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When fitting a linear regression model to data, aliasing can adversely affect the estimates
of the model coefficients and the decision of whether or not a term is significant. Optimal
experimental designs give efficient estimators assuming that the true form of the model is
known, while robust experimental designs guard against inaccurate estimates caused by
model misspecification. Although it is rare for a single design to be both maximally efficient
and robust, it is shown here that uniform designs limit the effects of aliasing to yield
reasonable efficiency and robustness together. Aberration and resolution measure how
well fractional factorial designs guard against the effects of aliasing. Here it is shown that
the definitions of aberration and resolution may be generalised to other types of design
using the discrepancy.

Some key words: Discrepancy; Effects aliasing; Fractional factorial design; Minimum aberration; Orthogonal
array; Reproducing kernel Hilbert space; Resolution.

1. I

Efficiency and robustness are important concepts in the design of experiments. If one
knows the form of the model relating the response to the factors, then optimal designs
lead to efficient estimators of the unknown parameters. However, often one must infer the
form of the model from the data using regression diagnostics. In such cases aliasing can
adversely affect model selection and estimation if the experiment is not well designed.
Thus, the robustness of a design may be important as well.
Uniform designs (Wang & Fang, 1981; Fang & Wang, 1994, Ch. 5; Bates et al., 1996)

are model independent and spread experimental points evenly over the domain. Their
goal is to minimise the discrepancy, introduced by Weyl (1916), which measures the
difference between the empirical distribution of the design and the uniform distribution.
Theorem 1 shows that uniform designs limit the adverse effects of aliasing on efficiency
and robustness under general assumptions.
Regular fractional factorial designs are often constructed to be of maximum resolution

(Box et al., 1978, Ch. 12) and minimum aberration (Fries & Hunter, 1980), since these
criteria limit the adverse effects of aliasing. Aberration has been generalised to nonregular
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fractional factorial designs (Deng & Tang, 1999; Tang & Deng, 1999; Ma & Fang, 2001;
Tang, 2001; Xu & Wu, 2001). Definition 2 and Theorem 2 show that aberration may be
further generalised to cover designs that are not fractional factorial by using the discrep-
ancy. It is also shown in Theorem 3 that minimum aberration designs and minimum
discrepancy designs are equivalent in a certain limit.
The remainder of this section introduces the model and the design problem to be

considered. Section 2 describes how to define a Hilbert space of possible response functions,
and the discrepancy arising from that Hilbert space is defined in § 3. The ways in which
low discrepancy designs limit the effects of aliasing are discussed in §§ 4 and 5.
Suppose that an experiment has s factors, and let X

j
be a measurable set of all possible

levels of the jth factor. Common examples of X
j
are {0, . . . , q

j
−1} and [0, 1]. The

experimental region, X, is some measurable subset of X1× . . .×X
s
. An experimental

design with n points, P={z
i
= (z
i1

, . . . , z
is
) : i=1, . . . , n}, is a subset of X with multiple

copies of the same point allowed.
Let y

i
denote the observed response when the factors take on the value z

i
. A linear

regression model with misspecification may be written as

y
i
= f (z

i
)+e
i
= ∑
p

j=1
g
j
(z
i
)h
j
+h(z

i
)+e
i

(i=1, . . . , n),

where the specified, possibly complex-valued, functions g
j
are linearly independent, h(x)

is an unknown deviation or misspecification, f (x)=gT(x)h+h(x), the e
i
are independent

and identically distributed random errors with mean 0 and variance s2, and T denotes
the transpose. Moreover, the true parameter vector is h= (h

1
, . . . , h

p
)T, and g(x)=

(g
1
(x), . . . , g

p
(x))T, where x= (x1 , . . . , xs ). To ensure that the model is identifiable, h is

assumed to satisfy Gh=I(g: f ), where G=I(g:gT ), and so the misspecification satisfies
I(g:h)= (0, . . . , 0)T. Here : denotes the complex conjugate, I( f ))∆

X
f (x) dF

X
(x), and F

X
denotes the uniform distribution over the experimental domain X. The matrix G is
Hermitian, that is GH=G, where H denotes the complex-conjugate of the transpose.
The ordinary least squares estimator of the parameter h is h@=M−1XHy, where y=

(y
1
, . . . , y

n
)T is the vector of response data, the design matrix is X= (g(z

1
), . . . , g(z

n
))T,

and the information matrix, M=XHX, is assumed to be nonsingular. The mean squared
difference between the fitted response function, f@ (x)=gT(x)h@ , and the true one is

E{I( | f− fA |2 )}=I({E |gH(h−h@ ) |2+|h |2})=var (P, g)+bias (P, g, h)+I( |h |2 ) (1)

(Yue & Hickernell, 1999), where

var (P, g)=s2 tr (M−1G), bias (P, g, h)=gHXM−1GM−1XHg

and g= (h(z
1
), . . . , h(z

n
))T. The last term in (1) is independent of the design and can only

be made smaller by a better choice of model.
The variance of the estimated model, var(P, g), is independent of the misspecification.
Here L -optimal designs maximise efficiency by minimising tr (M−1G), which could be
arbitrarily large because of aliasing for a poorly chosen design.
The bias of the estimated model, bias (P, g, h), is independent of the noise and arises

from the difference between h and h@ because of the aliasing of h and g. Aliasing may cause
a term h

j
g
j
(x) to appear statistically significant and to be retained in the model, when it

does not belong. Variable selection techniques will not solve this problem. One must use
a more robust experimental design.
Yue & Hickernell (1999) investigated the relative importance of the terms var(P, g) and
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bias (P, g, h). They showed that variance-minimising designs can yield substantial bias,
whereas bias-minimising designs are rather efficient. Moreover, bias-minimising designs
tend to spread the points evenly over the domain. A similar conclusion was reached by
Box & Draper (1959) for polynomial models.
To obtain a design minimising var (P, g)+bias (P, g, h) one must know the model in
advance, including the relative size of |h | with respect to s2. As a result of the practical
difficulties of this approach, the designs considered here are based on the model-
independent criterion of discrepancy. Uniform designs are shown to limit the effects of
aliasing in the terms var (P, g) and bias (P, g, h) for a large class of models and misspecifica-
tions: ‘model-independent’ does not mean ‘assumption-independent’. The definition of
discrepancy depends on the definition of the space of possible response functions and the
definition of the norm defined onF. Thus, one can put any a priori knowledge about the
model into the definition of the discrepancy.

2. R  H    

To make precise statements about the effects of the design on aliasing it is necessary to
define the space, F, containing the response, f, and its square. This is assumed to be a
separable Hilbert space of complex-valued functions with a reproducing kernel, K
(Aronszajn, 1950; Saitoh, 1988; Wahba, 1990, p. 1). This means that the evaluation func-
tional is bounded,

K(., w)µF, f (w)=� f, K(. , w)�
F
(for all wµX, fµF).

If {w
n
} is any orthonormal basis for F, then the reproducing kernel may be written as

K(x, w)=W
n
w
n
(x)w:
n
(w).

Example 1. Suppose that there is one factor with q levels, X={0, . . . , q−1}, andF is
the set of all functions on X. Then the quantity I( f )=q−1 W

xµX
f (x) is the average value

of f over the q levels. Define the norm on this space as d f d
F
=� f, f �1/2

F
, in terms of the

following weighted L2-inner product:

� f, g�
F
=I( f )I(g: )+

1

c
I[{ f−I( f )}{g:−I(g: )}] (for all f, gµF).

The choice of the arbitrary weight c>0 is discussed in § 5. An orthonormal basis for F
is {1, cDe2pix/q, cDe4pix/q, . . . , cDe2(q−1)pix/q}, where i= (−1)D, and the reproducing kernel is

K(x, w)=1+c ∑
q−1

n=1
e2pin(w−x)/q=1+c(−1+qd

xw
),

where d
xw
denotes the Kronecker delta function.

Example 2. Suppose that there is one factor with a continuous range, X=[0, 1]. The
space of all square-integrable functions does not admit a reproducing kernel because the
evaluation functional is not bounded. However, one may choose F to be the space of
functions whose first derivatives are square integrable. The inner product and reproducing
kernel for this space are

� f, g�
F
= f (1)g: (1)+

1

c
I( f ∞g: ∞) (for all f, gµF),

K(x, w)=1+c{1−max (x, w)} (for all x, wµX=[0, 1])

(Hickernell, 1998a), where f ∞ denotes the derivative of f.
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Example 3. In Example 2 F is infinite-dimensional. It is also possible for F to be
finite-dimensional when X=[0, 1]. Suppose that the response function is known to be
linear in x. Since F must contain the square of the response function, one may choose
F to have {1, x, x2/2} as its orthonormal basis. The inner product and reproducing kernel
for this space are

� f, g�
F
= f (0)g: (0)+ f ∞(0)g: ∞(0)+ f ◊(0)g◊(0) (for all f, gµF),

K(x, w)=1+xw+x2w2/4 (for all x, wµX=[0, 1]),

where f ◊ denotes the second derivative of f.

If F contains constant functions and the norm of the unit function is one, then one
may write F={c}CFC and K=1+KC , where KC is the reproducing kernel for FC .
Hickernell & Wang (2002) show how to decompose an arbitrary kernel for a space of
univariate functions into this sum. Examples 1–3 are all of this form.
Based on this decomposition there is a straightforward construction of reproducing

kernel Hilbert spaces of functions for multifactor experiments when the experimental
domain is a Cartesian product of one-dimensional domains, that is X=X1× . . .×X

s
.

Suppose that F
j
={c}CFC

j
is a reproducing kernel Hilbert space of functions defined on

X
j
, with reproducing kernel K

j
=1+KC

j
. Let 1 : s denote the set {1, . . . , s}, and let u be

any subset of 1 : s. Let x
u
denote the elements of the vector x indexed by the elements of

u. Let |u | denote the cardinality of u, and let X
u
denote the Cartesian product of X

j
with

jµu. The tensor product space F of functions on X with reproducing kernel K may be
defined as

F=Es
j=1

F
j
= C
Bkuk1:s

FC
u
, FC
u
=E
jµu

FC
j
,

K(x, w)= a
s

j=1
K
j
(x
j
, w
j
)= ∑
Bkuk1:s

KC
u
(x
u
, w
u
), KC

u
(x
u
, w
u
)= a
jµu

KC
j
(x
j
, w
j
). (2)

Note that KC
B
=1 and F

B
is the space of constant functions by convention.

The Hilbert space FC
u
comprises functions depending only on the variables x

j
for jµu,

and FC
u
contains no nonzero function that is constant with respect to any of these x

j
. In

fact, one may express any fµF as a unique decomposition into effects, f
u
, lying in the

Hilbert space FC
u
with reproducing kernel KC

u
:

f (x)= ∑
Bkuk1:s

f
u
(x
u
) ( f

u
µFC
u
). (3)

TheF defined above allows for multi-factor interactions of all orders. If prior knowledge
allows one to ignore higher-order interactions, then the definition of F may be modified
accordingly. The definition

F= C
Bkuk1:s
|u|∏d

FC
u
, K(x, w)= ∑

Bkuk1:s
|u|∏d

KC
u
(x
u
, w
u
) (4)

includes functions with interactions of up to order d.

Example 4. Suppose that the jth factor has q
j
levels, so that X

j
={0, . . . , q

j
−1}. Using

Example 1 one can identify

KC
u
(x
u
, w
u
)=c|u| a

jµu
(−1+q

j
d
x
j
w
j

), K(x, w)= ∑
s

j=1
{1+c(−1+q

j
d
x
j
w
j

)}.
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The decomposition of fµF given by (3) is an analysis of variance decomposition, which
may be defined recursively as follows:

f
B
=I
1:s

( f ), f
u
(x
u
)=I

1:s−u
( f )− ∑

Bkv5u
f
v
(x
v
).

Here I
u
denotes the integral with respect to F

X
u

over X
u
. The inner product onF induced

by this reproducing kernel is a weighted L2-inner product of the effects f
u
:

� f, g�2
F
= ∑
Bkuk1:s

c|u|I
u
( f
u
g:u ) (for all f, gµF).

Example 5. Suppose that the experimental domain is X=[0, 1]s, an s-factor generalis-
ation of Example 2. One can identify

KC
u
(x
u
, w
u
)=c|u| a

jµu
{1−max (x

j
, w
j
)}, K(x, w)= a

s

j=1
[1+c{1−max (x

j
, w
j
)}].

The decomposition of fµF given by (3) may be defined recursively as follows:

f
B
= f (1

1:s
), f
u
= f (x

u
, 1
1:s−u

)− ∑
Bkv5u

f
v
(x
v
),

where 1
u
denotes the |u |-dimensional vector of ones. The inner product on F induced by

this reproducing kernel is

� f, g�2
F
= ∑
Bkuk1:s

c|u|I
u A∂fu∂x

u

∂g:u
∂x
u
B (for all f, gµF).

3. T 

Having defined a Hilbert space of possible response functions, F, one can now define
the discrepancy. For any design, P={z1 , . . . , zn}, one may write the associated empirical
distribution as

F
P
(x)=

1

n
∑
n

i=1
1
[z
i
,+2)

(x),

where 1
{.}

(x) is the indicator function.

D 1 (Hickernell, 2000). Given a design, P, and a kernel, K, the discrepancy is
defined as

D(P; K )=CP
X2

K(x, w) d{F
X
(x)−F

P
(x)} d{F

X
(w)−F

P
(w)}DD

=CP
X2

K(x, w) dF
X
(x) dF

X
(w)−

1

n
∑
n

i=1
P
X

{K(z
i
, w)+K(w, z

i
)} dF

X
(w)

+
1

n2
∑
n

i,k=1
K(z
i
, z
k
)DD.

The discrepancy arises in the theory of quadrature error for multivariate integrals, and
the analysis here relies on these results. For a given design P the integral I( f ) may be
approximated by the mean of the values of the integrand sampled at the design points.
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The error of this approximation is

|err ( f ; P) |= KI( f )−
1

n
∑
n

i=1
f (z
i
)K= KI( f )− P

X

f (x) dF
P
(x)K

∏D(P; K)V ( f; K ) (for all fµF) (5)

(Hickernell, 2000), where the variation of the integrand is defined as V ( f; K )=
inf
c
d f−cd

F
. Error bound (5) is tight. For every P there exists a worst-case integrand,

j
P
µF, for which (5) becomes an equality. This worst-case integrand is, in fact, the rep-
resenter of the linear functional err ( . ; P) (Hickernell, 2000). Note that D(P; K)=dj

P
d
F
.

The discrepancy depends only on the design and the reproducing kernel, and it measures
how well the empirical distribution of the design, F

P
, approximates the uniform distri-

bution, F
X
. One may also define the discrepancy without reference to quadrature error

as D(P; K)=dF
X
−F
P
d
M
, where the definition of d .d

M
depends on the kernel K. For the

details of this approach see Hickernell (1999).
The squared discrepancy defined by the kernel in Example 4 may be written as

D2(P; K )=−1+
1

n2
∑
n

i,k=1
a
s

j=1
{1+c(−1+q

j
d
z
ij
z
kj

)}.

The squared discrepancy defined by the kernel in Example 5 reduces to

D2(P; K )=A1+ c3Bs− 2

n
∑
n

i=1
a
s

j=1
A1+c 1−z2

ij
2 B

+
1

n2
∑
n

i,k=1
a
s

j=1
[1+c{1−max (z

ij
, z
kj

)}]

(Hickernell, 1998b, 2000). For a review of other discrepancy measures see Hickernell
(1998b, 2000).
It is typically the case that D(P; K)=0 if and only if F

P
=F

X
. However, it is possible

to have D(P; K)=0 with F
P
NF

X
if F
P
mimics F

X
perfectly when sampling the functions

in the reproducing kernel Hilbert space defined byK. Consider theK defined in Example 3,
and the design P={(3±3D )/6}. It is straightforward to check that

P
X

K(x, w) dF
X
(w)=1+

x

2
+

x2

12
= P

X

K(x, w) dF
P
(w).

Since ∆
X

K(x, w) d{F
X
(w)−F

P
(w)}=0, for all x, it follows that D(P; K)=0 even though

F
X
NF
P
.

4. T       

The quadrature error bound in (5) implies bounds on var(P, g) and bias (P, g, h) in (1)
in terms of the discrepancy. Suppose that the response, f (x), lies in some reproducing
kernel Hilbert space, F, with kernel K. The misspecification, h(x), lies in a subspace, H,
with reproducing kernel K

)
. The Hilbert space H consists of those functions that are

orthogonal, in an L2-sense, to g1 , . . . , gp . It is known that

K
)
(x, w)=K(x, w)−YH(x)Y−1Y (w),
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where

Y (w)=I{gK(., w)}, Y= P
X2

g: (x)K(x, w)gT(w) dF
X
(x) dF

X
(w)

(Yue & Hickernell, 1999).

T 1. Suppose that F is a reproducing kernel Hilbert space with reproducing
kernel K, and that the set of design points is P. Assume that the functions g1 , . . . , gpµF
are chosen such that G=I, the p×p identity matrix. Moreover, for all complex-valued
a= (a1 , . . . , ap )T, all wµX and all fµF, suppose that |gTa |2, v

aw
=K
)
(w, x)gT(x)a and

V
af
=�v

aw
, f�

F
are all functions in F. Define the following constants that depend on the

form of the model and not on the design:

V
gg
= sup

dad
2
∏1

V ( |gTa |2 ), V
gh
= sup

dad
2
∏1

dfdF∏1

dV
af
d
F
. (6)

T hen var (P, g) and bias (P, g, h) have the following upper bounds in terms of discrepancy,
provided that D(P; K )V

gg
<1:

var (P, g)∏
s2p

n{1−D(P; K)V
gg

}
, (7)

bias (P, g, h)∏qD(P; K)V
gh
dhd

F

1−D(P; K)V
gg
r2. (8)

T hese upper bounds are monotonically decreasing as D(P; K ) tends to zero.

The hypotheses and conclusions of this theorem are discussed before giving the proof.
Since var (P, g) and bias (P, g, h) are invariant if g(x) is replaced by L g(x) for any p×p
nonsingular matrix L , the assumption that G=I is not essential but simplifies the form
of the upper bound.
Although D(P; K) does not depend on the particular model, the kernel K does reflect
one’s assumptions about what kinds of response are expected. Not only does K determine
the Hilbert space F of all possible responses, it also determines the definitions of the
norms and inner products that arise in the definitions of V

gg
and V

gh
. Thus, K may be

constructed to reflect any prior knowledge about the response.
For finite-dimensional spaces, F, the quantities V

gg
and V

gh
may be replaced by their

upper bounds over all possible g and h. However, for infinite-dimensional F one can
usually construct a pathological example with arbitrarily bad aliasing, so V

gg
and V

gh
are

unbounded.
The Hilbert spaceFmust also contain the square of the response function. The assump-

tion that v
aw
µFmeans that g

j
h:µF for any possible misspecification h. The assumptions

that |gTa |2µF and D(P; K)V
gg
<1 are necessary to ensure that the information matrix,

M, has eigenvalues bounded away from zero, thus guaranteeing that the model does not
contain functions that the design cannot discriminate.
A weakness of Theorem 1 is that the upper bounds (7) and (8) are not tight. The vector

g enters the definitions of var (P, g) and bias (P, g, h) in a nontrivial, nonlinear way. A tight
bound over all possible models in terms of V

gg
and V

gh
would require numerical functional

optimisation and result in a very complicated bound. Thus, we have sacrificed tightness
for a bound in terms of a relatively simple measure of quality of the design, namely the



900 F J. H  M-Q L

discrepancy. There is one limiting case for which Theorem 1 is tight. If F
P
=F

X
, then

M=nI, D(P; K )=0, var (P, g)=s2p/n and bias (P, g, h)=0.

Proof of T heorem 1. Since G=I it follows that var (P, g)=s2 tr (M−1 ). LetMB =I−M/n.
For any aµCp it follows that

r(MB )= sup
dad
2
∏1
|aHMB a |= sup

dad
2
∏1 KaH qI(g:gT )−

1

n
∑
n

i=1
g: (zi )gT(zi )r aK

= sup
dad
2
∏1
|err ( |gTa |2; P) |∏D(P; K) sup

dad
2
∏1

V ( |gTa |2; K )=D(P; K)V
gg

.

Here r denotes the spectral radius of a matrix. If D(P; K)V
gg
<1, then the smallest eigen-

value of n−1M=I−MB is greater than or equal to 1−D(P; K)V
gg
>0. This guarantees

thatM is nonsingular. Thus, r(M−1 )∏n−1{1−D(P; K)V
gg

}−1, which completes the proof
of (7).
According to Yue & Hickernell (1999), bias (P, g, h) has a tight upper bound of

r(M−2XHK
)
X)dhd2

F
. Since an upper bound on r(n2M−2 ) is known, the remaining step

is to derive an upper bound on r(B), where B=n−2XHK
)
X. Using a similar argument

to the above one may write

aHBa=
1

n2
∑
n

i,k=1
aHg: (zi )K) (zi, zk )gT(zk )a.

Recall that, if {w)
n
(x)} is any countable, orthonormal basis of the subspace H, then one

may write K
)
=W
n
w)
n
(x)w:)
n
(w). Since I{g:K

)
( . , w)}=0 for all wµX it follows that

aHBa=∑
n
q 1n2 ∑n
i,k=1

aHg: (zi )w)n (zi )w
:)
n
(z
k
)gT(z
k
)ar

=∑
n

|err (w:)
n
gTa; P) |2=∑

n

|�w:)
n
gTa, j

P
�
F
|2.

One the other hand, one may also write

V
aj
P

(x)=�v
ax

, j
P
�
F
=�K

)
(x, . )gTa, j

P
�
F
=T∑

n

w)
n
(x)w:)
n
gTa, j

PU
F

=∑
n

w)
n
(x)�w:)

n
gTa, j

P
�
F
µH.

The preceding two equations imply that dV
aj
P

d2
H
=W
n
|�w:)
n
gTa, j

P
�
F
|2=aHBa. By

referring to (6) one may bound the spectral radius of B by

r(B)= sup
dad
2
∏1
dV
aj
P

d2
H
∏dj

P
d2
F

V 2
gh
=D2(P; K )V 2

gh
.

Together with the bound on r(n2M−2 ), this completes the proof of (8). %

The construction of robust experimental designs has been studied previously by other
authors. Box & Draper (1959) considered the case where the true response is a polynomial
of some unknown degree. Sacks & Ylvisacker (1984) considered one-factor designs with
X being the real line, and F being the set of functions that are Lipschitz continuous or
have Lipschitz continuous derivatives. Wiens (1990) considered a situation similar to that
considered here, but with h having bounded square integral. Since no smoothness of the
misspecification is assumed, one must allow F

P
to be an arbitrary absolutely continuous

measure on X, rather than the empirical distribution of a finite set of points.
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In view of Theorem 1 the discrepancy is an omnibus measure of the possible effects of
aliasing. However, there is a scaling problem since D(P; cK)=cDD(P; K) for any positive
c. One may scale the discrepancy as follows:

DC (P; K )=
D(P; K)

{∆
X

K(x, x) dF
X
(x)−∆

X2
K(x, w) dF

X
(x) dF

X
(w)}D

.

For a simple random n-point or Monte Carlo design, PMC , E{DC (PMC ; K )}2=1/n, indepen-
dent of the choice of kernel (Hickernell, 1998a), so a design P is as good or bad as a
random design with 1/DC 2 (P; K ) points.

5. A  

Consider now the case where the experimental domain, X, is a Cartesian product of
one-dimensional domains. Let P

u
={z
u
: zµP} denote the projection of the design into

the domain X
u
. One would normally desire that, for small |u |, the projections P

u
would

be good designs on the X
u
. This is the motivation behind the definitions of resolution

(Box et al., 1978, p. 385) and aberration (Fries & Hunter, 1980). The discrepancy, as
defined above, does not necessarily guarantee this, but one may define an aberration in
terms of the pieces of the squared discrepancy.
Since the squared discrepancy is linear in the reproducing kernel, for kernels of the

form (2) one may write

D2(P; K )= ∑
B5u51:s

D2(P
u
; KC
u
)= ∑

s

j=1
D2
(j)

(P; K ), (9)

where

D2
(j)

(P; K )= ∑
|u|=j

D2(P
u
; KC
u
).

Since KC
B
=1 it follows that D(P; KC

B
)=0.

D 2. Suppose that X=X1× . . .×X
s
, and that the reproducing kernel, K, is

of the form (2). T he projection discrepancy pattern, or generalised word-length pattern, is
defined as the s-vector

 (P; K )= (D
(1)

(P; K ), . . . , D
(s)

(P; K )).

For any two designs P, PBkX, one says that P has smaller aberration than PB , or equiv-
alently  (P; K )< (PB ; K ), if and only if the first, from the left, nonzero component
of  (P; K )− (PB ; K ) is negative. If t=min{ j : D

(j)
(P; K )>0}, then P is said to have

resolution t.

For Examples 4 and 5, the D2
(j)

(P; K ) are given by

D2
(j)

(P; K )=cj ∑
|u|=j

1

n2
∑
n
i,k=1

a
lµu

(−1+q
l
d
z
il
z
kl

), (10)

D2
(j)

(P; K )=cj ∑
|u|=j
C(13)j− 2

n
∑
n

i=1
a
lµu
A1−z2

il
2 B+ 1

n2
∑
n

i,k=1
a
lµu

{1−max (z
il
z
ik
)}D ,

respectively. Definition 2 does not assume that the design is a regular factorial design or
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even that each factor has a finite number of levels. It only assumes that the experimental
domain is a Cartesian product of one-factor domains, and that the reproducing kernel is
a product of one-dimensional kernels. For the special case of (10), Definition 2 reduces
to the generalised aberration proposed by Xu & Wu (2001), as shown below.

T 2. For the case of Example 4 where the components of projection discrepancy
pattern are given by (10), the resulting aberration as given in Definition 2 is equivalent to
the generalised aberration defined by Xu & Wu (2001). For the case of two-level designs,
the aberration defined here is equivalent to the G2-aberration of Tang & Deng (1999).

Proof. Xu & Wu (2001) defined the generalised word-length pattern as the vector
(A1 (P), . . . , A

s
(P)), where

A
j
(P)=

1

n2
∑
wt(n)=j

|x
n
(P) |2, x

n
(P)= ∑

n

i=1
a
s

l=1
e2pin
l
z
il
/q
l
.

Here wt(.) denotes the number of nonzero elements of the argument. From this definition
it follows that

|x
n
(P) |2= ∑

n

i,k=1
a
s

l=1
e2piv
l
(z
il
−z
kl
)/q
l
, A
j
(P)=

1

n2
∑
|u|=j

∑
n

i,k=1
a
lµu
∑
q
l
−1

n
l
=1

e2pin
l
(z
il
−z
kl
)/q
l
.

If one uses the definitions in Example 4 this expression may be further simplified to obtain

A
j
(P)=

1

n2
∑
|u|=j

∑
n

i,k=1
a
lµu

(−1+q
l
d
z
il
z
kl

)=c−jD2
(j)

(P; K ).

Thus, the generalised word-length pattern of Xu & Wu (2001) is equivalent to the pro-
jection discrepancy pattern of Definition 2, and the two definitions of aberration are
also equivalent. Xu & Wu (2001) showed that their aberration was equivalent to the
G2-aberration of Tang & Deng (1999). %

The connection between aberration and discrepancy has been considered for regular
two-level fractional factorial designs by Fang & Mukerjee (2000) and Fang et al. (2002)
for higher numbers of levels. Tang (2001) showed that the J-characteristics defining the
G2-aberration of Tang & Deng (1999) measure the uniformity of projections of the two-
level design into lower dimensions. The above theorem relating discrepancy to aberration
is a generalisation of these results.
Some comments are in order regarding the parameter c that enters into the definition
of the discrepancy. This parameter has no effect when comparing the projection discrep-
ancy patterns of different designs. Thus, as far as the projection discrepancy pattern is
concerned, one might as well set c=1. However, the value of c does affect the comparison
of the discrepancies of different designs. Recall from (9) that the squared discrepancy
is a sum of the D2

(j)
(P; K ), and note that, if each KC

j
has a leading factor of c, then

D2
(j)

(P; K ) has a leading factor of cj. A larger value of c gives a relatively heavier weight
to the D2

(j)
(P; K ) with large j and implies a preference for better uniformity in the high-

dimensional projections of P, whereas a small value of c implies a preference for better
uniformity in the low-dimensional projections of P. Thus, comparing the aberration of
two designs is equivalent to comparing their discrepancies for vanishing c, as is explained
in the following theorem whose proof is straightfoward.

T 3. Suppose that the reproducing kernel is of the form (2), and that KC
j
has a
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leading coeYcient c. For a fixed number of experiments, n, let P
a

be a minimum aberration
design, and let t be its resolution. For any c>0, let P

c
denote a minimum discrepancy design.

T hen, if one assumes that D(P
a
; K )>0, it follows that

lim
c30

D(P
c
; K )/D(P

a
; K )=1, lim

c30
D
(j)

(P
c
; K )=D

(j)
(P
a
; K ) ( j=1, . . . , t).

If a factor has only a few levels, then it may be justified to choose K as in Example 1.
However, in some practical cases a factor has several levels and their order is important.
In such a situation, one might expect low wave-number functions to be more likely than
high wave-number functions. The reproducing kernel may be constructed to reflect this
assumption. A very simple example is given below to illustrate the general principle.

Example 6. Consider the same setting as in Example 1 with q=4 and X={0, 1, 2, 3},
but with orthonormal basis {1, cDepix/2, cepix, cDe−pix/2}. Choose c<1 to emphasise lower
wave-number functions over higher wave-number functions. The reproducing kernel and
squared discrepancy are

K(x, w)=1+2c cos{p(x−w)/2}+c2(−1)x−w,

D(P; K )=
1

n2
∑
n

i,k=1
[2c cos{p(z

i
−z
k
)/2}+c2(−1)z

i
−z
k
].

For either of the two-point designs {0, 2} or {1, 3} the squared discrepancy is c2, whereas
for any other designs with two distinct points the squared discrepancy is c>c2. Thus, the
design with the points more spread out has lower discrepancy. By contrast, for Example 1
all designs with two distinct points have the same discrepancy.
Suppose that the true response is known to be a sum of interaction terms involving t
or fewer coordinates. Then the product of any two terms involves at most d∏min (2t, s)
coordinates. To guarantee no aliasing in the estimation of the model one must use a design
of resolution d+1. This can be seen explicitly by referring back to Theorem 1. The
assumptions in this theorem are that f and | f |2 both lie in the space (4). Thus, D2 (P; K )
is only a sum of the D2

(j)
(P; K ) with j∏d. Since the design, P, has resolution d+1, this

implies that D2
(1)

(P; K )= . . .=D2
(d)

(P; K )=0, and so D2 (P; K )=0. By Theorem 1 and
the remark preceding its proof, it follows that var(P, g)=s2p/n and bias (P, g, h)=0.
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