
Journal of Statistical Planning and Inference 207 (2020) 113–122

Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

journal homepage: www.elsevier.com/locate/jspi

Optimalmaximin L2-distance Latin hypercube designs
Weiping Zhou, Jian-Feng Yang, Min-Qian Liu ∗

School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin 300071, China

a r t i c l e i n f o

Article history:
Received 14 March 2019
Received in revised form 14 September 2019
Accepted 22 November 2019
Available online 18 December 2019

MSC:
primary 62K05
secondary 62K15

Keywords:
Computer experiment
Orthogonality
Rotation method
Space-filling

a b s t r a c t

Maximin distance Latin hypercube designs (LHDs) are extensively applied in computer
experiments, but it is challenging to construct such designs. In this paper, based on a
22 full factorial design and a series of saturated two-level regular designs, a number of
maximin distance LHDs are constructed via the rotation method. Some of the constructed
LHDs are exactly optimal and the others are asymptotically optimal under the maximin
L2-distance criterion. The constructed maximin distance LHDs have two prominent
advantages: (i) no computer search is needed; and (ii) they are orthogonal or nearly
orthogonal. Detailed comparisons with existing LHDs show that the constructed LHDs
have larger minimum distances between design points.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In computer experiments, complex systems are increasingly investigated through space-filling designs, which aim to
distribute the design points over the design space as evenly as possible. Latin hypercube designs (LHDs), first introduced by
McKay et al. (1979), are used as a popular class of space-filling designs. As we know, LHDs achieve one-dimensional space-
filling property. One disadvantage of LHDs is that any such design is not necessarily space-filling in the full-dimensional
space. To solve this problem, maximin distance criterion (Johnson et al., 1990) was proposed for constructing good LHDs.
The maximin distance criterion is to maximize the minimum distance between design points, which guarantees the good
space-filling property in the full-dimensional space. The maximin distance designs are asymptotically optimal for fitting
Gaussian process models under a Bayesian setting (Johnson et al., 1990), and the maximin distance LHDs are well-suited
for computer experiments (Lin and Tang, 2015).

There are many algorithms for constructing maximin distance LHDs, such as the simulated annealing (Morris and
Mitchell, 1995; Joseph and Hung, 2008; Ba et al., 2015), swarm optimization algorithms (Moon et al., 2011; Chen et al.,
2013) and the threshold-accepting method (Xiao and Xu, 2018). However, due to the computational complexity, these
methods are not suitable to construct large LHDs which are needed in computer experiments (see for example, Morris,
1991; Kleijnen, 1997; Cioppa and Lucas, 2007; Gramacy et al., 2015). In order to overcome the challenges for constructing
large LHDs, Zhou and Xu (2015) considered linear permutations to construct maximin L1- and L2-distance LHDs based on
good lattice point sets; Xiao and Xu (2017) constructed LHDs with large minimum L1-distance via Costas arrays; Wang
et al. (2018b) employed the Williams transformation to construct optimal maximin L1-distance LHDs.

The rotation method, firstly presented by Beattie and Lin (2004, 2005), is simple and useful for constructing designs
for computer experiments. This method was further employed to construct orthogonal LHDs, see e.g., Steinberg and Lin
(2006), Lin et al. (2009), Pang et al. (2009), Sun and Tang (2017), and Wang et al. (2018a), among others. In this paper,
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by combining the rotation method and the doubling operator of a design (Chen and Cheng, 2006), we propose several
methods to construct maximin L2-distance LHDs without any computer search. Firstly, based on a 22 full factorial design,
a class of asymptotically optimal maximin L2-distance LHDs are constructed via the rotation method. Moreover, we show
that these LHDs are orthogonal. Next, based on a series of saturated two-level regular designs, a good deal of maximin
L2-distance LHDs are constructed via the rotation method. Some of these LHDs are exactly optimal and the others are
asymptotically optimal under the maximin L2-distance criterion. Furthermore, the average correlations of these LHDs
converge to zero as the design sizes increase, which is desirable for Gaussian process with linear trend (Wang et al.,
2018a,b).

The rest of this paper is organized as follows. Section 2 provides relevant notation and definitions. Section 3 presents
the construction methods, along with some discussions of asymptotic properties for the L2-distance efficiency of the
resulting designs. Section 4 discusses several convergence properties of the average correlations for the resulting designs.
Section 5 provides some concluding remarks. All proofs are deferred to Appendix.

2. Preliminaries

Throughout, JN×n is an N × n matrix of ones and 1k is a k × 1 vector of ones. Let ⌊x⌋ denote the integer part of x. Let
D(N, sn) denote a design with N runs, n factors, and s levels, where each level occurs equally often in each factor. In this
paper, an N × n matrix L =

(
Lij
)
is called a Latin hypercube design (LHD), denoted by L(N, n), when each column is a

permutation of −(N − 1)/2, −(N − 3)/2, . . . , (N − 3)/2, (N − 1)/2.
For any N × n design D =

(
xij
)
, let xi = (xi1, xi2, . . . , xin) be the ith row of D, define d (xi, xk) =

∑n
j=1

(
xij − xkj

)2 as
the L2-distance of xi and xk, and d(D) = min{d (xi, xk) : i ̸= k, i, k = 1, 2, . . . ,N} as the L2-distance of D. The maximin
L2-distance design is defined as the one which maximizes d(D) (Johnson et al., 1990). Zhou and Xu (2015) derived the
following upper bound of d(D) for a D(N, sn) design D.

Lemma 1 (Zhou and Xu, 2015).

(i) For a D(N, sn) design D, d(D) ≤ ⌊N(s2 − 1)n/(6(N − 1))⌋;
(ii) For any N × n LHD D, d(D) ≤ dupper = ⌊N(N + 1)n/6⌋.

From Lemma 1, for any N × n LHD D, define

deff(D) = d(D)/dupper = d(D)/⌊N(N + 1)n/6⌋ (1)

as the L2-distance efficiency of D. For any N × n design D = (xij), define

ρave(D) =

∑
j̸=k |ρjk|

n(n − 1)
, (2)

where ρjk denotes the correlation between the jth and kth columns of D. For any design D with entries from {0, 1}, let
ϕ0(D) = D and

ϕk(D) =

(
ϕk−1(D) ϕk−1(D)
ϕk−1(D) ϕk−1(D) + 1

)
for k ≥ 1,

where ϕk−1(D) + 1 is the matrix obtained by adding 1 (mod 2) to all the entries of ϕk−1(D). Let

R10 =

(
2 −1
1 2

)
, Ru0 =

(
22(u−1)

R(u−1)0 −R(u−1)0

R(u−1)0 22(u−1)
R(u−1)0

)
,

Q1 =

(
1 0
0 −1

)
and Qu =

(
Qu−1 0
0 −Qu−1

)
,

for u = 2, 3, . . ., then define

Ru1 =

(
2Ru0 −Qu
Qu 2Ru0

)
and Ruv =

(
2Ru(v−1) −Qu+v−1
Qu+v−1 2Ru(v−1)

)
for v = 2, 3, . . . .

For d = 2u, u = 1, 2, . . ., if D with entries from {0, 1} is a 2d full factorial design, then
(
ϕk(D) − (1/2)J2d+k×2kd

)
Ruk for

k ≥ 0 are the LHDs constructed by Sun and Tang (2017).

Lemma 2.

(i) For d = 2u, u = 1, 2, . . ., let A be a 2d full factorial design with entries from {0, 1}, and Ak = ϕk(A) for k ≥ 1. If x and
y are two rows of A, then

d((x − (1/2)1T
d )Ru0, (y − (1/2)1T

d )Ru0) =
22d

− 1
3

d(x, y),
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Table 1
The LHDs F0 ’s in Example 1.
m = 1 m = 2 m = 3

−1.5 −0.5 −1.5 −0.5 −1.5 −0.5 −1.5 −0.5 −1.5 −0.5 −1.5 −0.5
−0.5 1.5 −0.5 1.5 0.5 −1.5 −0.5 1.5 0.5 −1.5 1.5 0.5
0.5 −1.5 0.5 −1.5 1.5 0.5 0.5 −1.5 1.5 0.5 −0.5 1.5
1.5 0.5 1.5 0.5 −0.5 1.5 1.5 0.5 −0.5 1.5 0.5 −1.5

and if xk and yk are two rows of Ak, then

d((xk − (1/2)1T
2kd)Ruk, (yk − (1/2)1T

2kd)Ruk) =
22(d+k)

− 1
3

d(xk, yk).

(ii) Let E be an N × n matrix with entries from {0, 1}, and Ek = ϕk(E) for k ≥ 1, then

d(Ek) = 2k−1 min{2d(E), n}.

Lemma 2(i) tells us that the L2-distance of the resulting design constructed via the rotation method is determined by
that of the initial design, and Lemma 2(ii) shows that the L2-distance of the large design ϕk(E) is determined by that of
the small design E. These findings are important in calculating the maximin distances of the constructed designs in the
following sections.

3. Construction methods

In this section, we propose several methods for constructing maximin L2-distance LHDs without any computer search.
The following lemma is useful for the construction.

Lemma 3. For m = 1, 2, . . ., and d = 2u with u = 1, 2, . . ., let E0 = (E1
0 , E

2
0 , . . . , E

m
0 ) be a 2d

× md matrix,
F0 = (F 1

0 , F 2
0 , . . . , Fm

0 ) be a 2d
× md matrix and Fk = (F 1

k , F 2
k , . . . , Fm

k ) be a 2d+k
× 2kmd matrix, where E i

0 is a 2d full
factorial design with entries from {0, 1}, F i

0 = (E i
0 − (1/2)J2d×d)Ru0 and F i

k = (ϕk(E i
0) − (1/2)J2d+k×2kd)Ruk for k ≥ 1. Then

d(F0) =
22d

− 1
3

d(E0), deff(F0) ≥
2d(E0)
md

(1 −
1
2d ),

d(Fk) =
1
3
(22(d+k)

− 1)2k−1 min{2d(E0),md} and deff(Fk) ≥ a(1 −
1

2d+k ) for k = 1, 2, . . . ,

where

a =

{
2d(E0)
md , if 2d(E0) < md;

1, if 2d(E0) ≥ md.

It is worth noting that the choices of m in Lemma 3 are very broad. This makes it possible to generate many
supersaturated LHDs. Obviously, the constructed LHDs Fk for k ≥ 0 are supersaturated if 2d

≤ md in Lemma 3. The
following example is an illustration for Lemma 3.

Example 1. Consider m = 1, 2, 3 and d = 2. Let b1 = (0, 0, 1, 1)T , b2 = (0, 1, 0, 1)T , b3 = (0, 1, 1, 0)T . Then (b1, b2, b3)
form a saturated 23−1 regular design. For E0, F0 and F1 in Lemma 3, it can be calculated that (i) for m = 1, if E0 = (b1, b2),
then d(E0) = 1, 2d(E0) = 2, d(F0) = 5 and d(F1) = 42; (ii) for m = 2, if E0 = (b1, b2, b3, b1), then d(E0) = 2, 2d(E0) = 4,
d(F0) = 10 and d(F1) = 84; (iii) for m = 3, if E0 = (b1, b2, b3, b1, b2, b3), then d(E0) = 4, 2d(E0) = 8 > 6, d(F0) = 20 and
d(F1) = 126, which all satisfy Lemma 3. The LHDs F0’s and F1’s are listed in Tables 1 and 2, respectively.

Lemma 3 shows that, for i = 0, 1, . . ., the L2-distance of Fi is determined by E0, which means that Fi may be a good
design when we choose E0 with the largest L2-distance. From Lemma 3, we can obtain that if 2d(E0) ≥ md, then deff(Fk)
converges to one as k tends to infinity; so Fk is asymptotical optimal under the maximin distance criterion. If A is a 22

full factorial design, then d(A) = 1 which attains the upper bound of L2-distance in Lemma 1(i). Let E0 = A, we can obtain
the following result.

Theorem 1. Suppose A is a 22 full factorial design with entries from {0, 1}. For k ≥ 0, let Lk = (ϕk(A) − (1/2)J2k+2×2k+1 )R1k
be a 2k+2

× 2k+1 matrix. Then d(Lk) = 2k(22(k+2)
− 1)/3 and deff(Lk) ≥ 1 − 1/2k+2.

Theorem 1 implies that d(L0) = 5 and deff(L0) = 5/6. Also, it is easy to see from Theorem 1 that deff(Lk) converges
to one as k tends to infinity. So Lk is asymptotical optimal under the maximin distance criterion. Table 3 compares the
L2-distances of Lk for k = 0, 1, . . . , 10 with that of the LHDs generated by the command maximinSLHD in the R package
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Table 2
The LHDs F1 ’s in Example 1.
m = 1 m = 2

−3.5 −0.5 −2.5 −1.5 −3.5 −0.5 −2.5 −1.5 −3.5 −0.5 −2.5 −1.5
−1.5 2.5 −0.5 3.5 −1.5 2.5 −0.5 3.5 1.5 −2.5 0.5 −3.5
1.5 −2.5 0.5 −3.5 1.5 −2.5 0.5 −3.5 3.5 0.5 2.5 1.5
3.5 0.5 2.5 1.5 3.5 0.5 2.5 1.5 −1.5 2.5 −0.5 3.5

−2.5 −1.5 3.5 0.5 −2.5 −1.5 3.5 0.5 −2.5 −1.5 3.5 0.5
−0.5 3.5 1.5 −2.5 −0.5 3.5 1.5 −2.5 0.5 −3.5 −1.5 2.5
0.5 −3.5 −1.5 2.5 0.5 −3.5 −1.5 2.5 2.5 1.5 −3.5 −0.5
2.5 1.5 −3.5 −0.5 2.5 1.5 −3.5 −0.5 −0.5 3.5 1.5 −2.5

m = 3

−3.5 −0.5 −2.5 −1.5 −3.5 −0.5 −2.5 −1.5 −3.5 −0.5 −2.5 −1.5
−1.5 2.5 −0.5 3.5 1.5 −2.5 0.5 −3.5 3.5 0.5 2.5 1.5
1.5 −2.5 0.5 −3.5 3.5 0.5 2.5 1.5 −1.5 2.5 −0.5 3.5
3.5 0.5 2.5 1.5 −1.5 2.5 −0.5 3.5 1.5 −2.5 0.5 −3.5

−2.5 −1.5 3.5 0.5 −2.5 −1.5 3.5 0.5 −2.5 −1.5 3.5 0.5
−0.5 3.5 1.5 −2.5 0.5 −3.5 −1.5 2.5 2.5 1.5 −3.5 −0.5
0.5 −3.5 −1.5 2.5 2.5 1.5 −3.5 −0.5 −0.5 3.5 1.5 −2.5
2.5 1.5 −3.5 −0.5 −0.5 3.5 1.5 −2.5 0.5 −3.5 −1.5 2.5

Table 3
Comparison of the L2-distances for 2k+2

× 2k+1 LHDs with k ≤ 10.
k Lk SLHD

Min Median Max

0 5 5 5 5
1 42 28 31 42
2 340 236 264 285
3 2 728 1 983 2 195 2 331
4 21 840 16 881 18 252 18 718
5 174 752 141 884 149 918 152 597
6 1 398 080 1 218 585 1 227 107 1 227 804
7 11 184 768 9 782 026 9 812 963 9 870 116
8 89 478 400 67 362 353 68 900 044 69 360 506
9 715 827 712 589 692 664 590 153 127 594 475 277

10 5 726 622 720 4 911 137 878 4 944 641 146 5 025 068 011

Note: Lk: constructed by Theorem 1; SLHD: constructed by the R package SLHD.

Fig. 1. Design 1: Theorem 1; Design 2: Algorithm 1 for b = 2; Design 3: Algorithm 1 for b = 3.

SLHD provided by Ba et al. (2015). Here, we ran the command repeatedly 100 times. From Table 3, when k ≥ 2, Lk is better
than SLHD under the maximin distance criterion. In Fig. 1, ‘‘Design 1’’ shows the values of deff(Lk) for the Lk constructed
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by Theorem 1, where k = 0, 1, . . . , 10. The deff(Lk) increases fast as k increases and is greater than 0.9 when k is 2. When
k ≥ 3, the deff(Lk) values are far greater than 0.95 and converge to 1.

It is worth noting that the constructed designs in Theorem 1 have the same L2-distances with the designs constructed
by Sun et al. (2009). Furthermore, by noting the existence of the mirror-symmetric structure, these designs can be shown
to be optimal under the maximin L2-distance criterion (Wang et al., 2018c).

Let GF (2) = {0, 1} and GF (2d) = {a0 + a1x+· · ·+ ad−1xd−1, ai ∈ GF (2)}. It is worth noting that there exists a primitive
polynomial f (x) of degree d in GF (2) such that each nonzero element of GF (2d) can be expressed as xk modulo f (x) in
GF (2d) for k ∈ {0, 1, . . . , 2d

− 2}. Let 1, 2, . . . , d denote the d columns of a 2d full factorial design. Each column, or a
generated column, of 1, 2, . . . , d, can be expressed by 1a02a1 · · · dad−1 for some ai ∈ GF (2) and corresponds to a nonzero
element a0 + a1x + · · · + ad−1xd−1 of GF (2d). As indicated in Steinberg and Lin (2006), Pang et al. (2009) and Wang et al.
(2018a), the corresponding columns of the nonzero elements of GF (2d), x0, x, . . . , x2

d
−2 modulo f (x), form a saturated

two-level regular design, denoted by B, and any d successive columns of B form a full factorial design. From Steinberg and
Lin (2006), we have the following general result.

Lemma 4 (Steinberg and Lin, 2006). For any t ≥ 0, the corresponding columns of the nonzero elements of GF (2d),
xt , xt+1, . . . , xt+d−1 modulo f (x), form a full factorial design.

For the B defined above, d(B) = 2d−1 (Mukerjee and Wu, 1995), which attains the upper bound of L2-distance in
Lemma 1(i). Lemmas 3 and 4 show that we can obtain optimal maximin L2-distance LHDs based on this B. Next, we
propose a new method for constructing maximin L2-distance LHDs.

Algorithm 1.
Step 1. Given d = 2u for u = 1, 2, . . ., obtain a saturated two-level regular design B as defined above, where B is a

2d
× (2d

− 1) matrix.
Step 2. Let q = min{g : g(2d

− 1) (mod d) = 0, g = 1, 2, . . . , d}. Let C = 1T
q ⊗ B. Write C as C = (C1, C2, . . . , Cλ), where

λ = q(2d
− 1)/d and Ci is a 2d full factorial design.

Step 3. For b = 1, 2, . . . , λ, and k = 0, 1, . . ., let Lbk = (D1
k,D

2
k, . . . ,D

b
k) be a 2d+k

× 2kbd design, where Di
k =

(ϕk(Ci) − (1/2)J2d+k×2kd)Ruk for k ≥ 0.

Remark 1. Lemma 4 ensures that in Algorithm 1 the matrix C can be divided into λ groups of full factorial designs, and
b ≤ λ ensures that there are no identical columns in Lbk for k = 0, 1, . . ..

Theorem 2. Let d = 2u for u = 1, 2, . . .. From Algorithm 1, we have that

(i) for h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then

deff(Lb0) ≥ 1 −
h2

h1(2d − 1) + h2
, and deff(Lbk) ≥ 1 −

h2 + 2−(d+k)(2d
− 1)h1

h1(2d − 1) + h2
for k ≥ 1;

(ii) if bd = q(2d
− 1), i.e. b = λ, then Lb0 is a maximin L2-distance LHD with d(Lb0) = 2d(22d

− 1)q/6, and

deff(Lbk) ≥ 1 −
1

2d+k for k ≥ 1.

Theorem 2 shows that Algorithm 1 offers exact maximin L2-distance LHDs, L(22, 2(22
−1)), L(24, 4(24

−1)), L(28, 8(28
−

1)), . . .. By noting that deff(Lbk) converges to one as k tends to infinity, Theorem 2 also shows that Algorithm 1 offers a class
of asymptotically optimal maximin L2-distance LHDs.

Example 2. Let d = 2. For the primitive polynomial f (x) = x2 + x + 1 over GF (2), we have x0 = 1, x = x and x2 = 1 + x
over GF (2d). Thus we can obtain a saturated 23−1 regular design B = (b1, b2, b3) with b1 = (0, 0, 1, 1)T , b2 = (0, 1, 0, 1)T
and b3 = (0, 1, 1, 0)T . From Algorithm 1, it is clear that q = 2, C = (b1, b2, b3, b1, b2, b3) and b = 1, 2, 3. According to
Algorithm 1, we can obtain LHDs Lik for i = 2, 3 and k ≥ 0. Tables 4 and 5 compare the L2-distances of Lik with that of
the LHDs generated by the command maximinSLHD in R package SLHD provided by Ba et al. (2015). Here, we ran the
command repeatedly 100 times. From Table 4, for k ≥ 2, L2k is better than SLHD under the maximin distance criterion.
From Table 5, d(L30) = 20, which attains the upper bound of L2-distance in Lemma 1. For k ≥ 3, L3k is better than SLHD under
the maximin distance criterion. In Fig. 1, ‘‘Design 2’’ and ‘‘Design 3’’ show the values of deff(L2k) and deff(L3k) respectively
for k = 0, 1, . . . , 10. It can be seen that both deff(L2k) and deff(L3k) increase fast as k increases and both are greater than 0.9
when k is 2. When k ≥ 3, the deff(L2k) and deff(L3k) values are all far greater than 0.95 and converge to 1.

According to Theorem 1 and Algorithm 1, we can obtain a wealth of (asymptotically or exactly) optimal maximin
L2-distance LHDs. Table 6 presents a collection of optimal maximin L2-distance LHDs of N runs and n factors with N ≤ 128.
In Table 6, the designs L(N, n) with n = N/2 and N = 4, 8, 16, 32, 64, 128 are constructed using Theorem 1 and the others
are constructed by Algorithm 1.
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Table 4
Comparison of the L2-distances for 2k+2

× 2k+2 LHDs with k ≤ 10.
k L2k SLHD

Min Median Max

0 10 12 12 12
1 84 78 84 88
2 680 605 647 676
3 5 456 4 796 5 098 5 296
4 43 680 38 759 40 808 41 978
5 349 504 321 028 330 454 332 708
6 2 796 160 2 630 278 2 630 971 2 637 670
7 22 369 536 20 631 324 20 644 054 20 674 515
8 178 956 800 164 035 301 162 892 810 163 182 053
9 1 431 655 424 1 252 525 609 1 260 334 711 1 263 607 947

10 11 453 245 440 10 336 809 965 10 357 207 925 10 430 594 387

Note: L2k : constructed by Algorithm 1; SLHD: constructed by the R package SLHD.

Table 5
Comparison of the L2-distances for 2k+2

× (6 × 2k) LHDs with k ≤ 10.
k L3k SLHD

Min Median Max

0 20 20 20 20
1 126 120 132 136
2 1 020 948 1 011 1 035
3 8 184 7 644 7 967 8 123
4 65 520 63 168 63 860 64 344
5 524 256 508 802 509 944 511 015
6 4 194 240 4 013 245 4 057 468 4 065 083
7 33 554 304 31 613 152 31 707 607 31 736 751
8 268 435 200 228 219 327 229 885 890 232 327 045
9 2 147 483 136 1 921 440 435 1 924 776 449 1 933 439 986

10 17 179 868 160 15 856 028 901 15 869 758 518 15 916 222 828

Note: L3k : constructed by Algorithm 1; SLHD: constructed by the R package SLHD.

Table 6
Some optimal maximin L2-distance LHDs of N runs and n factors with N ≤ 128.
N n N n N n N n N n N n N n

4 2 16 24 16a 60a 32 88 64 112 128 64 128 384
4 4 16 28 32 16 32 96 64 128 128 128 128 416

4a 6a 16 32 32 32 32 104 64 144 128 160 128 448
8 4 16 36 32 40 32 112 64 160 128 192 128 480
8 8 16 40 32 48 32 120 64 176 128 224
8 12 16 44 32 56 64 32 64 192 128 256

16 8 16 48 32 64 64 64 64 208 128 288
16 16 16 52 32 72 64 80 64 224 128 320
16 20 16 56 32 80 64 96 64 240 128 352

aThe exactly optimal maximin L2-distance LHDs exist.

4. Orthogonality of the resulting designs

The ρave(D) measures the overall orthogonality of D. The design D with a small ρave(D) value is good for fitting the
Gaussian process model with potential linear trend (Wang et al., 2018a,b). In this section, we consider the ρave values of
the LHDs with large L2-distances constructed via Theorem 1 and Algorithm 1.

Proposition 1. For the designs Lk constructed in Theorem 1, we have ρave(Lk) = 0 for k ≥ 0.

Proposition 1 shows that orthogonal LHDs with large L2-distances can be directly generated via Theorem 1 without
any computer search. For the LHDs constructed by Algorithm 1, we have the following result.

Theorem 3. Let d = 2u for u = 1, 2, . . .. From Algorithm 1, we have that

(i) for h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then

ρave(Lbk) ≤
3 × (2d+k

− 1)(2d
− 1)(h1 + 1)2

bd(2kbd − 1)(2d+k + 1)
−

1
2kbd − 1

for k ≥ 0; and
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Fig. 2. Design 1: Theorem 1; Design 2: Algorithm 1 for b = 2; Design 3: Algorithm 1 for b = 3.

(ii) if bd = q(2d
− 1), i.e. b = λ, then

ρave(Lbk) ≤
3 × (2d+k

− 1)(2d
− 1)q2

bd(2kbd − 1)(2d+k + 1)
−

1
2kbd − 1

for k ≥ 0.

From Theorem 3, we can show that ρave(Lbk) converges to zero as k tends to infinity. Thus, a class of LHDs with large
L2-distances and small ρave’s can be easily generated via Algorithm 1 without any computer search. In Fig. 2, ‘‘Design
1’’, ‘‘Design 2’’ and ‘‘Design 3’’ show the values of ρave(Lk), ρave(L2k) and ρave(L3k) respectively, for k = 0, 1, . . . , 10, where
Lk is constructed by Theorem 1; L2k and L3k are constructed by Algorithm 1. Both ρave(L2k) and ρave(L3k) decrease fast as k
increases and are less than 0.1 when k is 2. When k ≥ 3, the ρave(L2k) and ρave(L3k) values are far less than 0.05 and converge
to 0.

5. Concluding remarks

In this paper, we propose some methods for constructing maximin L2-distance LHDs via the rotation method. The
methods do not need any computer search and are more efficient especially for constructing large designs. They can lead to
a class of asymptotically optimal maximin L2-distance LHDs and exactly optimal maximin L2-distance LHDs. Furthermore,
some resulting designs are orthogonal and the average correlations of the other designs converge to zero as the design
sizes increase.

The rotation method used in this paper has two major drawbacks. The first one is the limitation on the run size, which
must be the power of two. If one can relax the requirement to work with LHDs, an alternative is to rotate non-regular
two-level designs to generate nearly LHDs with flexible run sizes (Steinberg and Lin, 2015). Such designs are still desirable
for many practical situations (Bingham et al., 2009; Sun et al., 2011; Ding et al., 2013; Jaynes et al., 2013). The second
one is the low coverage in low dimensional subspaces. The new factors in the resulting design naturally divide into pairs,
where each pair has the two largest rotation weights on the same original factors in the two-level design. In the projection
onto these two factors, all the design points concentrate in just a few cells of a coarser binary grid. In order to overcome
this drawback, Steinberg and Lin (2015) recommended choosing just one factor from each of such pairs. This will improve
the two-dimensional coverage a lot, although the optimality under the maximin distance criterion cannot be guaranteed
any more.
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Appendix. Proofs

Proof of Lemma 2. (i) Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be two rows of A. It is clear that

d((x − (1/2)1T
d )Ru0, (y − (1/2)1T

d )Ru0) = (x − y)Ru0RT
u0(x − y)T =

22d
− 1
3

d(x, y),

since Ru0RT
u0 = (22d

− 1)/3Id. Similarly,

d((xk − (1/2)1T
2kd)Ruk, (yk − (1/2)1T

2kd)Ruk) =
22(d+k)

− 1
3

d(xk, yk),

since RukRT
uk = (22(d+k)

− 1)/3I2kd.
(ii) Let x and y be two rows of E, then (x, x), (x, x + 1(mod 2)), (y, y), (y, y + 1(mod 2)) are four rows of E1. It

is clear that d((x, x), (y, y)) = d((x, x + 1(mod 2)), (y, y + 1(mod 2))) = 2d(x, y) and d((x, x), (x, x + 1(mod 2))) =

d((y, y), (y, y + 1(mod 2))) = d((x, x), (y, y + 1(mod 2))) = d((x, x + 1(mod 2)), (y, y)) = n. Thus d(E1) = min{2d(E), n}.
For k > 1, by recursion we can obtain d(Ek) = 2k−1min{2d(E), n}. This completes the proof. □

Proof of Lemma 3. From Lemma 2, it is clear that Lemma 3 is true. □

Proof of Theorem 1. The results just follow from Lemma 3. □

Proof of Theorem 2. Let C (b)
k = (ϕk(C1), . . . , ϕk(Cb)) and Bk = ϕk(B) with k ≥ 0. It is clear from Lemma 1(ii) that

dupper = ⌊2d+k(2d+k
+ 1)2kbd/6⌋ for the Lbk with k ≥ 0.

(i) From Lemma 2(i), it is known that

d(C (b)
0 ) ≥ h1d(B) = 2d−1h1 and d(Lb0) =

22d
− 1
3

d(C (b)
0 ) ≥ 2d−1 2

2d
− 1
3

h1.

From Lemma 2(ii), d(Bk) = 2k−1(2d
− 1) for k ≥ 1. We can obtain that

d(Lbk) =
22(d+k)

− 1
3

d(C (b)
k ) ≥

(22(d+k)
− 1)h1

3
d(Bk),

since d(C (b)
k ) ≥ h1d(Bk) for k ≥ 1. Thus Theorem 2(i) is true from (1).

(ii) If bd = q(2d
− 1), then

d(C (b)
0 ) = qd(B) = q2d−1 and d(Lb0) =

22d
− 1
3

d(C (b)
0 ) =

2d(22d
− 1)q

6
.

From Lemma 1, it is known that Lb0 is a maximin distance LHD. Furthermore, it is clear that for k ≥ 1,

d(Lbk) =
22(d+k)

− 1
3

d(C (b)
k ) =

(22(d+k)
− 1)q

3
d(Bk) =

2k−1(2d
− 1)(22(d+k)

− 1)q
3

.

Thus Theorem 2(ii) is true from (1). This completes the proof. □

Let D =
(
xij
)
be an N × n matrix, define Sum(D) =

∑N
i=1
∑n

j=1 xij, and Abs(D) =
(⏐⏐xij⏐⏐) where

⏐⏐xij⏐⏐ is the absolute value
of xij. To prove Theorem 3, the following lemma is crucial.

Lemma 5. In Algorithm 1, let M (b)
0 = (C1 − (1/2)J2d×d, . . . , Cb − (1/2)J2d×d), M

(b)
k = (ϕk(C1) − (1/2)J2d+k×2kd, . . . , ϕk(Cb) −

(1/2)J2d+k×2kd) with k ≥ 1. We have that

(i) for h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then
Sum(Abs((M (b)

k )TM (b)
k )) ≤ 4k−12d(2d

− 1)(h1 + 1)2 for k = 0, 1, . . .;
(ii) if bd = q(2d

− 1), then Sum(Abs((M (b)
k )TM (b)

k )) = 4k−12d(2d
− 1)q2 for k = 0, 1, . . ..

Proof of Lemma 5. For the B in Algorithm 1, (B − (1/2)J2d×(2d−1))T (B − (1/2)J2d×(2d−1)) = 2d−2I2d−1. For k = 1, 2, . . ., let
M (b)

k = (M (b1)
k , . . . ,M (bb)

k ) with M (bi)
k = ϕk(Ci) − (1/2)J2d+k×2kd, then

M (bi)
k =

(
M (bi)

k−1 M (bi)
k−1

M (bi)
k−1 −M (bi)

k−1

)
and (M (bi)

k )TM (bj)
k =

(
2(M (bi)

k−1)
TM (bj)

k−1 0

0 2(M (bi)
k−1)

TM (bj)
k−1

)
.
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Thus

Sum(Abs((M (bi)
k )TM (bj)

k )) = 4Sum(Abs((M (bi)
k−1)

TM (bj)
k−1)) and Sum(Abs((M (b)

k )TM (b)
k )) = 4Sum(Abs((M (b)

k−1)
TM (b)

k−1)).

Let M (b)∗
0 = (1T

(h1+1) ⊗ B) − (1/2)J2d×(h1+1)(2d−1).

(i) If bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then for k ≥ 1,
Sum(Abs((M (b)

0 )TM (b)
0 )) ≤ Sum(Abs((M (b)∗

0 )TM (b)∗
0 )) = 2d−2(2d

− 1)(h1 + 1)2, and

Sum(Abs((M (b)
k )TM (b)

k )) = 4kSum(Abs((M (b)
0 )TM (b)

0 )) ≤ 4k−12d(2d
− 1)(h1 + 1)2.

(ii) If bd = q(2d
− 1), then M (b)

0 = C − (1/2)J2d×q(2d−1) = (1T
q ⊗ B) − (1/2)J2d×q(2d−1), and

Sum(Abs((M (b)
0 )TM (b)

0 )) = 2d−2(2d
− 1)q2. Thus

Sum(Abs((M (b)
k )TM (b)

k )) = 4kSum(Abs((M (b)
0 )TM (b)

0 )) = 4k−12d(2d
− 1)q2 for k ≥ 1.

This completes the proof. □

Proof of Theorem 3. Let M (b)
0 = (M (b1)

0 , . . . ,M (bb)
0 ) with M (bi)

0 = Ci − (1/2)J2d×d. For k = 1, 2, . . ., let M (b)
k = (M (b1)

k ,

. . . ,M (bb)
k ) with M (bi)

k = ϕk(Ci) − (1/2)J2d+k×2kd.
For i = 1, 2, . . . , b, j = 1, 2, . . . , b,

Sum(Abs((Di
0)

TDj
0)) = Sum(Abs(RT

u0(M
(bi)
0 )TM (bj)

0 Ru0))

≤

(∑2u−1
h=0 2h

)2
Sum(Abs((M (bi)

0 )TM (bj)
0 ))

= (2d
− 1)2Sum(Abs((M (bi)

0 )TM (bj)
0 )), and

Sum(Abs((Lb0)
T Lb0)) ≤ (2d

− 1)2Sum(Abs((M (b)
0 )TM (b)

0 )).

From Lemma 5, we have that for h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then
Sum(Abs((Lb0)

T Lb0)) ≤ 2d−2(2d
− 1)3(h1 + 1)2; and if bd = q(2d

− 1), then Sum(Abs((Lb0)
T Lb0)) ≤ 2d−2(2d

− 1)3q2. It is
clear that

ρave(Lb0) =
1

bd(bd − 1)

(
12

2d(22d − 1)
Sum(Abs((Lb0)

T Lb0)) − bd
)

.

Thus for h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then

ρave(Lb0) ≤
3(2d

− 1)2(h1 + 1)2

bd(bd − 1)(2d + 1)
−

1
bd − 1

;

if bd = q(2d
− 1), then

ρave(Lb0) ≤
3q(2d

− 1)
(q(2d − 1) − 1)(2d + 1)

−
1

q(2d − 1) − 1
.

For k = 1, 2, . . ., (Lbk)
T Lbk =

(
(Di

k)
TDj

k

)
i,j=1,2,...,b

, where (Di
k)

TDj
k = RT

uk(M
(bi)
k )TM (bj)

k Ruk. Thus

(Di
k)

TDj
k =

(
8U (bij)

k−1 + 2V (bij)
k−1 −4W (bij)

k−1 + 4Z (bij)
k−1

4W (bij)
k−1 − 4Z (bij)

k−1 8U (bij)
k−1 + 2V (bij)

k−1

)
,

where U (bij)
k−1 = RT

u(k−1)(M
(bi)
k−1)

TM (bj)
k−1Ru(k−1), V

(bij)
k−1 = Q T

u+k−1(M
(bi)
k−1)

TM (bj)
k−1Qu+k−1, W

(bij)
k−1 = RT

u(k−1)(M
(bi)
k−1)

TM (bj)
k−1Qu+k−1, and

Z (bij)
k−1 = Q T

u+k−1(M
(bi)
k−1)

TM (bj)
k−1Ru(k−1). We can obtain that

Sum(Abs(U (bij)
k−1)) ≤

(∑2u+k−2
h=0 2h

)2
Sum(Abs((M (bi)

k−1)
TM (bj)

k−1)),

Sum(Abs(V (bij)
k−1 )) = Sum(Abs((M (bi)

k−1)
TM (bj)

k−1)),

Sum(Abs(W (bij)
k−1)) ≤

(∑2u+k−2
h=0 2h

)
Sum(Abs((M (bi)

k−1)
TM (bj)

k−1)), and

Sum(Abs(Z (bij)
k−1)) ≤

(∑2u+k−2
h=0 2h

)
Sum(Abs((M (bi)

k−1)
TM (bj)

k−1)).

Thus

Sum(Abs((Di
k)

TDj
k)) ≤ 4(2d+k

− 1)2Sum(Abs((M (bi)
k−1)

TM (bj)
k−1)), and

Sum(Abs((Lbk)
T Lbk)) ≤ 4(2d+k

− 1)2Sum(Abs((M (b)
k−1)

TM (b)
k−1)).
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It is clear that

ρave(Lbk) =
1

2kbd(2kbd−1)

(
12

2d+k(22(d+k)−1)
Sum(Abs((Lbk)

T Lbk)) − 2kbd
)

≤
1

2kbd(2kbd−1)

(
12

2d+k(22(d+k)−1)
4(2d+k

− 1)2Sum(Abs((M (b)
k−1)

TM (b)
k−1)) − 2kbd

)
.

From Lemma 5, it is known that for k ≥ 1 and h1 = 1, 2, . . . , q − 1, if bd = h1(2d
− 1) + h2 with 0 < h2 < 2d

− 1, then

ρave(Lbk) ≤
1

2kbd(2kbd−1)

(
12×4k−1(2d+k

−1)22d(2d−1)(h1+1)2

2d+k(22(d+k)−1)
− 2kbd

)
=

3×(2d+k
−1)(2d−1)(h1+1)2

bd(2kbd−1)(2d+k+1)
−

1
2kbd−1

,

and if bd = q(2d
− 1), then

ρave(Lbk) ≤
1

2kbd(2kbd−1)

(
12×4k−1(2d+k

−1)22d(2d−1)q2

2d+k(22(d+k)−1)
− 2kbd

)
=

3×(2d+k
−1)(2d−1)q2

bd(2kbd−1)(2d+k+1)
−

1
2kbd−1

.

This completes the proof. □
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