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ABSTRACT
Mixed-level designs, especially two- and four-level designs, are very use-
ful in practice. In the last two decades, there are quite a few literatures
investigating the selection of this kind of optimal designs. Recently,
the general minimum lower-order confounding (GMC) criterion (Zhang
et al., 2008) gave a new approach for choosing optimal factorials. It is
proved that the GMC designs are more powerful than other criteria in
the widely practical situations. In this paper, we extend the GMC theory
to the mixed-level designs. Under the theory we establish a new crite-
rion for choosing optimal regular two- and four-level designs. Further,
a construction method is proposed to obtain all the 2n41 GMC designs
with N/4 + 1 ≤ n + 2 ≤ 5N/16, where N is the number of runs and n is
the number of two-level factors.

1. Introduction

Mixed-level designs have been widely used in practice. The important case of mixed two-
and four-level designs is firstly discussed for their practical use. The design with n two-level
factors and m four-level factors is said to be a 2n4m design. A 2n4m design can be easily
constructed from the corresponding symmetrical orthogonal arrays through the method of
replacement (Addelman, 1962). The replacement rule is that any three two-level factors of the
form (a1, a2, a3) can be replaced by a four-level factor without affecting orthogonality, where
a3 is the interaction between a1 and a2. We call a1, a2 and a3 the three components of the
four-level factor. Wu (1989) improved Addelman’s construction method by introducing the
method of grouping.Wu et al. (1992) further applied the groupingmethod to general designs.
By their method, a large class of asymmetric designs can be constructed.

For a 2n4m design D constructed by the above method, there are two types of words in the
defining contrast group. The first type involves only the two-level factors, which is called type
0. The second type involves at least one of the four-level components and some of the two-
level factors, which is called type 1. LetAi0(D) andAi1(D) be the number of words with length
i of type 0 and type 1 of design D, respectively. Under the assumption that the component of
four-level factor is not as important as two-level factors, Wu and Zhang (1993) defined the

CONTACT Jian-Feng Yang jfyang@nankai.edu.cn LPMC and Institute of Statistics, Nankai University, Tianjin ,
China.
©  Taylor & Francis Group, LLC

http://dx.doi.org/10.1080/03610926.2015.1048887
mailto:jfyang@nankai.edu.cn


COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 2725

word length-pattern (WLP) of D as follows:

W (D) = {(Ai0(D),Ai1(D))}i≥1. (1)

The minimum aberration (MA) criterion is to sequentially minimize the terms of the WLP.
There are some developments of the mixed-level optimal designs in recent years. Zhang

and Shao (2001) extended the results of Wu and Zhang (1993) to general cases. Mukerjee
and Wu (2001) used the projective geometry theory and complementary theory to discuss
MA mixed-level designs. Ai and Zhang (2004) later established the general rules to identify
MA mixed-level factorial designs by the coding theory. Li et al. (2007) studied 2m41 designs
with MA or weak MA. Zhao and Zhang (2008) considered 2m4n designs with resolution III
or IV containing clear two-factor interaction (2fi) components. Joseph et al. (2009) used the
Bayesianmethod tomeasure themixed-level designs. Note that all of them are based onWLP.
However, two designswith the sameWLP cannot be distinguished by any of the above criteria.

Example 1. Consider two 21341 designs D1 and D2 with 128 runs:

D1 : I = 126 = 137 = 238 = 12349 = 1235t0 = 45t1 = 12345t2 = 12a1t3,
D2 : I = 126 = 137 = 248 = 349 = 125t0 = 135t1 = 145t2 = 12a1t3,

where t0, t1, t2, t3, respectively, denote the factors 10, 11, 12, 13, and a1 is the component of
the four-level factor A (= (a1, a2, a3)). Both designs have the same WLP

W = ((0, 0), (0, 0), (8, 1), (15, 2), (24, 5), (32, 16), (24, 26),
(15, 28), (8, 26), (0, 16), (0, 5), (1, 2), (0, 1)),

so they cannot be distinguished by any criterion based on WLP.

In order to solve the above problem, Zhang et al. (2008) first introduced the general mini-
mum lower-order confounding (GMC) criterion to choose two-level regular optimal designs,
based on aliased effect-number pattern (AENP). It was proved that, the GMC theory can
manage nearly all the existing criteria through functions of the AENP, and under having pri-
ori information, the optimal designs selected by the GMC criterion are better than the ones
selected by other existing criteria. These results can be extended to the mixed-level cases.

In this paper, we extend GMC theory to themixed-level cases. In Section 2, a new criterion
for 2n41 design is given. In Section 3, construction methods are proposed and all 2n41 GMC
designs with N/4 + 1 ≤ n + 2 ≤ 5N/16 are obtained, where N is the number of runs. The
conclusion and discussions are given in Section 4. Some proofs and tables are deferred to the
Appendix.

2. A new criterion for 2n4m design

For a 2n−p regular design, the degree of an ith-order effect being aliased with the jth-order
effects is k if the ith-order effect is aliased with k jth-order effects simultaneously. Zhang et al.
(2008) defined a 2n−p regular design as a GMC design if it sequentially maximizes

#C = (#
1C2,

#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3, . . .

)
,

where #
iCj = (#iC

(0)
j , #iC

(1)
j , . . . , #iC

(Kj )
j ), Kj = (n

j

)
and #

iC
(k)
j denotes the number of ith-order

effects aliased with jth-order effects at degree k. However, we cannot directly apply GMC
criterion of two-level case to mixed-level designs. For a 2n4m design, if the ith-order effects
contain i0 components of four-level factors for i0 ≤ min{i,m}, thenwe add i0 besides i. Denote
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by #
i,i0C

(k)
j, j0 the number of ith-order effects aliased with jth-order effects at degree k, where the

ith-order effects contain i0 components of four-level factors and the jth-order effects contain
j0 components of four-level factors for i0 ≤ min{i,m} and j0 ≤ min{ j,m}. For every pair of
{(i, i0), ( j, j0)}, the vector

#
i,i0Cj, j0 =

(
#
i,i0C

(0)
j, j0,

#
i,i0C

(1)
j, j0, . . . ,

#
i,i0C

(Kj )
j, j0

)
, (2)

reflects the confounding information among mixed-level designs and the larger the degree k
is, the more severely the effect is aliased. We still use #

iCj to denote the set{
#
i,i0Cj, j0, i0 = 0, 1, . . . ,min{i,m}, j0 = 0, 1, . . . ,min{ j,m}

}
.

Based on the assumptions (i) lower-order interactions are more likely to be important than
higher-order interactions; (ii) interactions of the same order and of the same type are equally
likely to be important; and (iii) the components of four-level factors are less important than
two-level factors, the elements of #iCj will be ordered according to Rule 2.1 for the fixed (i, j),
and #

iCj, as elements of #C, will be ordered according to Rule 2.2.
Rule 2.1: The term #

i,i1Cj, j1 is put ahead of #
i,i2Cj, j2 if it satisfies one of the follow-

ing three conditions:(i)max(i1, j1) < max(i2, j2),(ii)max(i1, j1) = max(i2, j2) and i1 < i2,
and(iii)max(i1, j1) = max(i2, j2), i1 = i2 and j1 < j2. We obtain the new ranked vector as
follows:

#
iCj = (#

i,0Cj,0,
#
i,0Cj,1,

#
i,1Cj,0, . . .

)
. (3)

For example, for i = 1 and j = 2, we have #
1C2 = (#1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
1,1C2,1,

#
1,0C2,2,

#
1,1C2,2).

Rule 2.2: The term #
iCj is put ahead of #

sCt if it satisfies one of the following three
conditions:(i)max(i, j) < max(s, t ),(ii)max(i, j) = max(s, t ) and i < s,(iii)max(i, j) =
max(s, t ), i = s and j < t.

Through Rule 2.2, we obtain the ordering of #iCj’s:

#C = (#
1C1,

#
0C2,

#
1C2,

#
2C1,

#
2C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3, . . .

)
. (4)

Similar to Zhang and Mukerjee (2009), by deleting some terms that can be determined by
their previous terms, (4) is simplified as

#C = (#
1C2,

#
2C2,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3, . . .

)
(5)

for designs with resolution at least III. Combining (3) and (5), we obtain the ordering of
#
i,i0Cj, j0 ’s,

#C = (#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0, . . . ,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1, . . .

)
,

which is called the AENP of a mixed two- and four-level design. Then the GMC criterion for
such designs can be defined as follows.

Definition 1. Let #Cl be the lth component of #C. Let #C(D1) and #C(D2) be theAENPs ofmixed
two- and four-level designs D1 and D2, respectively. Suppose that #Ct is the first component
such that #Ct (D1) and #Ct (D2) are different. If #Ct (D1) > #Ct (D2), then D1 is said to have less
general lower-order confounding (GLOC) than D2. A design D is said to have general mini-
mum lower-order confounding if no other design has less GLOC thanD and such a design is
called a GMCmixed two- and four-level design.
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To explain the above definition, we give an example.

Example 2. Consider two 2441 designs D1 and D2 with 16 runs,

D1 : A, 3, 4, 134, 23, D2 : A, 3, 4, 13, 34,

where A = (1, 2, 12). For the two designs, the first different components of #C are
#
1,0C

(0)
2,0 (D1) = 4 and #

1,0C
(0)
2,0 (D2) = 1.

So D1 has less GLOC than D2.

The following theorem is obtained directly by the definition of GMC.

Theorem 1. For a 2n41 design with the resolution R ≥ III, the WLP in (1) is a function of
{#i,i0C(k)

j, j0 : i, j = 0, . . . , n, i0, j0 = 0, 1, k = 1, . . . ,Kj} in the following form:

Ai,0 = #
i,0C

(1)
0,0 and Ai,1 = #

i,1C
(1)
0,0 .

From Theorem 1, the designs with different WLPs must have different AENPs. However,
designs with the same WLPs may have different AENPs. The next example shows this point.

Example 3. (Example 1 continued) The 21341 designs D1 and D2 have the same WLP, but
different AENPs. The first different items are #

2,0C
(0)
2,0 (D1) = 60 and #

2,0C
(0)
2,0 (D2) = 54. Under

the GMC criterion for mixed two- and four-level designs, it is obvious that D1 has less GLOC
than D2.

The optimal designs under the MA and GMC criteria are often consistent especially for
designs with small runs. However, there are a significant number of cases where the two cri-
teria yield different optimal designs. Here is another example.

Example 4. Consider two 21541 designs with 64 runs D1 and D2,

D1 : I = 12347 = 12358 = 13459 = 245t0 = 1236t1 = 1346t2 = 246t3
= 1356t4 = 256t5 = 456t6 = 123456t7,

D2 : I = 12347 = 2358 = 13459 = 245t0 = 1236t1 = 1346t2 = 246t3
= 1356t4 = 256t5 = 456t6 = 123456t7,

whereA = (1, 2, 12) and t0, t1, t2, t3, t4, t5, t6, t7, respectively, denote the factors 10, 11, 12, 13,
14, 15, 16, 17. The WLPs ((A30,A31), (A40,A41), (A50,A51), . . .) of D1 and D2 are, respec-
tively, ((0, 0), (77, 35), (0, 28), . . .) and ((0, 0), (61, 35), (0, 44), . . .). According to theMA
criterion, designD2 is better thanD1.However, their first different items of #C are #

2,0C
(0)
2,0 (D1) =

14 and #
2,0C

(0)
2,0 (D2) = 0. By GMC criterion, design D1 is better than D2. Both designs have all

clearmain effects for two-level factors and the components of four-level factor. Further, design
D1 has 14 clear 2fi’s but D2 has 0 clear 2fi’s. In this case, the design D2 is not a good choice.

3. Construction of GMC 2n41 designs

This sectionwill mainly discuss the construction of GMC2n4m designs withm = 1, i.e., GMC
2n41 designs. LetHr be the set containing all main effects 1, . . . , r and all possible interactions
with Yates order, that is,

H1 = {1} and Hr = {Hr−1, r, rHr−1} for r = 2, . . . , q.
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Denote Sqr = Hq\Hr, Fqr = {q, qHr−1} andTr = {r, rHr−1}, where qHr−1 = {qd : d ∈ Hr−1}
and 1H1−1 = {1}. Obviously, the designs Fqr and Tr with r ≥ 3 are the saturated resolution IV
designs with r independent factors, which are unique up to isomorphism.

For a given design D ⊂ Hq and γ ∈ Hq, define

B2(D, γ ) = #{(d1, d2) : d1, d2 ∈ D, d1d2 = γ }
to be the number of 2fi’s in D aliased with γ . Let D ⊆ Fqq be a 2n−p design with N runs. From
Li et al. (2011), we have

B2(D, γ ) =
{
0, γ ∈ Fqq,
B2(Fqq\D, γ ) + n − N/4, γ ∈ Hq−1.

(6)

Lemma 1. Suppose D is a 2n−p design with N runs. If qSq−1,r ⊆ D ⊂ qSq−1,r−1 (r < q), then

B2(D, γ ) =
{
n − N/4, γ ∈ Sq−1,r,

B2(D\qSq−1,r, γ ) + N/4 − 2r−1, γ ∈ Hr.

LetD0 = {D1, a1, a2} for convenience. A 2n41 designD = (D1,A) with A = (a1, a2, a1a2)
being the four-level factor can be generated from D0 by grouping and combining method if
a1a2 is not in D1. Hence, it is easy to see that, to construct a GMC 2n41 design D, we have to
first consider the regular two-level design D0 and then select two different factors a1 and a2
with a1a2 not inD1 to form the four-level factor. The problem here is how to selectD0, as well
as a1 and a2 from D0, such that D = (D1,A) has GMC. In the following, we will discuss the
construction of GMC 2n41 designs for 9N/32 + 1 ≤ n + 2 ≤ 5N/16 andN/4 + 1 ≤ n + 2 ≤
9N/32, respectively.

3.1. GMC 2n41 designs with 9N/32 + 1 ≤ n + 2 ≤ 5N/16

A 2n−p design is called second-order saturated (SOS) if all degrees of freedom can be used
to estimated main effects and 2fi’s (Block and Mee, 2003). For the case 9N/32 + 1 ≤ n + 2 ≤
5N/16, let X = (X1,X2,X3,X4,X5) be the 25−1 design with I = X1X2X3X4X5. Then Dq−4(X)

is the unique SOS design of 5N/16 (Chen and Cheng, 2006), and

Dq−4(X) = (Dq−4(X1),Dq−4(X2),Dq−4(X3),Dq−4(X4),Dq−4(X5)), (7)

whereDq−4(Xi) = (1, 2, 12, . . . , 12 . . . (q − 4)) ⊗ Xi for i = 1, 2, 3, 4, 5. The columns in (7)
are said to have RC (rechanged) Yates order.

Block andMee (2003) proved that every non SOS design is a projection of at least one SOS
design. For 9N/32 ≤ n ≤ 5N/16, a 2n−p design with resolution IV must be an n-projection
of Dq−4(X) (Zhang and Cheng, 2010). Although the AENP of 2n41 is different from that of
2n−p, we still can easily obtain the result that D0 is an (n + 2)-projection of Dq−4(X). Since
the (n + 2)-projection of Dq−4(X) is not unique, we have to find the projection design D0 to
obtain the GMC 2n41 design.

Theorem 2. For 9N/32 + 1 ≤ n + 2 ≤ 5N/16, if D is a GMC design then D0 must be an (n +
2)-projection of Dq−4(X) and D̄0 = Dq−4(X)\D0 ⊂ Dq−4(Xp) for some p, a1 ∈ Dq−4(Xp) ∩ D0

and a2 ∈ Dq−4(Xi), i 	= p. Furthermore, we have
(1) #

1,0C2,0(D) = (n), #
1,0C2,1(D) = (N/2 − n − 2, 2n − N/2 + 2), #

1,1C2,0(D) = (2, 0n−N/4,

1),
where 0n−N/4 denotes n − N/4 zeros,
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(2) #
2,0C

(k)
2,0 (D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n − N/4 + 1)(n − N/4), k = n − N/4 − 1,
(N/2 − n − 1)(n − N/4 + 1), k = n − N/4,
3N/16(N/16 − 1), k = N/16 − 2,
3(N/16)2, k = N/16 − 1,
(k + 1)#{γ : γ ∈ Dq−4(I16)\IN, nγ = v}, k = N/8 + v − 2,

v = 0, 1 . . . , 
g/2�,
0, other k′s,

where nγ is the number of 2fi’s aliased with some γ ∈ Dq−4(I16)\IN of Dq−4(Xp) ∩
{D0\a1}, and g = #{Dq−4(Xp) ∩ {D0\a1}} and

(3) #
2,0C

(k)
2,1 (D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − N/4 + 1 + #
2,0C

(N/16−1)
2,0 (D), k = 0,

n(n + 1)/2 − #
2,0C

(0)
2,1 (D) − #

2,0C
(2)
2,1 (D), k = 1,

#
2,0C

(n−N/4−1)
2,0 (D) + #

2,0C
(1)
2,1 (G) + m(N/8 − 1), k = 2,

0, other k′s,
where G = Dq−t (Xp) ∩ D0 and m = #{t1 : B2(G, a1t1) > 0, t1 ∈ G\a1}.

Theorem 2 shows how to select D0 and the possible cases of a1 and a2. The following the-
orem shows the exact choices of D0 and a2.

Theorem 3. Up to isomorphism, a 2n41 design D with 9N/32 + 1 ≤ n + 2 ≤ 5N/16 is a GMC
design, if and only if {D1 ∪ a2} consists of the last n + 1 columns of Dq−4(X), a1 ∈ Dq−4(X1)\D1

and a2 is the first column of Dq−4(X2), where D = (D1,A).

To find a GMC 2n41 design, we should determine the choice of a1. From the above theo-
rem, we know a1 is one of the first N/16 − g + 1 columns of Dq−4(X1). Since #

2,0C2,0(D) is not
enough to fix the best choice of a1, we need discuss #

2,0C2,1(D). The term #
2,0C

(0)
2,1 (D) is deter-

mined by #
2,0C2,0(D), so #

2,0C
(1)
2,1 (D) should be maximized firstly. By Theorem 2, this equals to

minimize C0 = #
2,0C

(1)
2,1 (G) + m(N/8 − 1). Since #

2,0C
(1)
2,1 (G) = ∑

γ∈G\a1 B2(G, a1γ ), minimiz-
ingC0 needs to consider B2(G, a1γ ) firstly for γ ∈ G\a1.

Suppose qSq−1,r ⊆ S ⊂ qSq−1,r−1 (r < q), if the number of factors in S\Sq−1,r is small, it
is convenient to construct GMC designs. The next lemma studies the connection between
B2(S, γ ) and B2(S\qSq−1,r, γ ).

Lemma 2. Suppose S is a 2n−p design which consists of the last n columns of Fqr (for n < 2r) and
a1 is a four-level component. We have
(1) if n ≤ 2r−1, then S ⊆ qSr,r−1 and B2(S, a1γ ) = 0 for any a1 ∈ Fq,r−1, γ ∈ S; and
(2) if n > 2r−1, then qSr,r′ ⊆ S ⊂ qSr,r′−1 (r′ < r). Moreover, for any a1 ∈ Fqr′ , it can be

obtained that

B2(S, a1γ ) =
{
n − 2r−1, γ ∈ qSr,r′,
B2(S\qSr−1,r′, a1γ ) + 2r−1 − 2r′−1, γ ∈ qHr′ ∩ D.

(8)

By Lemma 2,C0 can be minimized. The result is shown in the following lemma.

Lemma 3. Suppose G\a1 consists of the last g − 1 columns of Dq−t (X1) for g > N/2t+1, where
a1 is a four-level component and g = #{G}. If a1 is the first column of Dq−t (X1), then C0 is min-
imized.

According to the above lemmas, the best choice of a1 is shown below by setting t = 4.
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Theorem 4. Up to isomorphism, a 2n41 design D with 9N/32 + 1 ≤ n + 2 ≤ 5N/16 is a GMC
design, if and only if {D1, a2} consists of the last n + 1 columns of Dq−4(X ), a1 is the first column
of Dq−4(X1) and a2 is the first column of Dq−4(X2), where D = (D1,A).

Example 5. Consider a 2841 design D with 32 runs. From Theorem 4, let X be a 25−1

design with 16 runs and I = X1X2X3X4X5. SinceDq−4(X) = (Dq−4(X1),Dq−4(X2),Dq−4(X3),

Dq−4(X4),Dq−4(X5)) and q = 5, we can obtainD1(X) = ((IX1, 1X1), (IX2, 1X2), (IX3, 1X3),

(IX4, 1X4), (IX5, 1X5)), where IXi and 1Xi, respectively, mean I2 ⊗ Xi and 12 ⊗ Xi for i =
1, . . . , 5. Let a1 be the first column ofDq−4(X1) and a2 be the first column ofDq−4(X2), that is
to say a1 = IX1 and a2 = IX2. The rest ofDq−4(X) areD1. Then (D1,A) is a GMC 2841 design.

3.2. GMC 2n41 designs with N/4 + 1 ≤ n + 2 ≤ 9N/32

Let

X =
(

1 S1(t ) S2(t )
−1 −S1(t ) S2(t )

)
, (9)

where 1 is a 2t−1 × 1 vector of 1’s, S(t ) = (S1(t ), S2(t )) is the resolution IV design
with 2t−1 runs and 2t−2 factors and S1(t ) is any column of S(t ). Rewrite (9) as X =
(X1,X2, . . . ,X2t−2+1). Doubling X q − t times, we can obtain

D(q−t )(X ) = (D(q−t )(X1),D(q−t )(X2), . . . ,D(q−t )(X2t−2+1)).

Denote D(q)(1) = (D(q−t )(Dt (1)\X),D(q−t )(X)), which is said to have RC Yates order. Sup-
pose D0 is a 2n+2

IV design with (2t−1 + 1)N/2t+1 < n + 2 ≤ (2t−2 + 1)N/2t (5 ≤ t ≤ q).
According to a discussion similar to the case of 9N/32 + 1 ≤ n + 2 ≤ 5N/16, D0 must be
an (n + 2)-projection of Dq−t (X). So the following result is obtained.

Theorem 5. Suppose D0 is an (n + 2)-projection of Dq−t (X) for (2t−1 + 1)N/2t+1 < n + 2 ≤
(2t−2 + 1)N/2t (5 ≤ t < q) and D̄0 = Dq−t (X)\D0. Up to isomorphism, if D has less GLOC
than any other cases in all the (n + 2)-projection of Dq−t (X), then D̄0 ⊂ Dq−t (Xp) for p = 1, 2,
a1 ∈ Dq−t (Xp) ∩ D0 and a2 ∈ Dq−t (Xi), i = 1, 2, i 	= p. #1C2(D) is maximized, and

(1) #
1,0C2,0(D) = (n), #

1,0C2,1(D) = (N/2 − n − 2, 2n − N/2 + 2), #
1,1C2,0(D) =

(2, 0n−N/4, 1), where 0n−N/4 denotes n − N/4 zeros.

(2) #
2,0C

(k)
2,0 (D) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g − 1)(n − N/4), k = n − N/4 − 1,
(N/4 − g + 1)(n − N/4 + 1), k = n − N/4,
(N/4 − N/2t )(N/2t − 1), k = N/2t − 2,
(N/4 − N/2t )(N/8 − N/2t ), k = N/8 − N/2t − 1,
(k + 1)#{γ : γ ∈ Dq−t (I2t )\IN, nγ = v}, k = N/8 + v − 2

v = 0, 1 . . . , 
g/2�,
0, other k′s,

where nγ is the number of 2fi’s aliased with some γ ∈ Dq−t (I2t )\IN of G\a1, for G =
Dq−t (Xp) ∩ D0 and g = n + 2 − N/4; and
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(3) #
2,0C

(k)
2,1 (D) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

#
2,0C

(N/8−N/2t−1)
2,0 (D) + n − N/4 + 1, k = 0,

n(n + 1)/2 − #
2,0C

(0)
2,1 (D) − #

2,0C
(2)
2,1 (D), k = 1,

#
2,0C

(n−N/4−1)
2,0 (D) + #

2,0C
(1)
2,1 (G) + (N/8 − 1)m, k = 2,

0, other k′s,
where m = #{γ : B2(G, a1γ ) > 0, γ ∈ G\a1}.

Theorem 5 shows the choices of D0, a1 and a2. Similarly to Theorem 3, a 2n41 design with
(2t−1 + 1)N/2t+1 < n + 2 ≤ (2t−2 + 1)N/2t (5 ≤ n < q) is a GMC design, only if {D1, a2}
consists of the last n + 1 columns of Dq−t (X), a1 ∈ Dq−t (X1)\D1 and a2 is the first column of
Dq−t (X2) up to isomorphism, where D = (D1,A).

To determine the exact position of a1, we should maximize #
2,0C2,1(D). By Theorem 5(3),

maximizing #
2,0C2,1(D) equals to minimizing #

2,0C
(1)
2,1 (G) + (N/8 − 1)m, denoted asC0 in short.

Noting that

#
2,0C

(1)
2,1 (G) =

∑
γ∈G\a1

B2(G, a1γ ) andm = #{γ : B2(G, a1γ ) > 0, γ ∈ G\a1},

to maximize #
2,0C2,1(D) only needs to consider B2(G, a1γ ), for γ ∈ G\a1.

By Lemma 3, we know that if a1 is the first column of Dq−t (X1), C0 is minimized for 5 ≤
t < q. And for t = q, by Theorem 2, D0 = X, a1 = X1 and a2 = Xj ( j 	= 1, 2) forms a GMC
design. Then the following result is obvious.

Theorem 6. Up to isomorphism, a 2n41 design with (2t−1 + 1)N/2t+1 < n + 2 ≤ (2t−2 +
1)N/2t is a GMC design if and only if

(1) {D1, a2} consists of the last n + 1 columns of Dq−t (X), a1 is the first column of Dq−t (X1)

and a2 is the first column of Dq−t (X2), where D = (D1,A) and 5 ≤ t < q; and
(2) a1 = X1, a2 = Xj ( j 	= 1, 2) and D1 = X\{a1, a2} for t = q.

Example 6. Consider to construct a 21641 design D with 64 runs. Note that t = 5 and q = 6.
Let X ={X1,X2, . . . ,X9} be the SOS design with 9 factors and 32 runs. Since Dq−5(X) =
(Dq−5(X1),Dq−5(X2), . . . ,Dq−5(X9)) and q = 6, we can obtain D1(X) = ((IX1, 1X1), (IX2,

1X2), . . . , (IX9, 1X9)), where IXi and 1Xi, respectively, mean I2 ⊗ Xi and 12 ⊗ Xi for i =
1, . . . , 9. According to Theorem 6, let a1 be the first column of Dq−5(X1), a2 be the first col-
umn of Dq−5(X2) (i.e., a1 = IX1 and a2 = IX2) and D1 contain the rest columns of Dq−5(X).
Then (D1,A) is a GMC 21641 design.

4. Conclusions and discussions

In this paper, we extend the GMC theory to mixed-level case. Under this theory, a new crite-
rion is established for choosing optimal regular two- and four-level designs. Then, a construc-
tion method is proposed to obtain all the 2n41 GMC designs for N/4 + 1 ≤ n + 2 ≤ 5N/16.
Some GMC 2n41 designs with 16 and 32 runs are listed in the tables of Appendix B. This
method can be extended to the construction of 2n42, and used for sn(s2) or sn(s2)2 designs for
general s. This is an open problem for further study.
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Appendix A: Proofs

Proof of Theorem3. ByTheorem2, D̄0 ⊂ Dq−4(Xp) for some p, a1 ∈ Dq−4(Xp) ∩ D0 and a2 ∈
Dq−4(Xi), i 	= p, #1,0C2,0(D), #1,0C2,1(D), #1,1C2,0(D) are maximized. Without loss of generality, let
p = 1 and i = 2. Now we maximize #

2,0C2,0(D). Based on Theorem 2, #2,0C
(k)
2,0 (D) is maximized

when k ≤ N/16 − 1. For k = N/8 + v − 2 (v = 0, 1 . . . , 
g/2�),
#
2,0C

(k)
2,0 (D) = (k + 1)#{γ : γ ∈ Dq−4(I16\IN ), nγ = v},

where nγ is the number of 2fi’s aliased with some γ ∈ Dq−4(I16\IN ) of Dq−4(X1)∩ {D0\a1}.
Since G\a1 = Dq−4(X1) ∩ {D0\a1}, then maximizing #

2,0C
(k)
2,0 (D) (for k = N/8 + v −

2) equals to maximizing #{γ : γ ∈ Dq−4(I16)\IN, nγ = v} of {G\a1}, i.e., maximizing
#
2,0C

(v )
2,0 (G\a1), which is equal to #

2C
(v )
2 (G\a1).
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Dq−4(Xp) can be seen as some Fqr for r ≤ q, where r = q − 3 and 2r−2 < g ≤ 2r−1. By the
computation, we have

ḡ(G\a1) = {γ : γ ∈ Hq\{G\a1},B2(G\a1, γ ) > 0} = N/16 − 1,

so maximizing #
2C2(G\a1) equals to maximizing {−ḡ(G\a1), #2C2(G\a1)}. By Li et al. (2011)

{−ḡ(G\a1), #2C2(G\a1)} is maximized if and only if G\a1 consists of the last g − 1 columns of
Dq−4(Xp). Thus #

2C2(G\a1) is maximized if and only if G\a1 consists of the last g − 1 columns
ofDq−4(X1). Note that for any a2 ∈ Dq−4(Xi) (i 	= 1), (D1,A) is isomorphic. For convenience,
let a2 be the first column of Dq−4(X2). �
Proof of Lemma 2. S is a 2n−p design which consists of the last n columns of Fqr. From the
above notation, Fqr can be rewritten as {Fq,r′−1, qSr,r′−1} where r′ ≤ r.

(a) If n ≤ 2r−1, it is obvious that S ⊆ qSr,r−1. For any a1 ∈ Fq,r−1 and γ ∈ S, a1γ ∈ rHr−1.
But for any two factors α, β ∈ S, the interaction αβ must be in Hr−1, that is to say
B2(S, a1γ ) = 0.

(b) If n > 2r−1, there exists r′ < r such that qSr,r′ ⊆ S ⊂ qSr,r′−1, then a1 must be in Fqr′ .
There are two different cases for γ ∈ S. If γ ∈ qSr,r′ , we have a1γ ∈ Sr,r′ and if γ ∈
qHr′ ∩ S, we have a1γ ∈ Hr′ . From Lemma 1, by replacing q − 1 as r and r as r′, we can
obtain (8). �

Proof of Lemma 3. The proof uses searching method by the following three steps.

Step 1: Find the proper r′.
Since g > N/2t+1, there exists r′ < r such that Sr,r′ ⊗ X1 ⊆ G\a1 ⊂ Sr,r′−1 ⊗ X1

(r = q − t). For convenience, rewrite Sr,r′ ⊗ X1 as qSr,r′ and Sr,r′−1 ⊗ X1 as qSr,r′−1,
then qSr,r′ ⊆ G\a1 ⊂ qSr,r′−1.

Step 2: Calculate the components ofC0.
By Lemma 2 (b), we obtain∑

γ∈G\a1
B2(G, a1γ ) =

∑
γ∈qSr,r′

B2(G, a1γ ) +
∑

γ∈G\{qSr,r′ ,a1}
B2(G, a1γ )

= (n − 2r−1)#{γ : γ ∈ qSr,r′ } +
∑

γ∈G\{qSr,r′ ,a1}
B2(G\qSr−1,r′, a1γ ).

Since

m = #{γ : B2(G, a1γ ) > 0, γ ∈ G\a1}
= #{γ : B2(G, a1γ ) > 0, γ ∈ qSr,r′ } + #{γ : B2(G, a1γ ) > 0, γ ∈ G\{qSr,r′, a1}}
= 2r − 2r

′ + #{γ : B2(G, a1γ ) > 0, γ ∈ G\{qSr,r′, a1}}.
Step 3: MinimizeC0 and find the best position of a1.

If #{G\{qSr−1,r′, a1}} ≤ 2r′−1, we have B2(G\qSr−1,r′, a1γ ) = 0 for γ ∈ G\{qSr,r′, a1} by
Lemma 2 (a). Let a1 = q, the first column of Dq−4(X1), then C0 is minimized. Otherwise,
replace G\{qSr−1,r′\a1} by G\a1 and return to Step 1.
After the searching procedure, we find no other column ofDq−t (X1) is better than the first
column of Dq−t (X1) to minimizeC0. �

Proof of Theorem 5. All clear 2fi’s of designX are eitherX1Xj ( j 	= 1) orX2Xj ( j > 2) (Cheng
andZhang, 2010). Similar to the case of 9N/32 + 1 ≤ n + 2 ≤ 5N/16, #1,0C2,0, #1,0C2,1, #1,1C2,0 ofD
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ismaximized, if and only if D̄0 ⊆ Dq−t (Xp) (p = 1, 2), a1 ∈ Dq−t (Xp) ∩ D0 and a2 ∈ Dq−t (Xi)

(i 	= p). The result is the same to Theorem 2 (2). Next we maximize #
2,0C2,0(D).

Let G = Dq−t (Xp) ∩ D0 and g = #{G} = n + 2 − N/4. The smallest positive
B2(D0\{a1, a2}, γ ) is n − N/4. These alias sets have the form γ = a1t1 = a2t2, where
t1 ∈ Dq−t (Xi) (i 	= p) and t2 ∈ Dq−t (Xp) ∩ D0. Then we obtain #

2,0C
(k)
2,0 (D) = 0, for k <

n − N/4 − 1,#2,0C
(n−N/4−1)
2,0 (D) = (g − 1)(n − N/4).

For B2(D0\{a1, a2}, γ ) = n − N/4 + 1, the alias sets contain a1t1 but exclude a2t2, where
t1, t2 ∈ D0 or γ = a3. The number of such alias sets is N/4 − g + 1. Then #

2,0C
(n−N/4)
2,0 (D) =

(N/4 − g + 1)(n − N/4 + 1).
For k > n − N/4 and a2 ∈ Dq−t (Xj) ( j 	= p), the smallest positive B2(D0\{a1, a2}, γ ) >

n − N/4 + 1 is N/2t − 1. The alias sets have the form γ = a2t2, where t2 ∈ Dq−t (Xk) (k 	=
j, p). There are two different cases that make #

2,0C
(k)
2,0 (D) different.

Case I: a2 ∈ Dq−t (Xi), i = 1, 2 but i 	= p.
Since X1Xl and X2Xl are clear 2fi’s (l 	= 1, 2), any factor in Dq−t (Xl ) (l 	= 1, 2) combined

with a2 ∈ Dq−t (Xi) is only confounded with some γ ∈ Dq−t (XiXl ), then for k = N/2t − 2

#{γ : γ ∈ Dq(1),B2(D0\{a1, a2}, γ ) = N/2t − 1}
= #{(t1, t2) : t1t2 = γ , t1 ∈ Dq−t (Xi), t2 ∈ Dq−t (Xl )(l 	= 1, 2)}

=
∑
l 	=1,2

#{t2 : t2 ∈ Dq−t (Xl )} = N/4 − N/2t ,

it is obtained

#
2,0C

(N/2t−2)
2,0 (D) = (N/4 − N/2t )(N/2t − 1).

Case II: a2 ∈ Dq−t (Xi), i 	= 1, 2.
If t2 ∈ Dq−t (Xl ) (l = 1, 2 but l 	= p), the alias sets containing a2t2 make

B2(D0\{a1, a2}, γ ) = N/2t − 1. Then the 2fis have the form Dq−t (XiXl ) for k = N/2t − 2,
and

#{γ : γ ∈ Dq−t (XiXl ),B2(D0\{a1, a2}, γ ) = N/2t − 1}
= #{(t1, t2) : t1t2 = γ , t1 ∈ Dq−t (Xi), t2 ∈ Dq−t (Xl )(l = 1, 2, l 	= p)}
= #{t2 : t2 ∈ Dq−t (Xl )(l = 1, 2, l 	= p)} = N/2t .

So

#
2,0C

(N/2t−2)
2,0 (D) = N/2t (N/2t − 1).

�

Note that N/4 − N/2t > N/2t for t ≥ 5, so Case I has less GLOC than Case II. This com-
pletes the proof.
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Appendix B: Two tables of GMC 2n41 designs

Table B.. GMC 2n41 designs with  runs.

n Columns

#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1

WLP
(A30,A31), . . .

c1, c̄1
c2, c̄2

 A0 , , , 
(3), (3), (3),

(3), (0, 3), (6, 3), (9)
(, ), (, )

3, 6
0, 6

 A1 , , , , 
(4), (2, 2), (2, 1),

(6), (1, 4, 1),
(6, 6), (11, 1)

(, ), (, )
2, 2
0, 4

 A1 , , , , , 
(5), (1, 4), (2, 0, 1),

(4, 6), (2, 4, 4),

(5, 8, 2), (7, 8)
(, ), (, )

1, 2
0, 5

Note: . A0 = (1, 2, 12), A1 = (4, 1234, 123), A2 = (3, 123, 12).
. c1 and c2 are the numbers of clear two-level main effects and fi’s, respectively, while c̄1, c̄2 is the number of clear four-level
component and clear fi’s containing four-level component.

Table B.. GMC 2n41 designs with  runs.

n Columns

#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1

WLP
(A30,A31), . . .

c1, c̄1
c2, c̄2


A0, 3, 4, 5,

1345, 245, 235, 234
(7), (7), (3),

(0, 0, 21), (21), (21), (21)
(0, 0), (3, 7), (0, 4),

(0, 0), (0, 0), (0, 1)
6, 2
0, 0


A2,

S5N/16\{I2 ⊗ {1, 2}16}
(8), (6, 2), (2, 1),
(13, 12, 3), (13, 15),
(10, 12, 0, 2), (22, 2)

(0, 1), (3, 10), (4, 8),

(0, 0), (0, 3), (0, 2)
7, 3
0, 21

 A1, 235 ∼ 2345

(9), (5, 4), (2, 0, 1),
(2, 12, 18, 4), (2, 26, 8),

(9, 4, 5, 8, 1), (19, 8)

(0, 2), (9, 14),

(0, 9), (6, 12),
(0, 4), (0, 6), (1, 0)

5, 2
0, 9

Note: . A0 = (1, 2, 12), A1 = (5, 12345, 1234), A2 = (I2 ⊗ 116, I2 ⊗ 216, I2 ⊗ 1216), F55 = {5, 15, 25, 125, 35, 45, 145,
245, 1245, 345, 1345, 2345, 12345}.

. {a ∼ b}means containing the columns from a to b of F55 .
. c1 and c2 are the numbers of clear two-level main effects and fi’s, respectively, while c̄1, c̄2 is the number of clear four-level
component and clear fi’s containing four-level component.
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