γ ∈

⋃
3�i�=j�9

Dq−5(xixj)\Db3 , B2(Dt, γ) = k + 1
}

.

From (a), we can get the following results:
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1◦ for k + 1 < N
32 − l, Δ′

0 = Δ′
1 = Δ′

2 = Δ′
3 = 0;

2◦ for k + 1 = N
32 − l, Δ′

0 = Δ′
2 = Δ′

3 = 0, and

Δ′
1 = (k + 1)#

{
γ : γ ∈

9⋃
i=2

Dq−5(x1xi)
∖
Db1 , B2(Dt, γ) =

N

32
− l

}
= (k + 1)

(N

4
− #(Db1)

)
;

3◦ for N
32 − l < k + 1 < N/32, Δ′

0 = Δ′
1 = Δ′

2 = Δ′
3 = 0;

4◦ for k + 1 = N/32, Δ′
0 = Δ′

1 = Δ′
3 = 0, and

Δ′
2 = (k + 1)#

{
γ : γ ∈

9⋃
j=3

Dq−5(x2xj)
∖
Db2 , B2(Dt, γ) =

N

32

}
= (k + 1)

(7N
32

− #(Db2)
)
;

5◦ for N/32 < k + 1 < 3N/32, Δ′
0 = Δ′

1 = Δ′
2 = Δ′

3 = 0;
6◦ for k + 1 = 3N/32, Δ′

0 = Δ′
1 = Δ′

2 = 0, and

Δ′
3 = (k + 1)#

{
γ : γ ∈

⋃
3�i�=j�9

Dq−5(xixj)
∖
Db3 , B2(Dt, γ) =

3N
32

}
= (k + 1)

(7N
32

− #(Db3)
)
;

7◦ for 3N/32 < k + 1 < 9N
64 − l, Δ′

0 = Δ′
1 = Δ′

2 = Δ′
3 = 0;

8◦ for k + 1 = 9N
64 − l, Δ′

1 = Δ′
2 = Δ′

3 = 0, and

Δ′
0 = (k + 1)#

{
γ : γ ∈ (Dq−5(I32)\IN )\Db0 , B2(Dt, γ) =

9N
64

− l
}

= (k + 1)#{γ : γ ∈ (Dq−5(I32)\IN )\Db0 , B2(Dt, γ) = 0)}
= (k + 1)(#(Dq−5(I32)\IN\Db0)

− #{γ : γ ∈ (Dq−5(I32)\IN )\Db0 , B2(Dt, γ) > 0})
= (k + 1)

(N

32
− 1 − #(Db0) − #{γ : γ ∈ Hq\Db0 , B2(Dt, γ) > 0}

)
= (k + 1)

(N

32
− 1 − f(D∗)

)
,

where the second equality is from (a), and the forth equality is from the fact
that γ1γ2 ∈ Dq−5(I32)\IN for any two different columns γ1 and γ2 of Dt;

9◦ for k + 1 > 9N
64 − l, Δ′

1 = Δ′
2 = Δ′

3 = 0, and

Δ′
0 = (k + 1)#

{
γ : γ ∈ (Dq−5(I32)\IN )\Db0 , B2(Dt, γ) = k + 1 − 9N

64
+ l

}
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= (k + 1)#
{

γ : γ ∈ Hq\Db0 , B2(Dt, γ) = k + 1 − 9N
64

+ l
}

=
k + 1

k + 1 − 9N
64 + l

#
2C

(k− 9N
64

+l)
2 (D∗),

where the first equality is from (a) and the second equality is from the same
fact as in 8◦.

Then (c) follows from 1◦–9◦. �
Proof of Theorem 2 Let D∗ = (Dt : Db0), where

Dt = S(9N/32)\Dt (⊂ Dq−5(x1))

and Db0 is as defined in (11). By (12), if D = (Dt : Db) is a 2n−m : 2r design
with (10), then D should sequentially minimize (#(Db1), #(Db2), #(Db3)) first.

(a) When r � q − 5 and

9N
32

− 2r−1 + 1 � n � 9N
32

,

by Lemma 5, we can select Db = Gr,5 or Db = (Gr−1,5, Fx1,r) since only the two
cases have

#(Db1) = #(Db2) = #(Db3) = 0. (A14)

Note that Dt = S(9N/32)\Dt consists of l = 9N
32 − n (< 2r−1) columns of

Dq−5(x1). Then Fx1,r, which has 2r−1 columns, cannot be accommodated into
Dt. Therefore, it is impossible to have the case of Db = (Gr−1,5, Fx1,r). Thus,
Db = Gr,5. Then (a) follows from a similar argument to the proof of Theorem
1 (a).

(b) By Lemma 5, when r � q − 5 and

17N
64

+ 1 � n � 9N
32

− 2r−1,

similar to (a), we can also select Db = Gr,5 or Db = (Gr−1,5, Fx1,r).
Then, we have (A14), and maximizing (12) is equivalent to maximizing
(−f(D∗), #

2C2(D∗)). The remaining of the proof is similar to that of Theorem
1 (b). We omit it for saving space.

(c)–(e) The proofs are similar to that of Theorem 1 (c). �
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