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ABSTRACT
Generalminimum lower-order confounding (GMC) criterion is to choose
optimal designs, which are based on the aliased effect-number pattern
(AENP). The AENP andGMC criterion have been developed to formGMC
theory. Zhang et al. (2015) introduced GMC 2n4m criterion for choosing
optimal designs and constructed all GMC 2n41 designs with N/4 + 1 ≤
n + 2 ≤ 5N/16. In this article, we analyze the properties of 2n41 designs
and construct GMC 2n41 designs with 5N/16 + 1 ≤ n + 2 < N − 1, where
n andN are, respectively, the numbers of two-level factors and runs. Fur-
ther, GMC 2n41 designs with 16-run, 32-run are tabulated.

1. Introduction

Factorial experiments have broad applications in agricultural, engineering, and scientific
studies. A factorial design in which the numbers of levels of the factors are not all equal is
called a mixed-level or asymmetrical factorial design. Mixed-level factorial designs were first
introduced by Yates (1937). Factorial experiments with mixed levels are often encountered
in practice because the choice of factor levels may vary with the nature of the factor, espe-
cially, mixed two- and four-level fractional factorial designs, see Wang and Wu (1991), Wu
and Zhang (1993), and Wu and Hamada (2000).

One of main tasks in mixed-level factorial designs is to find optimal designs and analyze
experimental data effectively, so thatmore important effects andmore possiblemodels related
to the effects in experiments can be estimated. Under the effect hierarchy principle (EHP)
that lower-order factorial effects aremore important than higher-order ones and that factorial
effects of the same order are equally important, many criteria have been employed to compare
fractions, such as maximum resolution (MR) (Box and Hunter, 1961), minimum aberration
(MA) (Fries and Hunter, 1980), clear effects (CE) (Wu and Chen, 1992), maximum estima-
tion capacity (MEC) (Sun, 1993), and general minimum lower-order confounding (GMC)
(Zhang et al., 2008) criteria. Among these criteria, MA criterion is the most popular one,
which is based on the word-length pattern (WLP). Many related topics have been studied
to gain insights into selecting MA designs, see Franklin (1984), Butler (2003), and Cheng
and Tang (2005). A nice summary of optimal criteria is given in Mukerjee and Wu (2006).
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However, MA criterion cannot reveal the relationships of the above criteria. Moreover, two
designswith the sameWLP cannot be distinguished byMAcriterion, andmost ofMAdesigns
are obtained by computer searching. In order to solve these problems, Zhang et al. (ZLZA for
short, 2008) introduced the aliased effect-number pattern (AENP) to judge two-level designs,
which contain the basic information of all factorial effects aliased with other effects at varying
severity degrees in a design. Based on the AENP, they proposed GMC criterion and proved
that the MR, MA, CE, MEC, and GMC criteria can each be viewed as sequentially minimiz-
ing or maximizing the components of a corresponding vector function of the AENP. GMC
criterion treats the AENP as a set to compare designs and provides a unified approach for the
other criteria. Now the AENP and GMC criterion widely apply in two-level regular designs,
two-level block designs, two-level split-plot designs, see Zhang and Cheng (2010), Cheng and
Zhang (2010),Wei et al. (2010), Hu and Zhang (2011), Li et al. (2011), Zhang et al. (2011), and
Zhao et al. (2013). Zhang andMukerjee (2009a, 2009b) extendedGMC theory to general-level
designs by complementary sets.

In this work, we apply GMC criterion to select optimal 2n4m design, which is a simple
type of mixed-level designs. Zhang et al. (ZYLZ for short, 2015) proposed GMC 2n4m

criterion, which is an extension of GMC criterion to the case of mixed-level designs. They
also constructed GMC 2n41 designs for N/4 + 1 ≤ n + 2 ≤ 5N/16, where n is the number
of two-level factors and N is the number of runs. Li et al. (2011) provided a solution to
construct two-level GMC designs and obtained the fact that every GMC design was formed
by the last n columns of the saturated design in the Yates order under some conditions.
Based on some results of ZYLZ (2015) and Li et al. (2011), we aim to solve the construction
of GMC 2n41 designs with 5N/16 + 1 ≤ n + 2 < N − 1. The remainder of the article is
organized as follows. In the next section, we review the definition of GMC 2n4m criterion
and some notation. In Sections 3 and 4, we respectively construct GMC 2n41 designs with
5N/16 + 1 ≤ n + 2 ≤ N/2 + 2 and N/2 + 3 ≤ n + 2 ≤ N − 1. Proofs of some lemmas
and theorems are given in Appendix A. GMC 2n41 designs with 16 runs (n = 4, . . . , 11)
and GMC 2n41 designs with 32 runs (n = 10, . . . , 14) are tabulated in Appendix B for
practical use.

2. Preliminaries

Adesignwith n two-level factors andm four-level factors is said to be a 2n4m design, which can
be constructed from the corresponding symmetrical orthogonal arrays through themethod of
replacement (Addelman, 1962). Wu (1989) improved the construction method by introduc-
ing the method of grouping. Wu et al. (1992) and Wu and Zhang (1993) further applied the
groupingmethod to general designs. To explain the groupingmethod, we consider a saturated
2N−1 design with k independent columns denoted by 1, 2, . . . , k and all possible interactions,
whereN = 2k. Any three columns of the form (a1, a2, a3)with a3 = a1a2 can be replaced by a
four-level factor without affecting orthogonality. We call a1, a2, and a3 the three components
of the four-level factor. If we can find m triplets of columns of the form (a1, a2, a3), we can
obtain m four-level columns by repeated using of replacement. By grouping scheme, a large
class of OA(2k, 2n4m) can be constructed.

We first review some definitions and notation of GMC theory. A 2n−p regular design T is
called a GMC design if it sequentially maximizes the following sequence:

#C = (#
1C2,

#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3, . . .

)
, (1)
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where #
iCj = (#iC

(0)
j , #iC

(1)
j , . . . , #iC

(Kj )
j ), Kj = (n

j

)
, and #

iC
(k)
j denote the number of ith-order

effects aliased with jth-order effects at degree k. We call (1) AENP of the two-level regular
design.

For any 2n4m design, the interaction effects have three different cases: (i) two-level factors
and two-level factors, (ii) two-level factors and four-level components, and (iii) four-level com-
ponents and four-level components. ZYLZ (2015) proposed GMC 2n4m criterion as follows.
Let #i,i0C

(k)
j, j0 be the number of ith-order effects aliased with jth-order effects at degree k, where

each ith-order effect contains i0 components of four-level factors and each jth-order effect
contains j0 components of four-level factors for i0 ≤ min{i,m} and j0 ≤ min{ j,m}. The
larger the degree k is, the more severely the effect is aliased. For every pair of {(i, i0), ( j, j0)},
let

#
i,i0Cj, j0 =

(
#
i,i0C

(0)
j, j0,

#
i,i0C

(1)
j, j0, . . . ,

#
i,i0C

(Kj )
j, j0

)
, (2)

where Kj = (n
j

)
. A 2n4m designD is called aGMC 2n4m design if it sequentially maximizes the

following sequence:

#C = (#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1, . . .

)
, (3)

which is called the AENP of the 2n4m design.
The following example is used to illustrate the above definition.

Example 1. Consider a 2341 design D = {A, 3, 4, 1234} with 16 runs, where A = (1, 2, 12).
Under the assumption that the interactions involving three or more factor effects are absent,
the components of #C are

#
1,0C2,0(D) = (3), #

1,0C2,1(D) = (3), #
1,1C2,0(D) = (3), #

2,0C2,0(D) = (3),
#
2,0C2,1(D) = (0, 3), #

2,1C2,0(D) = (6, 3), #
2,1C2,1(D) = (9).

Then, #C = ((3), (3), (3), (3), (0, 3), (6, 3), (9)).

In order to get GMC 2n4m designs with given n andm, we need to obtain all the confound-
ing information among factors of 2n4m designs. Generally, the confounding of effects is given
by computer algorithm. However, it is hard to get the alias relations of designs if the number
of factors and runs is large. Therefore, it is necessary to develop the construction method of
GMC2n4m designs. For 5N/16 + 1 ≤ n + 2 < N − 1, we construct GMC2n41 designs for the
following two cases: (i) 5N/16 + 1 ≤ n + 2 ≤ N/2 + 2, and (ii) N/2 + 3 ≤ n + 2 < N − 1,
where n is the number of two-level factors and N is the number of runs.

3. GMC 2n41 designs with 5N/16 + 1 ≤ n + 2 ≤ N/2 + 2

For convenience, we introduce some notation as follows. Let Hr be a set containing all
main effects and all interactions between two-level factors 1, . . . , r, and H1 = {1}, Hr =
{Hr−1, r, rHr−1}. For example, H3 = {1, 2, 12, 3, 13, 23, 123}. Denote Sqr = Hq\Hr for r < q
and Frr = {r, rHr−1}. For any 2n−p design T ⊂ Hq and γ ∈ Hq, define

B2(T, γ ) = #{(d1, d2) : d1, d2 ∈ T, d1d2 = γ },
which is the number of two-factor interactions (2fi’s) in T aliased with γ . Based on Li et al.
(2011), the useful lemmas are shown below.
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Lemma 1. Suppose T is a 2n−p design with N = 2n−p and T ⊆ Fqq. Then

B2(T, γ ) =
{
0, γ ∈ Fqq,
B2(Fqq\T, γ ) + n − N/4, γ ∈ Hq−1.

(4)

Lemma 2. Suppose T is a 2n−p design with N = 2n−p. If Sqr ⊂ T (r < q), then

B2(T, γ ) =
{
n − N/2, γ ∈ Sqr,
B2(T\Sqr, γ ) + N/2 − 2r−1, γ ∈ Hr.

By Lemmas 1 and 2, we obtain the following result.

Lemma 3. Suppose T is a 2n−p design with N = 2n−p. If qSq−1,r ⊆ T ⊂ qSq−1,r−1 (r < q), then

B2(T, γ ) =
{
n − N/4, γ ∈ Sq−1,r,

B2(T\qSq−1,r, γ ) + N/4 − 2r−1, γ ∈ Hr.

LetD be a 2n41 design which combines a two-level regular design T and a four-level factor
A = (a1, a2, a1a2), where a1, a2 are not in T . DenoteD = {T,A} and T0 = {T, a1, a2}. A 2n41

design can be generated from T0 by grouping method if a1a2 is not in T . Hence, it is easy to
see that, to construct a GMC 2n41 design D, we first have to consider the regular two-level
design T0 and then select two different factors a1 and a2 with a1a2 not in T to form the four-
level factor. It is key to select T , as well as a1 and a2 from T0, such that D has GMC. For
5N/16 + 1 ≤ n + 2 ≤ N/2, the maximal resolution of T0 ⊂ Fqq is at least IV. In this case, we
have #

1,0C2,0(D) = #
1C2(T ) = (n). Next #1,0C2,1(D) and #

1,1C2,0(D) need to be maximized.

Lemma 4. Suppose D is a 2n41 design with N runs. For 5N/16 + 1 ≤ n + 2 ≤ N/2, up to iso-
morphism, D is a GMC design if T0 ⊆ Fqq and B2(Fqq\T0, a3) = 0. Further, #1,0C2,1(D), #1,1C2,0(D)

are sequentially maximized and

#
1,0C2,1(D) = (N/2 − n − 2, 2n − N/2 + 2), #

1,1C2,0(D) = (2, 0n−N/4, 1),

where 0n−N/4 denotes n − N/4 continuous zeros.

Proof. Consider D = {T,A} and T0 = {T, a1, a2}. If T0 ⊆ Fqq, clearly, a1, a2 ∈ Fqq and a3 ∈
Hq−1. By Lemma 1, we know that B2(T, ai) = 0 for i = 1, 2 and B2(T, a3) = B2(Fqq\T, a3) +
n − N/4. Moreover, B2(Fqq\T, a3) = B2(Fqq\T0, a3) + B2({a1, a2}, a3) ≥ 1, we have

B2(T, a3) ≥ n − N/4 + 1.

The lower bound is achieved if B2(Fqq \ T0, a3) = 0. Without loss of generality, let a1 = q,
a2 = 12 . . . q and T be the last n columns of Fqq\a2. Then {qFq−1,q−1\a2} ⊆ T ⊂ Fqq and a3 =
12 . . . (q − 1). Thus, Fqq\T0 ⊆ qHq−2, and 2fi of Fqq\T0 must be inHq−2. SoB2(Fqq\T0, a3) = 0,
and B2(Fqq\T, a3) = 1. As a result, B2(T, a3) = n − N/4 + 1.

Since #
1,0C

(1)
2,1 (D) = #{α : αa3 = β, α, β ∈ T} = 2B2(T, a3), we have #

1,0C
(1)
2,1 (D) = 2(n −

N/4 + 1) and #
1,0C

(0)
2,1 (D) = n − #

1,0C
(1)
2,1 (D) = N/2 − n − 2. Thus, #

1,0C2,1(D) = (N/2 − n −
2, 2n − N/2 + 2). Consider #

1,1C
(k)
2,0 (D) = #{ai : B2(T, ai) = k} for k ≥ 0. When k = 0, it is

easy to get #
1,1C

(0)
2,0 (D) = #{a1, a2} = 2. For k = n − N/4 + 1, we have #

1,1C
(k)
2,0 (D) = 1. Then,

#
1,1C2,0(D) = (2, 0n−N/4, 1). �

By Lemma 4, #
1,0C2,1(D) and #

1,1C2,0(D) are sequentially maximized. Next we consider
#
2,0C2,0(D).
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Lemma 5. Suppose D is a 2n41 design, T0 ⊂ Fqq and B2(Fqq\T0, a3) = 0. Then

#
2,0C

(k)
2,0 (D) =

⎧⎪⎪⎨⎪⎪⎩
(n − N/4)(n − ḡ(Fqq\T0)), k = n − N/4 − 1,
(n − N/4 + 1)(N/2 − n − 1), k = n − N/4,

k+1
k+1−n+N/4−δ

#
2C

(k−n+N/4−δ)
2 (Fqq\T0), k > n − N/4,

0, otherwise,

where δ = 0 or 1 and

ḡ(S) = #{γ : γ ∈ Hq\S,B2(S, γ ) > 0}. (5)

The proof of Lemma5 is inAppendixA. By Lemmas 4 and 5, the following result is obvious.

Theorem 1. Suppose D is a 2n41 design with 5N/16 + 1 ≤ n + 2 ≤ N/2. The design D has
GMC if {−ḡ(Fqq\T0), #2C2(Fqq\T0)} are sequentially maximized.

Since #{Fqq\T0} = N/2 − (n + 2), according to Li et al. (2011), when 2r−2 + 1 ≤ N/2 −
(n + 2) ≤ 2r−1 for some r ≤ q, {−ḡ(Fqq\T0), #2C2(Fqq\T0)} are sequentially maximized in all
the designs withN/2 − (n + 2) factors and resolution at least IV, if and only if Fqq\T0 consists
of the first N/2 − (n + 2) elements of Fqq. Thus, T0 consists of the last n + 2 columns of Fqq.
We can obtain that qSq−1,r ⊆ T0 ⊆ qSq−1,r−1. If T0 = qSq−1,r, then a1, a2 ∈ qSq−1,r. Otherwise,
there are two different cases for a1, a2: (i) both a1 and a2 are in qSq−1,r, (ii) for a1 and a2, one
is in qSq−1,r and the other is in T0\qSq−1,r. The following theorem shows us that the latter is
better than the former.

Theorem 2. Suppose D is a 2n41 design and qSq−1,r ⊂ T0 ⊂ qSq−1,r−1. If a1 ∈ T0\qSq−1,r and
a2 ∈ qSq−1,r, then the design D has less GLOC than others and

#
2,0C

(k)
2,0 (D) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n − 2r + 1)(n − N/4), k = n − N/4 − 1,
(N/2 − n − 1)(n − N/4 + 1), k = n − N/4,
(k + 1)#{γ : γ ∈ Hq−1, nγ = v}, k = N/4 − 2r−1 − 2 + v,

v = 0, 1, . . . , �g/2�,
0, otherwise,

where nγ is the number of 2fi’s of T0\{qSq−1,r, a1} aliased with some γ ∈ Hq−1 and g =
#{T0\qSq−1,r}, � g/2� is the integer part of g/2.

The proof of Theorem 2 is in Appendix A.
Based on the above theorem, the best choices for a1 and a2 are obtained and the GMC

designs can be constructed.

Theorem 3. Suppose D is a 2n41 design with 5N/16 + 1 ≤ n + 2 ≤ N/2. Up to isomorphism,
the design D has GMC if T0 consists of the last n + 2 columns of Fqq and a1, a2 are the first and
last columns of T0, respectively.

Proof. Denote G = T0\qSq−1,r and g = #{G}. Consider two cases of G.
(a) G 	= �. By Theorem 2, maximizing #

2,0C2,0(D) equals to maximize #{γ : γ ∈
Hq−1, nγ = v}, i.e., maximizing #

2C2(G\a1). On the other hand, ḡ(G\a1) = {γ : γ ∈
Hq\{G, a1}, and B2(G\a1, γ ) > 0} = 2r′+1 − 1 for some r′ < q. We only need to
sequentially maximize the components of {−ḡ(G\a1), #2C2(G\a1)}, where G\a1 is a
(g − 1)-factor design with resolution at least IV and 2r′ < g − 1 ≤ 2r′+1. According
to Li et al. (2011), {−ḡ(G\a1), #2C2(G\a1)} is maximized if and only if G\a1 consists
of the last g − 1 columns of Fqr. That is to say, a1 must be the first column of T0. For
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any a2 ∈ qSq−1,r, the design is isomorphic. Without loss of generality, a2 can be the last
column of T0, that is, a2 = 12 . . . q.

(b) G = �, i.e., T0 = qSq−1,r. By Lemma 3, for a1, a2 ∈ T0, the design with a3 ∈ Sq−1,r has
lessGLOC than a design with a3 ∈ Hr. Further, for any a1, a2 ∈ T0, we have a3 ∈ Sq−1,r.
Up to isomorphism, a1 and a2 can be the first and last columns of T0. �

Example 2. Construct a GMC 2441 design D with 16 runs. Obviously, n = 4 and N = 16. By
Theorem 3, take T0 to be the last six columns of F44, that is,

T0 = {24, 124, 34, 134, 234, 1234}.
Moreover, a1 = 24, a2 = 1234, a3 = 13, and T = {124, 34, 134, 234}. Thus, the GMC 2441

design D = {A, 34, 134, 234, 1234}, where A = (24, 1234, 13). Up to isomorphism, factors
24, 13, 124, 34 are replaced by factors 1, 2, 3, and 4, respectively. Then,

D̃ = {(1, 2, 12), 3, 4, 134, 23},
which is just an MA design given in Table 2 (n = 4) of Wu and Zhang (1993).

4. GMC 2n41 designs with N/2 + 3 ≤ n + 2 < N − 1

For n > N/2, the resolution of a 2n−p design T is III. Since #
1,0C2,0(D)=#

1C2(T ), #1C2(T ) should
be maximized first. If 2r−1 ≤ N − 3 − n ≤ 2r − 1 for some r, Hq\T has r independent fac-
tors. Therefore, by Theorem 1 of Li et al. (2011), #1C2(T ) is maximized if Sqr ⊆ T ⊂ Sq,r−1. As
a result, D can be rewritten as D = {D\Sqr, Sqr} and #

1,0C2,0(D) is maximized. Next, we will
maximize #

1,0C2,1(D), #1,1C2,0(D), and #
2,0C2,0(D). For simplification, let n1 = #{T\Sqr}.

Lemma 6. Suppose D = {D\Sqr, Sqr}, where Sqr ⊆ T ⊂ Sq,r−1. Then

#
1,0C

(k)
2,1 (D) =

{
#
1,0C

(k)
2,1 (D\Sqr), k < 3,

#
1,0C

(k)
2,1 (D\Sqr) + N − 2r, k = 3.

Proof. Since a1, a2, a3 ∈ Hr, for any γ ∈ Sqr, there exists d1, d2, d3 ∈ Sqr satisfying a1d1 =
a2d2 = a3d3 = γ . Each γ ∈ Sqr is added to the class of #1,0C

(3)
2,1 (D), the total number is N − 2r.

Only D\Sqr needs to be considered for other cases. The result is obtained. �

Since #
2,0C2,0(D) = #

2C2(T ), the following result is obvious from Lemma 4 of Li et al. (2011).

Lemma 7. Suppose D is a 2n41 design and D = {D\Sqr, Sqr}. Then,

#
2,0C

(k)
2,0 (D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

constant, k < N/2 − 2r−1 − 1,
−(k + 1)ḡ(T\Sqr) + #

1C
(0)
2 (T ), k = N/2 − 2r−1 − 1,

k+1
v+1

#
2C

(v )
2 (T\Sqr), k = N/2 − 2r−1 + v,

v = 0, 1, . . . , �n1/2�,
0, otherwise.

Two different cases are respectively discussed in the following.

4.1. GMC 2n141 designs with 2r−2 + 1 ≤ n1 + 2 ≤ 2r−1

Based on Lemma 4, we can get
#
1,0C2,1(D\Sqr) = (2r−1 − n1 − 2, 2n1 − 2r−1 + 2).
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By Lemma 6,
#
1,0C2,1(D) = (2r−1 − n1 − 2, 2n1 − 2r−1 + 2, 0,N − 2r).

For any ai ∈ Hr, there exist N/2 − 2r−1 pairs of 2fi’s aliased with ai for i = 1, 2, 3. Thus,
#
1,1C2,0(D) = (0N/2−2r−1

, #1,1C2,0(D\Sqr)). As a result #
1,0C2,1(D) is maximized. By Lemma 4, we

have #
1,1C2,0(D\Sqr) = (2, 0n1−2r−2

, 1). Further, #1,1C2,0(D) ismaximized. Next wewill maximize
#
2,0C2,0(D), which is completely determined by the small design D\Sqr.

According to Cheng and Zhang (2010), let

X =
(

1 S1(t ) S2(t )
−1 −S1(t ) S2(t )

)
, (6)

where 1 is a 2t−1 × 1 vector of 1’s. S(t ) = (S1(t ), S2(t )) is the resolution IV design with 2t−1

runs and 2t−2 factors, S1(t ) is any column of S(t ). Thus, (6) can be rewritten as

X = (X1,X2, . . . ,X2t−2+1),

where Xi is the ith column of X. Doubling X q − t times, we can obtain

D(q−t )(X) = (
D(q−t )(X1),D(q−t )(X2), . . . ,D(q−t )(X2t−2+1)

)
.

Denote D(q)(1) = (D(q−t )(Dt (1)\X),D(q−t )(X)), which is said to have RC Yates order.

Theorem 4. Suppose D\Sqr is a 2n141 design with 2r runs and D\Sqr = {T̂ ,A}.
(a) For 5 · 2r/16 + 1 ≤ n1 + 2 ≤ 2r−1, D\Sqr is a GMC design, up to isomorphism, if T̂

consists of the last n1 + 2 columns of Frr and a1, a2 are the first and last column of T̂
respectively.

(b) For (2t−1 + 1)2r/2t+1 + 1 ≤ n1 + 2 ≤ (2t−2 + 1)2r/2t (4 ≤ t ≤ q), D\Sqr is a GMC
design, up to isomorphism, if a1 is the first column of Dq−t (X) and a2 is the first column
of Dq−t (X2), where {T̂ , a2} consists of the last n1 + 1 columns of Dq−t (X).

Based on Theorem 3, Theorem 4 (a) is obtained. Meanwhile, by ZYLZ (2015), Theorem 4
(b) is obtained. Combining D\Sqr and Sqr, the GMC 2n41 design D is obtained.

4.2. GMC 2n141 designs with n1 + 2 ≤ 2r−2

In this case, the resolution of T\Sqr is at least IV, then #
1C

(k)
2 (T\Sqr) = 0 for k > 0. Thus,

#
1,0C2,0(D) is maximized. Up to isomorphism, let T\Sqr ⊆ Frr. For n1 + 2 ≤ 2r−2, Frr\{T\Sqr}
has no less than 2r−2 factors. It is easy to find a1, a2 ∈ Frr\{T\Sqr} such that B2(T\Sqr, ai) = 0
(i = 1, 2, 3). For example, let a1 = r, a2 = (r − 1)r, and {T\Sqr} be the last n1 columns of
Frr. By Lemma 2, B2(T, ai) = N/2 − 2r−1, so #

1,1C2,0(D) = (0N/2−2r−1
, 3). For any γ ∈ Sqr

there exist d1, d2, d3 ∈ Sqr satisfying a1d1 = a2d2 = a3d3 = γ when a1, a2, a3 ∈ Hr. Thus,
#
1,0C2,1(D) = (n − N + 2r, 0, 0,N − 2r).

By computation and three steps (see the proof in Appendix A), the following result is given.

Theorem5. SupposeD is a 2n41 designwithN runs. Then, for n > N/2 and n + 2r − N < 2r−2,
the design D has GMC if T consists of the last n columns of Hq and a1 = r, a2 = r(r − 1).

The proof of Theorem 5 is given in Appendix A. The following example is used for illus-
tration of Theorem 5.

Example 3. Construct a GMC 21841 design D with 32 runs. Since n = 18, N = 32, q = 5,
r = 4, one has n > N/2, n + 2r − N < 2r−2. By Theorem 5,D = {A, 234, 1234, S54} is a GMC
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21841 design, where A = (3, 4, 34) and S54 = H5 \ H4. Clearly, D \ S54 is an MA design with
32 runs. By Theorem 1 of Li, Liu and Zhang (2007), D is also an MA design with 32 runs.

5. Conclusions

Zhang et al. (2015) extended the GMC theory to mixed-level case. Under this theory, a new
criterion is established for choosing optimal regular two- and four-level designs, and all the
GMC 2n41 designs forN/4 + 1 ≤ n + 2 ≤ 5N/16 are constructed. In this article, a construc-
tionmethod is proposed to obtain all the GMC2n41 designs for 5N/16 + 1 ≤ n + 2 ≤ N − 1.
Tables 1 and 2 in Appendix B provide GMC 2n41 designs with 16 and 32 runs for practical
use. This method is possible to be extended to the construction of GMC 2n4m designs, and
further for GMC sn(s2) or sn(s2)2 designs with general level s. This is an open problem for
further study.
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Appendix A: Proofs

Proof of Lemma 5:
By Lemma 1, we get B2(T, γ ) = B2(Fqq\T, γ ) + n − N/4. The connection between Fqq\T

and Fqq\T0 is very important, we study it now.

B2(Fqq\T, γ ) = B2(Fqq\T0 ∪ {a1, a2}, γ ) = B2(Fqq\T0, γ )

+ #{d : aid = γ , d ∈ Fqq\T0, i = 1, 2} + #{(a1, a2) : a1a2 = γ }.

If γ = a3, then #{(a1, a2) : a1a2 = γ } = 1, #{d : aid = γ , d ∈ Fqq\T0, i = 1, 2} = 0, and
B2(Fqq\T0, a3) = 0. Further, B2(T, a3) = n − N/4 + 1. If γ 	= a3, we have #{(a1, a2) : a1a2 =
γ } = 0. Let δ = #{d : aid = γ , d ∈ Fqq\T0, i = 1, 2}, then

B2(T, γ ) = B2(Fqq\T0, γ ) + n − N/4 + δ, (A1)

where δ is no more than 1. Otherwise, there exist d1, d2 ∈ Fqq\T0 such that a1d1 = a2d2 = γ .
Then a3 = d1d2 and B2(Fqq\T0, a3) > 0, which contradicts to the condition B2(Fqq\T0, a3) =
0.

When B2(Fqq\T0, γ ) = 0, there are three different cases: (i) δ = 0, that is to say, d1, d2 ∈ T ,
(ii) γ = a3, and (iii) δ = 1, that is, one of d1, d2 is in T , the other is in Fqq\T0. Without loss of
generality, suppose d1 is from T and d2 is from Fqq\T0. It can be written in the form:

#{γ : γ ∈ Hq−1,B2(Fqq\T0, γ ) = 0}
= #{γ : γ ∈ Hq−1, a1d1 = a2d2 = γ ,B2(T, γ ) = n − N/4, d1, d2 ∈ T} + #{a3}

+#{γ : γ ∈ Hq−1, a1d1 = a2d2 = γ ,B2(T, γ ) = n − N/4 + 1, d1 ∈ T, d2 ∈ Fqq\T0}.
(A2)
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For any d2 ∈ Fqq\T0, we can find d1 ∈ T satisfying a1d1 = a2d2 and B2(T, γ ) = n − N/4 + 1.
Then,

#{γ : γ ∈ Hq−1, a1d1 = a2d2 = γ ,B2(T, γ ) = n − N/4 + 1, d1 ∈ Fqq\T0, d2 ∈ T}
= #{di : di ∈ Fqq\T0} = N/2 − (n + 2). (A3)

On the other hand, we have

#{γ : γ ∈ Hq−1,B2(Fqq\T0, γ ) = 0} = N/2 − 1 − ḡ(Fqq\T0). (A4)

By Equations (A2)–(A4),

#{γ : γ ∈ Hq−1, a1d1 = a2d2 = γ ,B2(T, γ ) = n − N/4, d1, d2 ∈ T} = n − ḡ(Fqq\T0).
Then, for k = n − N/4 − 1,

#
2,0C

(n−N/4−1)
2,0 (D) = (n − N/4)(n − ḡ(Fqq\T0)).

When k = n − N/4, by Equation (A3),
#
2,0C

(n−N/4)
2,0 (D) = (n − N/4 + 1)(N/2 − (n + 2) + #{a3})

= (n − N/4 + 1)(N/2 − n − 1).

When k > n − N/4, by Equation (A1), the following equation is obtained.

#
2,0C

(k)
2,0 (D) = k + 1

k + 1 − n + N/4 − δ

#
2C

(k−n+N/4−δ)
2 (Fqq\T0).

�
Proof of Theorem 2:

There are two cases to be considered.
Case 1: If a1 ∈ T0\qSq−1,r, a2 ∈ qSq−1,r and k = n − N/4 − 1, by Lemma 3, γ must be in

Sq−1,r. In this case, the alias set has the form {γ = a1t1 = a2t2, t1, t2 ∈ T}, then t1 ∈
qSq−1,r. Since a2 ∈ qSq−1,r and t2 ∈ Fqq \ T0 also leads to a2t2 ∈ Sq−1,r. However, this
case should be excluded. Moreover,

#{γ : B2(T, γ ) = n − N/4, γ ∈ Sq−1,r} = #{γ : γ = a1t1 ∈ Sq−1,r, t1 ∈ qSq−1,r}
− #{γ : γ = a2t2 ∈ Sq−1,r, t2 ∈ Fqq\T0} − #{a3}

= (N/2 − 2r) − (N/2 − n − 2) − 1 = n − 2r + 1.

When k = n − N/4, by Lemma 5, the result is obvious. If k > n − N/4, γ must be
inHr. The smallest integer n isN/4 − 2r−1 − 2 such that B2(T, γ ) > n − N/4. By
Lemma 3, for k ≥ N/4 − 2r−1 − 2,

#{γ : B2(T, γ ) = k + 1, γ ∈ Hr}
= #{γ : B2(qSq−1,r\{a2}, γ ) + B2(T0\{qSq−1,r, a1}, γ ) = k + 1, γ ∈ Hr}
= #{γ : N/4 − 2r−1 − 1 + B2(T0\{qSq−1,r, a1}, γ ) = k + 1, γ ∈ Hr}.

Denote nγ = B2(T0\{qSq−1,r, a1}, γ ) and k = N/4 − 2r−1 − 2 + v , we can get the
result

#
2,0C

(k)
2,0 (D) = (k + 1)#{γ : γ ∈ Hr, nγ = v}.

Case 2: Suppose a1, a2 are in qSq−1,r, s.t., a3 ∈ Sq−1,r. In the case k = n − N/4 − 1, γ must
be in Sq−1,r and the alias set has the form {γ = a1t1 = a2t2, t1, t2 ∈ T}, then
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#{γ : B2(T0\{a1, a2}, γ ) = n − N/4, γ ∈ Sq−1,r}
= #{γ : γ ∈ Sq−1,r} − #{γ : γ = a1t1 ∈ Sq−1,r, t1 ∈ Fqq\T0}

−#{γ : γ = a2t2 ∈ Sq−1,r, t2 ∈ Fqq\T0} − #{a3}
= (N/2 − 2r) − 2(N/2 − n − 2) − 1
= 2n − N/2 − 2r + 3 < n − 2r + 1 ( f or n + 2 < N/2).

So Case 1 has less GLOC than Case 2. �
Proof of Theorem 5:

By Lemma 7, the GMC design must maximize {−ḡ(T\Sqr), #2C2(T\Sqr)}. Since the
resolution of T\Sqr is at least IV and 2s−2 + 1 < #{T\Sqr} ≤ 2s−1 for some s < r.
{−ḡ(T\Sqr), #2C2(T\Sqr)} is maximized if and only if T\Sqr consists of the last n − (N − 2r)
columns of Frr by Li et al. (2011). Combining Sqr withT\Sqr,T consists of the last n columns of
Hq. According to the above proof, since a1, a2 ∈ Frr\{T\Sqr} satisfying a1a2 ∈ (r − 1)Hr−2, we
have #

1,0C2,0, #1,0C2,1, #1,1C2,0, #2,0C2,0 ofD are maximized. Without loss of generality, let a1 ∈ rHr−2

and a2 ∈ r(r − 1)Fr−2,r−2\{T\Sqr}, then a3 ∈ (r − 1)Hr−2.

Next we will maximize #
2,0C2,1(D). Only if t1 ∈ Sqr, t2 ∈ T\Sqr (or t2 ∈ Sqr, t1 ∈ T\Sqr), the

alias set has the form a1d1 = a2d2 = a3d3 = t1t2, where d1, d2, d3 ∈ T . Then

#
2,0C

(3)
2,1 (D) = #{(t1, t2) : t1 ∈ Sqr, t2 ∈ T\Sqr} = (n − (N − 2r))(N − 2r).

There are three cases of #2,0C2,1(D) for 0 < k < 3.
(i) If d1 ∈ T\Sqr, d2 must be in rHr−2 and d3 must be in Hr−1. Then B2(T\Sqr, a1d1) = 0,

B2(T, a1d1) = B2(Sqr, a1d1) = N/2 − 2r.
(ii) If d2 ∈ T\Sqr, d1 must be in rHr−2 and d3 must be in Hr−1. Then B2(T, a2d2) =

B2(T\Sqr, a2d2) + N/2 − 2r.
(iii) If d3 ∈ T\Sqr, d1, d2 must be in Hr−1. Then B2(T\Sqr, a3d3) = 0, B2(T, a3d3) =

B2(Sqr, a3d3) = N/2 − 2r.
All of the above cases are k = 1, so #

2,0C
(2)
2,1 (D) = 0, #2,1C

(1)
2,1 (D) = 0, and

#
2,0C

(1)
2,1 (D) =

∑
i=1,2,3

∑
di∈T\Sqr

B2(T, a1d1)

= 3(n − (N − 2r))(N/2 − 2r) +
∑

d2∈T\Sqr
B2(T\Sqr, a2d2),

#
2,0C

(0)
2,1 (D) = n(n − 1)/2 −

∑
k>0

#
2,0C

(k)
2,1 (D) = constant −

∑
d2∈T\Sqr

B2(T\Sqr, a2d2).

We will minimize
∑

d2∈T\Sqr B2(T\Sqr, a2d2). Let G = T\Sqr and g = #{G} = n − (N −
2r). SinceG consists of the last g columns of Frr, we only need to minimize

∑
d2∈G B2(G, a2d2)

for a2 ∈ r(r − 1)Hr−2\G. There is a simple method to find d2.
First set N1 = 2r−1, then go to P1.
P1: If g ≤ N1/4, let a2 = r(r − 1), by Lemma 1,

∑
d2∈G B2(G, a2d2) = 0. Stop the

computation.
P2: If g > N1/4, B2(G, a2d2) = B2(G\r(r − 1)(r − 2)Hr−3, a2d2) + n0 − 2r−4. Go to P3.
P3: Replace G as G\r(r − 1)(r − 2)Hr−3, g as #{G\r(r − 1)(r − 2)Hr−3} and N1 as N1/2.

Repeat P1 and P2.
The above method shows a2 = r(r − 1) is the best one in any cases. For any a1 ∈ Fr,r−2, it

leads to the isomorphic design, without loss of generality, let a1 = r. �
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Appendix B: GMC 2n41 designs with 16 and 32 runs

Table . GMC 2n41 designs with  runs.

n Columns

#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1

WLP
(A30,A31), . . .

c1, c̄1
c2, c̄2

 (24, 1234, 13), , , , 
(4), (2, 2), (2, 1),

(6), (1, 4, 1),
(6, 6), (11, 1)

(, ), (, )
2, 2
0, 4

 (14, 1234, 23), , , , , 
(5), (1, 4), (2, 0, 1),

(4, 6), (2, 4, 4),

(5, 8, 2), (7, 8)
(, ), (, )

1, 2
0, 5

 A1 , , , , , , 
(6), (0, 6), (2, 0, 0, 1)
(0, 12, 3), (3, 0, 12),
(6, 0, 12), (6, 12)

(0, 3), (3, 8),

(0, 0), (0, 0),

(0, 1)

0, 2
0, 6

 A0, F44\{4}
(7), (0, 0, 3, 4),

(0, 0, 0, 3), (0, 0, 21),
(21), (21), (6, 15)

(0, 9), (7, 0),

(0, 12), (0, 0),

(0, 3)

0, 0
0, 0

 A0 , F44
(8), (03, 8),

(04, 3), (03, 28),

(28), (28), (0, 0, 24)

(0, 12), (14, 0),

(0, 24), (0, 0),

(0, 12), (1, 0)

0, 0
0, 0

 A2 , , F44

(0, 8, 0, 0, 1), (1, 0, 0, 8),

(03, 3), (8, 0, 0, 28),

(8, 12, 0, 8), (0, 24, 0, 0, 3),
(3, 0, 24)

(4, 12), (14, 12),
(8, 24), (0, 24),

(4, 12), (1, 12)

0, 0
0, 0

 A2, 13, 23, F44

(0, 0, 8, 0, 2), (0, 2, 8),

(04, 2, 1), (0, 16, 0, 24, 5),
(13, 8, 8, 16),

(0, 0, 24, 0, 6), (2, 4, 24)

(8, 13), (18, 24),

(16, 32), (8, 48),

(8, 42), (5, 24)

(0, 8), (0, 0), (0, 1)

0, 0
0, 0

 A0, 3, 13, 23, F44

(03, 8, 3),
(0, 0, 3, 8), (05, 3)

(03, 24, 16, 15),
(15, 0, 12, 28),

(04, 30, 3), (0, 30, 3)

(12, 115), (26, 36),

(28, 48), (24, 84),

(20, 102), (13, 60)

(4, 24), (0, 12)
(0, 3)

0, 0
0, 0

Note: . A0 = (1, 2, 12), A1 = (4, 1234, 123), A2 = (3, 123, 12), F44 = {4, 14, 24, 124, 34, 134, 234, 1234}.
. c1 and c2 are the numbers of clear two-level main effects and fi’s respectively, and c̄1 and c̄2 are the numbers of clear
four-level components and clear fi’s containing four-level components.
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Table . GMC 2n41 designs with  runs.

n Columns

#
1,0C2,0,

#
1,0C2,1,

#
1,1C2,0,

#
2,0C2,0,

#
2,0C2,1,

#
2,1C2,0,

#
2,1C2,1

WLP
(A30,A31), . . .

c1, c̄1
c2, c̄2


A1, 135 ∼ 2345 (10), (4, 6), (2, 0, 0, 1),

(0, 6, 27, 12), (3, 27, 15),
(10, 0, 6, 11, 3), (18, 12)

(0, 3), (16, 19),

(0, 13), (12, 27),
(0, 13), (3, 17),
(0, 3), (0, 1)

4, 2
0, 10


A1, 35 ∼ 2345 (11), (3, 8), (2, 03, 1),

(0, 0, 24, 16, 15), (4, 27, 24),

(11, 0, 0, 16, 3, 3), (17, 16)

(0, 4), (26, 25),
(0, 20), (24, 52),
(0, 28), (13, 46)

(0, 12), (0, 4),

(0, 0), (0, 1)

3, 2
0, 11


A1, 125 ∼ 2345 (12), (2, 10), (2, 04, 1),

(03, 36, 15, 15), (5, 20, 41),
(21, 04, 12, 12), (12, 24)

(0, 5), (38, 34),

(0, 28), (52, 88),

(0, 62), (33, 108)

(0, 28), (4, 24),

(0, 5), (0, 2)

2, 2
0, 12


A1, 25 ∼ 2345 (13), (1, 12), (2, 05, 1),

(05, 60, 18), (6, 6, 66),

(13, 04, 24, 2), (15, 24)

(0, 6), (55, 44),

(0, 40), (96, 144),

(0, 116), (87, 232)
(0, 72), (16, 80),

1, 2
0, 13


A1, 15 ∼ 2345 (14), (0, 14), (2, 06, 1),

(05, 84, 7), (7, 0, 87),
(14, 06, 28), (14, 28)

(0, 7), (77, 56),

(0, 56), (168, 224),

(0, 203), (203, 464)

(0, 168), (56, 224),

(0, 77), (7, 56)

(0, 0), (0, 0), (0, 1)

1, 2
0, 13

Note: . A1 = (5, 12345, 1234), F55 = {5, 15, 25, 125, 35, 45, 145, 245, 1245, 345, 1345, 2345, 12345}.
. {a ∼ b}means all columns from a to b of F55 .
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