
Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference 149 (2014) 162–171
http://d
0378-37

n Corr
E-m
journal homepage: www.elsevier.com/locate/jspi
Sliced Latin hypercube designs via orthogonal arrays

Yuhui Yin a, Dennis K.J. Lin b, Min-Qian Liu a,n

a LPMC and Institute of Statistics, Nankai University, Tianjin 300071, China
b Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
a r t i c l e i n f o

Article history:
Received 18 December 2013
Received in revised form
12 February 2014
Accepted 17 February 2014
Available online 25 February 2014

Keywords:
Computer experiment
Latin hypercube design
Orthogonal array
Space-filling design
x.doi.org/10.1016/j.jspi.2014.02.008
58 & 2014 Elsevier B.V. All rights reserved.

esponding author.
ail address: mqliu@nankai.edu.cn (M.-Q. Liu)
a b s t r a c t

Computer experiments are becoming increasingly popular in studying complex real world
systems. A special class of sliced Latin hypercube design is proposed in this paper. Such
designs are particularly suitable for computer experiments with both qualitative and
quantitative factors, multi-fidelity computer experiments, cross-validation and data
pooling. The resulting sliced Latin hypercube designs possess a desirable sliced structure
and have an attractive low-dimensional uniformity. Meanwhile within each slice, it is also
a Latin hypercube design with the same low-dimensional uniformity. The new sliced Latin
hypercube designs can be constructed via both symmetric and asymmetric orthogonal
arrays. The same desirable properties are possessed, although the uniformity may be
differed. The construction methods are easy to implement, and unlike the existing
methods, the resulting designs are very flexible in run sizes and numbers of factors.
A detailed comparison with existing designs is made.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Computer experiments are probably the most effective approach to probe the complex real world systems. This is
especially true when the corresponding physical experiments are costly. One particularly important problem is the study of
multi-fidelity computer experiments. A multi-fidelity computer experiment is a large, expensive computer experiment
which can be executed at various degrees of fidelity. The main desirable property of a multi-fidelity computer experiment
lies on whether it can effectively increase the accuracy of predictors with limited cost (Kennedy and O'Hagan, 2000; Qian
et al., 2006; Qian and Wu, 2008). Another problem is the study of computer experiments with both qualitative and
quantitative factors. For example, Schmidt et al. (2005) demonstrated a data center computer experiment which involves
qualitative factors (such as diffuser location and hot-air return-vent location) and quantitative factors (such as rack power
and diffuser flow rate). These computer experiments call for new experimental designs, which should possess a low-
dimensional uniformity not only as a whole design but also within each slice.

There are many recent works in multi-fidelity computer experiments. Qian et al. (2009b) constructed nested space-filling
designs for computer experiments with two levels of accuracy by making use of Galois fields and orthogonal arrays. Qian
et al. (2009a) and Sun et al. (2013) constructed nested space-filling designs from nested orthogonal arrays and nested
difference matrices. Qian (2009) proposed a novel approach to constructing nested Latin hypercube designs by defining a
nested permutation. The method works for any number of factors, but the resulting designs do not guarantee (two or
higher-dimensional) uniformity. Qian and Ai (2010) constructed a nested lattice sampling scheme by randomizing nested
.

www.sciencedirect.com/science/journal/03783758
www.elsevier.com/locate/jspi
http://dx.doi.org/10.1016/j.jspi.2014.02.008
http://dx.doi.org/10.1016/j.jspi.2014.02.008
http://dx.doi.org/10.1016/j.jspi.2014.02.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2014.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2014.02.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2014.02.008&domain=pdf
mailto:mqliu@nankai.edu.cn
http://dx.doi.org/10.1016/j.jspi.2014.02.008


Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171 163
orthogonal arrays with nested permutations. Haaland and Qian (2010) proposed an approach to constructing nested space-
filling designs based on existing (t, s)-sequences for multi-fidelity computer experiments. He and Qian (2011) proposed two
methods for constructing nested Latin hypercube designs. Li and Qian (2013) proposed several methods for constructing
nested (nearly) orthogonal designs with two layers by exploiting nesting in various discrete structures such as fractional
factorial designs, Hadamard matrices, permutation matrices and rotation matrices. Yang et al. (2014) presented some
methods for constructing nested orthogonal Latin hypercube designs using a special type of orthogonal design proposed by
Yang and Liu (2012).

There are also recent work in computer experiments with both qualitative and quantitative factors. Qian and Wu (2009)
proposed a sliced space-filling design—a Latin hypercube design for the quantitative factors, and then partition the design
into groups corresponding to different level combinations of the qualitative factors. Qian (2012) proposed a Latin hypercube
design that can be partitioned into slices each of which constitutes a smaller Latin hypercube design. Xu et al. (2011)
constructed sliced space-filling designs based on Sudoku structure. Yang et al. (2013) defined a novel type of design—a sliced
orthogonal Latin hypercube design, and proposed several construction methods. Recently, Huang et al. (in press) proposed a
method to construct sliced orthogonal and nearly orthogonal Latin hypercube designs.

In this paper, a special class of sliced Latin hypercube designs is constructed. Such designs are suitable for computer
experiments with both qualitative and quantitative factors, multi-fidelity computer experiments, cross-validation and data
pooling. The resulting sliced Latin hypercube designs along with their slices all inherit the r-dimensional uniformity of the
orthogonal arrays with strength r. Moreover, they have more flexible run sizes and the numbers of factors. The paper is
organized as follows. In Section 2, a new class of sliced Latin hypercube designs is constructed based on symmetric
orthogonal arrays. In Section 3, another class of sliced Latin hypercube designs is constructed based on asymmetric
orthogonal arrays. Some comparisons and concluding remarks are given in Section 4. All the proofs are provided in the
Appendix.
2. Sliced Latin hypercube designs via symmetric orthogonal arrays

Before proposing the method for constructing sliced Latin hypercube designs using symmetric orthogonal arrays, let us
first present some necessary definitions and notations.

Let A¼ ðaijÞ be an n� dmatrix with each column consisting of a permutation of f1;…;ng, and uij's are independent U½0;1Þ
random variables, for i¼ 1;…;n and j¼1,…,d. Then an n� d Latin hypercube design D¼ ðdijÞ is defined through dij ¼
ðaij�uijÞ=n. A Latin hypercube design D¼ ðD0

1;…;D0
kÞ0 is called a sliced Latin hypercube design with k slices D1;…;Dk, if each

slice is also a Latin hypercube design. While for v Latin hypercube designs D1;…;Dv, if all the rows of Di�1 are taken from Di,
i.e., Di�1 is nested within Di, for i¼ 2;…; v, then ðD1;…;DvÞ is called a nested Latin hypercube design with v layers. For a sliced
Latin hypercube design D¼ ðD0

1;…;D0
kÞ0, it is obvious that Di is nested within D for any i, so a sliced Latin hypercube design is

also a nested design with at least two layers. Thus, designs with a sliced structure are also suitable for computer
experiments with multiple levels of accuracy.

An asymmetric orthogonal array OAðn; sd11 …sdmm ; rÞ is a matrix of size n� d, in which the first d1 columns have symbols
from f0;…; s1�1g, the next d2 columns have symbols from f0;…; s2�1g, and so on, with the property that in any n� r
submatrix every possible r-tuple occurs an equal number of times as a row, where d¼ d1þ⋯þdm is the total number of
factors and r is called the strength of this array. When all sl's are equal to s, the above asymmetric orthogonal array becomes
a symmetric one, denoted by OAðn; sd; rÞ, where each n� r submatrix contains all possible 1� r row vectors with the same
frequency, say λ, which is called the index of the array. Clearly in this case, n¼ λsr . For a matrix A¼ ðaijÞ and a number z,
A � z denotes their Kronecker sum, i.e., A � z¼ ðaijþzÞ. Let N¼kn with n and k being positive integers, and ZN be the set
f1;…;Ng. A sliced permutation matrix SPM(n,k) on ZN is defined to be an n� k matrix with each element of ZN appearing
precisely once and each column of ⌈SPMðn; kÞ=k⌉ forming a permutation on Zn (cf. Qian, 2012).

For the construction of sliced Latin hypercube designs using orthogonal arrays, further assume n¼ts with s and t being
positive integers, and define an s-level sliced permutation matrix Mðn; k; sÞ on ZN to be a sliced permutation matrix SPM(n,k)
formed by a row permutation of s t� k matrices G1;…;Gs (i.e., permuting the order of these s matrices and combining them
together row by row), where Gi � ð1� iÞtk is a sliced permutation matrix SPM(t,k) defined on Ztk, i¼1,…,s. An Mðn; k; sÞ can
be generated by the following algorithm.

Algorithm A. Construction of an Mðn; k; sÞ matrix.

Step 1: Divide the elements of ZN into n groups, g1;…; gn, where

gl ¼ faAZNj⌈a=k⌉¼ lg; l¼ 1;…;n:

Note: for a real number z, ⌈z⌉ denotes the smallest integer greater than or equal to z, and ⌊zc denotes the largest
integer less than or equal to z.

Step 2: For i¼ 1;…; t, fill up the ith row of a t� k empty matrix Gu with a uniform permutation on giþ tðu�1Þ. A total of s
matrices Gu for u¼ 1;…; s will be resulted.

Step 3: For j¼ 1;…; k, randomly shuffle the entries in the jth column of Gu, u¼ 1;…; s.



Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171164
Step 4: Randomly row juxtapose G1;…;Gs, a matrix G¼ ðG0
i1;…;G0

isÞ0 is obtained, where Gi1;…;Gis is a random permutation
of G1;…;Gs. Call Giu the uth submatrix of G.

Example 1. Let n¼9, k¼3, s¼3 and N¼27, an Mð9;3;3Þ can be constructed as follows. First, divide Z27 into 9 groups:
g1 ¼ f1;2;3g; g2 ¼ f4;5;6g; g3 ¼ f7;8;9g; g4 ¼ f10;11;12g; g5 ¼ f13;14;15g; g6 ¼ f16;17;18g; g7 ¼ f19;20;21g; g8 ¼ f22;23;24g,
and g9 ¼ f25;26;27g. From Step 2, three matrices G1;G2 and G3 may be obtained as

G1 ¼
2 3 1
4 6 5
9 8 7

0
B@

1
CA; G2 ¼

10 12 11
15 13 14
18 17 16

0
B@

1
CA; G3 ¼

19 21 20
24 23 22
25 27 26

0
B@

1
CA:

By independently randomly shuffling the entries in each column of Gu (as in Step 3), u¼ 1;…;3, we have three new
G1;G2;G3 as

G1 ¼
4 8 5
2 3 7
9 6 1

0
B@

1
CA; G2 ¼

15 12 16
10 17 11
18 13 14

0
B@

1
CA; G3 ¼

19 23 26
25 27 20
24 21 22

0
B@

1
CA:

Finally, following Step 4, an Mð9;3;3Þ is obtained as

G¼ ðG0
i1;G

0
i2;G

0
i3Þ0 ¼ ðG0

3;G
0
2;G

0
1Þ0 ¼ :

Remark 1. In short, the key points in the construction of the permutation matrix Mðn; k; sÞ are that (i) the matrix Mðn; k; sÞ
should consist of all the elements of ZN with N¼kn and each element appears once and only once; (ii) each submatrix of
Mðn; k; sÞ should consist of tk successive elements of ZN with t¼n/s, which correspond to a sliced permutation matrix SPM
(t,k) on Ztk (up to a Kronecker sum); and (iii) the randomization in Algorithm A along with that in Algorithms B and C
guarantees the statistical properties of the constructed designs in the following (cf. Lemma 1, Theorems 1 and 2).

Based on the permutation matrix Mðn; k; sÞ obtainable via Algorithm A, the following algorithm is proposed to construct
sliced Latin hypercube designs from symmetric orthogonal arrays.

Algorithm B. Construction of sliced Latin hypercube designs via symmetric OA.

Step 1: Give an OAðn; sd; rÞ, denoted by OA0, randomize its rows, columns and symbols to generate a randomized
orthogonal array. Independently repeat the above randomization k times, a total of k randomized orthogonal
arrays, denoted by OA1;…;OAk, can be obtained.

Step 2: Independently generate Mðn; k; sÞ (using Algorithm A) d times, denote the outputs as M1;…;Md.
Step 3: For l¼1,…,k and j¼1,…,d, replace the α's in the jth column of OAl by a random permutation of the elements in the

lth column of the ðαþ1Þth submatrix of Mj, α¼ 0;…; s�1, k new designs, denoted by A1;…;Ak, can be obtained.
Step 4: Based on each Al ¼ ðaijÞ, l¼1,…,k, an n� d design Dl ¼ ðdijÞ is generated by

dij ¼
aij�uij

N
; i¼ 1;…;n; j¼ 1;…; d;

where the uij's are independent U½0;1Þ random variables.
Step 5: Let D¼ ðD0

1;…;D0
kÞ0, which is the row juxtaposition of Dl's.

Remark 2. In Algorithm B, the elements in the ðαþ1Þth submatrix of Mj are used to replace the α's in all the jth columns of
the k randomize orthogonal arrays, and the elements in Mj finally fill up the jth column of the resulting design D. As pointed
out in Remark 1, the randomization here can ensure that the resulting designs have good statistical properties.

Lemma 1 and Theorem 1 below show the theoretical properties of the design D constructed in Algorithm B.

Lemma 1. Each Dl constructed by Algorithm B is statistically equivalent to an n� d OA-based Latin hypercube design, for
l¼ 1;…; k.

Theorem 1. For the design D¼ ðD0
1;…;D0

kÞ0 constructed by Algorithm B, we have
(i)
 D is a Latin hypercube design with k slices Dl for l¼1,…,k.

(ii)
 D and Dl's achieve the same uniformity on s�⋯� s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

r

grids, for l¼1,…,k.
(iii)
 For any l¼ 1;…; k, ðDl;DÞ is a nested Latin hypercube design with two layers.



Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171 165
An illustrative example is given below.

Example 2. Give an OAð9;34;2Þ, denoted by OA0, where

OA0 ¼

0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

0
BBB@

1
CCCA

0

:

We now construct a 27-run sliced Latin hypercube design with 3 slices, i.e., k¼3 and N¼27.

Step 1: We randomize the rows, columns and symbols of OA0, and may get three randomized orthogonal arrays as

OA1 ¼

2 0 1 1 0 2 0 2 1
1 0 2 0 1 2 2 0 1
1 2 0 1 0 2 1 0 2
0 0 0 2 2 2 1 1 1

0
BBB@

1
CCCA

0

; OA2 ¼

1 2 2 1 0 0 0 1 2
1 1 0 0 1 2 0 2 2
0 1 2 1 2 1 0 2 0
0 2 0 1 1 0 2 2 1

0
BBB@

1
CCCA

0

;

OA3 ¼

0 0 2 1 0 1 1 2 2
1 0 2 2 2 1 0 0 1
0 2 2 0 1 2 1 0 1
1 0 1 0 2 2 1 2 0

0
BBB@

1
CCCA

0

:

Step 2: We generate four Mð9;3;3Þ's as

M1 ¼

14 10 16
11 18 12
17 13 15
19 20 22
26 24 21
23 25 27
1 2 6
9 7 3
4 5 8

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; M2 ¼

17 16 18
10 12 15
13 14 11
26 23 24
22 25 21
20 19 27
4 6 5
3 1 8
9 7 2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; M3 ¼

13 10 17
18 16 15
12 14 11
26 25 27
22 24 21
20 19 23
1 4 3
6 7 9
8 2 5

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; M4 ¼

6 5 4
7 3 9
2 8 1
24 21 19
20 22 26
27 25 23
15 10 13
11 14 16
18 17 12

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Step 3: Three matrices are obtained below:

A1 ¼

4 22 20 2
17 10 1 6
23 4 13 7
19 17 22 18
14 26 12 11
9 3 6 15
11 9 26 20
1 13 18 24
26 20 8 27

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; A2 ¼

24 25 10 5
2 19 19 17
7 12 4 3
25 16 25 25
18 23 7 21
10 7 24 8
13 14 14 14
20 6 2 10
5 1 16 22

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; A3 ¼

12 24 15 19
15 11 9 1
8 8 5 23
22 5 11 4
16 2 23 16
27 27 3 12
21 18 27 26
6 15 17 13
3 21 21 9

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Step 4: Based on A1;A2 and A3, we may get D1;D2 and D3 as

D1 ¼

0:1214 0:6056 0:8168 0:6742 0:5104 0:3179 0:3959 0:0004 0:9284
0:7780 0:3451 0:1254 0:6059 0:9427 0:1042 0:2984 0:4559 0:7360
0:7273 0:0368 0:4525 0:8082 0:4423 0:2199 0:9266 0:6577 0:2709
0:0470 0:1980 0:2591 0:6471 0:3856 0:5528 0:7202 0:8589 0:9890

0
BBB@

1
CCCA

0

;

D2 ¼

0:8649 0:0496 0:2331 0:9107 0:6408 0:3593 0:4707 0:7335 0:1846
0:9087 0:6914 0:4356 0:5769 0:8405 0:2223 0:4929 0:1860 0:0133
0:3362 0:6860 0:1216 0:8906 0:2285 0:8726 0:5003 0:0605 0:5653
0:1762 0:6123 0:0791 0:8933 0:7418 0:2961 0:5154 0:3652 0:8138

0
BBB@

1
CCCA

0

;



X1

X2

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

X3

0.0

0.4

0.8

0.0 0.4 0.8

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
0.0

0.4

0.8

X4

Fig. 1. Bivariate projections among columns of D.

Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171166
D3 ¼

0:4407 0:5302 0:2737 0:8072 0:5908 0:9743 0:7506 0:2147 0:1041
0:8558 0:3716 0:2597 0:1514 0:0570 0:9904 0:6436 0:5252 0:7556
0:5273 0:3130 0:1834 0:3828 0:8222 0:0847 0:9633 0:6275 0:7670
0:6821 0:0083 0:8154 0:1310 0:5819 0:4178 0:9573 0:4615 0:3300

0
BBB@

1
CCCA

0

:

Step 5: A sliced Latin hypercube design with three slices can be obtained by D¼ ðD0
1;D

0
2;D

0
3Þ0.

The bivariate projections of D are shown in Fig. 1, where the markers “�”, “○” and “△” denote the points from the slices D1,
D2 and D3, respectively. The symbol “X1” denotes the 1st column of Di, “X2” denotes the 2nd column of Di, and so on. From
this figure, it can be seen that the points in the bivariate projections of each Di achieve uniformity on 3�3 grids and the
points in the bivariate projections of D also achieve the similar uniformity.

Remark 3. In Example 2, the parent orthogonal array has index λ¼1, so the slice Dl can have maximum uniformity on 3�3
grids for l ¼ 1, 2, 3. This implies that one and only one point lies in each grid. Thus the number of factors is limited. In fact, a
variety of sliced Latin hypercube designs with more flexible run sizes and factor numbers can be obtained by taking the
advantage of orthogonal arrays. For example, an OAð18;37;2Þ can be used to generate sliced Latin hypercube designs with
different run sizes and numbers of factors.

3. Sliced Latin hypercube designs via asymmetric orthogonal arrays

In this section, sliced Latin hypercube designs are constructed via asymmetric orthogonal arrays. Such designs have a
sliced structure and attractive low-dimensional uniformity. Different from those sliced designs based on symmetric
orthogonal arrays, such Latin hypercube designs can have different degrees of uniformity for different combinations of
factors.



Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171 167
Algorithm C. Construction of sliced Latin hypercube designs via asymmetric OA.

Step 1: Give an OAðn; sd11 …sdmm ; rÞ, denoted by OA0, randomize its rows, then randomize its columns in each group (columns
which have the same number of levels), and its symbols in each column to generate a randomized orthogonal
array. Obtain k such arrays, OA1;…;OAk, by independently repeating the above randomization k times.

Step 2: Independently generate Mðn; k; siÞ di times, denote the outputs as Msi
1 ;…;Msi

di
, i¼ 1;…;m.

Step 3: For l¼1,…,k, i¼ 1;…;m and j¼ 1;…;di, replace the α's in the jth si-level column of OAl by a random permutation of
the elements in the lth column of the ðαþ1Þth submatrix of Msi

j , α¼ 0;…; si�1, call these k designs as A1;…;Ak.
Step 4: Same as Step 4 of Algorithm B to generate design Dl, for l¼ 1;…; k.
Step 5: Obtain design D¼ ðD0

1;…;D0
kÞ0, which is a row juxtaposition of Dl's.

Theorem 2. For the design D¼ ðD0
1;…;D0

kÞ0 constructed by Algorithm C, we have
(i)
 D is a Latin hypercube design with k slices Dl for l¼1,…,k.

(ii)
 D and Dl's achieve r-dimensional uniformity; namely, if they are projected onto r columns corresponding to factors with

si1;…; sir levels in the parent orthogonal array, then they achieve uniformity on si1 �⋯� sir grids.

(iii)
 For any l¼ 1;…; k, ðDl;DÞ is a nested Latin hypercube design with two layers.
Example 3. Give an OAð16;2643;2Þ, denoted by OA0, where

OA0 ¼

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 2 2 0 0 2 2 3 3 1 1 3 3 1 1
0 2 0 2 3 1 3 1 0 2 0 2 3 1 3 1
0 2 2 0 3 1 1 3 3 1 1 3 0 2 2 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

0

:

Let k¼2 and N¼32. A sliced Latin hypercube design can be constructed as follows:

Step 1: Generate two randomized orthogonal arrays OA1 and OA2 as

OA1 ¼

0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0
1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1
1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1
1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 0 3 2 1 3 3 3 0 2 2 2 1 0 1 0
1 1 2 3 2 0 3 1 2 1 2 0 0 0 3 3
0 1 1 1 3 3 0 2 2 3 0 2 1 0 2 3

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

0

;

OA2 ¼

0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0
1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0
0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1
1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0
3 3 2 1 1 2 2 0 3 0 3 1 0 2 0 1
1 3 2 0 2 0 1 0 2 2 0 1 3 3 1 3
2 0 0 1 3 2 3 0 1 2 3 0 3 1 1 2

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

0

:



Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171168
Step 2: Generate six Mð16;2;2Þ's and three Mð16;2;4Þ's as

M20

1

M20

2

M30

3

M20

4

M20

5

M20

6

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

0

¼ ;

M40

1

M40

2

M40

3

0
BBBB@

1
CCCCA

0

¼ :

Step 3: Designs A1 and A2 can be obtained as

A1 ¼

4 23 2 14 11 26 30 15 21 19 17 8 28 5 31 10
3 16 23 8 5 13 12 30 9 28 21 2 25 17 20 32
25 14 28 18 15 20 5 10 22 32 3 7 1 24 30 12
9 23 6 25 19 27 3 31 14 2 18 15 11 22 30 8
32 18 23 15 4 27 11 2 10 5 30 22 14 7 20 26
27 11 14 17 7 32 3 26 23 1 22 15 30 5 9 19
8 17 10 27 4 16 14 11 19 32 26 30 5 23 2 22
8 2 29 23 28 14 19 5 25 4 32 12 10 15 22 18
31 9 12 16 5 8 25 21 17 3 29 23 14 27 19 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

0

;

A2 ¼

3 29 32 20 16 7 24 1 6 18 27 13 9 12 22 25
31 15 24 22 11 6 27 26 19 10 4 7 18 1 14 29
11 4 13 6 2 16 19 31 27 23 29 17 9 21 8 26
20 12 26 16 28 10 13 17 5 4 24 7 1 21 32 29
16 9 21 6 13 25 3 8 28 1 29 31 24 12 17 19
31 16 21 20 4 13 12 8 2 18 28 24 29 25 10 6
9 12 31 1 7 29 28 20 15 18 13 6 21 25 24 3
3 24 31 16 26 13 1 9 30 27 11 7 20 17 6 21
22 32 26 11 7 24 4 28 13 20 6 30 2 10 15 18

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

0

:

Steps 4 and 5 of Algorithm C, a sliced Latin hypercube design with two slices, denoted by D¼ ðD0
1;D

0
2Þ0, can then be

obtained.
The bivariate projections of D1 are shown in Fig. 2. Only those among the 1st, 2nd, 8th and 9th columns are presented,

where the symbols “X1”, “X2”, “X8” and “X9” correspond to these four columns. From this figure, we can see that different
combinations of factors have different degrees of uniformity. For example, X1 and X2 have uniformity on 2�2 grids, X8 and
X9 achieve uniformity on 4�4 grids, and X2 and X8 achieve uniformity on 2�4 grids.
Remark 4. The uniformity of Dl and D is inherited from their parent asymmetric orthogonal arrays, so when a suitable
parent asymmetric orthogonal array is chosen, the resulting sliced Latin hypercube designs will have favorable uniformity
property. In this example, since the first four columns of the OAð16;2643;2Þ constitute a symmetric OAð16;24;4Þ, the Dl's and
D will carry the nice uniformity property till 4-dimension when projected onto the first four columns of the original
OAð16;2643;2Þ.
Compared with Algorithm B, Algorithm C extends the construction method from symmetric orthogonal arrays to

asymmetric orthogonal arrays. Such an extension may improve the low-dimensional uniformity of Dl and D, depending on
the combinations of factors as in the above-mentioned OAð16;2643;2Þ, and can result in sliced Latin hypercube designs with
more flexible run sizes and numbers of factors.



X1

X2

X8

0 0.4 0.8

0.4

0.8

0

0.4

0.8

0

0.4

0.8

0 0.4 0.8
0

0.4

0.8

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8
0

0.4

0.8

X9

Fig. 2. Bivariate projections among columns of D1.

Table 1
Comparisons of the proposed designs with the sliced designs due to Qian and Wu (2009) and Qian (2012).a

Construction
method

Run size Maximum
number
of factors

Number of
slices

Maximum
dimension
of uniformity

Constraints

D Dl

Qian and Wu
(2009)

ðpu1 Þt ðpu2 Þt pu2 þ1 ðpu1 Þt
ðpu2 Þt

t for D, ðt�1Þ for Dl u2ju1, pu2 Zt�1Z0

ðpu1 Þt ðpu2 Þt pu2 þ1 ðpu1 Þt
ðpu2 Þt

t for D, ðt�1Þ for Dl tðu2�1Þru1�1, pu2 Zt�1Z0

ðpu1 Þk ðpu2 Þk ðpu2 Þk�1
pu2 �1

ðpu1 Þk
ðpu2 Þk

2 2u2ru1�1

ðpu1 Þ2 ðpu2 Þ2 pu2 ðpu1 Þ2
ðpu2 Þ2

2 u2ju1

Qian (2012) N n m b 1 N¼nb

The proposed
methods

N n f k r N¼nk, the parent orthogonal array with n runs, f
factors and strength r

a p is a prime, u14u2Z1, bZ2, kZ2, t and m are positive integers.

Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171 169
4. Comparisons and concluding remarks

Algorithm B (in Section 2) provides a method for construction of sliced Latin hypercube designs using symmetric
orthogonal arrays. The resulting sliced Latin hypercube designs and their slices inherit the r-dimensional uniformity of the
used orthogonal array of strength r. Algorithm C (in Section 3) provides another method for construction of sliced Latin
hypercube designs using asymmetric orthogonal arrays. The resulting sliced Latin hypercube designs and their slices also



Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171170
achieve the r-dimensional uniformity of the parent orthogonal arrays with strength r. Most existing orthogonal arrays can
be found from the websites maintained by Dr. N.J.A. Sloane (http://neilsloane.com/oadir/index.html) and Dr. W.F. Kuhfeld
(http://support.sas.com/techsup/technote/ts723.html).

Some comparisons of the proposed designs with existing sliced designs, mainly due to Qian and Wu (2009), and Qian
(2012), are displayed in Table 1. In Table 1, we compare the newly constructed sliced Latin hypercube designs with the
existing ones in five favorable properties: the run size, the maximum number of factors under a certain run size, the number
of slices, the maximum dimension of uniformity and the constraints. It can be seen that the designs constructed by Qian and
Wu (2009) have limited run sizes N¼ ðpu1 Þt—it has to be a power of pu1 ; while the proposed sliced Latin hypercube design
can be constructed for any N which is a multiple of the run size of an orthogonal array ðN¼ nkÞ. The newly constructed
design has a much more flexible run size and number of factors. In computer experiments, it is desirable that the whole
design and its slices have one or higher-dimensional uniformity. The newly constructed sliced Latin hypercube designs have
a better uniformity than the designs constructed by Qian (2012), which have only one-dimensional uniformity though have
the advantage of accommodating any number of factors, m.

Note that the newly constructed designs are also nested Latin hypercube designs. These designs are easy to construct, and are
very appropriate for computer experiments, including collective evaluations of computer models, ensembles of multiple
computer models, computer experiments with qualitative and quantitative variables, cross-validation and data pooling.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11271205), the Specialized
Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130031110002), and the “131” Talents
Program of Tianjin. The authors thank Dr. Zhiguang Qian and a referee for their valuable comments and suggestions.

Appendix A. Proofs
Proof of Lemma 1. Let dij be the entry of Dl, for i¼ 1;…;n and j¼ 1;…; d. From the construction of Mðn; k; sÞ in Algorithm A,
dij can be expressed as

dij ¼
wijk
N

� eijþuij

N
¼ wij

n
� eijþuij

N
;

where w1j;…;wnj constitute a uniform random permutation on Zn, each eij is a discrete random variable with the probability
mass function Prðeij ¼ cÞ ¼ 1=k, for c¼ 0;1;…; k�1, and the wij, eij and uij are mutually independent.
Since w1j;…;wnj is a uniform random permutation on Zn, to prove the one-dimensional uniformity of Dl, it remains to

verify that each ðeijþuijÞ=N is a U½0;1=nÞ random variable. For xA ½0;1=nÞ, let ⌊Nxc ¼ c0, we have

Pr
eijþuij

N
rx

� �

¼ 1
k

∑
c0 �1

c ¼ 0
PrðcþuijrNxÞþPrðc0þuijrNxÞþ ∑

k�1

c ¼ c0 þ1
PrðaþuijrNxÞ

" #

¼ 1
k
c0þ Nx�c0ð Þþ0½ �

¼ nx;

which indicates that ðeijþuijÞ=N�U½0;1=nÞ. Thus Dl has one-dimensional uniformity.
Furthermore, from Step 3 of Algorithm B, the t α's in the jth column of the parent randomized orthogonal array OAl are

replaced by a permutation of t successive items in the corresponding column of Mj. So according to Tang (1993), the design
Dl is statistically equivalent to an n� d OA-based Latin hypercube design. □

Proof of Theorem 1. (i) Since the elements in each Gl are successive items, and for each column of ðOA0
1;…;OA0

kÞ0, all the tk
α's are replaced by the elements of some submatrix Gl, then according to Tang (1993), D is an OA-based Latin hypercube
design and achieves r-dimensional uniformity.
From Lemma 1, Dl is an OA-based Latin hypercube design, l¼ 1;…; k. Thus D is a sliced Latin hypercube design with k

slices.
(ii) From the construction, we know that each OAl achieves uniformity on s�⋯� s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

r

grids, it is obvious that ðOA0
1;…;OA0

kÞ0

also achieves uniformity on s�⋯� s|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r

grids. So D and Dl's achieve uniformity on s�⋯� s|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r

grids.

(iii) The conclusion is obvious. □

Proof of Theorem 2. The proof is similar to that of Theorem 1 and is thus omitted. □

http://neilsloane.com/oadir/index.html
http://support.sas.com/techsup/technote/ts723.html


Y. Yin et al. / Journal of Statistical Planning and Inference 149 (2014) 162–171 171
References

Haaland, B., Qian, P.Z.G., 2010. An approach to constructing nested space-filling designs for multi-fidelity computer experiments. Statist. Sinica 20,
1063–1075.

He, X., Qian, P.Z.G., 2011. Nested orthogonal array-based Latin hypercube designs. Biometrika 98, 721–731.
Huang, H.Z., Yang, J.F., Liu, M.Q. Construction of sliced (nearly) orthogonal Latin hypercube designs. J. Complex., http://dx.doi.org/10.1016/j.jco.2013.10.004,

in press.
Kennedy, M.C., O'Hagan, A., 2000. Predicting the output from a complex computer code when fast approximations are available. Biometrika 87, 1–13.
Li, J., Qian, P.Z.G., 2013. Construction of nested (nearly) orthogonal designs for computer experiments. Statist. Sinica 23, 451–466.
Qian, P.Z.G., 2009. Nested Latin hypercube designs. Biometrika 96, 957–970.
Qian, P.Z.G., 2012. Sliced Latin hypercube designs. J. Amer. Statist. Assoc. 107, 393–399.
Qian, P.Z.G., Ai, M.Y., 2010. Nested Lattice sampling: a new sampling scheme derived by randomizing nested orthogonal arrays. J. Amer. Statist. Assoc. 105,

1147–1155.
Qian, P.Z.G., Ai, M.Y., Wu, C.F.J., 2009a. Construction of nested space-filling designs. Ann. Statist. 37, 3616–3643.
Qian, P.Z.G., Tang, B., Wu, C.F.J., 2009b. Nested space-filling designs for computer experiments with two levels of accuracy. Statist. Sinica 19, 287–300.
Qian, Z., Seepersad, C., Joseph, R., Allen, J., Wu, C.F.J., 2006. Building surrogate models based on detailed and approximate simulations. ASME Trans.: J. Mech.

Des. 128, 668–677.
Qian, P.Z.G., Wu, C.F.J., 2008. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204.
Qian, P.Z.G., Wu, C.F.J., 2009. Sliced space-filling designs. Biometrika 96, 945–956.
Schmidt, R.R., Cruz, E.E., Iyengar, M.K., 2005. Challenges of data center thermal management. IBM J. Res. Develop. 49, 709–723.
Sun, F.S., Yin, Y.H., Liu, M.Q., 2013. Construction of nested space-filling designs using difference matrices. J. Statist. Plann. Inference 143, 160–166.
Tang, B., 1993. Orthogonal array-based Latin hypercubes. J. Amer. Statist. Assoc. 88, 1392–1397.
Xu, X., Haaland, B., Qian, P.Z.G., 2011. Sudoku-based space-filling designs. Biometrika 98, 711–720.
Yang, J.F., Lin, C.D., Qian, P.Z.G., Lin, D.K.J., 2013. Construction of sliced orthogonal Latin hypercube designs. Statist. Sinica 23, 1117–1130.
Yang, J.Y., Liu, M.Q., 2012. Construction of orthogonal and nearly orthogonal Latin hypercube designs from orthogonal designs. Statist. Sinica 22, 433–442.
Yang, J.Y., Liu, M.Q., Lin, D.K.J., 2014. Construction of nested orthogonal Latin hypercube designs. Statist. Sinica 24, 211–219.

http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref1
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref1
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref2
http://dx.doi.org/10.1016/j.jco.2013.10.004
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref4
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref5
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref6
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref7
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref8
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref8
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref9
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref10
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref11
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref11
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref12
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref13
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref14
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref15
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref16
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref17
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref18
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref19
http://refhub.elsevier.com/S0378-3758(14)00028-7/sbref20

	Sliced Latin hypercube designs via orthogonal arrays
	Introduction
	Sliced Latin hypercube designs via symmetric orthogonal arrays
	Sliced Latin hypercube designs via asymmetric orthogonal arrays
	Comparisons and concluding remarks
	Acknowledgments
	Proofs
	References




