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a b s t r a c t

Sliced Latin hypercube designs, introduced by Qian (2012), are widely used for com-
puter experiments with qualitative and quantitative factors, multiple experiments, cross-
validation and stochastic optimization. In this paper, we propose a new class of sliced Latin
hypercube design, called the resolvable orthogonal array-based uniform sliced Latin hy-
percube design. Such designs are constructed via both symmetric and asymmetric resolv-
able orthogonal arrays, and measured by the centered L2 discrepancy criterion. When the
construction is based on a resolvable orthogonal array with strength w + 1, the resulting
design not only possesses stratification in any w-dimensional projection for each slice, but
also achieves stratification in any (w + 1)-dimensional projection for the whole design.
Furthermore, the uniformity of the resulting design is also highly improvedwith respect to
the centered L2 discrepancy criterion.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sliced Latin hypercube designs (SLHDs) were introduced by Qian (2012) and have been regarded as a popular choice for
computer experiments with both qualitative and quantitative factors. An SLHD is a Latin hypercube design (LHD) that can
be divided into slices such that each of which is a smaller LHD. Orthogonality and space-filling property are two desirable
features for SLHDs. The SLHDs constructed by Qian (2012) cannot guarantee orthogonality or projective uniformity in two
or more dimensions although they achieve a maximum stratification in any one dimension. Recently, Yang et al. (2013)
and Huang et al. (2014) proposed methods to construct sliced orthogonal and nearly orthogonal LHDs, and Yin et al. (2014)
constructed SLHDs with an attractive low-dimensional uniformity via both symmetric and asymmetric orthogonal arrays.
However, the uniformity of the constructed SLHDs on the whole experimental domain was not considered by any of those
references.

Uniform designs have been widely used for computer experiments since such a design scatters its design points evenly
on the experimental domain under some discrepancy measure (Fang and Lin, 2003; Fang et al., 2006). The commonly used
discrepancy measures include, e.g., the centered L2 discrepancy (CD2), the wrap-around L2 discrepancy (Hickernell, 1998)
and the discrete discrepancy (Hickernell and Liu, 2002; Fang et al., 2002, 2003). In a design space D , a design is said to be a
uniform design under some discrepancy measure if it minimizes the discrepancy among all designs in D .

Orthogonal array (OA)-based LHDs were first proposed by Tang (1993). Such designs achieve stratification in any t
dimensions when an OA of strength t is used for the construction. In this paper we provide an approach for constructing
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uniform SLHDs based on symmetric and asymmetric resolvable OAs (ROAs). The resulting uniform SLHDs from ROAs with
strength w + 1 achieve stratification in (w + 1)-dimension and each of their slices achieves stratification in w-dimension.
Moreover, all designs have a better space-filling property under the CD2 criterion. The construction methods are easy to
implement and the resulting designs have flexible run sizes and number of factors.

The remainder of this paper is organized as follows. Section 2 provides a method for constructing SLHDs based on
symmetric and asymmetric ROAs. In Section 3, a modified threshold-accepting (TA) algorithm is provided to search uniform
SLHDs under the CD2 criterion. Section 4 gives some concluding remarks.

2. Generation of SLHDs based on ROAs

This section provides an approach to construct SLHDs based on symmetric and asymmetric ROAs and modified sliced
permutation matrices. The resulting designs have low-dimensional stratifications and flexible run sizes. Two examples are
given for illustration.

Let us first introduce some useful definitions and notation. An asymmetric orthogonal array (OA), denoted by OA(N,

sk11 sk22 . . . skvv , w + 1), is an array of size N × k, where k =
v

i=1 ki is the total number of factors (columns), in which the first
k1 columns have symbols from {0, 1, . . . , s1 −1}, the next k2 columns have symbols from {0, 1, . . . , s2 −1}, and so on, with
the property that in any N × (w + 1) subarray every possible (w + 1)-tuple occurs an equal number of times as a row, here
w + 1 is called the strength of this OA. An asymmetric OA(N, sk11 sk22 . . . skvv , w + 1) with

v
i=1 ki = k is called an asymmetric

resolvable OA (ROA), denoted by ROAp(N, sk11 sk22 . . . skvv , w + 1), if it can be partitioned into p submatrices each of which is
an asymmetric OA(n, sk11 sk22 . . . skvv , w), where n = N/p. When all si’s are equal to s, the asymmetric OA and ROA become
symmetric ones, denoted by OA(N, sk, w + 1) and ROAp(N, sk, w + 1), respectively.

For a real number x, ⌈x⌉ denotes the smallest integer greater than or equal to x, and ⌊x⌋ denotes the largest integer less
than or equal to x. Similarly define ⌈C⌉ and ⌊C⌋ for a real matrix C . For a positive integer N , let ZN be the set {1, 2, . . . ,N}.
A Latin hypercube design (LHD) of N runs and k factors, denoted by L(N, k), is considered as an N × kmatrix in which each
column consists of a uniform permutation of ZN and all the columns are obtained independently. Moreover, an LHD is called
a sliced LHD (SLHD)withN = np runs, k factors and p slices, denoted by SL(N, k, p), if it can be divided into p n×k subarrays,
say D1, . . . ,Dp, and each ⌈Di/p⌉ is an L(n, k).

Qian (2012) used the sliced permutation matrix to construct SLHDs. A sliced permutation matrix SPM(n, p) on ZN with
N = np and n and p being strictly positive integers is defined to be an n × p matrix in which each element of ZN appears
precisely once and each column of ⌈SPM(n, p)/p⌉ forms a permutation on Zn (cf. Qian, 2012). For the construction of
ROA-based SLHDs, we need to modify the generation of the sliced permutation matrix as follows. (i) Divide the entries
of ZN into an n × p matrix B = (bij) with N = np such that ⌈bij/p⌉ = i for i = 1, . . . , n, j = 1, . . . , p. (ii) Split
B into q t × p matrices Bl = (blij) for l = 1, . . . , q, such that for any blij ∈ Bl, ⌈blij/(t × p)⌉ = l, where n = tq and
i = 1, . . . , t, j = 1, . . . , p. (iii) For l = 1, . . . , q, let B∗

l be thematrix obtained by randomly reordering the rows and columns
of Bl. (iv) LetM(n, p, q) = (B∗

τ1
′, . . . , B∗

τq
′)′, where (τ1, . . . , τq) is a permutation on {1, . . . , q}. ThenM(n, p, q) is called the

modified sliced permutation matrix, and will be used to construct ROA-based SLHDs in the following.

Algorithm 1 (Construction of SLHDs via ROAs).

Step 1. Let A = (A′

1, . . . , A
′
p)

′ be an ROAp(N, sk11 sk22 · · · skvv , w + 1) with N = np and
v

i=1 ki = k, where Ai is an
OA(n, sk11 sk22 · · · skvv , w) for i = 1, . . . , p.

Step 2. For u = 1, . . . , v, independently generate ku M(n, p, su)’s as described above, denoted byMsu
1 , . . . ,Msu

ku .
Step 3. Randomly replace the c ’s in the jth su-level column of Ai by the entries in the ith column of the (c + 1)th submatrix

ofMsu
j , j = 1, . . . , ku, c = 0, 1, . . . , su − 1, i = 1, . . . , p, and u = 1, . . . , v. Then a newmatrix D = (D1

′, . . . ,Dp
′)′

is obtained.

According to Algorithm 1, we can obtain the following result.

Theorem 1. For the D and each Dl for l = 1, . . . , p constructed in Algorithm 1,

(i) D is an SL(N, k, p) with p slices Dl for l = 1, . . . , p;
(ii) D achieves stratification on si11 × si22 ×· · ·× sivv grids for iu ≤ ku, u = 1, . . . , v, with

v
u=1 iu ≤ w +1, and each Dl achieves

stratification on sj11 × sj22 × · · · × sjvv grids, for ju ≤ ku, u = 1, . . . , v, with
v

u=1 ju ≤ w, l = 1, . . . , p.

Proof. (i) This conclusion is obvious according to the construction of D and each Dl, l = 1, . . . , p.
(ii) Since A is an OA with strength w + 1 which achieves stratification on si11 × · · · × sivv grids for iu ≤ ku, u = 1, . . . , v,

with
v

u=1 iu ≤ w + 1 and D is an OA-based LHD based on A (cf. Tang, 1993), then D inherits the same stratification with
A, i.e. D achieves stratification on si11 × · · · × sivv grids for iu ≤ ku, u = 1, . . . , v, with

v
u=1 iu ≤ w + 1. Similarly, each Al
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is an OA with strength w, therefore, each Dl achieves stratification on sj11 × · · · × sjvv grids for ju ≤ ku, u = 1, . . . , v, withv
u=1 ju ≤ w, where l = 1, . . . , p. This completes the proof. �

Note that Theorem1 is obviously true for the special case of s1 = · · · = sv = s. It is easy to verify that anROAs(N, sk, w+1)
always exists if there exists an OA(N, sk+1, w + 1), where w + 1 ≤ k. We now briefly describe a general procedure for
constructing symmetric ROAs. (i) Let B be an OA(N, sk+1, w + 1), without loss of generality, suppose the entries of B come
from {0, 1, . . . , s−1}, where s ≥ 2. (ii) Rearrange the rows of B such that the first column contains 0 in the firstN/s positions,
1 in the next N/s positions and so on. Then we obtain an orthogonal array OA(N, sk, w + 1) by omitting the first column of
B. Moreover, the s sets of N/s consecutive rows of the OA(N, sk, w + 1) are s OA(N/s, sk, w)’s, i.e., this OA(N, sk, w + 1) is
an ROAs(N, sk, w + 1).

Now let us see an illustrative example for Algorithm 1.

Example 1. Consider the following ROA4(16, 23, 3):0 0 1 1 : 1 1 0 0 : 0 0 1 1 : 1 1 0 0
0 1 0 1 : 1 0 1 0 : 0 1 0 1 : 1 0 1 0
0 1 1 0 : 1 0 0 1 : 0 1 1 0 : 1 0 0 1

′

,

which can be partitioned into four subarrays and each subarray is an OA(4, 23, 2).
First, following Step 2 of Algorithm 1, we generate threeM(4, 4, 2)’s, say

M2
1 =

 11 14 15 13
16 9 10 12
3 1 8 4
6 7 2 5

 , M2
2 =

 13 12 15 11
10 14 9 16
5 1 6 7
4 8 3 2

 , M2
3 =

 1 3 4 2
5 7 6 8

12 11 9 10
15 13 16 14

 .

Then following Step 3 of Algorithm 1, the resulting SL(16, 3, 4) is

D = (D1
′,D2

′,D3
′,D4

′)′

=

11 16 3 6 : 1 7 9 14 : 10 15 8 2 : 4 5 12 13
10 5 13 4 : 8 14 1 12 : 15 3 9 6 : 7 16 2 11
5 12 15 1 : 13 7 3 11 : 6 16 9 4 : 10 8 2 14

′

.

The bivariate projections of D are displayed in Fig. 1, where the markers ‘‘•’’, ‘‘◦’’, ‘‘△’’ and ‘‘+’’ denote the points from the
slices D1,D2,D3 and D4, respectively. The symbol ‘‘X1’’ denotes the first column of D, ‘‘X2’’ denotes the second column of D,
and so on. From Fig. 1, it can be seen that each Dl achieves maximum stratification on 2× 2 grids in any two dimensions, in
addition to achieving maximum stratification in any one dimension for l = 1, 2, 3, 4. In fact, the design D achieves not only
maximum stratification in any one dimension and stratification in any two dimensions, but also stratification on 2 × 2 × 2
grids in any three dimensions.

SLHDs based on asymmetric ROAs can also be constructed using Algorithm 1. Let us first briefly describe the existence
of asymmetric ROAs. Agrawal and Dey (1983) presented three types of orthogonal resolution IV designs for asymmetrical
factorials. Brouwer et al. (2006) and Nguyen (2008) examined the asymmetric OAs of strength 3with run size n ≤ 100. Jiang
and Yin (2013) provided an approach to construct asymmetric OAs of strength ≥ 3 from known ones.

Lemma 1 (Jiang and Yin, 2013). An ROAp(N, sk11 · · · skvv , w) with
v

i=1 ki = k can exist only if p|N and n|(N/p) where

n = lcm
w−1

i=1

sji : 1 ≤ j1 < · · · < jw−1 ≤ v and sj1 , . . . , sjw−1 ∈ {s1, s2, . . . , sv}

,

and lcm{·} denotes the least common multiple of the elements in the set.

Lemma 2 (Jiang and Yin, 2013). If there is an OA(N, sk11 · · · skvv , w) with
v

i=1 ki = k and w < k, then there is also an
ROAsi(N, sk11 · · · ski−1

i−1 ski−1
i ski+1

i+1 · · · skvv , w) for each 1 ≤ i ≤ v.

Example 2. Consider an ROA2(32, 4223, 3) obtained by deleting one 2-level column from the OA(32, 4224, 3) constructed
by Agrawal and Dey (1983), where the OA(32, 4224, 3) is

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 1 1 0 0 3 3 2 2 1 1 0 0 3 3 2 2
1 0 1 0 1 0 1 0 3 2 3 2 3 2 3 2 0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1



′

.
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Fig. 1. Bivariate projections among columns of the SL(16, 3, 4) in Example 1.

Without loss of generality, delete the fourth column and we obtain an ROA2(32, 4223, 3) which is


0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 : 1 1 0 0 3 3 2 2 1 1 0 0 3 3 2 2

1 0 1 0 1 0 1 0 3 2 3 2 3 2 3 2 : 0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 : 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 : 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 : 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1



′

.

Obviously, this ROA2(32, 4223, 3) can be partitioned into two subarrays and each subarray is an OA(16, 4223, 2).
TwoM(16, 2, 4)’s and threeM(16, 2, 2)’s can be generated as

(M4
1 ,M

4
2 ) =



15 11 12 16
10 9 15 9
14 16 14 13
12 13 10 11
29 28 23 21
31 30 17 18
27 25 22 19
26 32 20 24
8 5 29 30
1 7 26 28
4 2 32 31
6 3 27 25
17 23 2 4
24 19 3 1
21 18 6 7
20 22 8 5



, (M2
1 ,M

2
2 ,M

2
3 ) =



31 18 10 8 32 31
26 24 12 6 29 25
20 19 14 2 22 18
23 30 1 4 26 23
22 32 3 11 28 21
17 21 7 16 17 20
29 27 15 9 24 30
28 25 5 13 19 27
6 11 18 19 4 3
8 4 31 28 8 11
2 9 27 24 1 7
16 1 22 17 6 15
14 15 29 21 10 14
3 13 26 30 16 5
10 7 23 25 12 2
12 5 20 32 13 9



.

Then following Step 3 of Algorithm 1, the resulting SL(32, 5, 2) can be expressed as D = (D1
′,D2

′)′ with

D1 =


15 10 31 27 4 6 21 24 14 12 26 29 8 1 20 17
20 12 22 15 17 14 23 10 6 32 2 26 8 29 3 27
31 8 10 26 20 16 3 23 22 12 2 17 29 6 14 28
18 10 12 20 14 26 22 1 3 27 23 7 31 15 5 29
32 29 22 26 4 10 13 6 16 8 12 1 28 17 24 19


′

and
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Fig. 2. Bivariate projections among the first four columns of the SL(32, 5, 2) in Example 2.

D2 =


32 28 11 9 18 23 2 7 25 30 16 13 22 19 3 5
16 19 9 18 13 21 11 24 30 5 28 4 25 1 31 7
13 18 24 7 5 19 30 4 15 32 21 1 9 27 25 11
8 30 24 6 21 2 4 28 17 11 16 32 9 25 19 13
9 11 2 7 31 25 18 23 21 20 30 27 14 5 15 3


′

.

Without loss of generality, the projections of the first four columns of D = (D1
′,D2

′)′ are presented in Fig. 2, where the
markers ‘‘•’’ and ‘‘◦’’ denote the points from the first four columnsX1,X2,X3 andX4 of the slicesD1 andD2, respectively. From
Fig. 2, it can be seen that different level combinations of factors possess different degrees of stratification. In eachDi, i = 1, 2,
X1 and X2, and X3 and X4 achieve stratifications on 4× 4 grids and 2× 2 grids in any two dimensions, respectively, and X1
and X3, X1 and X4, X2 and X3, and X2 and X4 achieve stratifications on 4 × 2 grids in any two dimensions, respectively. In
fact, any t (t ≤ 3) columns of the design D achieve stratification in t dimensions.

Note that if a 4-level column is deleted from the OA(32, 4224, 3), then the resulting ROA4(32, 4124, 3) can also be used
to construct an SLHD with four slices. The details for the construction are omitted here.

3. Construction of uniform SLHDs

In this section, we will construct uniform SLHDs under the centered L2 discrepancy (CD2). Although the SLHDs based on
ROAp(N, sk11 · · · skvv , w + 1)’s constructed in the previous section achieve r-dimensional stratification on si11 × si22 × · · · × sivv
grids for iu ≤ ku, u = 1, . . . , v, with

v
u=1 iu = r ≤ w+1, the points in each si11 ×si22 ×· · ·×sivv grids do not carry uniformity

on thewhole experimental domain. Therefore, SLHDswith the uniformity being optimized under somediscrepancy, e.g. CD2,
are desirable.

Hickernell (1998) proposed the CD2 criterion to measure the uniformity of a design. Let X = {X1, . . . , XN} be a set of N
points in the k-dimensional unit cube Ck

= [0, 1]k, where Xi = (xi1, . . . , xik). The CD2 of X can be calculated as

CD2(X) =

13
12

k
−

2
N

N
i=1

k
j=1


1 +

1
2
|xij − 0.5| −

1
2
|xij − 0.5|2


+

1
N2

N
i,j=1

k
l=1


1 +

1
2
|xij − 0.5| +

1
2
|xlj − 0.5| −

1
2
|xij − xlj|

1/2

.
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If a design has a low CD2, the projections of the design onto subsets of d(≤k) columns also have good uniformity. Obviously,
CD2 possesses various appealing properties, such as invariant under reordering the runs, relabeling factors, or reflecting the
points about any plane passing through the center of the unit cube and parallel to its faces, the projection uniformity over
all low dimensions and easier to compute (cf. Fang et al., 2006). For two ormore designs, the designwith a smaller CD2 value
is preferred. In this paper, the threshold accepting (TA) algorithm, proposed by Dueck and Scheuer (1990), is used to search
the uniform SLHDs. Note that for any SLHD D = (dij) constructed in this paper, before calculating CD2(D), we should first
transform its N runs to N points in Ck

= [0, 1]k by mapping dij to xij = (dij − 0.5)/N for i = 1, . . . ,N and j = 1, . . . , k. The
details for searching uniform SLHDs are given as follows.

Algorithm 2 (Generation of Uniform SLHDs).

Step 1. Randomly generate an initial SL(N, k, p) based on an ROAp(N, sk11 · · · skvv , w+1)with
v

u=1 ku = k using Algorithm 1,
denoted by D0, then calculate CD2(D0), denoted by d0. Give a sequence of threshold parameters Th = (T1, . . . , TL),
where T1 > · · · > TL = 0. Denote the iteration number by I under each Tl for l = 1, . . . , L. Set two indexes l = 1
and i = 1.

Step 2. Randomly choose one column of D0 (say an su-level column) and two entries (say a and b) in this column, then
exchange these two entries if ⌈asu/N⌉ = ⌈bsu/N⌉ to create a new design, denoted by Dtry. Calculate CD2(Dtry),
denoted by dtry.

Step 3. If dtry − d0 < Tl, replace D0 by Dtry and set d0 = dtry; else leave D0 unchanged.
Step 4. Update i = i + 1, if i ≤ I , go to Step 2.
Step 5. Update l = l + 1, if l ≤ L, reset i = 1 and go to Step 2; else deliver D = D0.

Note that Algorithm 2 may find a locally optimal design, thus repeating Algorithm 2 can increase the possibility of
reaching the global minimum CD2, since we usually have different initial designs in Step 1.

Example 3 (Example 1 Continued).As an illustration, consider the generation of a uniform SL(16, 3, 4). For theD constructed
in Example 1, it can be calculated that CD2(D) = 0.0863. To avoid locally optimal designs, we randomly generate 100
SL(16, 3, 4)’s as initial designs for Algorithm 2. After carrying out Algorithm 2 for all these initial designs, choose the
resulting design with the minimum CD2. The final SL(16, 3, 4), denoted by F , with CD2(F) = 0.0579 which is improved
by (0.0863 − 0.0579)/0.0863 ≈ 33%, is

F = (F ′

1, F
′

2, F
′

3, F
′

4)
′

=

14 13 8 3 : 6 7 11 10 : 16 15 1 2 : 5 4 9 12
9 5 10 8 : 2 13 7 16 : 11 3 12 4 : 6 15 1 14
10 8 3 9 : 6 14 16 7 : 13 4 5 15 : 1 11 12 2

′

.

The binary projections of F are displayed in Fig. 3, where the markers ‘‘•’’, ‘‘◦’’, ‘‘△’’ and ‘‘+’’ denote the points from the
slices F1, F2, F3 and F4, respectively. Comparing Fig. 3 with Fig. 1, it can be seen that not only the bivariate projections of F
and each Fl have the same projection properties as the design constructed in Example 1, l = 1, 2, 3, 4, but also the points of
all slices achieve a better uniformity on [0, 1]2.

Example 4 (Example 2 Continued). For the SL(32, 5, 2) D constructed in Example 2, we have CD2(D) = 0.0981. Similar to
Example 3, by Algorithm 2, the final SL(32, 5, 2) with minimum CD2(F) = 0.0734 which is improved by about 25%, can be
given as F = (F1′, F2′)′ with

F1 =


10 16 8 6 17 18 25 29 15 11 4 1 19 21 27 26
21 6 17 7 18 8 20 5 31 15 28 12 30 13 26 16
25 3 2 31 32 14 1 23 30 6 16 22 21 15 12 26
18 1 13 25 11 17 24 5 9 29 19 14 28 4 12 22
28 18 24 19 1 8 6 4 15 3 2 10 30 26 29 20


′

and

F2 =


5 7 14 9 28 32 24 22 3 2 12 13 30 31 20 23
3 23 1 22 4 19 2 24 9 27 11 32 14 25 10 29
10 18 19 11 9 17 29 13 5 27 20 8 7 28 24 4
10 31 23 2 30 6 15 20 21 3 8 26 16 27 32 7
14 16 7 5 23 22 27 17 31 21 32 25 12 9 13 11


′

.

Without loss of generality, the bivariate projections of the first four columns of F are presented in Fig. 4, where the
markers ‘‘•’’ and ‘‘◦’’ denote the points from the first 16 rows and the next 16 rows of F , respectively.

From Fig. 4, it can be seen that the design points not only have the same projection properties as the designD constructed
in Example 2, but also scatter more evenly on the experimental domain, see e.g., the uniformity of the 32 points in the
projection of X3 and X4 has been highly improved by comparing to the corresponding projection in Fig. 2.
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Fig. 3. Bivariate projections among columns of the uniform SL(16, 3, 4) in Example 3.

Fig. 4. Bivariate projections among the first four columns of the uniform SL(32, 5, 2) in Example 4.

4. Discussion and concluding remarks

In this paper, we have proposed a new type of SLHD that is useful for computer experiments with both qualitative and
quantitative factors. By using symmetric and asymmetric ROAs, we can construct ROA-based SLHDs. For the existing SLHDs,
those constructed by Qian (2012) only achieve one-dimensional maximum stratification although they can accommodate
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any number of factors, and those of Yang et al. (2013) and Huang et al. (2014) possess the exact or near orthogonality
among the columns. While the novel feature of the newly constructed SLHD is that the whole LHD achieves r(≤w + 1)-
dimensional stratification and each slice achieves r(≤w)-dimensional stratification, where w + 1 is the strength of the
corresponding parent ROA. Moreover, the CD2 criterion is used to evaluate the uniformity of the SLHDs, and uniform SLHDs
are then generated with the help of a modified TA algorithm.

Following the discussion in Section 2, we know that it is easy to obtain a symmetric or asymmetric ROA from an OA.
Thus, the construction method is easy to implement. The existence of OAs can be found from Hedayat et al. (1999) and
the websites maintained by Dr. N.J.A. Sloane (http://neilsloane.com/oadir/) and Dr. W.F. Kuhfeld (http://support.sas.com/
techsup/technote/ts723.html).

Furthermore, it is possible to find optimal ROA-based SLHDs under some other uniformity measure, such as the wrap-
around discrepancy, the minimax distance or the maximin distance criterion (cf. Fang et al., 2006).
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