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ABSTRACT
Mixture experiments have attracted increasingly attention due to their
great practical value in production and living, while uniform designs
over irregular experimental regions have become a hot topic in the area
of experimental designs in the past two decades. Noting that the exper-
imental region of amixture experiment with q components under some
constraints is in fact a (q − 1)-dimensional geometry, this article pro-
poses a new method for searching nearly uniform designs for mixture
experiments with any complex constraints. Two examples with some
tables and figures are given to illustrate this method.

1. Introduction

A mixture experiment refers to an experiment that blends some components to form an end
product and all properties of the product depend only on the proportions of each component
and not on the total amount of the mixture. The extensive application scope and tremendous
practical valuemake the study of mixture experiments much desirable. For accuracy and con-
ciseness, the experimental region of a mixture experiment is usually expressed as:

D = {(x1, . . . , xq)|x1 + · · · + xq = 1, xi ≥ 0,C’s}, (1)

where there are q components involved in the experiment, xi represents the proportion of
the ith component in the total amount of the mixture, i = 1, . . . , q, and C’s are some other
constraints for x1, . . . , xq. As we see, the conditions x1 + · · · + xq = 1 and xi ≥ 0 are the nec-
essary conditions for a mixture experiment but the conditions C’s are not necessary and can
have any form according to the practical situation. For a given design size n of a mixture
experiment with some constraintsC’s , the more uniformly these n points are scattered in the
experimental region, the more reasonably they can represent the whole area, so it is valuable
to search uniform designs for a mixture experiment with any complex constraints. Studies on
uniform designs for mixture experiments mainly include Wang and Fang (1990, 1996), Fang
andWang (1994), Fang and Yang (2000), Tian and Fang (1999), Borkowski and Piepel (2009),
and Ning et al. (2010), most of which discussed about the designs with the C’s only being
the linear constraints for xi’s, and the methods of constructing uniform designs for mixture
experiments with more complex constraints have been little studied.

CONTACT Min-Qian Liu mqliu@nankai.edu.cn LPMC and Institute of Statistics, Nankai University, Tianjin , China.
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The goal of a uniform design is to scatter all the design points in the experimental region
as uniformly as possible. But it is difficult to obtain an absolutely uniform design, so most
articles on this subject mainly discussed about constructing nearly uniform designs (NUDs)
which have relatively good performances under some criteria. Till now, many criteria have
been proposed for measuring the uniformity of designs in regular and irregular experimental
regions (see, e.g., Fang et al., 2006). As for the case of irregular regions, themean squared error
(MSE) proposed by Fang and Wang (1994), root mean squared distance (RMSD), maximum
distance (MD), and average distance (AD) discrepancies proposed by Borkowski and Piepel
(2009), and the central composite discrepancy (CCD) proposed by Chuang and Hung (2010)
are widely used criteria. In addition to the CCD criterion, a useful algorithm for searching
NUDs under the CCD criterion was also recommended by Chuang and Hung (2010), which
is called the switching algorithm (SA) and can decrease the burden of search hugely compared
with the exhaustive search.

Taking into account that the q-component design region restricted byC’s is in fact a (q −
1)-dimensional geometry, this article proposes an interestingmethod for searching theNUDs
formixture experimentswith any complex constraintsC’s based onChuang andHung (2010)’s
method, that is, transforming the experimental region into a (q − 1)-dimensional coordinate
system first, then searching the NUD via the SA, and finally transforming the selected points
back into the original coordinate system. The transformation ismainly achieved by thematrix
QR decomposition.

The rest of this article is arranged as follows. Section 2 introduces some preliminaries,
including the CCD, RMSD,MD, and AD criteria and SA. Section 3 proposes the newmethod,
and provides two examples for illustration and comparison. Some concluding remarks are
provided in Sec. 4.

2. Preliminaries

In this section, the CCD, RMSD, MD, and AD criteria and SA will be introduced.

2.1. The CCD criterion

Suppose D is an irregular geometry in q-dimensional space Rq, which denotes the exper-
imental region of some experiment. For any fixed point x = (x1, . . . , xq) in D, the (q − 1)-
dimensional hyperplane which is perpendicular to the ith axis and gets through point x chops
the ith axis into two parts, i.e., (−∞, xi] and (xi, +∞), where i = 1, . . . , q, then the region
D can be divided into 2q small grids by the q hyperplanes referred to above, denoted by
D1(x), . . . ,D2q (x), with point x being the center of them. Note that, according to Chuang
and Hung (2010), D could be divided into mq grids surrounding x, and we take m = 2 here
which will be enough for illustrating the new method. Let P denote a design with n points
from D, and the central composite discrepancy (CCD) used to measure the uniformity of P
can be written as

CCDp(n,P ) =
{

1
V (D)

∫
D

1
2q

2q∑
t=1

∣∣∣∣N(Dt (x),P )

n
− V (Dt (x))

V (D)

∣∣∣∣
p

dx

}1/p

, (2)

where p > 0,N(Dt (x),P ) denotes the number of points belonging toP and falling intoDt (x)
at the same time, andV (Dt (x)) andV (D) denote the volumes ofDt (x) andD, respectively. In
this article, we take p = 2 as Chuang and Hung (2010) did in their investigation. Apparently,
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2174 Y. LIU ANDM. -Q. LIU

a smallCCDp(n,P ) value implies a relatively uniform design and the design P∗ with

P∗ = arg min
P∈Z(n)

CCDp(n,P )

is themost uniform designwith a given run size n, whereZ(n) denotes the set composed of all
the designs with n points from D. In a practical application, the region D is often discretized
intoN points (N � n), and theCCDp(n,P ) value in Eq. (2) can be approximately calculated
through the following expression:

CCDp(n,P ) ≈
{
1
N

N∑
i=1

1
2q

2q∑
t=1

∣∣∣∣N(Dt (xi),P )

n
− N(Dt (xi))

N

∣∣∣∣
p
}1/p

. (3)

2.2. The SA

The switching algorithm (SA) is an efficient algorithm which has been used in Winker and
Fang (1998), Fang et al. (2001), and Chuang and Hung (2010). It could be restated as follows:

Algorithm 2.1. (SA, Chuang and Hung, 2010).

Step 1. Discretize the region D, which means replacing D by N points in it, i.e., D =
{g1, . . . , gN}, where N � n.

Step 2. Arbitrary choose n points as the initially current design “Cdesign,” for example, choose
Cdesign = {g1, . . . , gn}; set the iteration counter i = 0 and the next design Ndesign =
Cdesign.

Step 3. While i = 0 or Ndesign �= Cdesign
set i = i + 1, Cdesign=Ndesign;
for j = 1 to n do
let g∗ = argming∈D\NdesignCCDp(n, {g}

⋃
Ndesign\{g j});

ifCCDp(n, {g∗} ⋃
Ndesign\{g j}) ≤ CCDp(n,Ndesign)

set Ndesign = {g∗} ⋃
Ndesign\{g j};

end if
end for

end while.
Step 4. Export Cdesign,CCDp(n,Cdesign) and i.

Remark 2.1. Note that N denotes the number of points which we discretize the irregular
design area into. The choice ofN is arbitrary, of course a largerN means a more uniform final
design will be obtained but under a more time-consuming process. The algorithm requires
N � n, and through some simulations we found that the ratio of N to n (the run size of the
design) being greater than 5 is enough. Therefore, in the two examples in Sec. 3, we will dis-
cretize the corresponding design regions reasonably so that N/n > 5.

Chuang and Hung (2010) has shown that the SA has less iteration times, quicker conver-
gence speed and saves time dramatically compared with the exhaustive search, and what is
more, the performance of the NUD obtained via the SA is extremely close to the most uni-
form design.
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2.3. The RMSD,MD, and AD criteria

We now introduce three commonly used criteria for measuring the uniformity of designs,
which will assist us to understand the CCD criterion. Suppose P = {p1, . . . , pn} denotes a
design composed of n points in irregular region D ⊆ Rq, and the distance between a point
x = (x1, . . . , xq) in D and the design P is defined as

d(x,P ) = min
1≤i≤n

d(x, pi), 1 ≤ i ≤ n, where

d(x, pi) = [(x − pi)(x − pi)′]1/2,

then the root of mean squared distance (RMSD), maximum distance (MD), and average dis-
tance (AD) discrepancies are defined as

RMSD(P ) =
√
E[(d(x,P ))2], MD(P ) = max

x∈D
[d(x,P )], and

AD(P ) = E[d(x,P )],

respectively, where E[ f (x)] = ∫
D f (x)dx. If the region D is discretized into N points

{u1, . . . , uN}, then the RMSD, MD, and AD values can be approximated by

RMSD(P ) ≈
√√√√ 1

N

N∑
m=1

(d(um,P ))2, MD(P ) ≈ max
m=1,...,N

d(um,P ), and

AD(P ) ≈ 1
N

N∑
m=1

d(um,P ),

respectively. Apparently, using this three criteria to evaluate the uniformity of designs is rea-
sonable but searching the optimal or nearly optimal design under some of these three criteria
is difficult because of the tremendous computing burden.

3. The newmethod

This section devotes to the newmethod for finding NUDs for mixture experiments under the
CCD criterion. Let us see the principle of the mapping used in the method.

Theorem 3.1. The simplex H = {(x1, . . . , xq)|
∑q

i=1 xi = 1, xi ≥ 0} can be transformed into
the hyperplaneH1 = {(z1, . . . , zq)|zq = 0}with its shape and size invariant via themapping T :
z = [x − (1, 0, . . . , 0)]Q,where x ∈ H, z ∈ H1 andQ is the orthogonalmatrix coming from the
matrix QR decomposition

(
−1,...,−1

Iq−1

)
= Q

(
R(q−1)×(q−1)
01×(q−1)

)
, with Iq−1 being a unity matrix of order

q − 1, R(q−1)×(q−1) being an upper triangular matrix and 01×(q−1) being a (q − 1)-dimensional
zero vector. And the inverse mapping of T can be written as T−1 : x = zQ′ + (1, 0, . . . , 0),
where z is in the image of H, i.e., z ∈ T (H), and x ∈ H.

Proof. The theory of the matrix QR decomposition says that: for any real matrix A with n
rows, m columns and rank m, where n > m, it can be decomposed as A = Bn×n

(
Cm×m

0(n−m)×m

)
,

where Bn×n represents an orthogonal matrix, Cm×m denotes an upper triangular matrix and
0(n−m)×m is a matrix with all entries zero.

This theory guarantees the existence of matrixQmentioned in the theorem. Then we have(
−1,...,−1

Iq−1

)
= Q

(
R(q−1)×(q−1)
01×(q−1)

)
and it is easily to prove that:

(i) for any point x ∈ H , its image T (x) really falls into the hyperplane H1 and for any
z ∈ T (H), its preimage T−1(z) ∈ H ;
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2176 Y. LIU ANDM. -Q. LIU

(ii) the mappings T and T−1 keep the Euclid distance invariant, which means d(x1, x2) =
d(T (x1),T (x2)) and d(z1, z2) = d(T−1(z1),T−1(z2)), where x1, x2 ∈ H , z1, z2 ∈
T (H), and d(a, b) = [(a − b)(a − b)′]1/2.

So the image T (H) is a subset of H1 and has the identical shape with the simplex H ; and
vice versa. �

Furthermore, from this theorem, we can easily show the following.

Corollary 3.1.
(i) The geometry formed by any subset of the simplex H is identical with its image in H1 after

the mapping T.
(ii) If R(q−1)×(q−1) = (ri j), then the points (0, . . . , 0), (r11, . . . , rq−1,1, 0), . . . , (r1,q−1, . . . ,

rq−1,q−1, 0) are the images of the vertices of the simplex H successively;
(iii) T and T−1 can also be viewed as one-to-one mappings between the hyperplane H0 =

{(x1, . . . , xq)|
q∑

i=1
xi = 1} in Rq and the (q − 1)-dimensional space Rq−1 but their for-

mulae should be changed a little. Let M and M−1 denote the changed ones and they
can be expressed as M : y = [x − (1, 0, . . . , 0)]Q

(Iq−1
0

)
and M−1 : x = y(Iq−1, 0)Q′ +

(1, 0, . . . , 0), respectively, where x ∈ H0 and y ∈ Rq−1.

Now, let us present the new method for finding NUDs for mixture experiments under the
CCD criterion.

Algorithm 3.1.

Step 1. Let D denote the experimental region of a mixture experiment with some constraints,
as defined in (1).

Step 2. Transform D into Rq−1 through the mapping M proposed in Corollary 3.1, i.e., y =
[x − (1, 0, . . . , 0)]Q

(Iq−1
0

)
, x ∈ H . Denote the image after the transformation as D1.

Step 3. Give the run size n, and search the NUD in D1 under the CCD criterion by the SA in
Algorithm 2.1.

Step 4. Transform the points of the NUD back into the simplex H , by the inverse mapping
M−1 : x = y(Iq−1, 0)Q′ + (1, 0, . . . , 0), y ∈ Rq−1, then we obtain the final NUD in D.

The mappings M and M−1 used in the algorithm can also be replaced by the T and T−1

provided in Theorem 3.1, respectively, and the result will be the same.
Next, two examples are presented for illustrating this new method.

Example 3.1. Now, we revisit the problem considered in Borkowski and Piepel (2009). Three
components x1, x2, and x3 are needed for generating someproduct, and they have constraints:

0.1 ≤ x1 ≤ 0.7, 0 ≤ x2 ≤ 0.8, 0.1 ≤ x3 ≤ 0.6 and x1 − x2 ≥ 0.

We denote the experimental region as S, which could be seen in Fig. 1a, i.e., the area formed
by sequentially linking the points C,D,E, F,G, and the equilateral triangle with the vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1) refers to the simplexH = {(x1, x2, x3)|x1 + x2 + x3 = 1, xi ≥
0}.

First of all, according to the QR decomposition, we have⎛
⎝−1 −1
1 0
0 1

⎞
⎠ = Q3×3

(
R2×2

01×2

)
=

⎛
⎝−√

2/2 −√
6/6

√
3/3√

2/2 −√
6/6

√
3/3

0
√
6/3

√
3/3

⎞
⎠

⎛
⎝

√
2

√
2/2

0
√
6/2

0 0

⎞
⎠ ,
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Figure . Illustration for Example .: (a) the experimental region S (i.e., the region enclosed by
points C,D, E, F,G); (b) the image of S after the mapping (i.e., the region enclosed by points
C1,D1, E1, F1,G1); (c) the NUD with n = 21 in the image of S; and (d) the final NUD with n = 21 in S.
The points are: A = (0.1, 0.3, 0.6), B = (0.1, 0.8, 0.1),C = (0.7, 0.2, 0.1),D = (0.7, 0, 0.3), E =
(0.4, 0, 0.6), F = (0.2, 0.2, 0.6),G = (0.45, 0.45, 0.1),A1 = (0.8485, 0.7348), B1 = (1.2021, 0.1225),
C1 = (0.3536, 0.1225),D1 = (0.2121, 0.3674), E1 = (0.4243, 0.7348), F1 = (0.7071, 0.7348), and G1= (0.7071, 0.1225).

so the mapping and its inverse mapping can be expressed as

M : y = [x − (1, 0, 0)]

⎛
⎝−√

2/2 −√
6/6

√
3/3√

2/2 −√
6/6

√
3/3

0
√
6/3

√
3/3

⎞
⎠

⎛
⎝1 0
0 1
0 0

⎞
⎠ , and

M−1 : x = y
(
1 0 0
0 1 0

)⎛
⎝−√

2/2
√
2/2 0

−√
6/6 −√

6/6
√
6/3√

3/3
√
3/3

√
3/3

⎞
⎠ + (1, 0, 0),

respectively. Figure 1b shows the image of S, denoted by S1, i.e., the region enclosed by the
points C1,D1,E1, F1,G1, and the vertices of the simplex H after the mapping, i.e., (0, 0),
(
√
2, 0) and (

√
2/2,

√
6/2).

Next we discretize the region S1 into 128 points, the process of this discretization proceeds
in this way: the range intervals of the equilateral triangle in Fig. 1b are [0,

√
2] on the axis y1

and [0,
√
6/2] on the axis y2, respectively, then we divide the rectangle [0,

√
2] × [0,

√
6/2]

into 30 × 30 small grids with the same size, take all the center points of these grids and keep
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Figure . Illustration for Example .: (a), (b), and (c) display three different NUDs with n = 15 in the sector
region obtained by repeatedly run the program three times. The coordinates of the vertices of the sector
are:O = (0, 0, 1), P = (0.6, 0, 0.4), andQ = (0, 0.6, 0.4).

the ones just falling into S1, finally, 128 points are kept and will be used as a substitute for the
continuous region S1.

For a given run size n = 21, an NUD can be constructed according to the newmethod and
its points are drawn in Fig. 1d. The CCD value of this final NUD ends in 0.0201, which indicts
that this NUD is a fairly uniform design. The corresponding values of RMSD, MD and AD
are 0.0506, 0.1027, and 0.0466, respectively, which are close to but slightly larger than that of
Borkowshi and Piepel (2009), which are 0.0469, 0.0878, and 0.0433, respectively. This means
that the uniformity of the design obtained through the new method is almost the same but a
little worse than that of Borkowshi and Piepel (2009), but the advantage of the new method
lies in that it can deal with mixture experiments with any complex constraints and Borkowshi
and Piepel’s (2009) can only handle the case with linear constraints.

Example 3.2 will construct NUDs for a mixture experiment with non-linear constraints
which cannot be solved by the method of Borkowshi and Piepel (2009).

Example 3.2. Consider the design region

S2 = {(x1, x2, x3)|x1 + x2 + x3 = 1, x21 + x22 ≤ 0.36, xi ≥ 0}
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Table . The values of CCD, RMSD, MD, and AD of the three NUDs in Example ..

CCD RMSD MD AD

Figure  (a)‡ . . . .
Figure  (b) . . . .
Figure  (c) . . . .

‡: Figure a denotes the design drawn in Fig. a and so on.

with n = 15 points. Similarly as we do in Example 3.1, obtain the image of S2 through the
mapping, denoted by S3, discretize S3 into 112 points, i.e., dividing the rectangle [0,

√
2] ×

[0,
√
6/2] into 20 × 20 small grids with the same size and keeping the corresponding center

points that falling into S3, where among the 400 center points, there are just 112 such points.
Then use the new method to construct NUDs. Repeatedly run the program for three times,
we get three different designs just as Fig. 2 shows. The corresponding values of CCD, RMSD,
MD, and AD are listed in Table 1. It can be seen from Fig. 2 that all these three designs have
good uniformity, and Table 1 shows that these three NUDs have similar values under each of
these four criteria, which means that the NUDs constructed by the new method have stable
quality.

Remark 3.1. Because the initial design in the SA (i.e., Algorithm 2.1) is arbitrary, the resulting
design will not be exclusive. However, Chuang and Hung (2010) showed that all the resulting
designs from the SA approximate very well the optimal design (based on exhaustive search)
and have a very small standard deviation of the CCD values through a trail of 100 times sim-
ulations on a unit square input domain, which means the SA is a stable algorithm and each
resulting design from the SA is very close to the optimal design (based on exhaustive search).
Of course the CPU time for finding the NUD based on the SA is far less than that of finding
the optimal design.

4. Concluding remarks

This article proposes a newmethod to handle the problem of constructing NUDs for mixture
experiments with complex constraints, based on the CCD criterion for irregular experimental
regions and the SA used in Chuang and Hung (2010). And what is more, the experimental
region of a q-component mixture experiment with any constraints is essentially a (q − 1)-
dimensional irregular geometry and both of them come to the same thing, so the uniform
designs for irregular regions and mixture experiments can be constructed by the same meth-
ods under the same criteria, and it is not necessary to treat them separately as in the past. This
will greatly broaden the ways of coping with these two problems.

One more point to be noted is that both examples consider the case when there are q = 3
components involved in eachmixture experiment, and hence the CCD value of each design in
the SA (i.e., Algorithm 2.1) is calculated by taking the “q in Eq. (3)” equal to 2. As for the case
when there are q > 5 (a larger q) components, both Algorithms 2.1 and 3.1 can be carried out
the same as q = 3. In particular, the CCD value of each design can also be calculated using
Eq. (3). However, for this case, for any point x, the region D is no longer divided into 22 = 4
small grids around x, but 2q−1 ones, thus the computation of Eq. (3) would be more complex.
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