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a b s t r a c t

Sliced Latin hypercube designs have found a wide range of applications. Such a design is
a special Latin hypercube design that can be partitioned into slices which are still LHDs
when the levels of each slices are collapsed properly. In this paperwe propose amethod for
constructing sliced Latin hypercube designswith second-order orthogonality. The resulting
designs are further augmented to be nearly orthogonal sliced Latin hypercube designs
which havemuchmore columns. Also, twomethods of generating nearly orthogonal sliced
Latin hypercube designs are proposed. The methods are convenient, efficient and capable
of accommodating any number of slices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A sliced Latin hypercube design (SLHD), proposed by Qian (2012), is a special Latin hypercube design (LHD) that can
be partitioned into slices each of which is a smaller LHD when levels of each slice are collapsed properly. Such a design is
attractive because of its two features: (a) each slice of the design achieves maximum uniformity in any one-dimensional
projection, and (b) when collapsed over all the slices, the whole design possesses maximum stratification in any one-
dimensional projection. This type of designs is useful for computer experiments with qualitative and quantitative factors
(Qian et al., 2008; Han et al., 2009; Qian and Wu, 2009; Zhou et al., 2011; Deng et al., 2015; Huang et al., 2016), validating
a computer model (Bayarri et al., 2007), cross-validation (Zhang and Qian, 2013), data pooling and stochastic optimization
(Qian, 2012; Yang et al., 2013; Chen et al., 2014).

An n× f LHD is a matrix in which each column is a permutation of n equally-spaced levels. For convenience, the n levels
are taken to be {−(n−1), −(n−3), . . . , (n−3), (n−1)}. For integersm and s, an SLHD of n = ms runs and s slices is an LHD
that can be divided into s smaller slices of m levels such that the m levels of each slice correspond to the m equally-spaced
intervals [−n, −n + 2s), [−n + 2s, −n + 4s), . . . , [n − 4s, n − 2s), [n − 2s, n) respectively. Here, such a design is denoted
by SLHD(m, s, f ) with n = ms.

Qian (2012) developed a computational algorithm for generating SLHDs, and Yang et al. (2013) was the first to give
systematic constructions of SLHDs with first- or second-order orthogonality. Recent studies on SLHDs mainly focus on
orthogonality and space-filling properties, see Yin et al. (2014), Yang et al. (2014), Cao and Liu (2015) and Yang et al. (2016),
among others. Ba et al. (2015) constructed SLHDs in terms of optimality, where a powerful R package ‘‘SLHD’’ is provided
for generating corresponding designs in practice. An SLHD is called first-order orthogonal if any two columns of each slice
are orthogonal. An SLHD is called second-order orthogonal if each slice satisfies: (a) any two columns are orthogonal; and
(b) any column is orthogonal to the elementwise product of any two columns, identical and distinct. From the modeling
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perspective, the first-order orthogonality of a design ensures independent estimates of linear effects when a first-order
model is fitted, while the second-order orthogonality of a design ensures that all linear effects are orthogonal not only
to each other, but also to the quadratic effects when a second-order model is fitted. If the number of factors to study
is more than those orthogonal SLHDs can afford, nearly orthogonal SLHDs are good choices. In this paper, we propose
a construction method for (i) second-order orthogonal SLHDs, and two construction methods for (ii) nearly orthogonal
SLHDs.

The rest of the paper is organized as follows. In Section 2, the method of constructing second-order orthogonal SLHDs
is proposed. In Section 3, one method is first provided to add more columns to the designs obtained in Section 2 to form
nearly orthogonal SLHDs. Then anothermethod is proposed to construct nearly orthogonal SLHDs formore cases. Concluding
remarks are in Section 4. Some of the proofs are given in the Appendix.

2. Construction of second-order orthogonal SLHDs

In this section, we will give the construction of second-order orthogonal SLHDs. Before giving the construction method,
we first recall some work on orthogonal matrices given in Yang and Liu (2012). For a matrix X of an even number of rows,
let X∗ denote the matrix obtained by swapping the signs of the top half of X . For any x and y, let

S1 =


1 1
1 −1


, R1(x, y) =


x + y 2x + y
2x + y −x − y


.

For c ≥ 2, define

Sc =


Sc−1 −S∗

c−1
Sc−1 S∗

c−1


and

Rc(x, y) =


Rc−1(x, y) −(R∗

c−1(x, y) + 2c−1xS∗

c−1)

Rc−1(x, y) + 2c−1xSc−1 R∗

c−1(x, y)


. (1)

The Rc(x, y) in (1) is called an orthogonal matrix. Yang and Liu (2012) gave the following result.

Lemma 1. For the Rc(x, y) defined in (1), we have

RT
c (x, y)Rc(x, y) = γ I2c ,

where γ = x22c(2c
+ 1)(2c+1

+ 1)/6 + (22c
+ 2c)xy + 2cy2 is a constant depending on x, y and c.

Now, we propose the algorithm for constructing the second-order orthogonal SLHDs.

Algorithm 1 (Construction of Second-Order Orthogonal SLHD(2c+1, s, 2c)).

Step 1. Given any positive integers c and s, for p = 1, . . . , s, take xs = 2s, ys,p = −(2s − 2p + 1) and

Dc,p =


Rc(xs, ys,p)

−Rc(xs, ys,p)


. (2)

Step 2. Define

D = (DT
c,1, . . . ,D

T
c,s)

T. (3)

Then we have the following result.

Theorem 1. The D defined in (3) is a second-order orthogonal SLHD(2c+1, s, 2c) with s slices Dc,1, . . . ,Dc,s each of which is a
2c+1

× 2c matrix.

Proof. For p = 1, . . . , s, the levels of each column of Dc,p are {±(kxs + ys,p) : k = 1, . . . , 2c
} = {±(2ks + 2p − 1) : k =

0, 1, . . . , 2c
− 1}. The levels of each column of D are

s
p=1{±(2ks + 2p − 1) : k = 0, 1, . . . , 2c

− 1} = {±(2k − 1) : k =

1, . . . , s2c
}. This implies that D is an SLHD with slices Dc,1, . . . ,Dc,s. The orthogonality and second-order orthogonality can

be easily verified by Lemma 1 and the structure of Dc,p’s. �

The above method constructs second-order orthogonal SLHDs, where for each slice the run size is twice as many as the
number of factors. Unlike the second-order orthogonal SLHDs constructed in Yang et al. (2013), Algorithm 1 can construct
second-order orthogonal SLHDs with any number of slices. Table 1 presents the second-order orthogonal SLHD(8, 3, 4) for
c = 2 and s = 3, where the three slices correspond to runs 1–8; runs 9–16; and runs 17–24, respectively.
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Table 1
The second-order orthogonal SLHD(8, 3, 4).

Run D2,1 Run D2,2 Run D2,3

1 1 7 13 19 9 3 9 15 21 17 5 11 17 23
2 7 −1 −19 13 10 9 −3 −21 15 18 11 −5 −23 17
3 13 19 −1 −7 11 15 21 −3 −9 19 17 23 −5 −11
4 19 −13 7 −1 12 21 −15 9 −3 20 23 −17 11 −5
5 −1 −7 −13 −19 13 −3 −9 −15 −21 21 −5 −11 −17 −23
6 −7 1 19 −13 14 −9 3 21 −15 22 −11 5 23 −17
7 −13 −19 1 7 15 −15 −21 3 9 23 −17 −23 5 11
8 −19 13 −7 1 16 −21 15 −9 3 24 −23 17 −11 5

3. Construction of nearly orthogonal SLHDs with more columns

In this section we will provide two methods of constructing nearly orthogonal SLHDs with much more columns and
quite small correlations. The basic idea here is to add more columns to the existing (nearly) orthogonal SLHDs. Suppose
v = (v1, . . . , vn)

T and u = (u1, . . . , un)
T are two vectors. The correlation between vectors v and u is defined as

ρ(v, u) =

n
i=1

(vi − v̄)(ui − ū)
n

i=1
(vi − v̄)2(ui − ū)2

.

3.1. Construction of nearly orthogonal SLHD(2c+1, s, 2c
+ 2c−1)

In this section, we will give a construction method for generating nearly orthogonal SLHDs based on the second-order
orthogonal SLHDs generated by Algorithm 1. Note that each slice of the designs generated by Algorithm 1 has foldover
structure. Let w denote a slice of an added column. To guarantee small correlations among columns of each slice of the
nearly orthogonal SLHDs, the levels of w should be arranged in a careful way such that |wi − w2c+i| ≤ 2s, where wi and
w2c+i are the ith and (2c

+ i)th rows of w respectively. Now we give the specific construction method as follows.

Algorithm 2 (Construction of Nearly Orthogonal SLHD(2c+1, s, 2c
+ 2c−1)).

Step 1. For p = 1, . . . , 2s, take x2s = 4s, y2s,p = −(4s − 2p + 1) and

Ec−1,p =


Rc−1(x2s, y2s,p)

−Rc−1(x2s, y2s,p)


.

Step 2. For p = 1, . . . , s, define

Fp = (ET
c−1,ip , E

T
c−1,jp)

T,

where {ip, jp} is a permutation on {p, s + p}.
Step 3. Put

F = (F T
k1 , . . . , F

T
ks)

T, (4)

where {k1, . . . , ks} is a permutation on {1, . . . , s}.
Step 4. Form the matrix

G = (D, F). (5)

Some theoretical properties of G in (5) can be stated as follows.

Theorem 2. For G in (5), we have

(i) G is an SLHD(2c+1, s, 2c
+ 2c−1) with s slices G1, . . . ,Gs, where Gp = (Dc,p, Fkp) for p = 1, . . . , s; and

(ii) for each slice Gp, the upper bound of absolute correlation coefficient between columns is bounded by

ρu = 3(2c
+ 1)/{2(2c

− 1)(2c+1
− 1)}. (6)

Proof. To show Part (i), we only need to verify that for p = 1, . . . , s, the slice Fp is a 2c+1
× 2c−1 LHD. From Theorem 1, F is

an SLHD(2c, 2s, 2c−1) of slices Ec−1,1, . . . , Ec−1,2s. For p = 1, . . . , s, the levels of each column of Ec−1,p are {±(4ks+2p−1) :

k = 0, 1, . . . , 2c−1
− 1} and the levels of each column of Ec−1,s+p are {±{(4k + 2)s + 2p − 1} : k = 0, 1, . . . , 2c−1

− 1}, so
the levels of each column of Fp are {±(2ks + 2p − 1) : k = 0, 1, . . . , 2c

− 1}, which implies that Fp is a 2c+1
× 2c−1 LHD.
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Table 2
The values of ρu in (6) when c = 2, 3, . . . , 7.

c 2 3 4 5 6 7

Upper bound 0.3571 0.1286 0.0548 0.0253 0.0122 0.0060

Table 3
Nearly orthogonal SLHD(8, 3, 6) in Example 1.

Run D1 F1 Run D2 F2 Run D3 F3

1 1 7 13 19 1 13 9 3 9 15 21 3 15 17 5 11 17 23 5 17
2 7 −1 −19 13 13 −1 10 9 −3 −21 15 15 −3 18 11 −5 −23 17 17 −5
3 13 19 −1 −7 −1 −13 11 15 21 −3 −9 −3 −15 19 17 23 −5 −11 −5 −17
4 19 −13 7 −1 −13 1 12 21 −15 9 −3 −15 3 20 23 −17 11 −5 −17 5
5 −1 −7 −13 −19 7 19 13 −3 −9 −15 −21 9 21 21 −5 −11 −17 −23 11 23
6 −7 1 19 −13 19 −7 14 −9 3 21 −15 21 −9 22 −11 5 23 −17 23 −11
7 −13 −19 1 7 −7 −19 15 −15 −21 3 9 −9 −21 23 −17 −23 5 11 −11 −23
8 −19 13 −7 1 −19 7 16 −21 15 −9 3 −21 9 24 −23 17 −11 5 −23 11

Now, let us prove Part (ii). Let A = (a1, . . . , a2c+1)T be any column of Dc,p and B = (b1, . . . , b2c+1)T be any column of Fkp .
From the structures of Dc,p in (2) and Fkp in (4), we have (i) for i = 1, . . . , 2c , a2c+i = −ai and |bi − b2c+i| = 2s; and (ii) the
levels of A are {±(2ms+ 2p− 1) : m = 0, 1, . . . , 2c

− 1} and the levels of B are {±(2ms+ 2kp − 1) : m = 0, 1, . . . , 2c
− 1}.

Thus,

|ρ(A, B)| ≤

2s
2c
i=1

{2is − (2s − 2p + 1)}
2

2c
i=1

{2(i − 1)s + 2p − 1}2
1/2 

2
2c
i=1

{2(i − 1)s + 2kp − 1}2
1/2

≤

2s
2c
i=1

2is

2
2c
i=1

{2(i − 1)s}2

=
3(2c

+ 1)
2(2c − 1)(2c+1 − 1)

.

This completes the proof. �

The nearly orthogonal SLHD generated by Algorithm 2 is composed of two parts, D and F , both of which are second-order
orthogonal SLHDs. Because the levels of each slice of F are specially assigned, the absolute correlation coefficients between
Di and Fi are well bounded. Furthermore, the correlation coefficients between Di and Fi decrease dramatically to almost zero
as the value of c increases. The upper bounds ρu for the cases c = 2, 3, . . . , 7 are listed in Table 2. Next we will give an
example to illustrate Algorithm 2.

Example 1. For c = 2 and s = 3, without loss of generality, we can take ip = p, jp = 3 + p and kp = p for p = 1, 2, 3. By
Algorithm 2 we obtain a nearly orthogonal SLHD(8, 3, 6) with three slices listed in Table 3. The first, second and third slices
correspond to runs 1–8, 9–16 and 17–24, respectively. The maximum correlation between the columns of these three slices
is 0.2069, 0.1905 and 0.1743, respectively.

3.2. Construction of nearly orthogonal SLHDs for more cases

The nearly orthogonal SLHDs generated in Section 3.1 has 2c+1 runs in each of their slices. In this section we will provide
a more general algorithm to generate nearly orthogonal SLHDs. Let L = (LT1, . . . , L

T
s )

T be an original (nearly) orthogonal
SLHD(2m, s, f ) in which each slice Lp has foldover structure. Here, the number of runs for each slice to be enlarged is not
necessary to be a power of 2. Just foldover structure is needed. The following algorithm is used to add more columns to
L to form a larger SLHD(2m, s, f + h). Similar to the idea in Algorithm 2, the levels of the ith and (m + i)th rows in each
slice of each added column are carefully arranged to guarantee small correlations among columns of each slice of the nearly
orthogonal SLHDs.

Algorithm 3 (Construction of Nearly Orthogonal SLHD(2m, s, f + h)).
Step 1. Let X be a (nearly) orthogonal LHD(m, h) and E be a (nearly) orthogonal LHD(s, h).
Step 2. Define M = ((2X + 1)T , (2X − 1)T )T and Hp = E(p, :) ⊕c sM for p = 1, . . . , s, where the operator ⊕c is defined to

be a⊕c B = (aj + bij)n×m for a vector a = (a1, . . . , am) and a matrix B = (bij)n×m.
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Step 3. Take H = (HT
1 , . . . ,HT

s )T .
Step 4. Take

Q = (L,H). (7)

Let ρM(D) represent the maximum correlation between columns of matrix D. Then, we have the following results.

Theorem 3. For the Q in (7), we have

(i) Q is an SLHD(2m, s, f + h) with s slices Q1, . . . ,Qs, where Qp = (Lp,Hp);
(ii) for each slice Qp, the absolute correlation coefficient is upper bounded by max{ρM(Lp), (2m(m + 1)s2 −

2ms)/
√

γ (m, s)τ (m, s), (4(m2
− 1)ρM(X) + 3)/(4m2

− 1)} for p = 1, . . . , s, where γ (m, s) = 2s2m(m − 1)(2m −

1)/3 + 2sm(m − 1) + m and τ(m, s) = 2m(2m + 1)(2m − 1)s2/3.

The proof of Theorem 3 is deferred to Appendix. Now, we give an illustrative example.

Example 2. Let L = (LT1, L
T
3, L

T
3, L

T
4)

T be an orthogonal SLHD(10, 4, 4) with

L1 =

−13 −23 −29 −39 −1 13 23 29 39 1
−23 13 −39 29 −1 23 −13 39 −29 1
−29 39 13 −23 1 29 −39 −13 23 −1
−39 −29 23 13 1 39 29 −23 −13 −1


T

,

L2 =

15 19 31 35 3 −15 −19 −31 −35 −3
19 −15 35 −31 3 −19 15 −35 31 −3
31 −35 −15 19 −3 −31 35 15 −19 3
35 31 −19 −15 −3 −35 −31 19 15 3


T

,

L3 =

−11 −21 −27 −37 −5 11 21 27 37 5
−21 11 −37 27 −5 21 −11 37 −27 5
−27 37 11 −21 5 27 −37 −11 21 −5
−37 −27 21 11 5 37 27 −21 −11 −5


T

and

L4 =

 9 17 25 33 7 −9 −17 −25 −33 −7
17 −9 33 −25 7 −17 9 −33 25 −7
25 −33 −9 17 −7 −25 33 9 −17 7
33 25 −17 −9 −7 −33 −25 17 9 7


T

.

In order to add two more columns, by taking

X =


2 4 0 −2 −4

−4 2 0 4 −2

T

and

E =


−3 −1 3 1
−1 3 1 −3

T

,

we have

M =


5 9 1 −3 −7 3 7 −1 −5 −9

−7 5 1 9 −3 −9 3 −1 7 −5

T

,

H1 =


17 33 1 −15 −31 9 25 −7 −23 −39

−29 19 3 35 −13 −37 11 −5 27 −21

T

,

H2 =


19 35 3 −13 −29 11 27 −5 −21 −37

−25 23 7 39 −9 −33 15 −1 31 −17

T

,

H3 =


23 39 7 −9 −25 15 31 −1 −17 −33

−27 21 5 37 −11 −35 13 −3 29 −19

T

and

H4 =


21 37 5 −11 −27 13 29 −3 −19 −35

−31 17 1 33 −15 −39 9 −7 25 −23

T

.

Then design Q = (L,H) is a nearly orthogonal SLHD(10, 4, 6) with ρM(Lp,Hp) ≤ 0.1534 for p = 1, 2, 3, 4.
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4. Concluding remarks

In this work, we first propose an approach for constructing second-order orthogonal SLHDs. After that we propose
two methods for constructing nearly orthogonal SLHDs by adding columns to an original (nearly) orthogonal SLHDs with
foldover structure. The nearly orthogonal SLHDs generated by Algorithm 2 are SLHD(2c+1, s, 2c

+2c−1). More general nearly
orthogonal SLHDs canbe generated byAlgorithm3. The resultingnearly orthogonal SLHDs can accommodate asmany factors
as runs while having quite small correlation coefficients between columns of slices. The upper bounds of the correlations
between columns of slices have been given in this paper. Since our approaches for generating nearly orthogonal SLHDs can
only work if the original SLHDs have foldover structure, extending our work to augment LHDs without fold-over structure
is an issue worth further study.
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Appendix. Proof of Theorem 3

For (i), we only need to show thatH is an SLHD(2m, s, h). FromWang et al. (2015), we know thatM is a nearly orthogonal
LHD(2m, h). According to Huang et al. (2014), the result follows directly by noting that E is a (nearly) orthogonal LHD(s, h).

For (ii), we need to consider (a) the correlation between two columns of Hp and (b) the correlation between any column
of Hp and any column of Lp. For 1 ≤ i < j ≤ h, from Theorem 2(ii) of Wang et al. (2015), we have

ρij(M) =
4(m2

− 1)ρij(X) + 3
4m2 − 1

.

From Theorem 2(i) of Huang et al. (2014), we can get ρij(Hp) = ρik(M), which implies

ρM(Hp) =
4(m2

− 1)ρM(X) + 3
4m2 − 1

.

Next, let lpi and hp
j be the ith column of Lp and the jth column of Hp respectively. Note that Lp has foldover structure. Hence

lpj
T lpj =

2m
t=1

lptj
2

≥ 2 × (1 + (2s + 1)2 + (4s + 1)2 + (6s + 1)2 + · · · + (2 × (m − 1)s + 1)2)
= 2s2m(m − 1)(2m − 1)/3 + 2sm(m − 1) + m , γ (m, s).

For ease of expression, let epj andM(t, j) be the (p, j)th entry of E and (t, j)th entry ofM , respectively. Let h̄p
j = (

2m
t=1 h

p
tj)/2m

be the average of the jth columnofHp. Note thatM has the centered levels in each column. According to Step 2 of Algorithm3,
we have

(hp
j − h̄p

j 12m)T (hp
j − h̄p

j 12m) =

2m
t=1


epj + sM(t, j)


−

2m
t=1

(epj + sM(t, j))/2m

2

= s2
2m
t=1

(M(t, j))2

= 2s2(1 + 32
+ 52

+ · · · + (2m − 1)2)
= 2s2m(2m + 1)(2m − 1)/3
, τ(m, s).

Also, we have lpi
Thp

j =
2m

t=1 l
p
ti(epj + sM(t, j)). Note that

2m
t=1 l

p
ti = 0. Hence

lpi
Thp

j = s
m

t=1

lpti(2xtj + 1) + s
m

t=1

lpt+q,i(2xtj − 1)

= 2s
m

t=1

lpti ≤ 2m(m + 1)s2 − 2ms.

This shows that ρ(lpi , h
p
j ) ≤ (2m(m+ 1)s2 − 2ms)/

√
γ (m, s)τ (m, s). Theorem 3(ii) follows from the above results together.
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