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Computer experiments have received a great deal of attention in many fields of science and technology.
Most literature assumes that all the input variables are quantitative. However, researchers often encounter
computer experiments involving both qualitative and quantitative variables (BQQV). In this article, a new
interface on design and analysis for computer experiments with BQQV is proposed. The new designs
are one kind of sliced Latin hypercube designs with points clustered in the design region and possess
good uniformity for each slice. For computer experiments with BQQV, such designs help to measure
the similarities among responses of different level-combinations in the qualitative variables. An adaptive
analysis strategy intended for the proposed designs is developed. The proposed strategy allows us to
automatically extract information from useful auxiliary responses to increase the precision of prediction
for the target response. The interface between the proposed design and the analysis strategy is demonstrated
to be effective via simulation and a real-life example from the food engineering literature. Supplementary
materials for this article are available online.
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1. INTRODUCTION

Computer experiments are becoming increasingly prevalent
surrogates for physical experiments (Santner, Williams, and
Notz 2003; Fang, Li, and Sudjianto 2006). Most relevant re-
search has paid attention to situations where all the input vari-
ables are quantitative. However, researchers often encounter
computer experiments with both qualitative and quantitative
variables (BQQV). See, for examples, Rawlinson et al. (2006),
Long and Bartel (2006), Qian et al. (2006), Qian and Wu (2008),
Qian, Tang, and Wu (2009), among others.

The modeling methods for computer experiments with BQQV
are more complicated than those involving only quantitative
variables. Most efforts have attempted to connect the infor-
mation of all the responses corresponding to different level-
combinations of the qualitative variables. McMillan et al.
(1999), Joseph and Delaney (2007) and Zhou, Qian, and Zhou
(2011) proposed prediction methods based on Gaussian pro-
cess (GP) models. Han et al. (2009), from a different aspect,
proposed a hierarchical Bayesian model. Herein, the response
to be predicted is called the target response (TR) and the re-
maining ones are called the auxiliary responses (ARs). The
methods mentioned above use the information of all the ARs
to predict a TR. However, if an AR is not similar to the TR,
the information of such an AR may reduce the prediction ac-
curacy of the TR. Han et al. (2010) confirmed this point and
suggested the ANOVA kriging model to select the similar re-
sponses. One limitation of the ANOVA kriging is that only one

response can be set as the TR because the ANOVA kriging calls
for a different design if the TR is changed; while practical sit-
uations often require setting each response in turn as the TR
with the design unchanged (see Qian, Wu, and Wu 2008; Zhou,
Qian, and Zhou 2011). Note that the term “different responses”
here means “the responses corresponding to different level-
combinations of the qualitative variables.” That is, we consider
a single response whose output vector can be partitioned into
slices corresponding to different level-combinations of the qual-
itative variables. This is different from the concept of “multiple
responses.”

A new interface on design and analysis for computer ex-
periments with BQQV is studied. The new design, called an
optimal clustered-sliced Latin hypercube design (OCSLHD),
is proposed to obtain the similarity measures among different
responses. Based on the similarity measures produced by the
OCSLHD, an analysis strategy is developed to select the ARs
that are similar to the TR. Then, these ARs are included into
the models for predicting the TR. That is, the interface between
the proposed design and analysis helps to remove useless in-
formation for the TR. This is ignored by the existing design
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and analysis framework for computer experiments with BQQV
(except perhaps the ANOVA kriging method). By discarding
the useless ARs, the prediction accuracy of the TR is improved.
The new interface on design and analysis is applied to the mod-
els of McMillan et al. (1999), Joseph and Delaney (2007), and
Zhou, Qian, and Zhou (2011). Unlike the ANOVA kriging, the
proposed framework here is able to set each response in turn as
the TR under the same design.

This article is organized as follows. Section 2 introduces the
underlying models, followed by a discussion on when an AR
is useful for predicting the TR. Section 3 presents the design
construction method. Section 4 develops an analysis strategy
intended for the proposed designs. Two simulated examples and
a real-life example are studied to demonstrate the effectiveness
of the interface between the proposed design and analysis strat-
egy in Sections 5 and 6, respectively. Concluding remarks are
given in Section 7. Some additional contents mentioned in the
main text are placed in the supplementary material, which is
available online.

2. METAMODELS AND THE CONDITION FOR
AN AR BEING USEFUL

In this section, the metamodeling framework for computer
experiments with BQQV will be introduced. We then discuss
the question of when an AR will be useful for predicting the
TR.

2.1 Gaussian Process Models With BQQV

A metamodel of a computer experiment seeks to represent
the relation between the output and input variables well. The
GP model plays a critical role for metamodeling due to its
convenience, flexibility, and broad generality. The GP model
used in most of the literature involves only quantitative variables.
This section briefly describes how to use the GP model to build
a metamodel with BQQV. For more details, refer to Qian, Wu,
and Wu (2008).

Suppose that for u = 1, . . . , N , xu = (xu1, . . . , xut )T and
zu = (zu1, . . . , zul)T are the uth inputs of quantitative and qual-
itative variables, respectively. For j = 1, . . . , l, assume the jth
qualitative variable has qj levels, denoted by 1, . . . , qj . Let
s = ∏l

j=1 qj , and denote the s level-combinations of the qualita-
tive variables by c1, . . . , cs . Let wu = (xTu , zTu )T be the uth input
vector and y(wu) be the output value at wu. Then, y(wu) can be
expressed as y(wu) = f(wu)T β + ε(wu), u = 1, . . . , N , where
f(w) = (f1(w), . . . , fp(w))T is a set of known functions, β =
(β1, . . . , βp)T is the vector of unknown coefficients. f(wu)T β is
called the regression part, and ε(wu) is the residual part which
is assumed to be a zero-mean stationary GP with covariance
function

cov(ε(wu), ε(wv)) = σ 2ϕ1(xu, xv)ϕ2(zu, zv),
for u, v = 1, . . . , N, (1)

where σ 2 is the variance, ϕ1(xu, xv) and ϕ2(zu, zv) are the
correlation functions for the quantitative variables and quali-
tative variables, respectively. The most commonly used form

for ϕ1(xu, xv) is the Gaussian correlation function

ϕ1(xu, xv) =
t∏

k=1

exp{−θk|xuk − xvk|2}, (2)

where θ = (θ1, . . . , θt )T is the vector of roughness parameters
with each element being positive. Throughout this article, (2)
will be used for ϕ1(xu, xv). There are two popular ways to model
ϕ2(zu, zv). One of them is of the form

ϕ2(zu, zv) = τc∗u,c∗v , (3)

where c∗u represents the level-combination of the qualitative vari-
ables in zu (c∗u ∈ {c1, . . . , cs}, and τc∗u,c∗v is the cross-correlation
between responses corresponding to level-combinations c∗u and
c∗v . As proved by Qian, Wu, and Wu (2008), (3) is a valid cor-
relation function provided that the s × s matrix P = (τci ,cj ) is a
positive-definite matrix with unit diagonal elements (PDUDE).
Several choices of the τci ,cj in the literature satisfy this condi-
tion. Joseph and Delaney (2007) suggested τci ,cj = c (0 < c <

1) for i �= j , called the exchangeable correlation (EC) function.
McMillan et al. (1999) suggested τci ,cj = exp{−(φi + φj )I (i �=
j )} (φi, φj > 0), called the multiplicative correlation (MC)
function. Zhou, Qian, and Zhou (2011) modeled the matrix
P by using the hypersphere decomposition based unrestrictive
correlation (UC) function. These three models are all called the
integral kriging models. Another way to model ϕ2(zu, zv) is to
use a product form of (3) (Santner, Williams, and Notz 2003),
that is,

ϕ2(zu, zv) =
[

l∏
j=1

τ (j )
zuj ,zvj

]
, (4)

where Pj = (τ (j )
r,m) (r,m = 1, . . . , qj ) is a qj × qj PDUDE. Ap-

plying (4) instead of (3) may significantly reduce the number of
parameters. A detailed discussion on the parameters involved in
(3) and (4) is given in Supplementary Section S1. In sum, (4) has
no more parameters than (3), except for the EC model, when (4)
has more parameters. Note that no matter whether the correlation
function is of form (3) or (4), it is only the level-combinations
that matter for a computer experiment with BQQV, that is, each
level-combination of the qualitative variables determines its own
response surface.

An unknown constantμ is used as the regression part through-
out this work. Such a GP model is known as ordinary kriging
in the literature. Let R be the N ×N matrix with the (u, v)th
element beingϕ1(xu, xv)ϕ2(zu, zv). The best linear unbiased pre-
dictor (BLUP) of an ordinary kriging model at an untried site
w∗ is

ŷ(w∗) = μ+ rTR−1(y − 1Nμ), (5)

where μ = (1TNR−11N )−11TNR−1y, y = (y1, . . . , yN )T and r =
(r(w∗,w1), . . . , r(w∗,wN ))T . In (5), R, r and μ depend on the
correlation function r(·), which in turn depends on the rough-
ness parameter θ in (2) and the cross-correlation parameters
in (3) or (4). The most popular approach to estimate them
is the maximum likelihood method and some powerful opti-
mization algorithms can be found in Fang, Li, and Sudjianto
(2006).

TECHNOMETRICS, NOVEMBER 2016, VOL. 58, NO. 4
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2.2 Similarity

The GP model framework indicates that an AR is useful for
predicting the TR if both of them satisfy the model assump-
tions (1)–(5). In addition, a useful AR should possess a “large”
(in absolute value) cross-correlation with the TR. Theoretically
speaking, an AR that has a cross-correlation close to 0 with the
TR would not affect the prediction of the TR. However, since
such an AR provides little information for the TR, we recom-
mend its removal, eliminating unnecessary parameter estima-
tion. The following four conditions can be used to determine
whether an AR is useful for the TR, where the first three are
related to the model assumptions and the last one is related to
the cross-correlation.

1. The overall mean of the AR is close to that of the TR (a
common regression part μ).

2. The amplitude of the variation in the AR is close to that
in the TR (a common process variance σ 2).

3. The frequency of the oscillation for the AR is close to that
for the TR (a common roughness parameter θ ).

4. The phase of the oscillation for the AR is nearly the
same (or opposite) as that for the TR (a large cross-
correlation).

If the above four conditions are satisfied, the AR is useful;
otherwise, it should not be used for predicting the TR. Note
that Conditions 1 and 2 are not essential since the differences
of the overall means and the amplitudes of the variation can be
addressed by normalizing the response data (subtract the mean
and divide by the standard deviation) for each response sur-
face when space-filling designs are adopted (Santner, Williams,
and Notz 2003). Data normalization thus is recommended as
part of any computer experiment with BQQV. Conditions 3
and 4 form the basis for deciding whether an AR is useful.
Specifically, when Condition 3 is violated but a common rough-
ness parameter is assumed, predictions for the TR will be poor
because such an assumption is incorrect. Condition 4 is typi-
cally difficult to assess and estimates of the cross-correlation
parameters depend heavily on the design. This motivates the
introduction of a new class of designs in Section 3. What fol-
lows is a heuristic example to illustrate the fact that Condi-
tions 1 and 2 are not essential, but Conditions 3 and 4 are
important. This example also demonstrates that when Condi-
tion 3 or 4 are not satisfied, the individual kriging (IK) model
is more appropriate. Unlike the integral kriging models, the
IK model allows different values of μ, σ 2, and θ for different
responses.

Example 1. Consider an experiment involving one qual-
itative variable of two levels, denoted by 1 and 2, and
one quantitative variable x. The simulated response curves
are y(1, x) = a1 sin(b1 ∗ π ∗ (x + 1/8c1)) + d1 (Curve I) and
y(2, x) = a2 sin(b2 ∗ π ∗ (x + 1/8c2)) + d2 (Curve II) with x ∈
[0, 1). For each curve, the coefficients are drawn from inde-
pendent Gaussian distributions with standard deviation 0.01.
For each level of the qualitative variable, the training data are
generated by using a random Latin hypercube design (McKay,
Beckman, and Conover 1979) with six runs for x in [0, 1),
and the testing data are taken at 100 equally spaced points

in [0, 1). The data for each response curve are normalized be-
fore building the models. The root-mean-squared error (RMSE)
of the predictor (5) over N0 testing points w∗

1,w∗
2, . . . ,w∗

N0
,

defined as RMSE = N−1
0

√∑N0
u=1(y(w∗

u) − ŷ(w∗
u))2, is used to

assess the prediction accuracy. This procedure of data gen-
eration, modeling, and prediction accuracy assessment is re-
peated 100 times for each integral kriging model and the IK
model. Four scenarios are considered below, which are cho-
sen to represent departures corresponding to Conditions 1–4,
respectively.

Scenario Case 1 Case 2

1 (1, 4, 0.125, 0) (1, 4, 0.125, 0 to 5 by 1.0)
2 (1, 4, 0.125, 0) (1 to 6 by 1.0, 4, 0.125, 0)
3 (1, 4, 0.125, 0) (1, 4 to 5 by 0.2, 0.125, 0)
4 (1, 4, 0.125, 0) (1, 4, 0 to 2 by 0.2, 0)

• The column “Case 1” contains the mean values of
(a1, b1, c1, d1) for each scenario.

• The column “Case 2” contains the mean values of
(a2, b2, c2, d2) for each scenario.

• Scenarios 1–4 are chosen to represent departures corre-
sponding to Conditions 1–4, respectively.

Figure 1 shows the prediction performances of the IK and
integral kriging models under Scenarios 1–4 respectively, when
Curve I is set to be the TR. The situations for predicting Curve
II are similar so we omit them for saving space.

The first row of Figure 1 demonstrates the nonessential nature
of Condition 1 when Conditions 2–4 hold. As the difference in
the overall means between the two curves increases, the medi-
ans of the RMSEs of the integral kriging models change little
and they are always smaller than the medians of the RMSEs
of the IK model, and their standard deviations are comparable.
The second row presents a similar phenomenon, which demon-
strates the nonessential nature of Condition 2. The third row
demonstrates that as the difference in the frequencies of the
oscillation increases, prediction performances of the integral
kriging models deteriorate and will be inferior to the IK model
when the difference is sufficiently large. The fourth row demon-
strates a similar phenomenon to the third row as the difference
in the phases of the oscillation increases (which means that the
cross-correlation between the curves is weakening). Note that
prediction performance of the UC model takes a favorable turn
as b2 varies from 1 to 2. This benefit derives from the fact that
the cross-correlation parameters of the UC model can take val-
ues in (−1, 1), whereas the cross-correlation parameters of the
EC and MC models can only take values in (0, 1).

At this point, it should be clear that the verification of Condi-
tions 3 and 4 is crucial for building the integral kriging models.
In fact, Condition 3 is a necessary condition of Condition 4,
so it suffices to verify Condition 4. For brevity, we call an AR
satisfying Condition 4 the one similar to the TR. A natural ques-
tion arises on how to measure the similarities between the AR
and the TR. To tackle this problem, a data-driven method from
an experimental design viewpoint will be proposed in the next
section.

TECHNOMETRICS, NOVEMBER 2016, VOL. 58, NO. 4



498 HENGZHEN HUANG ET AL.

Figure 1. Rows 1–4 represent Scenarios 1–4, respectively. For each row, the left panel shows the plot of the curves for one draw (d2 = 3, a2 =
4, b2 = 4.6, c2 = 1 for rows 1–4, respectively); the middle panel shows the medians of the RMSEs when Curve I is set to be the TR; the right
panel shows the standard deviations of the RMSEs.

3. OPTIMAL CSLHD AND ITS CONSTRUCTION

From the discussions in Section 2, two responses are said to
be similar if their phases of oscillation are nearly the same or
opposite. To measure the similarities among different responses,

a natural approach is to use the sample correlation coefficients
among the output vectors of different responses as the similarity
measures. From the modeling perspective, using the same design
helps to yield a large (in absolute value) cross-correlation for
a pair of responses that are similar. On the other hand, using

TECHNOMETRICS, NOVEMBER 2016, VOL. 58, NO. 4
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different designs for the responses helps to provide information
from a wider sample of the quantitative variables. These two
objectives are competing with each other. To obtain a large
cross-correlation between two similar responses and make good
use of information from the AR, designs that balance the two
competing objectives are desirable. The objective of obtaining
a large cross-correlation between two similar responses is more
important since it guarantees that the information of the AR can
be used effectively. To this end, making the designs similar for
each response but not identical helps meet the first objective and
also provides information from a wide sample of the quantitative
variables. A simple approach is to use the same design for all
responses, then add a small amount of random jitter to each
point. This approach, however, is not guaranteed to achieve
good stratification for each dimension, which makes it difficult
to use information from the quantitative variables. A systematic
method to locate the design points is called for.

In this section, a new design called clustered-sliced Latin
hypercube design (CSLHD) is proposed first. This design
is useful for measuring the similarities among different re-
sponses, while keeping most of the desirable properties of
an SLHD. A computer algorithm for constructing optimal
CSLHDs (OCSLHDs) under the centered L2-discrepancy
(Hickernell 1998) will then be developed. The similarity mea-
sures, produced by the OCSLHDs, will be used to further deter-
mine which ARs are indeed useful. This issue will be elaborated
in Section 4.

3.1 Clustered-Sliced Latin Hypercube Designs

Let n be the number of design points for each level-
combination of the qualitative variables, s be the number of
level-combinations of the qualitative variables, and N = ns.
Assume that the design region for the quantitative variables is
[0, 1)t , and the quantitative variables can be varied indepen-
dently. A CSLHD can be constructed via the following four
steps:

Algorithm 1.

Step 1. For i = 1, . . . , n, let gi = ((i − 1)s + 1, (i − 1)s +
2, . . . , is)T .

Step 2. Let (u1, . . . , un)T be a permutation on (1, . . . , n)T . For
i = 1, . . . , n, let g�

i be a uniform permutation on gui (each
possible permutation will be selected with an equal proba-
bility), and hk = (g�

1(k), . . . , g�
n(k))T , for k = 1, . . . , s. Put

h = (hT1 , . . . ,hTs )T , which is an N × 1 column vector.
Step 3. Repeat Step 2 t times independently; each time an N ×

1 column vector h is generated, and juxtapose those t column
vectors, column by column; an N × t array G is obtained.

Step 4. The resulting design D is generated by D = (G −
JN,t )/N , where JN,t is an N × t matrix of (1/2)’s or in-
dependent deviates all having the uniform distribution on
(0, 1).

The general properties for the proposed design are summa-
rized as below, with proofs given in Supplementary Section S2.

Proposition 1. For the design D constructed via Algorithm
1, we have that

(i) D is a Latin hypercube design with N levels;
(ii) For k = 1, . . . , s, let D(k) be the kth slice consisting of

rows (k − 1)n+ 1, . . . , kn of D, then D(k) is a Latin
hypercube design with n levels;

(iii) Let JN,t be anN × t matrix of (1/2)’s. For i = 1, . . . , n,
let A(i) be the ith subarray of D consisting of all the ith
rows of D(1), . . . ,D(s), and letMi be the maximum inter-
point distance for A(i). We have M = max1≤i≤n Mi ≤
(1 − s−1)

√
t/n.

Proposition 1 (i) and (ii) guarantee that the constructed de-
sign is an SLHD. It is a new class of SLHD with N runs, t
columns, and s slices of equal size. Such a design is denoted by
CSLHD(N, t, s). A small value of the M defined in Proposition
1 (iii) indicates that the design points of the proposed design
have a clustered structure, that is, as pointed out by one referee,
for any point in one slice there will be one point in another slice
within a distance M. Thus, a small M implies that the slices of
a CSLHD are nearly the same. This is a desirable property that
ensures the sample correlation coefficients among the output
vectors can be used as the similarity measures. Note that if the
unit cube is divided into Nt cells of the same size, we allow
the points of a CSLHD(N, t, s) located at the centers of the N
corresponding cells or selected at random from them (selection
of JN,t in Step 4). Selecting points from the centers of cells
facilitates the construction of optimal designs (see Section 3.2),
whereas selecting at random from the cells gives the design
similar sampling properties as an SLHD (Qian 2012).

The following example illustrates the construction steps of a
CSLHD. Another example is provided in Supplementary Sec-
tion S3 to demonstrate the application of CSLHDs in a numerical
integration problem. The example below has the points selected
from the centers of cells, whereas the supplementary example
has the points selected at random from cells.

Example 2. Let n = 6, t = 2, s = 3 and N = ns = 18. Our
construction method will give a CSLHD(18, 2, 3) in the four
steps as described in Algorithm 1.

Step 1. Let g1 = (1, 2, 3)T , g2 = (4, 5, 6)T , g3 = (7, 8, 9)T ,
g4 = (10, 11, 12)T , g5 = (13, 14, 15)T and g6 =
(16, 17, 18)T .

Step 2. Take (4, 2, 5, 6, 3, 1)T as one permuta-
tion on (1, 2, 3, 4, 5, 6)T . Then, permutations on
g4, g2, g5, g6, g3 and g1 result in g�

1 = (12, 11, 10)T , g�
2 =

(4, 5, 6)T , g�
3 = (14, 15, 13)T , g�

4 = (18, 17, 16)T , g�
5 =

(8, 9, 7)T and g�
6 = (1, 3, 2)T , respectively. Thus,

the first column of G is h = (hT1 ,hT2 ,hT3 )T , where
h1 = (12, 4, 14, 18, 8, 1)T , h2 = (11, 5, 15, 17, 9, 3)T and
h3 = (10, 6, 13, 16, 7, 2)T .

Step 3. Repeat the above procedure and obtain the sec-
ond column of G as (2, 14, 7, 11, 4, 18, 3, 13, 9, 12, 6, 17,
1, 15, 8, 10, 5, 16)T .

Step 4. The resulting array G and the corresponding design D in
[0, 1)2 can be obtained as shown in Figure 2. The details are
given in Supplementary Section S4.

The left panel of Figure 2 presents the bivariate projections of
D, where each of the 18 equally spaced intervals in [0, 1) con-
tains precisely one point (i.e., it is an LHD). The points marked

TECHNOMETRICS, NOVEMBER 2016, VOL. 58, NO. 4
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Figure 2. Bivariate projections of the CSLHD(18,2,3) in Example 2 (left panel) and the OCSLHD(18,2,3) in Example 3 (right panel).

with “◦” come from the first slice D(1), the points marked with
“+” come from the second slice D(2), and the points marked
with “∗” come from the third slice D(3). It is easy to see that the
three slices are all LHDs. Furthermore, from Proposition 1 (iii),
we have

A(1) =
⎛
⎝ 0.6389 0.0833

0.5833 0.1389
0.5278 0.0278

⎞
⎠, A(2) =

⎛
⎝ 0.1944 0.7500

0.2500 0.6944
0.3056 0.8056

⎞
⎠,

A(3) =
⎛
⎝ 0.7500 0.3611

0.8056 0.4722
0.6944 0.4167

⎞
⎠, A(4) =

⎛
⎝ 0.9722 0.5833

0.9167 0.6389
0.8611 0.5278

⎞
⎠,

A(5) =
⎛
⎝ 0.4167 0.1944

0.4722 0.3056
0.3611 0.2500

⎞
⎠, A(6) =

⎛
⎝ 0.0278 0.9722

0.1389 0.9167
0.0833 0.8611

⎞
⎠.

For i = 1, . . . , 6, all three points of A(i) fall into the same 3 ×
3 square and are close to each other. This shows the clustered
structure of the constructed design.

Remark 1. As pointed out by one referee, the CSLHD con-
structed by Algorithm 1 is similar to the cascading Latin
hypercube design (Handcock 1991). An alternative construc-
tion method for the CSLHDs is provided in Supplementary
Section S5. The resulting design from this alternative construc-
tion method also has the properties presented in Proposition 1
via a proper permutation of the runs.

For i = 1, . . . , s, let y(i) = (y(i)(1), . . . , y(i)(n))T be the out-
put vector corresponding to D(i), where D(i) is the design for the
quantitative variables corresponding to the ith level-combination
of the qualitative variables. If the value of the M defined in
Proposition 1 (iii) is small, D(i)’s are nearly the same. On the
other hand, the whole design will keep the space-filling prop-
erties of an SLHD, that is, univariate uniformity for each slice
as well as for the whole design. Hence, the sample correla-
tion coefficients among y(i)’s can be used as the similarity
measures among different responses. By Proposition 1 (iii),
a large n usually means a small bound of M. Moreover, the
upper bound of M is seldom achieved due to the harsh con-
dition for the equality. The upper bound of M could be user-
defined. Based upon our empirical observations through nu-
merous simulations, M ≤ 0.15 is recommended as a standard

choice (e.g., M = 0.12 in Example 2). Thus for any given t
and s, only the value of n needs to be determined, such that
(1 − s−1)

√
t/n ≤ 0.15. A CSLHD(N, t, s) with N = ns can

always be constructed by Algorithm 1 for such a specified n.
An analysis strategy based on the sample correlation coef-

ficients (similarity measures) among y(i)’s will be developed
in Section 4 to further determine which ARs are really useful.
Could the cross-correlation parameters in (3) or (4) be used as
the similarity measures among the responses? Note that this
is reasonable only if the model assumptions in Section 2 are
satisfied. Furthermore, the PDUDE property does not allow
a cross-correlation parameter to be −1. So if two responses
are completely negatively correlated with each other, the cross-
correlation would not be sufficiently accurate. For these reasons,
the cross-correlation parameters in (3) or (4) will not be consid-
ered as the measures of similarity in this work.

3.2 Construction of Optimal CSLHDs

A CSLHD guarantees the univariate uniformity in each slice,
but a good space-filling property for high-dimensional projec-
tions is also desirable. This section will focus on this issue. The
basic idea is to construct the optimal CSLHD (OCSLHD) based
on some proper design criterion. Practitioners would use the
OCSLHDs rather than the CSLHDs constructed via Algorithm
1. However, Algorithm 1 provides the foundation for the con-
struction of the OCSLHDs. To facilitate the design construction,
JN,t in Step 4 of Algorithm 1 is taken to be the N × t matrix of
(1/2)’s.

The design criterion used here is the centered L2-discrepancy
(CL2) proposed by Hickernell (1998). The closed form for cal-
culating the CL2 value of a design D = (dij ) with N runs and
t factors in [0, 1)t , denoted by CL2(D), can be found in the
Supplementary Section S6. The CL2 is considered here due
to its invariance and flexible projection properties. In addition,
the CL2 is a well-known space-filling criterion, and extensive
empirical studies have revealed that space-filling designs are
suitable for the GP model (see Santner, Williams, and Notz
2003; Fang, Li, and Sudjianto 2006). Other criteria, such as en-
tropy (Shewry and Wynn 1987), minimax and maximin distance
(Johnson, Moore, and Ylvisaker 1990), and various discrepan-
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cies (Fang, Li, and Sudjianto 2006) can be used as well for
selecting the OCSLHDs.

Let D be the class of CSLHDs of N runs, t columns, and
s slices of n runs each. Then the optimization problem for the
OCSLHD is to find a CSLHD D∗ ∈ D such that CL2(D∗) =
minD∈D CL2(D). We next define the neighborhood of a CSLHD
Dc formed by all nearby designs of Dc. The formulation of the
neighborhood of Dc is summarized in five steps.

Algorithm 2.

Step 1. Randomly select one column from Dc and write the
N × 1 column vector as d = (dT(1), . . . ,dT(s))

T , where d(i) =
(d (i)

1 , . . . , d
(i)
n )T , i = 1, . . . , s. Let E1 = (d(1), . . . ,d(s)) be

the n× s matrix obtained by combining d(i)’s column by
column.

Step 2. Randomly choose u and v such that 1 ≤ u < v ≤ n. Let
E2 = (eij )n×s be the matrix obtained by exchanging the uth
and vth rows of E1.

Step 3. Randomly choose i1 and i2 such that 1 ≤ i1 < i2 ≤ s.
Let F = (fij )n×s be the matrix obtained by exchanging the
(u, i1)th and (u, i2)th entries (or the (v, i1)th and (v, i2)th
entries) of E2.

Step 4. Let f = (fT(1), . . . , fT(s))
T with f(i) being the ith column of

F. Replace the column d in Dc by f to obtain a new design
Dnew.

Step 5. All Dnew’s created by Steps 1–4 form the neighborhood
of Dc.

This formulation of neighborhood is known as the column-
exchange approach (Li and Wu 1997; Ye, Li, and Sudjianto
2000; Fang, Li, and Sudjianto 2006). This approach is a popular
choice in the literature as it maintains the structure of the design.
For example, Morris and Mitchell (1995) used this approach as
a basis to construct optimal LHDs; Ye, Li, and Sudjianto (2000)
used it for constructing optimal symmetric LHDs; Fang et al.
(2000) used it for constructing uniform designs.

Based on the neighborhood constructed by Algorithm 2, a
simulated annealing algorithm implemented in matlab, denoted
by ALA(T0, α,NT ,M0), is adopted for constructing the OC-
SLHDs, where T0 is the initial temperature, α is a cooling
parameter, NT is the number of designs constructed at each
temperature, andM0 is the total number of temperature changes
(see Fang, Li, and Sudjianto 2006 for details). The simulated
annealing algorithm is a powerful optimization algorithm when
the objective function has many local optima (which often oc-
curs when constructing optimal designs). This algorithm moves
from Dc to Dnew with a replacement probability even Dnew is
inferior to Dc, thus has chances to escape from a local optimum.
Although the convergence rate of the simulated annealing is not
fast, it is easy-to-apply and has been successfully implemented;
for example, in the work of Morris and Mitchell (1995), and
Qian et al. (2006).

Example 3. Take Dc as the CSLHD(18, 2, 3) in the left panel
of Figure 2. One nearby design of Dc can be generated by the
first four steps of Algorithm 2, whose details are given in Sup-
plementary Section S7. Using Dc as the initial design, the algo-
rithm ALA(100, 0.5, 30, 15) results in the OCSLHD(18, 2, 3),
denoted as Do. The CPU time for searching Do is about 20 s

on a triple-core 2.4-GHz PC. The bivariate projection of Do is
shown in the right panel of Figure 2, andCL2(Dc) = 0.0060 and
CL2(Do) = 0.0019. This shows that Do significantly improves
the space-filling property of Dc, as can be seen from the two
panels of Figure 2.

4. SELECTION PROCEDURE

For the OCSLHDs constructed in Section 3.2, the sample cor-
relation coefficients among the output vectors of different slices
can be used as the similarity measures among the responses.
However, these measures do not tell whether the corresponding
ARs are really useful for predicting the TR. A way is required
to make a further judgment. This section develops a forward se-
lection procedure which uses the similarity measures produced
by the OCSLHDs.

The basic idea of the procedure is to sequentially add the
slices (and the corresponding output vectors) according to some
criterion. The slices are included as additional rows, not as
additional columns, that is, the ARs are treated as additional data
rather than additional variables. Specifically, ARs with larger
magnitude similarity measures are more likely to be included
for modeling. In other words, the magnitudes of the similarity
measures provide an entering order for the selection procedure.
In the process of the selection, we begin with the data of the
TR and sequentially add the data of the ARs as additional rows,
following the entering order determined by the magnitudes of
the similarity measures. An important issue is when we should
stop adding data. This is addressed by using the leave-one-
out cross-validation (CV) approach which is a commonly used
technique in computer experiments to assess the accuracy of the
metamodels (see Fang, Li, and Sudjianto 2006; Qian, Wu, and
Wu 2008; Han et al. 2010).

For the N × (t + l) design matrix W = (w1, . . . ,wN )T and
theN × 1 response vector y = (y1, . . . , yN )T , the leave-one-out
CV score is defined as

ψ = 1

N

N∑
i=1

{yi − ŷ−i(wi)}2, (6)

where ŷ−i(wi) is the BLUP (see (5)) at wi obtained from the
metamodel based on the samples excluding (wi , yi).

Of course, the CV score can be calculated based on any subar-
ray of W and the corresponding subvector of y. For i = 1, . . . , s,
let W(i) and y(i) denote the subarray of W and subvector of
y corresponding to the ith level-combination of the qualita-
tive variables. For brevity, the response corresponding to the
ith level-combination of the qualitative variables is called the
ith response. In summary, the proposed forward selection pro-
cedure works as follows: if the ith response is set to be the
TR, add the data of the ARs one by one following the enter-
ing order determined by the similarity measures until the CV
score increases—an evidence that the accuracy of the model
decreases. A detailed algorithm is stated as follows.

Algorithm 3.

Step 1. Calculate the CV score ψ (i) in (6) based on W(i) and
y(i) using the IK model. Set Wc = W(i), yc = y(i),ψc = ψ (i).

Step 2. Set I = {j1, j2, . . . , js−1} = {1, . . . , s} \ {i} with ele-
ments being sorted such that the absolute correlation coeffi-
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cients between y(jk ) and y(i) for k = 1, . . . , s − 1 are ranked
in descending order, and J = {i}.

Step 3. If I is empty, output J and the procedure stops; other-
wise, let j ∗ be the first element of I, calculate the CV score
ψ (j∗) based on ((Wc)T , (W(j∗))T )T and ((yc)T , (y(j∗))T )T us-
ing one of the integral kriging models.

Step 4. If ψ (j∗) ≤ ψc, set I = I \ {j ∗},J = J ∪ {j ∗}, ψc =
ψ (j∗),Wc = ((Wc)T , (W(j∗))T )T and yc = ((yc)T , (y(j∗))T )T ,
go to Step 3; otherwise, output J and the procedure stops.

OutputJ by Algorithm 3 identifies which ARs are useful. The
responses indexed byJ are expected to be similar to the TR, and
will be used for predicting the TR. Specifically, an IK model will
be built if J contains only one element; otherwise, the integral
kriging models shall be built based on all information of the ARs
indexed by J . As a matter of fact, Algorithm 3 can be viewed
as an estimation procedure if Conditions 1–3 in Section 2 are
satisfied. That is, the cross-correlation values among the TR and
the useful ARs are believed to be reasonably large (in absolute
value), and those among the TR and the useless ARs are believed
to be close to zero (and thus set to be zero). The consistency
of the CV approach under some general conditions had been
proved by Stone (1977). Thus, it is strongly recommended that
n should be as large as economically feasible, not only to provide
good modeling and prediction, but also to justify the rationality
of Algorithm 3.

Remark 2. Using Algorithm 3, the OCSLHDs are effective
for determining a sensible entering order of the ARs. Other de-
sign types may not work so well because meaningful similarity
measures would likely be missed. Moreover, Algorithm 3 re-
sults in a design that has an equal number of runs and a good
space-filling property for each response.

Remark 3. Algorithm 3 is also suitable when using an iden-
tical design (ID) with a good space-filling property for all the
level-combinations of the qualitative variables. This is because
the sample correlation coefficients among the output vectors
produced by a space-filling ID can also be used as the similarity
measures among different responses. As discussed at the be-
ginning of Section 3, however, its poor projection property for
the quantitative variables may be not beneficial to prediction.
Moreover, as pointed out by one referee, if the output is not sen-

sitive to some level-combinations of the qualitative variables,
these level-combinations can be set to be a nominal level. In
this case, duplicate runs may result, which is not desirable in
deterministic computer experiments.

5. SIMULATION EXAMPLES

This section presents two examples to investigate the effec-
tiveness of the interface between the OCSLHDs constructed in
Section 3.2 and the selection procedure developed in Section
4. Performances of several commonly used design types are
also investigated for the comparison. The first example has one
qualitative variable and one quantitative variable. The second
example has two qualitative variables and one quantitative vari-
able. Both of these two examples assume that there are some
similar responses but not all the responses are similar, which
is believed to be common in practice. Therefore, the OCSL-
HDs are expected to produce promising results when using the
proposed selection procedure. One more example (one qual-
itative variable and five quantitative variables) is provided in
Supplementary Section S8. We have also applied the OCSL-
HDs associated with the proposed selection procedure to several
other simulated examples having a single or multiple qualita-
tive or quantitative variables, and similar successes have been
obtained.

Example 4. Consider an experiment with two quan-
titative variables (x1, x2) ∈ [0, 1)2, and one qualita-
tive variable z of four levels. The correlation func-
tion (3) is adopted for the integral kriging models.
The true response surfaces of this experiment are:
y(1, x1, x2) = a1 cos(θ1π (x1 + x2)) (Surface I); y(2, x1, x2) =
b1 cos(θ2π (x1 + x2)) + b2 (Surface II); y(3, x1, x2) = c1(x1 +
x2 − c2)2 + c3 sin(θ3π (x1 + x2)) + c4 (Surface III); and y(4,
x1, x2) = d1(x1 + x2 − d2)2 + d3 sin(θ4π (x1 + x2)) + d4(Sur−
face IV). For each response surface, the coefficients are
drawn from independent Gaussian distributions with standard
deviation 10−2. The mean values of (a1, θ1), (b1, b2, θ2),
(c1, c2, c3, c4, θ3), and (d1, d2, d3, d4, θ4) are set to be (2, 3.5),
(−2,−4, 3.5), (20, 1, 0.1, 3, 2), and (30, 1, 0.1, 8, 2), respec-
tively. The true response surfaces for one draw is displayed in
Figure 3 of Supplementary Section S9.

Figure 3. Boxplots of the RMSEs of the three random designs without any selection procedure.
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Figure 4. Boxplots of the RMSEs of the three optimal designs without any selection procedure.

From the closed forms of Surfaces I–IV (or Figure 3
of Supplementary Section S9), it is clear that Surfaces I
and II are similar, and Surfaces III and IV are similar as
well. Sixteen training points are generated for each surface
by using six design types, that is, (1) random Latin hyper-
cube designs (RLHDs) from McKay, Beckman, and Conover
(1979); (2) SLHDs from Qian (2012); (3) CSLHDs con-
structed in Section 3.1; (4) the uniform design (IUD) avail-
able at http://sites.stat.psu.edu/˜rli/DMCE/UniformDesign/; (5)
the uniform SLHD (USLHD) from Chen et al. (2015); (6) the
OCSLHD constructed in Section 3.2. The latter three are the
optimal versions of the former three under the CL2 criterion,
respectively. The IUD takes a uniform design for one response,
then replicates it exactly for the other responses.

In this example, the upper bound of M defined in Proposition
1 is 0.07 for CSLHDs and the OCSLHD. The CPU time for gen-
erating the OCSLHD(64, 2, 4) is about 35s on a triple-core 2.4-
GHz PC. The testing data are taken on a grid of 402 = 1600 eq-
uispaced points on [0, 1)2 for each response. This procedure of
data generation, modeling, and prediction accuracy assessment
is repeated 500 times for each integral kriging model and the IK
model. For each repetition, the data for each response surface
are normalized.

We first investigate the prediction performances when the se-
lection procedure is absent. Figure 3 displays boxplots of the

RMSEs of the three random designs, whereas Figure 4 displays
the boxplots of the RMSEs of the three optimal designs. Next,
we investigate the prediction performances when the selection
procedure is present. The CPU time for finishing the selec-
tion procedure once is about 16s on a triple-core 2.4-GHz PC.
Figure 5 displays the boxplots of the RMSEs of the random
designs, whereas Figure 6 displays the boxplots of the RMSEs
of the optimal designs. The detailed numerical results under
various cases when the selection procedure is present are given
in Supplementary Section S12.

The following observations are summarized from this study.

(i) When the proposed selection procedure is absent
(Figures 3 and 4), all the integral kriging models work
much worse than the IK model across all design types.
This is expected since not all of the four true responses
are similar.

(ii) When the proposed selection procedure is used (Figures
5 and 6), the prediction performances of the integral
kriging models are at least comparable with those of the
IK model across all design types. Among the random
designs, the CSLHDs typically outperform the RLHDs
and SLHDs. A similar phenomenon occurs among the
optimal designs, that is, the OCSLHD typically outper-
forms the IUD and USLHD in the sense that it results in
the smallest RMSEs when the integral kriging models

Figure 5. Boxplots of the RMSEs of the random designs with the proposed selection procedure.
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Figure 6. Boxplots of the RMSEs of the optimal designs with the proposed selection procedure.

are built. Besides, the OCSLHD outperforms the CSL-
HDs, which is expected since the latter is the optimal
version of the former.

(iii) When Surface I or II is set to be the TR, the EC and
MC models are not better than the IK model. This is
because both the EC and MC models can only capture
positive correlations, while Surfaces I and II are clearly
negatively correlated since a1 and b1 are opposite to each
other and θ1 = θ2.

Example 5. Consider an experiment with two qualitative
variables both at two levels, and one quantitative variable
in [0, 1). The correlation function (4) is adopted for the
integral kriging models in this example. The true response
curves are generated using the following four equations
extracted from Han et al. (2010): y(1, 1, x) = 0.3 + 0.3x + 0.1
sin(2πx) + 2.5(x − 0.5)4 − 0.4x5; y(2, 1, x) = 0.2 + 0.3x +
0.1 sin(2πx) + 0.5(x − 0.5)2; y(1, 2, x) = 0.1 + 0.3x + 0.1
sin(2.5πx) + 2.5(x − 0.5)4 − 0.4x5; and y(2, 2, x) = 0.3x +
0.1 sin(2.5πx) + 0.5(x − 0.5)2. As in Han et al. (2010),
y(2, 2, x) is set to be the TR and only one experiment is
conducted. In fact, repeated experiments produce the same
numerical results in this example. Since there is only one
quantitative variable, the random designs RLHDs, SLHDs, and
CSLHDs are exactly the same as the optimal designs IUD,
USLHD, and OCSLHD, respectively. So, we only consider the
prediction performances of IUD, USLHD, and OCSLHD.

Eight training points are available for each response curve,
the data for each response curve are then normalized. The
upper bound of M defined in Proposition 1 is 0.09 for

Table 1. Summary of RMSEs for predicting y(2, 2, x) in Example 5

Design
type IK EC MC UC

IUD 0.2622 0.0073(2, 3) 0.0067(2, 3) 0.0046(2, 3)
USLHD 0.2617 0.0074(3) 0.0073(3) 0.0072(3)
OCSLHD 0.2617 0.0007(2, 3) 0.0005(2, 3) 0.0005(2, 3)

NOTE: The data inside the parentheses represent the catched responses, where 2 and 3
stand for y(2, 1, x) and y(1, 2, x), respectively.

the OCSLHD(32, 1, 4). The CPU time for generating the
OCSLHD(32, 1, 4) is about 0.5 s on our computer. The RMSEs
of IK, EC, MC, and UC with the proposed selection procedure
are evaluated at 101 testing points x ∈ {0, 0.01, . . . , 0.99, 1},
and the CPU time for finishing the selection procedure once is
about 5.5 s. The numerical results are listed in Table 1.

In Table 1, both the OCSLHD and IUD identify the ARs
y(2, 1, x) and y(1, 2, x) for the integral kriging models, the
same as in Han et al. (2010). In addition, the OCSLHD has the
minimum RMSE values among all design types. This shows that
the interface between the OCSLHD and the selection procedure
is efficient in terms of the prediction accuracy.

6. A REAL-LIFE EXAMPLE

This section studies a real-life computer experiment to inves-
tigate the effectiveness of the interface between the proposed
OCSLHD and the selection procedure. A brief description of
this case study is given first. For more details, please refer to
Dewettinck et al. (1999).

Fluidized-bed processes are used in the food industry to coat
certain food products. Dewettinck et al. (1999) reported a phys-
ical experiment and several associated computer models for
predicting the steady-state thermodynamic operation points of a
Glatt GPC-1 fluidized-bed unit. The response is affected by six
input variables: fluid velocity of the fluidization air (Vf ), temper-
ature of the air from the pump (Ta), flow rate of the coating so-
lution (Rf ), pressure of atomized air (Pa), temperature (Tr ), and
humidity (Hr ). Dewettinck et al. (1999) conducted a 28-run ex-
periment. For each input setting, one physical response (T2,exp)
and three computer responses (T2,1, T2,2, T2,3) were available.
There are major differences among the three computer mod-
els. Model T2,3 is the most accurate (i.e., producing the closest
response to T2,exp), model T2,2 is the medium accurate, while
model T2,1 is the least accurate. This is a multi-fidelity com-
puter experiment with four different accuracies. As discussed
by Han et al. (2010), a multi-fidelity experiment can also be
regarded as an experiment with one qualitative variable whose
levels correspond to different accuracies of the response. Thus,
this example can be viewed as an experiment with six quantita-
tive variables and one four-level qualitative variable. A fraction
of the experimental design (the first seven trials) is presented in
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Table 2. Settings of input variables and outputs from the physical and computer experiments

Run Hr (%) Tr (C) Ta(C) Rf (g/min) Pa(bar) Vf (m/s) T2,exp T2,1 T2,2 T2,3

1 51.00 20.07 50.00 5.52 2.50 3.00 30.40 32.40 31.50 30.20
2 46.40 21.30 60.00 5.53 2.50 3.00 37.60 39.50 38.50 37.00
3 46.60 19.20 70.00 5.53 2.50 3.00 45.10 46.80 45.50 43.70
4 53.10 21.10 80.00 5.51 2.50 3.00 50.20 53.80 52.60 51.00
5 52.00 20.40 90.00 5.21 2.50 3.00 57.90 61.70 59.90 58.20
6 45.60 21.40 60.00 7.25 2.50 3.00 32.90 35.20 34.60 32.60
7 47.30 19.50 70.00 7.23 2.50 3.00 39.50 42.40 41.00 39.10

NOTE: This is a fraction of the data, the complete data can be found in the supplementary material.

Columns 2–7 of Table 2, and the corresponding output results
are listed in Columns 8–11 of the same table. The complete
experimental design and the output values can be found in Sup-
plementary Section S10.

Four GPs are fitted respectively using the design and the four
response vectors in Table 2, then their BLUPs are treated as
“true” responses, each of which corresponds to one level of the
qualitative variable. We did this so that the effect of different
designs and the interfaces between the designs and the proposed
selection procedure can be compared. Denote the four BLUPs
as ŷ2,exp(1, x), ŷ2,1(2, x), ŷ2,2(3, x), and ŷ2,3(4, x), respectively,
where x = (Hr, Tr, Ta, Rf , Pa, Vf )T and the subscripts indi-
cate the data sources. First, similar to that of Dewettinck et al.
(1999), a 28-run experimental design is shared by the four true
responses. Note that the original 28-run design should not be
considered as it has been used to build the true models. In-
stead, a 28-run uniform design with six columns is arranged for
each true response to generate the response data. For brevity,
we denote this design scheme as the IUD and call the corre-
sponding data as the IUD data. The second design scheme is
the proposed OCSLHD(28 × 4, 6, 4). That is, one slice of the
OCSLHD(28 × 4, 6, 4) is designated for one true response, and
by this way the experimental data, which we call the OCSLHD
data, can be generated. The TR is set to be ŷ2,exp(1, x) which is
of the most interest to predict.

After normalizing the data for each response, the proposed
selection procedure is carried out for both the IUD and OC-
SLHD. For each of the EC, MC, and UC models, the proposed
selection procedure chooses only ŷ2,3(4, x) as the AR. This is
because once ŷ2,3(4, x) is included, adding the other ARs ac-
tually deceases the CV scores although their response vectors
appear to be highly correlated with the TR response vector. As
described previously, the response ŷ2,3(4, x) is established using
the most accurate codes. For a comparison purpose, we also use
the IUD data to fit the IK, EC, MC, and UC models without
any selection procedure. The testing data are taken on a grid of
56 = 15625 equispaced points on [0, 1)6 to evaluate the RMSEs.
The numerical results are summarized as follows:

1. for the IUD data without any selection procedure, the
RMSEs of the IK, EC, MC, and UC models are
1.67, 2.31, 2.26, and 2.49, respectively;

2. for the IUD data with the proposed selection procedure, the
RMSEs of the EC, MC, and UC models are 1.52, 1.46, and
1.41, respectively;

3. for the OCSLHD data with the proposed selection pro-
cedure, the RMSEs of the EC, MC, and UC models are
1.39, 1.21, and 1.21, respectively.

It is clear that when the IUD is used as the design, the in-
tegral kriging models without any selection procedure perform
poorly in terms of the RMSEs, even worse than the IK model;
while with the proposed selection procedure, the integral kriging
models significantly improve the prediction accuracies: not only
better than the ones without any selection procedure, but also
better than the IK model. Moreover, the OCSLHD associated
with the proposed selection procedure yields more promising
results than the IUD associated with the proposed selection
procedure. This demonstrates the effectiveness of the interface
between the OCSLHD and the proposed selection procedure.

This example assumes that there is only one qualitative
variable with four levels. Our method can also apply to the
cases where there are multiple qualitative variables. Follow-
ing the suggestion raised by one referee, we rewrite the true
responses ŷ2,exp(1, x), ŷ2,1(2, x), ŷ2,2(3, x) and ŷ2,3(4, x) as
ŷ2,exp(1, 1, x), ŷ2,1(2, 1, x), ŷ2,2(1, 2, x) and ŷ2,3(2, 2, x), re-
spectively. That is, we now treat this experiment as the one
with two qualitative variables each of which has two levels, and
the correlation function (4) is adopted for the integral kriging
models. Similar to the previous scenario, the proposed selection
procedure chooses only ŷ2,3(2, 2, x) as the AR for the integral
kriging models no matter the design is the IUD or OCSLHD. The
numerical results of this scenario are summarized as follows:

1. for the IUD data without any selection procedure, the
RMSEs of the IK, EC, MC, and UC models are
1.67, 2.43, 2.26, and 2.28, respectively;

2. for the IUD data with the proposed selection procedure, the
RMSEs of the EC, MC, and UC models are 1.48, 1.46, and
1.43, respectively;

3. for the OCSLHD data with the proposed selection pro-
cedure, the RMSEs of the EC, MC, and UC models are
1.34, 1.22, and 1.22, respectively.

The conclusion is similar to the previous scenario.

7. CONCLUDING REMARKS AND DISCUSSIONS

Computer experiments with both qualitative and quantitative
variables (BQQV) have received much attention in the recent lit-
erature. Modeling methods for such experiments have attempted
to use the information of all responses corresponding to differ-
ent level-combinations of the qualitative variables. However,
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such a modeling strategy is valid, only if all the responses are
similar. Discussions and examples in this work demonstrate that
the information of the auxiliary responses (ARs) may reduce the
prediction accuracy of the target response (TR) when they are
not similar, and this issue is often ignored by the existing design
and modeling framework. To select the ARs similar to the TR,
this work proposes a new interface on design and analysis for
computer experiments with BQQV. To measure the similarities
among the responses, the optimal clustered-sliced Latin hyper-
cube designs (OCSLHDs) are proposed. Such designs are one
kind of sliced Latin hypercube design with points clustered in
the design region, and possess good uniformity for each slice.
Based on the similarity measures produced by the OCSLHDs,
a selection procedure is developed to further determine which
ARs are really useful for the TR. Then, these ARs are included
into the model to predict the TR. Empirical observations show
that the interface between the OCSLHDs and the selection pro-
cedure is effective in terms of prediction accuracy. As pointed
out by one referee, our new interface on design and analysis can
be a tool for model diagnostics. That is, our method diagnoses
whether the model is valid for all the responses of different level-
combinations of the qualitative variables or just some subsets of
them.

The simulated examples in Section 5 show that the new inter-
face on design and analysis is effective whether the responses
are similar or not. This is because the selection procedure, based
on the similarity measures produced by the OCSLHDs, helps
to retain those ARs similar to the TR and filter out those that
are not similar to the TR. Therefore, if there are some ARs that
are not similar to the TR, the proposed interface on design and
analysis is more promising than directly building the metamod-
els with the commonly used designs, as in Qian, Wu, and Wu
(2008), Han et al. (2009), and Zhou, Qian, and Zhou (2011). On
the other hand, if the experimenter has the prior knowledge that
any specific pair of the responses are similar, then those direct
approaches with space-filling designs, such as sliced Latin hy-
percube designs or their variations (e.g., sliced orthogonal array
based Latin hypercube designs proposed by Hwang, He, and
Qian 2016), are expected to be more appropriate. In practice,
however, such knowledge is typically not available. Thus, the
proposed interface on design and analysis is recommended to
prevent including irrelevant information for the TR.

The multi-fidelity experiment in Section 6 used the same num-
ber of design points for each accuracy of the computer code. A
more general situation may have more design points for the low
accuracy responses than those for the high accuracy responses
(see Kennedy and O’Hagan 2000; Qian et al. 2006). This is
because the lower the accuracy is, the faster it runs, thus one
can collect more data from low accuracy responses. Under such
a situation, the proposed interface on design and analysis is not
applicable since it requires the same number of design points
for each level of the qualitative variable. It is nevertheless nec-
essary for this situation to select the computer responses that
are informative about the physical process, and this important
issue is also ignored by most existing methods. To our knowl-
edge, the ANOVA kriging suggested by Han et al. (2010) in an
unpublished article is the only method that concerns this issue.
However, the ANOVA kriging still needs further improvements
and other new relevant methods also deserve further study.

The computing issues are also important for computer ex-
periments with BQQV. Kriging with BQQV typically involves
many parameters, which could result in a near-singular correla-
tion matrix R. The near-singular matrix makes its inverse rather
challenging. In our work, a modified Design and Analysis of
Computer Experiments (DACE) MATLAB toolbox of Zhou,
Qian, and Zhou (2011) is used to build up the GP models with
BQQV. We make use of the “nugget” technique in the DACE,
which adds a small positive constant to each element on the
diagonal of R to avoid the singularity problem. Also note that
when there are too many parameters to be estimated, estimator
may be trapped in a local optimum. To alleviate this problem,
we use multiple initial values for the EC model, and the pa-
rameters estimated by the EC model can then be used as the
initial values for MC and UC models (Zhou, Qian, and Zhou
2011). In our work, computer experiments with a small num-
ber of observations and factors are dealt with. In such cases,
the “nugget” technique is effective in computing the inverse of
matrices. When there are a large number of observations and/or
factors, the “nugget” technique may not work so well. One pos-
sible solution is to first use the multi-step interpolation technique
for accurate metamodeling (Floater and Iske 1996; Haaland and
Qian 2011), then incorporate the proposed interface on design
and analysis into such a modeling strategy to further enhance
the prediction accuracy for computer experiments with BQQV.

We realize that computer experiments with BQQV are yet
in an immature research stage and there are many issues that
need to be resolved. Besides the issues mentioned above, more
potential research directions that we also think deserve further
investigations are pointed out in Supplementary Section S11.
We recommend the readers to peruse them and sincerely hope
that they can be addressed in the near future.

SUPPLEMENTARY MATERIALS

Additional details: proof of Proposition 1 and additional
details mentioned in the main text (pdf file). Computer code:
Matlab codes for implementing the methodology proposed in
this article. Data for all examples are provided (zip file).
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