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1 Introduction

Models containing a specified set of effects of interest have got great attention by
many researchers. In particular, consider two groups of factors (columns) G1 and G2
in a single array

D = (G1,G2).

Different types of the specified sets to be estimatedhavebeendiscussed in the literature,
for example, four classes of compromise plans (Addelman 1962; Sun 1993), clear
compromise plans (Ke et al. 2005), robust parameter designs (Taguchi 1986; Wu
and Zhu 2003; Yang et al. 2013), robust designs with clear two-factor interactions
(2fi’s) (Tang 2006) and robust designs with partially clear 2fi’s (Lekivetz and Tang
2011), among others. All these plans can be used for estimating all main effects and
a particular set of 2fi’s under certain assumptions. A compromise plan allows the
estimation of all main effects and some specified 2fi’s in Gi × G j , i, j = 1, 2 while
assuming other effects are negligible. Throughout the paper, we useG1×G1 to denote
the set of 2fi’s with both factors in G1 and use G1 ×G2 to denote the set of 2fi’s with
one factor from G1 and the other from G2. Under the weak assumption that all three-
factor and higher order interactions are assumed to be negligible, a clear compromise
plan allows the estimation of all main effects and the specified 2fi’s. If some of the
remaining 2fi’s (not to be estimated) can be assumed negligible, and some of them
are not, then designs containing partially clear 2fi’s can be used (Lekivetz and Tang
2011). In conclusion, for all these cases, the overall strength or resolution of a design
D seems to be a rough description for the confounding structure of a single array.
To overcome this problem, two or three strength can be used in a single array. For
example, a compound orthogonal array (Hedayat and Stufken 1999) can use three
strength t1, t2 and t3 to denote the strength of control factors, noise factors, and the
overall array, respectively.

Recently, Lin (2012) also used more than one resolution to study designs that
potentially important interactions arise only within G1 and G2. Then a design of
variable resolution consisting of groups of factors of higher resolution than the overall
resolution of the design is proposed. For two groups of factors, three resolutions are
considered according to the definition of variable resolution designs in the next section.
However, variable resolution designs in Lin (2012) can not differentiate confounding
structure between groups of factors. Then, a fourth resolution is suggested in designs
of variable resolution, which leads to the definition of generalized variable resolution
designs. By the fourth resolution, it is shown that generalized variable resolution
designs can also be used to investigate interactions between groups of factors.

The paper proceeds as follows. Section 2 introduces the motivation of generalized
variable resolution designs and discusses the conditions for the existence. The relation-
ships between variable resolution designs and generalized variable resolution designs
are also explored in this section. In Sect. 3, the connection with compromise plans,
clear compromise plans, designs containing partially clear 2fi’s will be presented. In
Sect. 4, an application is used to illustrate the proposed designs of generalized variable
resolution. Conclusions will be drawn in Sect. 5.
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Generalized variable resolution designs 875

2 Generalized variable resolution designs

2.1 Motivation

We first give some notation and background. A two-level factorial design of n runs
and m factors is denoted by an n × m matrix D = (di j ) = (d1, . . . , dm) with entries
+1 and −1. Deng and Tang (1999) defined the J -characteristic as follows. For any
k-subset s = {d j1 , . . . , d jk } of D, J (s) = J (d j1 , . . . , d jk ) = ∣

∣
∑n

i=1 di j1 · · · di jk
∣
∣,

where 1 ≤ j1 < · · · < jk ≤ m and k ≤ m. Let r be the smallest integer such that
max|s|=r J (s) > 0, where |s| = r means the number of columns in the subset s. Then
the generalized resolution of D is defined to be

R(D) = r +
(

1 − max|s|=r

J (s)

n

)

.

Note that r = �R(D)�, where �R� denotes the largest integer not exceeding R. Then
design D is of resolution r if and only if J (d j1 , . . . , d jk ) = 0 for all 1 ≤ j1 < · · · <
jk ≤ m and k ≤ r − 1. Following Lin (2012), we use D(n,m, r) to represent a two-
level design of n runs, m factors and resolution r . Since Lin (2012) considered the
situation that potentially significant interactions arise only within groups of factors,
it leads to designs consisting groups of factors with higher resolution than the overall
resolution of the design. We now give the definition of designs of variable resolution
when D is divided into two groups of factors G1 and G2.

Definition 2.1 A design D(n,m, r) is said to be a design of variable resolution D(n,
(m1,m2), (r1, r2), r) if its columns can be divided into two groups with the i th group
Gi being a D(n,mi , ri ) that satisfies (i) r < r1 ≤ m1 + 1; and (ii) either r < r2 ≤
m2 + 1 or r2 = r .

Example 2.1 Lin (2012) used three resolutions in a single array to reflect the resolu-
tions of G1,G2 and D, respectively. Consider the following two designs

(i) D1 = (G11,G12) with G11 = (1, 4, 5, 1245), G12 = (2, 123, 1235) and
(ii) D2 = (G21,G22) with G21 = (1, 4, 5, 1245) and G22 = (2, 3, 23),

where the numbers 1, 2, 3, 4, 5 in Gi j denote the five independent columns of designs
of 32 runs. According to Lin (2012), D1 is a D(32, (4, 3), (5, 4), 3) and D2 is a
D(32, (4, 3), (5, 3), 3). Hence D1 is superior to D2 in terms of variable resolution.

However, the confounding structure between groups of factors of D1 and D2 is quite
different. For D2, it can be verified that (i) any set of three columns with two columns
from G21 and one column from G22 has resolution 4; (ii) any set of three columns
with one column from G21 and two columns from G22 has resolution 4; (iii) any set of
four columns with two columns from G21 and two columns from G22 has resolution
5; and (iv) any set of four columns with three columns from G21 and one column from
G22 has resolution 5. Hence, any set of six columns with four columns from G21 and
two columns fromG22 has resolution 5. Note that this property cannot be found in D1.
For D1, the main effect {5} in G11 is aliased with the 2fi of {123} and {1235} in G12.
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876 J.-G. Lin et al.

That is, D1 and D2 have different confounding structures between groups of factors,
which leads to the following definition of generalized variable resolution designs.

Definition 2.2 A design D = (G1,G2) = D(n,m, r) is said to be a design of
generalized variable resolution D(n, (m1,m2), (r1, r2)r3 , r) if

(i) G1 is a D(n,m1, r1);
(ii) G2 is a D(n,m2, r2); and
(iii) Any (G ′

1,G
′
2) has resolution at least r3 for G ′

i ⊆ Gi and |G ′
i | = ri − 1, where

|G ′
i | means the number of columns in G ′

i .

Remark 2.1 From Definition 2.2, there are four resolutions in a design of general-
ized variable resolution. Resolutions r1 and r2 describe the confounding information
within groups of factors G1 and G2, resolution r3 describes the confounding of fac-
tors between G1 and G2 and resolution r is the overall resolution of the design.
Note that design D1 in Example 2.1 is a D(n, (4, 3), (5, 4)3, 3) and design D2 is a
D(n, (4, 3), (5, 3)5, 3). Thus, D2 is superior to D1 in terms of r3.

The following lemma from Tang (2006) is useful for later development.

Lemma 2.1 We have that J (a1 ⊗ b1, . . . , ak ⊗ bk) = J (a1, . . . , ak)J (b1, . . . , bk),
where ai = (a1i , . . . , an1i )

T , b j = (b1 j , . . . , bn2 j )
T and a⊗b denotes the Kronecker

product of a and b.

2.2 Connection with variable resolution designs

We now give a relationship between variable resolution designs and their generalized
version.

Proposition 2.1 A generalized variable resolution design D(n, (m1,m2),

(r1, r2)r3 , r) is a design of variable resolution D(n, (m1,m2), (r1, r2), r0), where
r0 = min{r1, r2, r3}.

Since r0 = min{r1, r2, r3}, it can be easily verified that J (d j1 , . . . , d jk ) = 0 for all
j1, . . . , jk such that 1 ≤ j1 < · · · < jk ≤ m and k ≤ r0 − 1.

Remark 2.2 Compared with the variable resolution design in Lin (2012), the gen-
eralized variable resolution design considers one more resolution between groups of
factors, hence contains more information. From now on, we omit the overall resolution
r and denote a generalized variable resolution design by D(n, (m1,m2), (r1, r2)r3).
In Example 2.1, the design D1 is D(n, (4, 3), (5, 4)3), and the design D2 is
D(n, (4, 3), (5, 3)5).

2.3 Existence of generalized variable resolution designs

For two groups of factors G1 = (a1, . . . , am1) and G2 = (b1, . . . , bm2), vari-
ous designs of generalized variable resolution can be obtained from Definition 2.2,
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Generalized variable resolution designs 877

such as D(n, (m1,m2), (3, 3)5), D(n, (m1,m2), (4, 4)5), D(n, (m1,m2), (5, 3)5),
D(n, (m1,m2), (5, 3)7), and so on. We now give a general condition for the exis-
tence of generalized variable resolution designs.

Proposition 2.2 There exist generalized variable resolution designs D(n, (m1,m2),
(r1, r2)r3) if and only if r3 ≤ r1 + r2 − 1.

Proof We first prove that there do not exist generalized variable resolution designs
D(n, (m1, m2), (r1, r2)r3) with r3 ≥ r1 + r2. Otherwise according to the definition
of generalized variable resolution designs, the resolution of G1 is at least r∗

1 = r3 −
(r2 − 1) ≥ r1 + 1 by noting that J (a j1 , . . . , a jk ) = 0 for all 1 ≤ j1 < · · · < jk ≤ m1
and k ≤ r3 − (r2 − 1) = r∗

1 . Similar conclusion can be obtained for G2. It makes
contradiction that Gi is D(n,mi , ri ). Hence, we only need to consider generalized
variable resolution (r1, r2)r3 with r3 ≤ r1 + r2 − 1. This also explains why we only
considered |G ′

i | = ri − 1 in condition (iii) of Definition 2.2.
ByDefinition 2.2, a D(n, (m1,m2), (r1, r2)r13

)must be a D(n, (m1,m2), (r1, r2)r23
)

if t13 ≥ t23 . Thus, we need only to consider D(n, (m1,m2), (r1, r2)r3) with r3 =
r1 + r2 − 1, which will be constructed below. The construction method of cross
array in robust parameter designs (Taguchi 1986; Tang 2006) can be generalized to
construct D(n, (m1,m2), (r1, r2)r3)with r3 = r1+r2−1. Let Ln1 = (c1, . . . , cm1) be
a D(n1,m1, r1) and Ln2 = (d1, . . . , dm2) be a D(n2,m2, r2). Consider the following
design

D = (G1,G2) with G1 = Ln1 ⊗ 1n2 and G2 = 1n1 ⊗ Ln2 , (1)

where 1n is a column vector of n × 1 with all elements 1’s. By Lemma 2.1, it can
be verified that J (c j1 ⊗ 1n2 , . . . , c jk ⊗ 1n2 , 1n1 ⊗ dl1 , . . . , 1n1 ⊗ dlg ) = 0 for all
j1, . . . , jk, l1, . . . , lg such that 1 ≤ j1 < · · · < jk ≤ m1, 1 ≤ l1 < · · · < lg ≤ m2
and k ≤ r1 − 1, g ≤ r2 − 1. Thus r3 = r1 + r2 − 1. This completes the proof.

Example 2.2 Let Ln1 and Ln2 be obtained from two Hadamard matrices of orders
n1 and n2 by deleting the first column of all unities, respectively. Then the design D
constructed in (1) is a D(n1n2, (n1 − 1, n2 − 1), (3, 3)5).

3 Connection with compromise plans

We give a brief introduction for compromise plans, clear compromise plans and robust
designs through partially clear 2fi’s. A compromise plan allows estimation of all main
effects and some specified 2fi’s, assuming that all other effects are negligible. There
are four classes of compromise plans (Addelman 1962; Sun 1993). For D = (G1,G2),
let G1 × G1 denote the set of 2fi’s within G1 and G1 × G2 denote the set of 2fi’s
between G1 and G2 as before. Thus the set of 2fi’s to be estimated in compromise
plans of classes one to four are given by: (1) G1 × G1; (2) G1 × G1 and G2 × G2;
(3) G1 × G1 and G1 × G2; (4) G1 × G2. For some applications, the assumption that
all other 2fi’s are negligible in compromise plans may be too strong. Then, Ke et al.
(2005) proposed clear compromise plans with resolution IV, where the specified 2fi’s
are clear. An effect is said to be clear if it is orthogonal to all main effects and all other
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2fi’s. If it is orthogonal to all main effects, but aliased with some 2fi’s, then it is said
to be eligible. For more details, please refer to Chen and Hedayat (1998), Tang et al.
(2002), Ai and He (2006), Ai and Zhang (2004), Yang et al. (2006), Zhao and Zhang
(2008, 2010), Zhao et al. (2013) and Zi et al. (2007). More explicitly, Lekivetz and
Tang (2011) divided all 2fi’s into three mutually exclusive and exhaustive sets, S1, S2
and S3, where S1 denotes the set of 2fi’s to be estimated, S2 the set of nonnegligible
2fi’s and S3 the set of negligible 2fi’s. Three types of designs containing partially clear
2fi’s are given by:

(1) S1 = G1 × G1, S2 = G1 × G2, S3 = G2 × G2;
(2) S1 = G1 × G1, S2 = G2 × G2, S3 = G1 × G2;
(3) S1 = G1 × G2, S2 = G1 × G1, S3 = G2 × G2.

We now derive some relationships between generalized variable resolution designs
D(n, (m1, m2), (r1, r2)r3) and compromise plans, clear compromise plans and robust
designs through partially clear 2fi’s.

3.1 Connection with compromise plans of class one

Proposition 3.1 (i) A D(n, (m1,m2), (5, 3)4) is a compromise plan of class one. (ii)
A D(n, (m1,m2), (5, 3)5) is a clear compromise plan of class one.

By definition of generalized variable resolution design D(n, (m1,m2), (5, 3)4), it
can be verified that J (ai1 , ai2 , b j1) = 0 for any ai1 , ai2 in G1 and b j1 in G2. We note
that a compromise plan of class one is not necessarily a D(n, (m1,m2), (5, 3)4) since
J (ai , b j1 , b j2) = 0 cannot be guaranteed for a compromise plan of class one. Part (ii)
can be obtained similarly.

Remark 3.1 Proposition 3.1 indicates that a D(n, (m1,m2), (5, 3)5) is a clear com-
promise plan of class one. Then a lower bound of the number of clear 2fi’s in a
D(n, (m1,m2), (5, 3)5) is m1(m1 − 1)/2.

For the existence of generalized variable resolution designs, an interesting problem
is to consider the maximum values ofm1,m2, orm for given run size n and resolutions
(r1, r2)r3 . Let D be a regular 2m−p design, k = m − p and m = m1 + m2. For the
upper bound of m, we have the following proposition.

Proposition 3.2 If D is a D(n, (m1,m2), (5, 3)5), then m ≤ 2k−2 + 1.

Proof We first note that m ≤ 2k−2 + 2 for r3 = 5 (See Lemma 2 of Lekivetz and
Tang (2011)). Next, it can be proved that there is no such design with m = 2k−2 + 2.
By Definition 2.2, all main effects and 2fi’s in G1 × G1 and G1 × G2 are mutually
orthogonal, which implies m + m1(m1 − 1)/2 + m1m2 ≤ 2k − 1. Let f (m1) =
m2

1 − (2m − 1)m1 + 2k+1 − 2m − 2. We have f ′(m1) = 2m1 − (2m − 1) < 0. Note
that, form = 2k−2 +2, we have f (2) = 2k−1 −8 ≥ 0 for k ≥ 4 and f (3) = −6 < 0.
Hence, m1 ≤ 2 for f (m1) ≥ 0.

For m1 = 2, then m2 = 2k−2 + 2 − 2 = 2k−2. Let G1 = (a1, a2) and G2 =
(b1, . . . , bm2). Since D = (G1,G2) is a D(n, (m1,m2), (5, 3)5), then

J (a1, a2) = J (bi , b j ) = 0(1 ≤ i, j ≤ m2),
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Table 1 Upper bounds of m1 for D(2k , (m1,m2), (5, 3)5)

k 4 5 6 7 8

Upper bounds of m1 2 4 6 9 15

J (a1, a2, b j ) = 0(1 ≤ j ≤ m2),

J (ai , b j1 , b j2) = 0(1 ≤ j1, j2 ≤ m2),

J (a1, a2, b j1 , b j2) = 0(1 ≤ j1, j2 ≤ m2).

Thus the following effects a1, a2, b1, . . . , bm2 , a1b1, . . . , a1bm2 , a2b1, . . . , a2bm2 ,
a1a2b1, . . ., a1a2bm2 are mutually orthogonal. Therefore, we have that (2k−2 + 2) +
3 × 2k−2 = 2k + 2 > 2k − 1. It makes a contradiction.

For the upper bound ofm1 in D(n, (m1,m2), (5, 3)5), we have the following result.

Proposition 3.3 If D is a D(n, (m1,m2), (5, 3)5) and m2 ≥ 3, then

m1 ≤ min
{

�(
√

2k+3 + 17 − 7)/2�,M(k) − 2
}

, (2)

where �x� means the largest integer not exceeding x and M(k) is the maximum value
of m for a 2m−p design with resolution at least 5.

Proof By the definition of generalized variable resolution designs D(n, (m1,m2),

(5, 3)5), all the main effects, 2fi’s ai1ai2 , i1, i2 = 1, . . . ,m1, and 2fi’s aib j , i =
1, . . . ,m1, j = 1, . . . ,m2, are mutually orthogonal. Hence, we have m1 + m2 +
m1(m1 − 1)/2 + m1m2 ≤ 2k − 1. Solving for m2, we have m2 ≤ (2k − 1)/(m1 +
1) − m1/2. Note that m2 ≥ 3, then m2

1 + 7m1 − 2k+1 + 8 ≤ 0, which leads to the
conclusion m1 ≤ �(√2k+3 + 17 − 7)/2�.

On the other hand, it is easy to see that (G1, bi , b j ) is a design of resolution V,
where bi and b j are any two distinct columns from G2. Hence, m1 + 2 ≤ M(k). This
completes the proof.

Table 1 gives the performance of the upper bound (2) of m1. For k = 4, 5, 6, 7 and
8, the value of M(k) is 5, 6, 8, 11, 17, and the upper bounds of m1 is 2, 4, 6, 9, 15,
respectively. Note that a D(n, (m1,m2), (5, 3)5) is not necessarily a resolution V plan.
So it is expected that the number of columns of a D(n, (m1,m2), (5, 3)5) can be larger
than M(k).

We now give some constructions of D(2k, (m1,m2), (5, 3)5) for k = 6, 7 and 8.
Let Hk be a saturated design with 2k − 1 columns by taking all the products of the
k independent columns. Similarly, let Hj be the subset of Hk generated by any j
independent columns, Hk− j be the subset of Hk generated by the remaining k − j
independent columns and HV

j be a resolution V plan in Hj .

For k = 6, let D = HV
3 ∪ H6−3, hence m1 = 3,m2 = 7 and m = 10 > M(6).

For k = 7, both the numbers of columns of the following two designs D1 and
D2 are larger than M(7). (i) Let D1 = HV

3 ∪ H7−3, hence m1 = 3,m2 = 15 and
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880 J.-G. Lin et al.

m = 18 > M(7). (ii) Let D2 = HV
4 ∪ H7−4. We have m1 = M(4) = 5,m2 = 7 and

m = 12 > M(7).
For k = 8, there also exist designs with the numbers of columns larger than M(8).

(i) Let D1 = HV
3 ∪ H8−3, hence m1 = 3,m2 = 31 and m = 34 > M(8). (ii) Let

D2 = HV
4 ∪ H8−4, hence m1 = M(4) = 5,m2 = 15 and m = 20 > M(8).

3.2 Connection with compromise plans of class three

Note that a clear compromise design of class two is equivalent to a D(n, (m1,m2),

(5, 5)5), so there exists no clear compromise plan of class two with r ≤ 4. The same
point is also illustrated by Ke et al. (2005). For compromise plans of class three, we
have the following proposition.

Proposition 3.4 A D(n, (m1,m2), (5, 4)5) is a clear compromise plan of class three.

Proof By Definition 2.2, it can be verified that

J (ai1 , ai2 , b j1) = J (ai1 , b j1 , b j2) = J (ai1 , ai2 , ai3 , ai4) = 0,

J (ai1 , ai2 , ai3 , b j1) = J (ai1 , ai2 , b j1 , b j2) = J (ai1 , b j1 , b j2 , b j3) = 0,

for any ai1 , ai2 , ai3 , ai4 in G1 and b j1 , b j2 , b j3 in G2. Hence, D(n, (m1,m2), (5, 4)5)
is a clear compromise plan of class three.

The method of Construction 3 in Tang (2006) can be used to construct
D(n, (m1,m2), (5, 4)5). Let G1 = (a1, . . . , am1) be a D(n1,m1, 5) and G2 =
(b1, . . . , bm2) be a D(n2,m2, 3). Consider the design

D = (c1, . . . , cm1 , d1, . . . , dm2), (3)

where ci = ai ⊗ 1n2 , d j = (a1a2) ⊗ b j . Then D is a D(n1n2, (m1,m2), (5, 4)5).

Example 3.1 Let G1 be a two-level design with 16 runs and 5 columns of resolution
V and G2 be a D(n2, n2 − 1, 3) obtained from a Hadamard matrix of order n2. Then
the design D constructed in (3) is a D(16n2, (5, n2 − 1), (5, 4)5).

Remark 3.2 By Proposition 3.4, a lower bound of the number of clear 2fi’s in a
D(n, (m1,m2), (5, 4)5) is m1(m1 + 2m2 − 1)/2.

3.3 Connection with compromise plans of class four

Proposition 3.5 A D(n, (m1,m2), (3, 3)5) is a compromise plan of class four.

By Definition 2.2, it can be verified that J (ai , b j1 , b j2) = J (ai1 , ai2 , b j1) =
J (ai1 , ai2 , b j1 , b j2) = 0 for any ai1 , ai2 in G1 and b j1 , b j2 in G2. Hence, all main
effects and 2fi’s aib j are distinct.

If we let Ln1 = (c1, . . . , cm1) and Ln2 = (d1, . . . , dm2) be D(n1,m1, 3) and
D(n2,m2, 3), respectively, then the design D in construction (1) is a D(n, (m1,m2),
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Generalized variable resolution designs 881

(3, 3)5). It can also be constructed by the method in Sect. 3.1. Let Hj and Hk− j be
defined as before. Consider

Dj = Hj ∪ Hk− j . (4)

It is easy to see that Dj is a D(n, (m1,m2), (3, 3)5), where m1 = 2 j − 1 and m2 =
2k− j − 1. All 2fi’s in Hj × Hk− j are clear. Note that construction (4) is used only for
regular designs and construction (1) can also be used for nonregular ones.

Remark 3.3 We now give some discussion for the upper bounds ofm1 andm for given
k. By the definition of generalized variable resolution designs D(n, (m1,m2), (3, 3)5),
all the main effects, 2fi’s aib j for any ai in G1 and any b j in G2, are mutually
orthogonal. Hence, we have m1 + m2 + m1m2 ≤ 2k − 1. Solving for m2, we have

m2 ≤ 2k−1−m1
1+m1

. Note that m2 ≥ 3, then m1 ≤ 2k−2 − 1. For the number of columns

in D, it can be shown that a D(n, (m1,m2), (3, 3)5) satisfies m ≤ 2k−2 + 2 (see the
appendix of Lekivetz and Tang (2011)). Hence, the design D2 constructed by (4) has
the maximum number of clear 2fi’s in D(n, (m1,m2), (3, 3)5)’s.

For clear compromise plans of class four, we have

Proposition 3.6 A D(n, (m1,m2), (4, 4)5) is a clear compromise plan of class four.

It can be verified that J (ai1 , ai2 , b j1) = J (ai1 , b j1 , b j2) = 0 and J (ai1 , ai2 , ai3 , b j2)

= J (ai1 , b j1 , b j2 , b j3) = J (ai1 , ai2 , b j1 , b j2) = 0 for any ai1 , ai2 , ai3 in G1 and
b j1 , b j2 , b j3 in G2.

A method modified from Tang (2006) can be used to construct D(n, (m1,m2),

(4, 4)5). Let G1 = (a1, . . . , am1) be a D(n1,m1, 3) and G2 = (b1, . . . , bm2) be a
D(n2,m2, 3). Consider the design

D = (c2, . . . , cm1 , d2, . . . , dm2), (5)

where ci = ai ⊗ b1, d j = a1 ⊗ b j . Then the design D is a D(n1n2, (m1 − 1,m2 −
1), (4, 4)5).

Example 3.2 Let G1 and G2 be D(n1, n1 − 1, 3) and D(n2, n2 − 1, 3) obtained from
two Hadamard matrices of orders n1 and n2, respectively. Then the design D con-
structed in (5) is a D(n1n2, (n1 − 1, n2 − 1), (4, 4)5).

3.4 Connection with partially clear 2fi’s plans

Proposition 3.7 A D(n, (m1,m2), (4, 3)5) is a partially clear 2fi’s plan of type three.

Proof By Definition 2.2, it can be verified that

J (ai1 , ai2 , ai3) = J (ai1 , ai2 , b j1) = J (ai1 , b j1 , b j2) = 0,

J (ai1 , ai2 , ai3 , b j1) = J (ai1 , ai2 , b j1 , b j2) = 0,

for any ai1 , ai2 , ai3 in G1 and b j1 , b j2 in G2. Hence, it is a partially clear 2fi’s plan of
type three.
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Remark 3.4 Note that a D(n, (m1,m2), (5, 3)5) can be a partially clear 2fi’s plan
of type one or two. However, a partially clear 2fi’s plan of type one or two is not
necessarily a D(n, (m1,m2), (5, 3)5), since a partially clear 2fi’s plan of type one or
two only satisfies two of the following three conditions: (i) J (ai1 , ai2 , ai3 , ai4) = 0;
(ii) J (ai1 , ai2 , ai3 , b j1) = 0; (iii) J (ai1 , ai2 , b j1 , b j2) = 0 for any ai1 , ai2 , ai3 , ai4 in
G1 and b j1 , b j2 in G2.

4 An application in robust parameter designs

In robust parameter designs,WuandHamada (2009) arranged the importance of effects
according to the effect ordering principle in the following descending order:

(i) control-by-noise interactions, control main effects, and noise main effects;
(ii) control-by-control interactions and control-by-control-by-noise interactions;
(iii) noise-by-noise interactions.

If all the effects in (i) and (ii) need to be estimated by experimenter while assum-
ing other effects negligible, a D(n, (m1,m2), (5, 3)7) is a natural choice. From
Table 2, all main effects, control-by-noise interactions, control-by-control interac-
tions and control-by-control-by-noise interactions are distinct. Such a design can be
constructed by (1) in Proposition 2.2. Let Ln1 = (c1, . . . , cm1) be a D(n1,m1, 5) and
Ln2 = (d1, . . . , dm2) be a D(n2,m2, 3). Then the following design

D = (G1,G2) with G1 = Ln1 ⊗ 1n2 and G2 = 1n1 ⊗ Ln2 ,

is a D(n, (m1,m2), (5, 3)7).
Some useful relationships between clear effects, eligible effects and generalized

variable resolution designs are summarized below. To save space, D(n, (m1,m2),

Table 2 Connection with robust parameter designs

G1 G2 G1 × G1 G1 × G2 G2 × G2 G1 × G1 × G2

(3, 3)3 ◦ ◦
(3, 3)4 ◦ ◦ ◦
(4, 3)4 • ◦ ◦ ◦
(4, 4)4 • • ◦ ◦ ◦
(3, 3)5 ◦ ◦ ◦/•
(4, 3)5 • ◦ ◦ ◦/•
(4, 4)5 • • ◦ • ◦
(5, 3)5 • ◦ • ◦/•
(5, 4)5 • • • • ◦
(5, 5)5 • • • • •
(5, 3)7 • ◦ • • •
(5, 4)7 • • • • ◦ •
(5, 5)7 • • • • • •
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(r1, r2)r3) is denoted by (r1, r2)r3 , clear effect is denoted by “•” and eligible effect is
denoted by “◦”. Notation “◦/•” means both effects are available.

Table 2 shows different generalized variable resolution designs can be used for
different purposes of experimenters. For instance, the sets G1,G2 and G1 × G2 in a
generalized variable resolution designs (3, 3)4 are denoted by ◦, which shows all main
effects and two-factor interactions in G1 × G2 are eligible.

5 Conclusion and discussion

In this paper, designs of variable resolution have been generalized to a more flexible
version, designs of generalized variable resolution. It can be seen that the general-
ized variable resolution designs can also be used to estimate the interactions between
groups of factors. The conditions for the existence of generalized variable resolution
designs were discussed. Some connections between compromise plans and general-
ized variable resolution designs were also studied. The upper bounds ofm1 for designs
D(n, (m1,m2), (5, 3)5) have also been obtained. By the relationships between gen-
eralized variable resolution designs and clear compromise plans, the lower bounds of
the number of clear 2fi’s in some special generalized variable resolution designs can
be obtained.

The construction method of D(n, (m1,m2), (5, 3)5) and D(n, (m1,m2), (3, 3)5)
can be generalized for the general case D(n, (m1,m2), (r1, r2)r3). Let Hr1

j be a

D(n,m1, r1) in Hj and Hr2
k− j be a D(n,m2, r2) in Hk− j . Then it can be verified

that the following design

D = Hr1
j ∪ Hr2

k− j

is a D(n, (m1,m2), (r1, r2)r3).
From a practical standpoint, the design of generalized variable resolution is appeal-

ing because prior information canbeused to different parts of the design D = (G1,G2)

directly. If two-factor interactions in G1 × G1 and G2 × G2 are assumed to be neg-
ligible, then a D(n, (m1,m2), (3, 3)5) can be used for the estimation of both main
effects and two-factor interaction in G1 × G2. Otherwise, a D(n, (m1,m2), (3, 3)4)
may be used for the estimation of all main effects regardless of interactions in
G1 × G2. From Table 2, various designs of generalized variable resolution can
be used for different requirement of experimenters. In this paper, some construc-
tion methods for regular D(n, (m1,m2), (r1, r2)r3) are provided. However, more
constructions are still needed, especially for nonregular plans. Such work is under
progress.
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