Construction of regular $2^{n} 4^{1}$ designs with general minimum lower-order confounding

Tian-Fang Zhang, Jian-Feng Yang, Zhi-Ming Li \& Run-Chu Zhang

To cite this article: Tian-Fang Zhang, Jian-Feng Yang, Zhi-Ming Li \& Run-Chu Zhang (2017) Construction of regular $2^{n} 4^{1}$ designs with general minimum lower-order confounding, Communications in Statistics - Theory and Methods, 46:6, 2724-2735, DOI: 10.1080/03610926.2015.1048887

To link to this article: http://dx.doi.org/10.1080/03610926.2015.1048887

Accepted author version posted online: 08
Apr 2016.
Published online: 08 Apr 2016.
Submit your article to this journal

Article views: 10

View related articles

View Crossmark data

Construction of regular $2^{n} 4^{1}$ designs with general minimum lower-order confounding

Tian-fang Zhang ${ }^{\text {a }}$, Jian-Feng Yang ${ }^{\text {b }}$, Zhi-ming Lic , and Run-chu Zhang ${ }^{\text {d,b,e }}$
${ }^{a}$ College of Mathematical and Informational Sciences, Jiangxi Normal University, Nanchang, China; ${ }^{\text {b }}$ LPMC and Institute of Statistics, Nankai University, Tianjin, China; 'School of Mathematical Sciences, Xinjiang University, Urumqi, China; ${ }^{\text {d KLAS }}$ and School of Mathematics and Statistics, Northeast Normal University, Changchun, China; ${ }^{\text {e }}$ Department of Statistics, University of British Columbia, BC, Canada

Abstract

Mixed-level designs, especially two- and four-level designs, are very useful in practice. In the last two decades, there are quite a few literatures investigating the selection of this kind of optimal designs. Recently, the general minimum lower-order confounding (GMC) criterion (Zhang et al., 2008) gave a new approach for choosing optimal factorials. It is proved that the GMC designs are more powerful than other criteria in the widely practical situations. In this paper, we extend the GMC theory to the mixed-level designs. Under the theory we establish a new criterion for choosing optimal regular two- and four-level designs. Further, a construction method is proposed to obtain all the $2^{n} 4^{1}$ GMC designs with $N / 4+1 \leq n+2 \leq 5 N / 16$, where N is the number of runs and n is the number of two-level factors.

ARTICLE HISTORY

Received 18 November 2014
Accepted 1 May 2015

KEYWORDS

Aliased effect-number pattern; effect hierarchy principle; factorial design; general minimum lower-order confounding (GMC); mixed-level.

MATHEMATICS SUBJECT

 CLASSIFICATION 62K15
1. Introduction

Mixed-level designs have been widely used in practice. The important case of mixed twoand four-level designs is firstly discussed for their practical use. The design with n two-level factors and m four-level factors is said to be a $2^{n} 4^{m}$ design. A $2^{n} 4^{m}$ design can be easily constructed from the corresponding symmetrical orthogonal arrays through the method of replacement (Addelman, 1962). The replacement rule is that any three two-level factors of the form $\left(a_{1}, a_{2}, a_{3}\right)$ can be replaced by a four-level factor without affecting orthogonality, where a_{3} is the interaction between a_{1} and a_{2}. We call a_{1}, a_{2} and a_{3} the three components of the four-level factor. Wu (1989) improved Addelman's construction method by introducing the method of grouping. Wu et al. (1992) further applied the grouping method to general designs. By their method, a large class of asymmetric designs can be constructed.

For a $2^{n} 4^{m}$ design D constructed by the above method, there are two types of words in the defining contrast group. The first type involves only the two-level factors, which is called type 0 . The second type involves at least one of the four-level components and some of the twolevel factors, which is called type 1. Let $A_{i 0}(D)$ and $A_{i 1}(D)$ be the number of words with length i of type 0 and type 1 of design D, respectively. Under the assumption that the component of four-level factor is not as important as two-level factors, Wu and Zhang (1993) defined the

CONTACT Jian-Feng Yang jfyang@nankai.edu.cn LPMC and Institute of Statistics, Nankai University, Tianjin 300071, China.
word length-pattern (WLP) of D as follows:

$$
\begin{equation*}
W(D)=\left\{\left(A_{i 0}(D), A_{i 1}(D)\right)\right\}_{i \geq 1} . \tag{1}
\end{equation*}
$$

The minimum aberration (MA) criterion is to sequentially minimize the terms of the WLP.
There are some developments of the mixed-level optimal designs in recent years. Zhang and Shao (2001) extended the results of Wu and Zhang (1993) to general cases. Mukerjee and Wu (2001) used the projective geometry theory and complementary theory to discuss MA mixed-level designs. Ai and Zhang (2004) later established the general rules to identify MA mixed-level factorial designs by the coding theory. Li et al. (2007) studied $2^{m} 4^{1}$ designs with MA or weak MA. Zhao and Zhang (2008) considered $2^{m} 4^{n}$ designs with resolution III or IV containing clear two-factor interaction (2fi) components. Joseph et al. (2009) used the Bayesian method to measure the mixed-level designs. Note that all of them are based on WLP. However, two designs with the same WLP cannot be distinguished by any of the above criteria.

Example 1. Consider two $2^{13} 4^{1}$ designs D_{1} and D_{2} with 128 runs:

$$
\begin{aligned}
& D_{1}: I=126=137=238=12349=1235 t_{0}=45 t_{1}=12345 t_{2}=12 a_{1} t_{3}, \\
& D_{2}: I=126=137=248=349=125 t_{0}=135 t_{1}=145 t_{2}=12 a_{1} t_{3},
\end{aligned}
$$

where $t_{0}, t_{1}, t_{2}, t_{3}$, respectively, denote the factors $10,11,12,13$, and a_{1} is the component of the four-level factor $A\left(=\left(a_{1}, a_{2}, a_{3}\right)\right)$. Both designs have the same WLP

$$
\begin{aligned}
W= & ((0,0),(0,0),(8,1),(15,2),(24,5),(32,16),(24,26), \\
& (15,28),(8,26),(0,16),(0,5),(1,2),(0,1)),
\end{aligned}
$$

so they cannot be distinguished by any criterion based on WLP.
In order to solve the above problem, Zhang et al. (2008) first introduced the general minimum lower-order confounding (GMC) criterion to choose two-level regular optimal designs, based on aliased effect-number pattern (AENP). It was proved that, the GMC theory can manage nearly all the existing criteria through functions of the AENP, and under having priori information, the optimal designs selected by the GMC criterion are better than the ones selected by other existing criteria. These results can be extended to the mixed-level cases.

In this paper, we extend GMC theory to the mixed-level cases. In Section 2, a new criterion for $2^{n} 4^{1}$ design is given. In Section 3, construction methods are proposed and all $2^{n} 4^{1}$ GMC designs with $N / 4+1 \leq n+2 \leq 5 N / 16$ are obtained, where N is the number of runs. The conclusion and discussions are given in Section 4 . Some proofs and tables are deferred to the Appendix.

2. A new criterion for $\mathbf{2}^{\boldsymbol{n}} \mathbf{4}^{m}$ design

For a 2^{n-p} regular design, the degree of an i th-order effect being aliased with the j th-order effects is k if the i th-order effect is aliased with $k j$ th-order effects simultaneously. Zhang et al. (2008) defined a 2^{n-p} regular design as a GMC design if it sequentially maximizes

$$
{ }^{\#} C=\left({ }_{1}^{4} C_{2},{ }_{2} C_{2},{ }_{1} C_{3},{ }_{2}^{*} C_{3},{ }_{3} C_{2},{ }_{3} C_{3}, \ldots\right),
$$

where ${ }_{i}^{{ }_{i}} C_{j}=\left({ }_{i}^{*} C_{j}^{(0)},{ }_{i}^{*} C_{j}^{(1)}, \ldots,{ }_{i}{ }_{i} C_{j}^{\left(K_{j}\right)}\right), K_{j}=\binom{n}{j}$ and ${ }_{i}^{\#} C_{j}^{(k)}$ denotes the number of i th-order effects aliased with j th-order effects at degree k. However, we cannot directly apply GMC criterion of two-level case to mixed-level designs. For a $2^{n} 4^{m}$ design, if the i th-order effects contain i_{0} components of four-level factors for $i_{0} \leq \min \{i, m\}$, then we add i_{0} besides i. Denote
by $_{i, i_{0}}^{\#} C_{j, j_{0}}^{(k)}$ the number of i th-order effects aliased with j th-order effects at degree k, where the i th-order effects contain i_{0} components of four-level factors and the j th-order effects contain j_{0} components of four-level factors for $i_{0} \leq \min \{i, m\}$ and $j_{0} \leq \min \{j, m\}$. For every pair of $\left\{\left(i, i_{0}\right),\left(j, j_{0}\right)\right\}$, the vector
reflects the confounding information among mixed-level designs and the larger the degree k is, the more severely the effect is aliased. We still use ${ }_{i}^{\#} C_{j}$ to denote the set

$$
\left\{\begin{array}{l}
i, i_{0}
\end{array} C_{j, j_{0}}, i_{0}=0,1, \ldots, \min \{i, m\}, j_{0}=0,1, \ldots, \min \{j, m\}\right\} .
$$

Based on the assumptions (i) lower-order interactions are more likely to be important than higher-order interactions; (ii) interactions of the same order and of the same type are equally likely to be important; and (iii) the components of four-level factors are less important than two-level factors, the elements of ${ }_{i}^{\#} C_{j}$ will be ordered according to Rule 2.1 for the fixed (i, j), and ${ }^{\#} C_{j}$, as elements of ${ }^{\#} C$, will be ordered according to Rule 2.2.
Rule 2.1: The term ${ }_{i, i, i_{1}}^{\#} C_{j, j_{1}}$ is put ahead of ${ }_{i, i, i_{2}}^{\#} C_{j, j_{2}}$ if it satisfies one of the following three conditions:(i) $\max \left(i_{1}, j_{1}\right)<\max \left(i_{2}, j_{2}\right)$,(ii) $\max \left(i_{1}, j_{1}\right)=\max \left(i_{2}, j_{2}\right)$ and $i_{1}<i_{2}$, $\operatorname{and}($ iii $) \max \left(i_{1}, j_{1}\right)=\max \left(i_{2}, j_{2}\right), i_{1}=i_{2}$ and $j_{1}<j_{2}$. We obtain the new ranked vector as follows:

$$
\begin{equation*}
{ }_{i}^{*} C_{j}=\left({ }_{i, 0}^{\#} C_{j, 0},{ }_{i, 0}^{*} C_{j, 1},{ }_{i, 1}^{\#} C_{j, 0}, \ldots\right) . \tag{3}
\end{equation*}
$$

For example, for $i=1$ and $j=2$, we have ${ }_{1}^{\#} C_{2}=\left({ }_{1,0}^{\#} C_{2,0},{ }_{1,0}^{\#} C_{2,1},{ }_{1,1}^{\#} C_{2,0},{ }_{1,1}^{\#} C_{2,1},{ }_{1,0}^{\#} C_{2,2},{ }_{1,1}^{\#} C_{2,2}\right)$.
Rule 2.2: The term ${ }_{i} C_{j}$ is put ahead of ${ }_{s} C_{t}$ if it satisfies one of the following three conditions:(i) $\max (i, j)<\max (s, t),(\mathrm{ii}) \max (i, j)=\max (s, t)$ and $i<s$, (iii) $\max (i, j)=$ $\max (s, t), i=s$ and $j<t$.

Through Rule 2.2, we obtain the ordering of ${ }_{i}{ }^{\mu} C_{j}$'s:

$$
\begin{equation*}
{ }^{\#} C=\left({ }_{1}^{\#} C_{1},{ }_{0} C_{2},{ }_{1} C_{2},{ }_{2}^{*} C_{1},{ }_{2} C_{2} C_{2},{ }_{0}^{\#} C_{3},{ }_{1} C_{3},{ }_{2} C_{3},{ }_{3} C_{1},{ }_{3}^{*} C_{2},{ }_{3}^{\#} C_{3}, \ldots\right) . \tag{4}
\end{equation*}
$$

Similar to Zhang and Mukerjee (2009), by deleting some terms that can be determined by their previous terms, (4) is simplified as

$$
\begin{equation*}
{ }^{\#} C=\left({ }_{1}^{*} C_{2},{ }_{2}^{\#} C_{2},{ }_{1} C_{3},{ }_{2}^{\#} C_{3},{ }_{3}^{\#} C_{1},{ }_{3}^{*} C_{2},{ }_{3}^{\#} C_{3}, \ldots\right) \tag{5}
\end{equation*}
$$

for designs with resolution at least III. Combining (3) and (5), we obtain the ordering of $\underset{i, i_{0}}{\#} C_{j, j_{0}}{ }^{\prime}$ s,

$$
{ }^{\#} C=\left({ }_{1,0}^{*} C_{2,0},{ }_{1,0}^{\#} C_{2,1},{ }_{1,1}^{*} C_{2,0}, \ldots,{ }_{2,0}^{\#} C_{2,0},{ }_{2,0}^{\#} C_{2,1},{ }_{2,1}^{\#} C_{2,0},{ }_{2,1}^{\#} C_{2,1}, \ldots\right),
$$

which is called the AENP of a mixed two- and four-level design. Then the GMC criterion for such designs can be defined as follows.

Definition 1. Let ${ }^{\#} C_{l}$ be the l th component of ${ }^{*} C$. Let ${ }^{\#} C\left(D_{1}\right)$ and ${ }^{\#} C\left(D_{2}\right)$ be the AENPs of mixed two- and four-level designs D_{1} and D_{2}, respectively. Suppose that ${ }^{*} C_{t}$ is the first component such that ${ }^{\#} C_{t}\left(D_{1}\right)$ and ${ }^{\#} C_{t}\left(D_{2}\right)$ are different. If ${ }^{\#} C_{t}\left(D_{1}\right)>{ }^{\#} C_{t}\left(D_{2}\right)$, then D_{1} is said to have less general lower-order confounding (GLOC) than D_{2}. A design D is said to have general minimum lower-order confounding if no other design has less GLOC than D and such a design is called a GMC mixed two- and four-level design.

To explain the above definition, we give an example.
Example 2. Consider two $2^{4} 4^{1}$ designs D_{1} and D_{2} with 16 runs,

$$
D_{1}: A, 3,4,134,23, \quad D_{2}: A, 3,4,13,34,
$$

where $A=(1,2,12)$. For the two designs, the first different components of ${ }^{\#} C$ are

$$
{ }_{1,0}^{\#} C_{2,0}^{(0)}\left(D_{1}\right)=4 \operatorname{and}_{1,0}^{\#} C_{2,0}^{(0)}\left(D_{2}\right)=1 .
$$

So D_{1} has less GLOC than D_{2}.
The following theorem is obtained directly by the definition of GMC.
Theorem 1. For a $2^{n} 4^{1}$ design with the resolution $R \geq I I I$, the WLP in (1) is a function of $\left\{\begin{array}{l}i, i_{0} \\ \# \\ C_{j, j_{0}}^{(k)}\end{array}: i, j=0, \ldots, n, i_{0}, j_{0}=0,1, k=1, \ldots, K_{j}\right\}$ in the following form:

$$
A_{i, 0}={ }_{i, 0}^{\#} C_{0,0}^{(1)} \text { and } A_{i, 1}={ }_{i, 1}^{\#} C_{0,0}^{(1)} .
$$

From Theorem 1, the designs with different WLPs must have different AENPs. However, designs with the same WLPs may have different AENPs. The next example shows this point.

Example 3. (Example 1 continued) The $2^{13} 4^{1}$ designs D_{1} and D_{2} have the same WLP, but different AENPs. The first different items are ${ }_{2,0}{ }_{0} C_{2,0}^{(0)}\left(D_{1}\right)=60$ and ${ }_{2,0}^{\#} C_{2,0}^{(0)}\left(D_{2}\right)=54$. Under the GMC criterion for mixed two- and four-level designs, it is obvious that D_{1} has less GLOC than D_{2}.

The optimal designs under the MA and GMC criteria are often consistent especially for designs with small runs. However, there are a significant number of cases where the two criteria yield different optimal designs. Here is another example.

Example 4. Consider two $2^{15} 4^{1}$ designs with 64 runs D_{1} and D_{2},

$$
\begin{aligned}
D_{1}: I & =12347=12358=13459=245 t_{0}=1236 t_{1}=1346 t_{2}=246 t_{3} \\
& =1356 t_{4}=256 t_{5}=456 t_{6}=123456 t_{7}, \\
D_{2}: I & =12347=2358=13459=245 t_{0}=1236 t_{1}=1346 t_{2}=246 t_{3} \\
& =1356 t_{4}=256 t_{5}=456 t_{6}=123456 t_{7},
\end{aligned}
$$

where $A=(1,2,12)$ and $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}$, respectively, denote the factors $10,11,12,13$, $14,15,16,17$. The WLPs $\left(\left(A_{30}, A_{31}\right),\left(A_{40}, A_{41}\right),\left(A_{50}, A_{51}\right), \ldots\right)$ of D_{1} and D_{2} are, respectively, $((0,0),(77,35),(0,28), \ldots)$ and $((0,0),(61,35),(0,44), \ldots)$. According to the MA criterion, design D_{2} is better than D_{1}. However, their first different items of ${ }^{\#} C$ are ${ }_{2,0}^{\#} C_{2,0}^{(0)}\left(D_{1}\right)=$ 14 and ${ }_{2,0}^{\#} C_{2,0}^{(0)}\left(D_{2}\right)=0$. By GMC criterion, design D_{1} is better than D_{2}. Both designs have all clear main effects for two-level factors and the components of four-level factor. Further, design D_{1} has 14 clear 2fi's but D_{2} has 0 clear 2fi's. In this case, the design D_{2} is not a good choice.

3. Construction of GMC $2^{n} 4^{1}$ designs

This section will mainly discuss the construction of GMC $2^{n} 4^{m}$ designs with $m=1$, i.e., GMC $2^{n} 4^{1}$ designs. Let H_{r} be the set containing all main effects $1, \ldots, r$ and all possible interactions with Yates order, that is,

$$
H_{1}=\{1\} \text { and } H_{r}=\left\{H_{r-1}, r, r H_{r-1}\right\} \text { for } r=2, \ldots, q .
$$

Denote $S_{q r}=H_{q} \backslash H_{r}, F_{q r}=\left\{q, q H_{r-1}\right\}$ and $T_{r}=\left\{r, r H_{r-1}\right\}$, where $q H_{r-1}=\left\{q d: d \in H_{r-1}\right\}$ and $1 H_{1-1}=\{1\}$. Obviously, the designs $F_{q r}$ and T_{r} with $r \geq 3$ are the saturated resolution IV designs with r independent factors, which are unique up to isomorphism.

For a given design $D \subset H_{q}$ and $\gamma \in H_{q}$, define

$$
B_{2}(D, \gamma)=\#\left\{\left(d_{1}, d_{2}\right): d_{1}, d_{2} \in D, d_{1} d_{2}=\gamma\right\}
$$

to be the number of 2fi's in D aliased with γ. Let $D \subseteq F_{q q}$ be a 2^{n-p} design with N runs. From Li et al. (2011), we have

$$
B_{2}(D, \gamma)= \begin{cases}0, & \gamma \in F_{q q}, \tag{6}\\ B_{2}\left(F_{q q} \backslash D, \gamma\right)+n-N / 4, & \gamma \in H_{q-1}\end{cases}
$$

Lemma 1. Suppose D is a 2^{n-p} design with N runs. If $q S_{q-1, r} \subseteq D \subset q S_{q-1, r-1}(r<q)$, then

$$
B_{2}(D, \gamma)= \begin{cases}n-N / 4, & \gamma \in S_{q-1, r}, \\ B_{2}\left(D \backslash q S_{q-1, r}, \gamma\right)+N / 4-2^{r-1}, & \gamma \in H_{r} .\end{cases}
$$

Let $D_{0}=\left\{D_{1}, a_{1}, a_{2}\right\}$ for convenience. A $2^{n} 4^{1}$ design $D=\left(D_{1}, A\right)$ with $A=\left(a_{1}, a_{2}, a_{1} a_{2}\right)$ being the four-level factor can be generated from D_{0} by grouping and combining method if $a_{1} a_{2}$ is not in D_{1}. Hence, it is easy to see that, to construct a GMC $2^{n} 4^{1}$ design D, we have to first consider the regular two-level design D_{0} and then select two different factors a_{1} and a_{2} with $a_{1} a_{2}$ not in D_{1} to form the four-level factor. The problem here is how to select D_{0}, as well as a_{1} and a_{2} from D_{0}, such that $D=\left(D_{1}, A\right)$ has GMC. In the following, we will discuss the construction of GMC $2^{n} 4^{1}$ designs for $9 N / 32+1 \leq n+2 \leq 5 N / 16$ and $N / 4+1 \leq n+2 \leq$ $9 N / 32$, respectively.

3.1. GMC $2^{n} 4^{1}$ designs with $9 N / 32+1 \leq n+2 \leq 5 N / 16$

A 2^{n-p} design is called second-order saturated (SOS) if all degrees of freedom can be used to estimated main effects and 2fi's (Block and Mee, 2003). For the case $9 N / 32+1 \leq n+2 \leq$ $5 N / 16$, let $\mathbf{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)$ be the 2^{5-1} design with $I=X_{1} X_{2} X_{3} X_{4} X_{5}$. Then $D^{q-4}(\mathbf{X})$ is the unique SOS design of $5 N / 16$ (Chen and Cheng, 2006), and

$$
\begin{equation*}
D^{q-4}(\mathbf{X})=\left(D^{q-4}\left(X_{1}\right), D^{q-4}\left(X_{2}\right), D^{q-4}\left(X_{3}\right), D^{q-4}\left(X_{4}\right), D^{q-4}\left(X_{5}\right)\right), \tag{7}
\end{equation*}
$$

where $D^{q-4}\left(X_{i}\right)=(1,2,12, \ldots, 12 \ldots(q-4)) \otimes X_{i}$ for $i=1,2,3,4,5$. The columns in (7) are said to have $R C$ (rechanged) Yates order.

Block and Mee (2003) proved that every non SOS design is a projection of at least one SOS design. For $9 N / 32 \leq n \leq 5 N / 16$, a 2^{n-p} design with resolution IV must be an n-projection of $D^{q-4}(\mathbf{X})$ (Zhang and Cheng, 2010). Although the AENP of $2^{n} 4^{1}$ is different from that of 2^{n-p}, we still can easily obtain the result that D_{0} is an $(n+2)$-projection of $D^{q-4}(\mathbf{X})$. Since the $(n+2)$-projection of $D^{q-4}(\mathbf{X})$ is not unique, we have to find the projection design D_{0} to obtain the GMC $2^{n} 4^{1}$ design.

Theorem 2. For $9 N / 32+1 \leq n+2 \leq 5 N / 16$, if D is a GMC design then D_{0} must be an ($n+$ 2)-projection of $D^{q-4}(\mathbf{X})$ and $\overline{D_{0}}=D^{q-4}(\mathbf{X}) \backslash D_{0} \subset D^{q-4}\left(X_{p}\right)$ for some p, $a_{1} \in D^{q-4}\left(X_{p}\right) \cap D_{0}$ and $a_{2} \in D^{q-4}\left(X_{i}\right), i \neq p$. Furthermore, we have
(1) ${ }_{1,0}^{\#} C_{2,0}(D)=(n),{ }_{1,0}^{\#} C_{2,1}(D)=(N / 2-n-2,2 n-N / 2+2),{ }_{1,1}^{\#} C_{2,0}(D)=\left(2,0^{n-N / 4}\right.$, 1), where $0^{n-N / 4}$ denotes $n-N / 4$ zeros,
(2) ${ }_{2,0}^{\#} C_{2,0}^{(k)}(D)= \begin{cases}(n-N / 4+1)(n-N / 4), & k=n-N / 4-1, \\ (N / 2-n-1)(n-N / 4+1), & k=n-N / 4, \\ 3 N / 16(N / 16-1), & k=N / 16-2, \\ 3(N / 16)^{2}, & k=N / 16-1, \\ (k+1) \#\left\{\gamma: \gamma \in D^{q-4}\left(I_{16}\right) \backslash I_{N}, n^{\gamma}=v\right\}, & k=N / 8+v-2, \\ & v=0,1 \ldots,\lfloor g / 2\rfloor, \\ 0, & \text { other } k^{\prime} s,\end{cases}$ where n^{γ} is the number of 2fi's aliased with some $\gamma \in D^{q-4}\left(I_{16}\right) \backslash I_{N}$ of $D^{q-4}\left(X_{p}\right) \cap$ $\left\{D_{0} \backslash a_{1}\right\}$, and $g=\#\left\{D^{q-4}\left(X_{p}\right) \cap\left\{D_{0} \backslash a_{1}\right\}\right\}$ and
(3) $\underset{2,0}{\#} C_{2,1}^{(k)}(D)= \begin{cases}n-N / 4+1+{ }_{2,0}^{\#} C_{2,0}^{(N / 16-1)}(D), & k=0, \\ n(n+1) / 2-{ }_{2,0}^{\#} C_{2,1}^{(0)}(D)-{ }_{2,0}^{\#} C_{2,1}^{(2)}(D), & k=1, \\ { }_{2,0}^{\#} C_{2,0}^{(n-N / 4-1)}(D)+{ }_{2,0}^{\#} C_{2,1}^{(1)}(G)+m(N / 8-1), & k=2, \\ 0, & \text { other } k^{\prime} s,\end{cases}$ where $G=D^{q-t}\left(X_{p}\right) \cap D_{0}$ and $m=\#\left\{t_{1}: B_{2}\left(G, a_{1} t_{1}\right)>0, t_{1} \in G \backslash a_{1}\right\}$.

Theorem 2 shows how to select D_{0} and the possible cases of a_{1} and a_{2}. The following theorem shows the exact choices of D_{0} and a_{2}.

Theorem 3. Up to isomorphism, a $2^{n} 4^{1}$ design D with $9 N / 32+1 \leq n+2 \leq 5 N / 16$ is a GMC design, if and only if $\left\{D_{1} \cup a_{2}\right\}$ consists of the last $n+1$ columns of $D^{q-4}(\mathbf{X}), a_{1} \in D^{q-4}\left(X_{1}\right) \backslash D_{1}$ and a_{2} is the first column of $D^{q-4}\left(X_{2}\right)$, where $D=\left(D_{1}, A\right)$.

To find a GMC $2^{n} 4^{1}$ design, we should determine the choice of a_{1}. From the above theorem, we know a_{1} is one of the first $N / 16-g+1$ columns of $D^{q-4}\left(X_{1}\right)$. Since ${ }_{2,0}^{\#} C_{2,0}(D)$ is not enough to fix the best choice of a_{1}, we need discuss ${ }_{2,0}^{\#} C_{2,1}(D)$. The term ${ }_{2,0}^{\#} C_{2,1}^{(0)}(D)$ is determined by ${ }_{2,0}^{\#} C_{2,0}(D)$, so ${ }_{2,0}^{\#} C_{2,1}^{(1)}(D)$ should be maximized firstly. By Theorem 2 , this equals to minimize $C_{0}={ }_{2,0}^{\#} C_{2,1}^{(1)}(G)+m(N / 8-1)$. Since ${ }_{2,0}^{\#} C_{2,1}^{(1)}(G)=\sum_{\gamma \in G \backslash a_{1}} B_{2}\left(G, a_{1} \gamma\right)$, minimizing C_{0} needs to consider $B_{2}\left(G, a_{1} \gamma\right)$ firstly for $\gamma \in G \backslash a_{1}$.

Suppose $q S_{q-1, r} \subseteq S \subset q S_{q-1, r-1}(r<q)$, if the number of factors in $S \backslash S_{q-1, r}$ is small, it is convenient to construct GMC designs. The next lemma studies the connection between $B_{2}(S, \gamma)$ and $B_{2}\left(S \backslash q S_{q-1, r}, \gamma\right)$.

Lemma 2. Suppose S is a 2^{n-p} design which consists of the last n columns of $F_{q r}\left(f o r n<2^{r}\right)$ and a_{1} is a four-level component. We have
(1) if $n \leq 2^{r-1}$, then $S \subseteq q S_{r, r-1}$ and $B_{2}\left(S, a_{1} \gamma\right)=0$ for any $a_{1} \in F_{q, r-1}, \gamma \in S$; and
(2) if $n>2^{r-1}$, then $q S_{r, r^{\prime}} \subseteq S \subset q S_{r, r^{\prime}-1}\left(r^{\prime}<r\right)$. Moreover, for any $a_{1} \in F_{q r^{\prime}}$, it can be obtained that

$$
B_{2}\left(S, a_{1} \gamma\right)= \begin{cases}n-2^{r-1}, & \gamma \in q S_{r, r^{\prime}}, \tag{8}\\ B_{2}\left(S \backslash q S_{r-1, r^{\prime}}, a_{1} \gamma\right)+2^{r-1}-2^{r^{\prime}-1}, & \gamma \in q H_{r^{\prime}} \cap D .\end{cases}
$$

By Lemma 2, C_{0} can be minimized. The result is shown in the following lemma.
Lemma 3. Suppose $G \backslash a_{1}$ consists of the last $g-1$ columns of $D^{q-t}\left(X_{1}\right)$ for $g>N / 2^{t+1}$, where a_{1} is a four-level component and $g=\#\{G\}$. If a_{1} is the first column of $D^{q-t}\left(X_{1}\right)$, then C_{0} is minimized.

According to the above lemmas, the best choice of a_{1} is shown below by setting $t=4$.

Theorem 4. Up to isomorphism, a $2^{n} 4^{1}$ design D with $9 N / 32+1 \leq n+2 \leq 5 N / 16$ is a GMC design, if and only if $\left\{D_{1}, a_{2}\right\}$ consists of the last $n+1$ columns of $D^{q-4}(X), a_{1}$ is the first column of $D^{q-4}\left(X_{1}\right)$ and a_{2} is the first column of $D^{q-4}\left(X_{2}\right)$, where $D=\left(D_{1}, A\right)$.

Example 5. Consider a $2^{8} 4^{1}$ design D with 32 runs. From Theorem 4, let \mathbf{X} be a 2^{5-1} design with 16 runs and $I=X_{1} X_{2} X_{3} X_{4} X_{5}$. Since $D^{q-4}(\mathbf{X})=\left(D^{q-4}\left(X_{1}\right), D^{q-4}\left(X_{2}\right), D^{q-4}\left(X_{3}\right)\right.$, $\left.D^{q-4}\left(X_{4}\right), D^{q-4}\left(X_{5}\right)\right)$ and $q=5$, we can obtain $D^{1}(\mathbf{X})=\left(\left(I X_{1}, 1 X_{1}\right),\left(I X_{2}, 1 X_{2}\right),\left(I X_{3}, 1 X_{3}\right)\right.$, $\left(I X_{4}, 1 X_{4}\right),\left(I X_{5}, 1 X_{5}\right)$), where $I X_{i}$ and $1 X_{i}$, respectively, mean $I_{2} \otimes X_{i}$ and $1_{2} \otimes X_{i}$ for $i=$ $1, \ldots, 5$. Let a_{1} be the first column of $D^{q-4}\left(X_{1}\right)$ and a_{2} be the first column of $D^{q-4}\left(X_{2}\right)$, that is to say $a_{1}=I X_{1}$ and $a_{2}=I X_{2}$. The rest of $D^{q-4}(\mathbf{X})$ are D_{1}. Then $\left(D_{1}, A\right)$ is a GMC $2^{8} 4^{1}$ design.

3.2. GMC $\mathbf{2}^{n} 4^{1}$ designs with $N / 4+1 \leq n+2 \leq 9 N / 32$

Let

$$
\mathbf{X}=\left(\begin{array}{ccc}
\mathbf{1} & S_{1}(t) & S_{2}(t) \tag{9}\\
-\mathbf{1} & -S_{1}(t) & S_{2}(t)
\end{array}\right)
$$

where $\mathbf{1}$ is a $2^{t-1} \times 1$ vector of 1's, $S(t)=\left(S_{1}(t), S_{2}(t)\right)$ is the resolution IV design with 2^{t-1} runs and 2^{t-2} factors and $S_{1}(t)$ is any column of $S(t)$. Rewrite (9) as $X=$ $\left(X_{1}, X_{2}, \ldots, X_{2^{t-2}+1}\right)$. Doubling $\mathbf{X} q-t$ times, we can obtain

$$
D^{(q-t)}(X)=\left(D^{(q-t)}\left(X_{1}\right), D^{(q-t)}\left(X_{2}\right), \ldots, D^{(q-t)}\left(X_{2^{t-2}+1}\right)\right) .
$$

Denote $D^{(q)}(1)=\left(D^{(q-t)}\left(D^{t}(1) \backslash \mathbf{X}\right), D^{(q-t)}(\mathbf{X})\right)$, which is said to have $R C$ Yates order. Suppose D_{0} is a $2_{I V}^{n+2}$ design with $\left(2^{t-1}+1\right) N / 2^{t+1}<n+2 \leq\left(2^{t-2}+1\right) N / 2^{t}(5 \leq t \leq q)$. According to a discussion similar to the case of $9 N / 32+1 \leq n+2 \leq 5 N / 16, D_{0}$ must be an $(n+2)$-projection of $D^{q-t}(\mathbf{X})$. So the following result is obtained.

Theorem 5. Suppose D_{0} is an $(n+2)$-projection of $D^{q-t}(\mathbf{X})$ for $\left(2^{t-1}+1\right) N / 2^{t+1}<n+2 \leq$ $\left(2^{t-2}+1\right) N / 2^{t}(5 \leq t<q)$ and $\bar{D}_{0}=D^{q-t}(\mathbf{X}) \backslash D_{0}$. Up to isomorphism, if D has less GLOC than any other cases in all the $(n+2)$-projection of $D^{q-t}(\mathbf{X})$, then $\bar{D}_{0} \subset D^{q-t}\left(X_{p}\right)$ for $p=1,2$, $a_{1} \in D^{q-t}\left(X_{p}\right) \cap D_{0}$ and $a_{2} \in D^{q-t}\left(X_{i}\right), i=1,2, i \neq p .{ }_{1}^{*} C_{2}(D)$ is maximized, and
(1) ${ }_{1,0}^{\#} C_{2,0}(D)=(n), \quad{ }_{1,0}^{\#} C_{2,1}(D)=(N / 2-n-2,2 n-N / 2+2), \quad{ }_{1,1}^{\#} C_{2,0}(D)=$ $\left(2,0^{n-N / 4}, 1\right)$, where $0^{n-N / 4}$ denotes $n-N / 4$ zeros.

$$
{ }_{2,0}^{\#} C_{2,0}^{(k)}(D)= \begin{cases}(g-1)(n-N / 4), & k=n-N / 4-1, \tag{2}\\ (N / 4-g+1)(n-N / 4+1), & k=n-N / 4, \\ \left(N / 4-N / 2^{t}\right)\left(N / 2^{t}-1\right), & k=N / 2^{t}-2, \\ \left(N / 4-N / 2^{t}\right)\left(N / 8-N / 2^{t}\right), & k=N / 8-N / 2^{t}-1, \\ (k+1) \#\left\{\gamma: \gamma \in D^{q-t}\left(I_{2^{t}}\right) \backslash I_{N}, n^{\gamma}=v\right\}, & k=N / 8+v-2 \\ & v=0,1 \ldots,\lfloor g / 2\rfloor, \\ 0, & \text { other } k^{\prime} s,\end{cases}
$$

where n^{γ} is the number of 2fis aliased with some $\gamma \in D^{q-t}\left(I_{2^{t}}\right) \backslash I_{N}$ of $G \backslash a_{1}$, for $G=$ $D^{q-t}\left(X_{p}\right) \cap D_{0}$ and $g=n+2-N / 4$; and

$$
\underset{2,0}{\#} C_{2,1}^{(k)}(D)= \begin{cases}{ }_{2,0}^{\#} C_{2,0}^{\left(N / 8-N / 2^{t}-1\right)}(D)+n-N / 4+1, & k=0 \tag{3}\\ n(n+1) / 2-{ }_{2,0}^{\#} C_{2,1}^{(0)}(D)-{ }_{2,0}^{\#} C_{2,1}^{(2)}(D), & k=1, \\ { }_{2,0}^{\#} C_{2,0}^{(n-N / 4-1)}(D)+{ }_{2,0}^{\#} C_{2,1}^{(1)}(G)+(N / 8-1) m, & k=2, \\ 0, & \text { other } k^{\prime} s,\end{cases}
$$

where $m=\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in G \backslash a_{1}\right\}$.
Theorem 5 shows the choices of D_{0}, a_{1} and a_{2}. Similarly to Theorem 3, a $2^{n} 4^{1}$ design with $\left(2^{t-1}+1\right) N / 2^{t+1}<n+2 \leq\left(2^{t-2}+1\right) N / 2^{t}(5 \leq n<q)$ is a GMC design, only if $\left\{D_{1}, a_{2}\right\}$ consists of the last $n+1$ columns of $D^{q-t}(\mathbf{X}), a_{1} \in D^{q-t}\left(X_{1}\right) \backslash D_{1}$ and a_{2} is the first column of $D^{q-t}\left(X_{2}\right)$ up to isomorphism, where $D=\left(D_{1}, A\right)$.

To determine the exact position of a_{1}, we should maximize ${ }_{2,0}^{\#} C_{2,1}(D)$. By Theorem 5(3), maximizing ${ }_{2,0}^{\#} C_{2,1}(D)$ equals to minimizing ${ }_{2,0}^{\#} C_{2,1}^{(1)}(G)+(N / 8-1) m$, denoted as C_{0} in short. Noting that

$$
{ }_{2,0}^{\#} \mathcal{C}_{2,1}^{(1)}(G)=\sum_{\gamma \in G \backslash a_{1}} B_{2}\left(G, a_{1} \gamma\right) \text { and } m=\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in G \backslash a_{1}\right\},
$$

to maximize ${ }_{2,0}^{\#} C_{2,1}(D)$ only needs to consider $B_{2}\left(G, a_{1} \gamma\right)$, for $\gamma \in G \backslash a_{1}$.
By Lemma 3, we know that if a_{1} is the first column of $D^{q-t}\left(X_{1}\right), C_{0}$ is minimized for $5 \leq$ $t<q$. And for $t=q$, by Theorem 2, $D_{0}=\mathbf{X}, a_{1}=X_{1}$ and $a_{2}=X_{j}(j \neq 1,2)$ forms a GMC design. Then the following result is obvious.
Theorem 6. Up to isomorphism, a $2^{n} 4^{1}$ design with $\left(2^{t-1}+1\right) N / 2^{t+1}<n+2 \leq\left(2^{t-2}+\right.$ 1) $N / 2^{t}$ is a GMC design if and only if
(1) $\left\{D_{1}, a_{2}\right\}$ consists of the last $n+1$ columns of $D^{q-t}(\mathbf{X}), a_{1}$ is the first column of $D^{q-t}\left(X_{1}\right)$ and a_{2} is the first column of $D^{q-t}\left(X_{2}\right)$, where $D=\left(D_{1}, A\right)$ and $5 \leq t<q$; and
(2) $a_{1}=X_{1}, a_{2}=X_{j}(j \neq 1,2)$ and $D_{1}=\mathbf{X} \backslash\left\{a_{1}, a_{2}\right\}$ for $t=q$.

Example 6. Consider to construct a $2^{16} 4^{1}$ design D with 64 runs. Note that $t=5$ and $q=6$. Let $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{9}\right\}$ be the SOS design with 9 factors and 32 runs. Since $D^{q-5}(\mathbf{X})=$ $\left(D^{q-5}\left(X_{1}\right), D^{q-5}\left(X_{2}\right), \ldots, D^{q-5}\left(X_{9}\right)\right)$ and $q=6$, we can obtain $D^{1}(\mathbf{X})=\left(\left(I X_{1}, 1 X_{1}\right),\left(I X_{2}\right.\right.$, $\left.1 X_{2}\right), \ldots,\left(I X_{9}, 1 X_{9}\right)$), where $I X_{i}$ and $1 X_{i}$, respectively, mean $I_{2} \otimes X_{i}$ and $1_{2} \otimes X_{i}$ for $i=$ $1, \ldots, 9$. According to Theorem 6 , let a_{1} be the first column of $D^{q-5}\left(X_{1}\right), a_{2}$ be the first column of $D^{q-5}\left(X_{2}\right)$ (i.e., $a_{1}=I X_{1}$ and $\left.a_{2}=I X_{2}\right)$ and D_{1} contain the rest columns of $D^{q-5}(\mathbf{X})$. Then $\left(D_{1}, A\right)$ is a GMC $2^{16} 4^{1}$ design.

4. Conclusions and discussions

In this paper, we extend the GMC theory to mixed-level case. Under this theory, a new criterion is established for choosing optimal regular two- and four-level designs. Then, a construction method is proposed to obtain all the $2^{n} 4^{1}$ GMC designs for $N / 4+1 \leq n+2 \leq 5 N / 16$. Some GMC $2^{n} 4^{1}$ designs with 16 and 32 runs are listed in the tables of Appendix B. This method can be extended to the construction of $2^{n} 4^{2}$, and used for $s^{n}\left(s^{2}\right)$ or $s^{n}\left(s^{2}\right)^{2}$ designs for general s. This is an open problem for further study.

Acknowledgments

We are grateful to the editor and two referees for their insightful comments and constructive suggestions. This work was supported by the doctorial start-up fund research of Jiangxi Normal University, the

National Natural Science Foundation of China (Grant Nos. 11601201, 11471172, 11661076, 11171165, 11271205, 11271355), Scientific Research Program of the Higher Education Institution of XinJiang (Grant No. XJEDU2012S01) and Research Fund for the Doctoral Program of XinJiang University (Grant No. BS130106).

References

Addelman, S. (1962). Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics 4:21-46.
Ai, M.Y., Zhang, R.C. (2004). Theory of minimum aberration blocked regular mixed factorial designs. J. Stat. Plann. Inference 126:305-323.

Block, R., Mee, R. (2003). Second order saturated resolution IV designs. Journal of Statistical Theory and Applications 2:96-112.
Chen, H., Cheng, C.S. (2006). Doubling and projection: a method of construction two-level designs of resolution IV. Ann. Stat. 34:546-558.
Cheng, Y., Zhang, R.C. (2010). On construction of general minimum lower order confounding 2^{n-m} designs with $N / 4+1 \leq n \leq 9 N / 32$. J. Stat. Plann. Inference 140:2384-2394.
Joseph, R.V., Ai, M.Y., Wu, C.F.J. (2009). Bayesian-inspired minimum aberration two- and four-level designs. Biometrika 96:95-106.
Li, P.F., Liu, M.Q., Zhang, R.C. (2007). $2^{m} 4^{1}$ designs with minimum aberration or weak minimum aberration. Stat. Pap. 48:235-248.
Li, P.F., Zhao, S.L., Zhang, R.C. (2011). A theory on constructing 2^{m-m} designs with general minimum lower-order confounding. Stat. Sin. 21:1571-1589.
Mukerjee, R., Wu, C.F.J. (2001). Minimum aberration designs for mixed Factorials in terms of complementary sets. Stat. Sin. 11:225-239.
Wu, C.F.J. (1989). Construction of $2^{m} 4^{n}$ via a group scheme. Ann. Stat. 17:1880-1885.
Wu, C.F.J., Zhang, R.C. (1993). Minimum aberration designs with two-level and four-level factors. Biometrika 80:203-209.
Wu, C.F.J., Zhang R.C., Wang, R.G. (1992). Construction of asymmetrical orthogonal arrays of the type $O A\left(s^{k},\left(s^{r_{1}}\right)^{n_{1}} \ldots\left(s^{r_{l}}\right)^{n_{l}}\right.$. Stat. Sin. 2:203-219.
Zhang, R.C., Cheng, Y. (2010). General minimum lower order confounding designs: An overview and a construction theory. J. Stat. Plann. Inference 140:1719-1730.
Zhang, R.C., Li, P.F., Zhao, S.L., Ai, M.Y. (2008). A general minimum lower order confounding criterion for two-level regular design. Stat. Sin. 18:1689-1705.
Zhang, R.C., Mukerjee, R. (2009). Characterization of general minimum lower order confounding via complementary sets. Stat. Sin. 19:363-375.
Zhang, R.C., Shao, Q. (2001). Minimum aberration $\left(s^{2}\right) s^{n-k}$ designs. Stat. Sin. 11:213-223.
Zhao, S.L., Zhang, R.C. (2008). $2^{m} 4^{n}$ designs with resolution III or IV containing clear two-factor interaction components. Stat. Pap. 49:441-454.

Appendix A: Proofs

Proof of Theorem 3. By Theorem 2, $\overline{D_{0}} \subset D^{q-4}\left(X_{p}\right)$ for some $p, a_{1} \in D^{q-4}\left(X_{p}\right) \cap D_{0}$ and $a_{2} \in$ $D^{q-4}\left(X_{i}\right), i \neq p,{ }_{1,0}^{\#} C_{2,0}(D),{ }_{1,0}^{\#} C_{2,1}(D),{ }_{1,1}^{\#} C_{2,0}(D)$ are maximized. Without loss of generality, let $p=1$ and $i=2$. Now we maximize ${ }_{2,0}^{\#} C_{2,0}(D)$. Based on Theorem $2,{ }_{2,0}^{\#} C_{2,0}^{(k)}(D)$ is maximized when $k \leq N / 16-1$. For $k=N / 8+v-2(v=0,1 \ldots,\lfloor g / 2\rfloor)$,

$$
{ }_{2,0}^{\#} C_{2,0}^{(k)}(D)=(k+1) \#\left\{\gamma: \gamma \in D^{q-4}\left(I_{16} \backslash I_{N}\right), n^{\gamma}=v\right\}
$$

where n^{γ} is the number of 2 fi's aliased with some $\gamma \in D^{q-4}\left(I_{16} \backslash I_{N}\right)$ of $D^{q-4}\left(X_{1}\right) \cap\left\{D_{0} \backslash a_{1}\right\}$.
Since $G \backslash a_{1}=D^{q-4}\left(X_{1}\right) \cap\left\{D_{0} \backslash a_{1}\right\}$, then maximizing ${ }_{2,0}^{\#} C_{2,0}^{(k)}(D)$ (for $k=N / 8+v-$
2) equals to maximizing $\#\left\{\gamma: \gamma \in D^{q-4}\left(I_{16}\right) \backslash I_{N}, n^{\gamma}=v\right\}$ of $\left\{G \backslash a_{1}\right\}$, i.e., maximizing ${ }_{2,0}^{\#} C_{2,0}^{(v)}\left(G \backslash a_{1}\right)$, which is equal to ${ }_{2}^{\#} C_{2}^{(v)}\left(G \backslash a_{1}\right)$.
$D^{q-4}\left(X_{p}\right)$ can be seen as some $F_{q r}$ for $r \leq q$, where $r=q-3$ and $2^{r-2}<g \leq 2^{r-1}$. By the computation, we have

$$
\bar{g}\left(G \backslash a_{1}\right)=\left\{\gamma: \gamma \in H_{q} \backslash\left\{G \backslash a_{1}\right\}, B_{2}\left(G \backslash a_{1}, \gamma\right)>0\right\}=N / 16-1,
$$

 $\left\{-\bar{g}\left(G \backslash a_{1}\right),{ }_{2}^{*} C_{2}\left(G \backslash a_{1}\right)\right\}$ is maximized if and only if $G \backslash a_{1}$ consists of the last $g-1$ columns of $D^{q-4}\left(X_{p}\right)$. Thus ${ }_{2}{ }^{\#} C_{2}\left(G \backslash a_{1}\right)$ is maximized if and only if $G \backslash a_{1}$ consists of the last $g-1$ columns of $D^{q-4}\left(X_{1}\right)$. Note that for any $a_{2} \in D^{q-4}\left(X_{i}\right)(i \neq 1),\left(D_{1}, A\right)$ is isomorphic. For convenience, let a_{2} be the first column of $D^{q-4}\left(X_{2}\right)$.
Proof of Lemma 2. S is a 2^{n-p} design which consists of the last n columns of $F_{q r}$. From the above notation, $F_{q r}$ can be rewritten as $\left\{F_{q, r^{\prime}-1}, q S_{r, r^{\prime}-1}\right\}$ where $r^{\prime} \leq r$.
(a) If $n \leq 2^{r-1}$, it is obvious that $S \subseteq q S_{r, r-1}$. For any $a_{1} \in F_{q, r-1}$ and $\gamma \in S, a_{1} \gamma \in r H_{r-1}$. But for any two factors $\alpha, \beta \in S$, the interaction $\alpha \beta$ must be in H_{r-1}, that is to say $B_{2}\left(S, a_{1} \gamma\right)=0$.
(b) If $n>2^{r-1}$, there exists $r^{\prime}<r$ such that $q S_{r, r^{\prime}} \subseteq S \subset q S_{r, r^{\prime}-1}$, then a_{1} must be in $F_{q r^{\prime}}$. There are two different cases for $\gamma \in S$. If $\gamma \in q S_{r, r^{\prime}}$, we have $a_{1} \gamma \in S_{r, r^{\prime}}$ and if $\gamma \in$ $q H_{r^{\prime}} \cap S$, we have $a_{1} \gamma \in H_{r^{\prime}}$. From Lemma 1, by replacing $q-1$ as r and r as r^{\prime}, we can obtain (8).
Proof of Lemma 3. The proof uses searching method by the following three steps.
Step 1: Find the proper r^{\prime}.
Since $g>N / 2^{t+1}$, there exists $r^{\prime}<r$ such that $S_{r, r^{\prime}} \otimes X_{1} \subseteq G \backslash a_{1} \subset S_{r, r^{\prime}-1} \otimes X_{1}$ $(r=q-t)$. For convenience, rewrite $S_{r, r^{\prime}} \otimes X_{1}$ as $q S_{r, r^{\prime}}$ and $S_{r, r^{\prime}-1} \otimes X_{1}$ as $q S_{r, r^{\prime}-1}$, then $q S_{r, r^{\prime}} \subseteq G \backslash a_{1} \subset q S_{r, r^{\prime}-1}$.
Step 2: Calculate the components of C_{0}.
By Lemma 2 (b), we obtain

$$
\begin{aligned}
\sum_{\gamma \in G \backslash a_{1}} B_{2}\left(G, a_{1} \gamma\right) & =\sum_{\gamma \in q S_{r, r^{\prime}}} B_{2}\left(G, a_{1} \gamma\right)+\sum_{\gamma \in G \backslash\left\{q S_{r, r^{\prime}}, a_{1}\right\}} B_{2}\left(G, a_{1} \gamma\right) \\
& =\left(n-2^{r-1}\right) \#\left\{\gamma: \gamma \in q S_{r, r^{\prime}}\right\}+\sum_{\gamma \in G \backslash\left\{q S_{r, r^{\prime}}, a_{1}\right\}} B_{2}\left(G \backslash q S_{r-1, r^{\prime}}, a_{1} \gamma\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
m & =\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in G \backslash a_{1}\right\} \\
& =\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in q S_{r, r^{\prime}}\right\}+\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in G \backslash\left\{q S_{r, r^{\prime}}, a_{1}\right\}\right\} \\
& =2^{r}-2^{r^{\prime}}+\#\left\{\gamma: B_{2}\left(G, a_{1} \gamma\right)>0, \gamma \in G \backslash\left\{q S_{r, r^{\prime}}, a_{1}\right\}\right\} .
\end{aligned}
$$

Step 3: Minimize C_{0} and find the best position of a_{1}.
If $\#\left\{G \backslash\left\{q S_{r-1, r^{\prime}}, a_{1}\right\}\right\} \leq 2^{r^{\prime}-1}$, we have $B_{2}\left(G \backslash q S_{r-1, r^{\prime}}, a_{1} \gamma\right)=0$ for $\gamma \in G \backslash\left\{q S_{r, r^{\prime}}, a_{1}\right\}$ by Lemma 2 (a). Let $a_{1}=q$, the first column of $D^{q-4}\left(X_{1}\right)$, then C_{0} is minimized. Otherwise, replace $G \backslash\left\{q S_{r-1, r^{\prime}} \backslash a_{1}\right\}$ by $G \backslash a_{1}$ and return to Step 1.
After the searching procedure, we find no other column of $D^{q-t}\left(X_{1}\right)$ is better than the first column of $D^{q-t}\left(X_{1}\right)$ to minimize C_{0}.

Proof of Theorem 5. All clear 2fi's of design \mathbf{X} are either $X_{1} X_{j}(j \neq 1)$ or $X_{2} X_{j}(j>2)$ (Cheng and Zhang, 2010). Similar to the case of $9 N / 32+1 \leq n+2 \leq 5 N / 16,{ }_{1,1}^{\#} C_{2,0},{ }_{1,0}^{\#} C_{2,1},{ }_{1,1}^{\#} C_{2,0}$ of D
is maximized, if and only if $\overline{D_{0}} \subseteq D^{q-t}\left(X_{p}\right)(p=1,2), a_{1} \in D^{q-t}\left(X_{p}\right) \cap D_{0}$ and $a_{2} \in D^{q-t}\left(X_{i}\right)$ $(i \neq p)$. The result is the same to Theorem $2(2)$. Next we maximize ${ }_{2,0}^{\#} C_{2,0}(D)$.

Let $G=D^{q-t}\left(X_{p}\right) \cap D_{0} \quad$ and $\quad g=\#\{G\}=n+2-N / 4$. The smallest positive $B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)$ is $n-N / 4$. These alias sets have the form $\gamma=a_{1} t_{1}=a_{2} t_{2}$, where $t_{1} \in D^{q-t}\left(X_{i}\right) \quad(i \neq p)$ and $t_{2} \in D^{q-t}\left(X_{p}\right) \cap D_{0}$. Then we obtain ${ }_{2,0}^{\#} C_{2,0}^{(k)}(D)=0$, for $k<$ $n-N / 4-1,{ }_{2,0}^{\#} C_{2,0}^{(n-N / 4-1)}(D)=(g-1)(n-N / 4)$.

For $B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)=n-N / 4+1$, the alias sets contain $a_{1} t_{1}$ but exclude $a_{2} t_{2}$, where $t_{1}, t_{2} \in D_{0}$ or $\gamma=a_{3}$. The number of such alias sets is $N / 4-g+1$. Then ${ }_{2, C_{2,0}}^{\#} C^{(n-N / 4)}(D)=$ $(N / 4-g+1)(n-N / 4+1)$.

For $k>n-N / 4$ and $a_{2} \in D^{q-t}\left(X_{j}\right)(j \neq p)$, the smallest positive $B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)>$ $n-N / 4+1$ is $N / 2^{t}-1$. The alias sets have the form $\gamma=a_{2} t_{2}$, where $t_{2} \in D^{q-t}\left(X_{k}\right)(k \neq$ $j, p)$. There are two different cases that make ${ }_{2,0}^{\#} C_{2,0}^{(k)}(D)$ different. Case I: $a_{2} \in D^{q-t}\left(X_{i}\right), i=1,2$ but $i \neq p$.

Since $X_{1} X_{l}$ and $X_{2} X_{l}$ are clear 2fi's $(l \neq 1,2)$, any factor in $D^{q-t}\left(X_{l}\right)(l \neq 1,2)$ combined with $a_{2} \in D^{q-t}\left(X_{i}\right)$ is only confounded with some $\gamma \in D^{q-t}\left(X_{i} X_{l}\right)$, then for $k=N / 2^{t}-2$

$$
\begin{aligned}
& \#\left\{\gamma: \gamma \in D^{q}(1), B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)=N / 2^{t}-1\right\} \\
& \quad=\#\left\{\left(t_{1}, t_{2}\right): t_{1} t_{2}=\gamma, t_{1} \in D^{q-t}\left(X_{i}\right), t_{2} \in D^{q-t}\left(X_{l}\right)(l \neq 1,2)\right\} \\
& \quad=\sum_{l \neq 1,2} \#\left\{t_{2}: t_{2} \in D^{q-t}\left(X_{l}\right)\right\}=N / 4-N / 2^{t},
\end{aligned}
$$

it is obtained

$$
{ }_{2,0}^{\#} C_{2,0}^{\left(N / 2^{t}-2\right)}(D)=\left(N / 4-N / 2^{t}\right)\left(N / 2^{t}-1\right) .
$$

Case II: $a_{2} \in D^{q-t}\left(X_{i}\right), i \neq 1,2$.
If $t_{2} \in D^{q-t}\left(X_{l}\right) \quad(l=1,2$ but $l \neq p)$, the alias sets containing $a_{2} t_{2}$ make $B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)=N / 2^{t}-1$. Then the 2fis have the form $D^{q-t}\left(X_{i} X_{l}\right)$ for $k=N / 2^{t}-2$, and

$$
\begin{aligned}
\# & \left\{\gamma: \gamma \in D^{q-t}\left(X_{i} X_{l}\right), B_{2}\left(D_{0} \backslash\left\{a_{1}, a_{2}\right\}, \gamma\right)=N / 2^{t}-1\right\} \\
& =\#\left\{\left(t_{1}, t_{2}\right): t_{1} t_{2}=\gamma, t_{1} \in D^{q-t}\left(X_{i}\right), t_{2} \in D^{q-t}\left(X_{l}\right)(l=1,2, l \neq p)\right\} \\
& =\#\left\{t_{2}: t_{2} \in D^{q-t}\left(X_{l}\right)(l=1,2, l \neq p)\right\}=N / 2^{t} .
\end{aligned}
$$

So

$$
{ }_{2,0}^{\#} C_{2,0}^{\left(N / 2^{t}-2\right)}(D)=N / 2^{t}\left(N / 2^{t}-1\right) .
$$

Note that $N / 4-N / 2^{t}>N / 2^{t}$ for $t \geq 5$, so Case I has less GLOC than Case II. This completes the proof.

Appendix B: Two tables of GMC $\mathbf{2}^{\boldsymbol{n}} \mathbf{4}^{\boldsymbol{1}}$ designs

Table B.1. GMC $2^{n} 4^{1}$ designs with 16 runs.

n	Columns	$\begin{gathered} { }_{1,0}^{\#} C_{2,0},{ }_{1,0}^{\#} C_{2,1},{ }_{1,}^{\#}, C_{2,0}, \\ { }_{2,0}^{\#} C_{2,0},{ }_{2,0}^{\#} C_{2,1},{ }_{2,}^{\#}, C_{2,0},{ }_{2,}^{\#}, C_{2,1} \end{gathered}$	$\begin{gathered} W L P \\ \left(A_{30}, A_{31}\right), \end{gathered}$	$\begin{aligned} & c_{1}, \bar{c}_{1} \\ & c_{2}, \bar{c}_{2} \end{aligned}$
3	$A_{0}, 3,4,1234$	$\begin{gathered} (3),(3),(3), \\ (3),(0,3),(6,3),(9) \end{gathered}$	$(0,0),(0,1)$	$\begin{aligned} & 3,6 \\ & 0,6 \end{aligned}$
4	$A_{1}, 124,34,134,234$	$\begin{gathered} (4),(2,2),(2,1) \text {, } \\ (6),(1,4,1) \\ (6,6),(11,1) \end{gathered}$	$(0,1),(0,2)$	$\begin{aligned} & 2,2 \\ & 0,4 \end{aligned}$
5	$A_{1}, 24,124,34,134,234$	$\begin{aligned} & (5),(1,4),(2,0,1), \\ & (4,6),(2,4,4), \\ & (5,8,2),(7,8) \end{aligned}$	$(0,2),(1,4)$	$\begin{aligned} & 1,2 \\ & 0,5 \end{aligned}$

Note: 1. $A_{0}=(1,2,12), A_{1}=(4,1234,123), A_{2}=(3,123,12)$.
2. c_{1} and c_{2} are the numbers of clear two-level main effects and $2 f$'s, respectively, while \bar{c}_{1}, \bar{c}_{2} is the number of clear four-level component and clear 2fis containing four-level component.

Table B.2. GMC $2^{n} 4^{1}$ designs with 32 runs.

n	Columns	$\begin{gathered} { }_{1,0}^{\#} C_{2,0},{ }_{1,0}^{\#} C_{2,1},{ }_{1,}^{\#}, C_{2,0}, \\ { }_{2,0}^{\#} C_{2,0},{ }_{2,0}^{\#} C_{2,1},{ }_{2,}^{\#}, C_{2,0},{ }_{2, C_{2,1}} \end{gathered}$	$\begin{gathered} W L P \\ \left(A_{30}, A_{31}\right), \ldots \end{gathered}$	$\begin{aligned} & c_{1}, \bar{c}_{1} \\ & c_{2}, \bar{c}_{2} \end{aligned}$
7	$\begin{gathered} A_{0}, 3,4,5 \\ 1345,245,235,234 \end{gathered}$	$\begin{gathered} (7),(7),(3), \\ (0,0,21),(21),(21),(21) \end{gathered}$	$\begin{aligned} & (0,0),(3,7),(0,4), \\ & (0,0),(0,0),(0,1) \end{aligned}$	$\begin{aligned} & 6,2 \\ & 0,0 \end{aligned}$
8	$\begin{gathered} A_{2}, \\ \mathbf{S}_{5 N / 16} \backslash\left\{I_{2} \otimes\{\mathbf{1}, \mathbf{2}\}_{16}\right\} \end{gathered}$	$\begin{gathered} (8),(6,2),(2,1), \\ (13,12,3),(13,15), \\ (10,12,0,2),(22,2) \end{gathered}$	$\begin{gathered} (0,1),(3,10),(4,8), \\ (0,0),(0,3),(0,2) \end{gathered}$	$\begin{aligned} & 7,3 \\ & 0,21 \end{aligned}$
9	$A_{1}, 235 \sim 2345$	$\begin{gathered} (9),(5,4),(2,0,1) \\ (2,12,18,4),(2,26,8) \\ (9,4,5,8,1),(19,8) \end{gathered}$	$\begin{gathered} (0,2),(9,14), \\ (0,9),(6,12), \\ (0,4),(0,6),(1,0) \end{gathered}$	$\begin{aligned} & 5,2 \\ & 0,9 \end{aligned}$

Note: 1. $A_{0}=(1,2,12), A_{1}=(5,12345,1234), A_{2}=\left(I_{2} \otimes \mathbf{1}_{16}, I_{2} \otimes \mathbf{2}_{16}, I_{2} \otimes \mathbf{1 2}_{16}\right), F_{55}=\{5,15,25,125,35,45,145$, 245, 1245, 345, 1345, 2345, 12345\}.
2. $\{a \sim b\}$ means containing the columns from a to b of F_{55}.
3. c_{1} and c_{2} are the numbers of clear two-level main effects and 2 fi's, respectively, while \bar{c}_{1}, \bar{c}_{2} is the number of clear four-level component and clear 2fi's containing four-level component.

