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Nonparametric or distribution-free charts are useful in statistical process control when there is a lack of

or limited knowledge about the underlying process distribution. Most existing approaches in the literature

are for monitoring location parameters. They may not be effective with a change of distribution over time

in many applications. This paper develops a new distribution-free control chart based on the integration

of a powerful nonparametric goodness-of-fit test and the exponentially weighted moving-average (EWMA)

control scheme. Benefiting from certain good properties of the test and the proposed charting statistic,

our proposed control chart is fast in computation, convenient to use, and efficient in detecting potential

shifts in location, scale, and shape. Thus, it offers robust protection against variation in various underlying

distributions. Numerical studies and a real-data example show that the proposed approaches would be quite

effective in industrial applications, particularly in start-up and short-run situations.

Key Words: Anderson-Darling Test; Change Point; Goodness of Fit; Self-Starting; Statistical Process Con-
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S
TATISTICAL process control (SPC) has been widely
used to monitor various industrial processes.

Most SPC applications assume that the quality of a
process can be adequately represented by the distri-
bution of a quality characteristic and the in-control
(IC) and out-of-control (OC) distributions are the
same with only differing parameters. While para-
metric methods are useful in certain applications,
questions will always arise about the adequacy of
those distributional assumptions and about the po-
tential impact of misspecifications of distributions on
charting performance. For example, univariate pro-
cess data are often assumed to have normal distri-
butions, although it is well recognized that, in many
applications, particularly in start-up situations, the
underlying process distribution is unknown and not
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normal, so that statistical properties of commonly
used charts, designed to perform best under the
normal distribution, could potentially be (highly)
affected. Nonparametric or distribution-free charts
are particularly useful in such situations. A chart
is called distribution-free or nonparametric if its IC
run-length distribution is the same for every contin-
uous distribution (c.f., Chakraborti et al. (2001)).

In the last several years, nonparametric con-
trol charts have attracted much attention from
researchers. Among others, for example, Bakir
and Reynolds (1979) proposed a cumulative sum
(CUSUM) chart for group observations based on
the Wilcoxon signed-rank statistic. McDonald (1990)
considered a CUSUM procedure for individual ob-
servations based on the statistics called “sequential
ranks”. An exponentially weighted moving-average
(EWMA) chart for individual observations proposed
by Hackl and Ledolter (1991) is constructed by
the “standardized ranks” of observations, which is
determined by IC distributions. If the distribu-
tion is not available, they recommended using the
ranks in collected reference data instead. The non-
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parametric charts considered by Chakraborti et al.
(2004, 2009) are based on the precedence test. Re-
cently, a Shewhart-type chart and a scheme using
change-point formulation based on the well-known
Mann–Whitney test statistic were investigated by
Chakraborti and Van de Wiel (2008) and Zhou et al.
(2009), respectively. Hawkins and Deng (2010) con-
sidered a similar framework to that of Zhou et al.
(2009) but focused on a direct nonparametric parallel
of Hawkins et al. (2003) with modest computational
needs. Jones et al. (2009) developed a rank-based
distribution-free Phase I control scheme for sub-
group location. Other developments include Albers
and Kallenberg (2004) and Bakir (2004, 2006). A
nice overview on the topic of univariate nonparamet-
ric control charts was presented by Chakraborti et al.
(2001). In addition, nonparametric control charts in
multivariate cases have been discussed by Liu (1995),
Qiu and Hawkins (2001), and Qiu (2008).

Most of the approaches mentioned above focus on
detecting shifts in location parameters (mean, me-
dian, or some percentiles of the distribution). Al-
though the problem of monitoring the center or the
location of a process is important in many applica-
tions, on-line monitoring of the change in an entire
distribution is highly desirable because other distri-
bution characteristics, such as the scale and shape,
are also important quality indicators. For example,
an increase in the variation usually corresponds to
the process deterioration, which requires timely and
proper preventive measures taken by practitioners.
The problem of simultaneously monitoring the mean
and variance has received attention in the literature
on parametric control charts, e.g., see Chen et al.
(2001), Hawkins and Zamba (2005), and the refer-
ences therein.

In this paper, we study the Phase II method for
nonparametrically monitoring distributional change.
To be specific, we assume that there are m0 indepen-
dent and identically distributed (i.i.d.) historical (ref-
erence) observations X−m0+1, . . . , X0, and the tth fu-
ture observation, Xt, collected over time, comes from
the following change-point model:

Xt
i.i.d∼

{
F0(x), for t = −m0 + 1, . . . , 0, 1, . . . , τ ,
F1(x), for t = τ + 1, . . .,

(1)
where τ is the unknown change point and F0 �= F1

are the unknown IC and OC distribution functions.
This is related to the goodness-of-fit (GOF) test
problem in the nonparametric statistical inference
context. The well-known tests include Kolmogorov–

Smirnov, Anderson–Darling, and Cramér-von Mises
test statistics (see Conover (1999) for an overview
and references). Zhang (2002, 2006) proposed a new
approach of parameterization to construct a general
GOF test based on the nonparametric likelihood ra-
tio. It not only generates the foregoing traditional
tests but also produces new types of omnibus tests
that are generally much more powerful than the old
ones. We are interested in tackling the monitoring
problem in Equation (1) using the nonparametric
likelihood-ratio approach.

In this paper, we propose a new distribution-
free control chart by adapting Zhang’s (2002) test-
ing approach to repeated sequential use. The pro-
posed chart incorporates the exponential weights
used in the EWMA scheme at different time points
into the empirical distribution function of the col-
lected observation over time and updates the un-
known IC distribution estimation along with new
observations, which serve the self-starting purpose.
Simulation studies show that the proposed approach
not only has at least comparable ability to detect
shifts in location as the conventional schemes in the
literature, but it is also superior to other nonpara-
metric schemes in monitoring changes in scale in
terms of average run length (ARL). As it avoids the
need for a lengthy data-gathering step before chart-
ing (although it is generally necessary and advisable
to collect a few preliminary stable observations by a
Phase I analysis) and it does not require knowledge
of the underlying distribution, the proposed control
chart is particularly useful in start-up or short-run
situations. A real-data example from manufacturing
shows that it performs quite well in applications.

A New Distribution-Free
Control Chart

In this section, a new nonparametric EWMA con-
trol chart combined with Zhang’s (2002) GOF test
is derived. Its determination of control limits and
practical guidelines regarding design and computa-
tional issues are addressed in a latter section. Re-
call the model (1) and associated notation. Next,
we elaborate on the individual observation model.
The extension to the group case will be presented
later. To facilitate the derivation of the proposed
charting statistic, we start by supposing the F0(x)
is known and we let X1, . . . , Xn be a fixed random
sample from X, which is a continuous random vari-
able with the distribution function F (x). We want
to test the null hypothesis H0 that F (x) = F0(x) for
all x ∈ (−∞,∞) against H1 that F (x) �= F0(x) for
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some x ∈ (−∞,∞). Testing H0 against H1 is equiv-
alent to testing H0u that F (u) = F0(u) against H1u

that F (u) �= F0(u) for every u ∈ (−∞,∞).

Zhang (2002) introduced a parameterization ap-
proach to establish powerful GOF tests based on
the following log-likelihood ratio (c.f., Einmahl and
McKeague (2003) and the references therein)

Gu = n

{
Fn(u) ln

(
Fn(u)
F0(u)

)
+ [1 − Fn(u)] ln

(
1 − Fn(u)
1 − F0(u)

) }
, (2)

where the original sample is regarded as a bi-
nary sample with Fn(u) probability of success
and Fn(u) is the empirical distribution function
(e.d.f.) of the sample {X1, . . . , Xn}, say Fn(u) =
n−1

∑n
j=1 I{Xj≤u}, where I{·} is the indicator func-

tion. Then some powerful test statistics can be pro-
duced based on this log-likelihood ratio. Note that
this ratio is only evaluated at a single point u but, as
mentioned before, we are testing F (u) = F0(u) for
every u ∈ (−∞,∞). An intuitive way is to combine
all of the log-likelihood ratios evaluated at the obser-
vations Xi, i = 1, . . . , n, by incorporating an appro-
priate weight (αi) for each Xi, say, Z =

∑n
i=1 αiGXi .

One of most powerful tests introduced by Zhang
(2002) is to use αi = [Fn(Xi)(1− Fn(Xi))]−1, which
leads to

ZA =
n∑

i=1

ωi

{
1

1 − Fn(Xi)
ln

(
Fn(Xi)
F0(Xi)

)
+

1
Fn(Xi)

ln
(

1 − Fn(Xi)
1 − F0(Xi)

) }
, (3)

with ωi = 1 for all i and large values of ZA reject the
null hypothesis. Note that the function [Fn(x)(1 −
Fn(x))]−1 attains its minimum at Fn(x) = 1/2, that
is, when x is the median of the sample. Intuitively
speaking, the more extreme observations (far way
from the median), corresponding to larger values of
αi, are more informative for indicating the viola-
tion of H0 and the weights may be accordingly cho-
sen larger. This test is an analog of the traditional
Anderson–Darling rank test (Anderson (1962)), but
it is much more powerful than the Anderson–Darling
test. In what follows, we focus on this type of test.

A naive method that comes to mind for on-line de-
tection is to use the current individual observation to
construct the ZA (n = 1) test, say, a Shewhart-type
chart. However, this would be very inefficient with
moderate and small changes because it completely

ignores the past observations. As an alternative, we
consider the following weighted empirical distribu-
tion function at any point, u,

F (λ)
n (u) = a−1

λ,n

n∑
j=1

(1 − λ)n−jI{Xj≤u}, (4)

with

aλ,n =
n∑

j=1

(1 − λ)n−j ,

where λ is a weighting parameter commonly used in
the EWMA chart. Note that F

(λ)
n (u) combines the

exponential weighting scheme used in EWMA at dif-
ferent time points by the term (1 − λ)n−j and the
traditional e.d.f. This is analogous to the approach
used in the nonparametric kernel density estimation
where the neighborhoods of objective points have
more weight.

When the tth future observation, Xt, is collected,
in light of F

(λ)
n (u), we propose a new charting statis-

tic, Zt, by replacing Fn(Xi) with F
(λ)
i (Xi) and taking

ωi = λ(1 − λ)t−i in ZA,

Zt =
t∑

i=1

λ(1 − λ)t−i

·
{

1

1 − F
(λ)
i (Xi)

ln

(
F

(λ)
i (Xi)
F0(Xi)

)

+
1

F
(λ)
i (Xi)

ln

(
1 − F

(λ)
i (Xi)

1 − F0(Xi)

)}
,

which is equivalent to the following formulation:

Zt = (1 − λ)Zt−1 + λYt, t = 1, 2, . . . , (5)

where

Yt =
1

1 − F
(λ)
t (Xt)

ln

(
F

(λ)
t (Xt)
F0(Xt)

)

+
1

F
(λ)
t (Xt)

ln

(
1 − F

(λ)
t (Xt)

1 − F0(Xt)

)
and Z0 = 0. Obviously, this test makes use of all
available observations up to the current time point,
t, and different observations are weighted as in an
EWMA chart (i.e., more recent observations have
more weight and the weight changes exponentially
over time). The form of Zt in Equation (5) oper-
ates in a similar way to the conventional parametric
EWMA chart for normal variables (Lucas and Sac-
cucci (1990)). Note that the smoothing parameter λ

is used in both the ωi and the weighted e.d.f. F
(λ)
n

to get rid of certain effects of historical information.
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By setting ωi = λ(1 − λ)t−i, we combine all the Yts
with an exponential weighting strategy because more
recent observations may indicate the change more ac-
curately and easily. Similarly, using F

(λ)
n results in a

more updated estimate of F1 and thus also plays an
important role in Zt. We should emphasize that, un-
like the recursive form in the conventional parametric
EWMA chart, Equation (5) is not recursive because
there is no recursive expression for calculating Yt.
That is, the computational effort of calculating Yt

grows sequentially with time t. The detailed discus-
sion about computational issues is provided in the
next section.

Up to now, we assume that F0(x) is known,
which is equivalent to saying that m0 is suffi-
ciently large. If so, we could directly replace F0(Xt)
in Equation (5) with the e.d.f. F−m0,0(Xt) =
m−1

0

∑0
j=−m0+1 I{Xj≤Xt}. However, when m0 is not

large, there would be considerable uncertainty in the
distribution estimation, which in turn would distort
the IC run-length distribution of the control chart.
Even if the control limit of the chart was adjusted
properly to obtain the desired IC run-length behav-
ior, its OC run length would still be severely com-
promised (cf., Jones (2002)). This is essentially anal-
ogous to the estimated parameters problem in the
context of parametric control charts (see Jensen et
al. (2006) for an overview).

To deal with the situation when a sufficiently large
reference dataset is unavailable, self-starting meth-
ods that handle sequential monitoring by simulta-
neously updating parameter estimates and check-
ing for OC conditions have been developed accord-
ingly (see Hawkins (1987), Quesenberry (1991)).
To this end, using F−m0,t−1(Xt) = (m0 + t −
1)−1

∑t−1
j=−m0+1 I{Xj≤Xt} to replace F0(Xt) in Zt for

t ≥ 1 yields our suggested charting statistics with m0

reference observations,

Z̃t = (1 − λ)Z̃t−1 + λỸt, (6)

with

Ỹt =
1

1 − F
(λ)
t (Xt)

ln

(
F

(λ)
t (Xt)

F−m0,t−1(Xt)

)

+
1

F
(λ)
t (Xt)

ln

(
1 − F

(λ)
t (Xt)

1 − F−m0,t−1(Xt)

)
, (7)

and the corresponding control chart triggers a signal
if

Z̃t > Lt,

where Lt > 0 is a sequence of control limits chosen
to achieve a specific IC run-length distribution.

This chart is referred to as the nonparametric
likelihood-ratio EWMA (NLE) chart hereafter. It is
able to detect both the increase and decrease in loca-
tion, scale, or even in shape parameters (say, “two-
sided” in the parameter). The time-varying control
limits Lts are used because the IC sampling distribu-
tion of Zt converges slowly, especially with small m0.
The probabilities of false alarms from the chart may
increase dramatically after short runs if we use a fixed
control limit. The approach of using dynamic control
limits is originally proposed by Lai (1995) and has
been successfully formalized and utilized by Hawkins
et al. (2003) in the parametric change-point–based
control charts with unknown IC parameters.

Intuitively speaking, Z̃t is nonparametric because
the statistic Ỹt only uses the rank information of Xt’s
but not the magnitudes of Xts. In fact, from the
definition of Z̃t, we can see that up to t ≥ 1, the
IC run-length distribution of the NLE chart is de-
termined by the densities fỸ1

, fỸ2|Ỹ1
, . . . , fỸt|Ỹi,i<t,

where fx|y1,...,yk
denotes the conditional density

of x given y1, . . . , yk. Note that {Ỹ1, . . . , Ỹt} are
determined by the ranks of {X1, . . . , Xt} in the
pooled sample, {X−m0+1, . . . , Xt}, which are free
of the underlying IC process distribution because
X−m0+1, . . . , Xt are i.i.d. distributed from F0. By
deduction, we know that, fỸ1

, fỸ2|Ỹ1
, . . . , fỸt|Ỹi,i<t

are also free of F0(x), which yields the following re-
sult: the NLE chart is distribution-free, i.e., its IC
run-length distribution is the same for all continuous
process distributions. This is particularly useful in
determining the control limits because, for any con-
tinuous process distribution, the Lt’s are the same
for achieving the desired IC run-length distribution.
In other words, the control limits can be chosen in-
dependently of F0 to give a desired run-length distri-
bution.

In practice, it might be more convenient to plot
the normalized statistic, Z̃t/Lt, over t in a control
chart. In such cases, the normalized control limit is a
constant 1. The determination of Lt and several other
issues on implementing the NLE chart are discussed
in the next section.

Design and Implementation of
the Proposed Scheme

Determining Control Limits

Like the analog ZA, the null distribution of the
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proposed charting statistic, Z̃t, is discrete for any
given t. Therefore, theoretically, it can be obtained
by enumerating all possible values of the statis-
tics. This is not feasible unless t and m0 are both
small. Even though we obtain the full distribution
for any given λ, t, and m0, the IC run-length dis-
tribution of the NLE chart is still unknown to us
because it depends on the conditional distribution,
say, fZ̃t|Z̃i,i≤t−1. Similar to Hawkins et al. (2003) and
Zhou et al. (2009), for a given false-alarm probabil-
ity, α, which corresponds to the IC ARL (denoted as
ARL0 for abbreviation hereafter), the control limits,
Lt, can be approximated by values satisfying

α =

⎧⎨⎩Pr
(
Z̃t > Lt

∣∣∣Z̃i ≤ Li, 1 ≤ i < t
)

for t > 1,

Pr
(
Z̃1 > L1

)
.

(8)
Of course, the above probabilities should be inter-
preted as relative frequencies in many simulation
replications. Note that, in the case that F0 is as-
sumed known, the procedure above is still applicable
except that we use the formula (5) and Zt instead of
the formula (6) and Z̃t, respectively.

Although the NLE chart is a self-starting scheme
and thus can be implemented at the start-up of a
process, we believe that starting testing with too
small an m0 is not a good idea. Too small an m0

would result in a severe “masking effect” if a short-
run change occurred. Rather, we suggest that a prac-
titioner should gather a modest number of observa-
tions through a Phase I study to get at least an initial
verification that the process was actually stable, and
only then start the formal NLE chart. Therefore, sim-
ilar to Hawkins et al. (2003), we suggest collecting at
least m ≥ 25 (of course the more the better) histor-
ical observations before monitoring. Our empirical
results show that, to get a satisfactory monitoring
performance, it may require 50–100 IC observations
(say, m0 + τ ≥ 50) before the change actually oc-
curred.

Note that the possible values of Z̃t for very small
t, say t = 1 or 2, are very limited when m0 is small,
so it is not likely to obtain the Lt for t = 1, 2 to
achieve a desired α. More specifically, by examining
the definition of F

(λ)
t in Equation (4), we can see

that there are only m0 possible values of Z̃t for t = 1
but at least about cm2

0 (for a value 0 < c < 1) pos-
sible values of Z̃t for t = 2 given m0. To resolve the
problem of finding L1 or L2 with too small m0, we
suggest taking two of m0 historical observations as
the pseudo-future observations, without loss of gen-

erality, using the last two historical observations X−1

and X0. Then calculate the corresponding charting
statistic Z̃t for t = −1, 0 but to start testing after the
first actual Phase II observation is obtained. That is
to say, the first two pseudo-Z̃t’s are used for mak-
ing the possible values of Z̃1 and Z̃2 be sufficient
to obtain the control limits. The following tabulated
control limits and our main simulation are all in line
with this modification.

Based on the empirical results in Hawkins et al.
(2003) as well as our numerical study, the Lt would
gradually converge to a constant when t increases.
Thus, we suggest computing about the first 1/α con-
trol limits and then using the last one of this sequence
or searching for a constant through independent sim-
ulations to approximate the remaining control lim-
its. In addition, in computing each Lt, about 50,000
replications should be enough to obtain reliable ap-
proximations. For instance, if ARL0 = 200, we need
to compute the first 200 control limits, which requires
about 140,000 sequences, so that there are about
50,000 sequences left for computing the 200th control
limit, L200. Today’s computing equipment and soft-
ware make it easy to compute and store such control
limits for on-line automatic detection use.

Table 1 shows the control limits of the NLE chart
for α values of 0.005, 0.0027, and 0.002, correspond-
ing to ARL0 of 200, 370, and 500, when F0 is known
(using formula (5)) or m0 is sufficiently large (using
formula (7)). The missing values in Table 1 can be
safely replaced by the value immediately above in the
same column. Our numerous simulation experiments
highlight that these control limits perform reason-
ably well as long as m0 ≥ 2000. Note that this num-
ber requirement is similar to Jones et al.’s (2001) rec-
ommendation for the traditional EWMA chart with
estimated parameters to achieve the desire level of
IC performance. Table 2 presents the control limits
of the NLE chart for ARL0 of 370 and 500, with vari-
ous combinations of (λ, m0). It is worth emphasizing
again that the control limits tabulated in these tables
can be used for any continuous distribution because
the NLE is completely distribution free. We do not
provide a regression formula that approximates the
control limits in Tables 1 and 2 as in Hawkins et al.
(2003) and Hawkins and Zamba (2005), as the data
in our table cannot fit well using a simple regression.
However, the tabulated data can be easily incorpo-
rated into computer programs, where storing such
data is a trivial task. The computer code in Fortran
for implementing the proposed scheme, including the
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TABLE 1. The Control Limits Lt of the NLE Chart When F0 Is Know

λ = 0.05 λ = 0.1 λ = 0.2

ARL0 200 370 500 200 370 500 200 370 500

t
1 9.232 10.441 11.111 9.246 10.531 11.038 9.132 10.422 11.037
2 12.190 13.778 15.044 11.646 13.338 14.546 10.730 12.309 13.002
3 13.187 15.308 16.547 12.231 14.100 15.431 10.405 12.008 12.987
4 13.381 15.864 17.081 12.018 14.088 15.268 9.584 11.134 12.044
5 13.406 15.890 17.159 11.557 13.718 14.746 8.783 10.147 10.862
6 13.205 15.774 17.077 11.072 13.140 14.105 8.087 9.354 10.053
7 12.913 15.492 16.691 10.482 12.473 13.494 7.460 8.599 9.303
8 12.625 15.133 16.383 9.937 11.834 12.720 7.015 8.079 8.640
9 12.287 14.783 15.872 9.402 11.190 12.085 6.597 7.591 8.165

10 11.983 14.332 15.468 8.932 10.568 11.388 6.319 7.317 7.685
11 11.630 13.920 15.096 8.539 10.093 10.839 6.083 6.969 7.384
12 11.286 13.557 14.663 8.157 9.613 10.312 5.910 6.715 7.165
13 10.991 13.117 14.265 7.804 9.171 9.850 5.755 6.621 7.006
14 10.675 12.772 13.820 7.510 8.776 9.436 5.619 6.445 6.749
15 10.395 12.393 13.474 7.213 8.410 9.052 5.542 6.329 6.671
16 10.131 12.060 13.030 6.945 8.106 8.756 5.430 6.223 6.615
17 9.829 11.712 12.718 6.729 7.904 8.437 5.380 6.146 6.601
18 9.601 11.390 12.329 6.513 7.579 8.095 5.323 6.078 6.433
19 9.323 11.121 11.994 6.330 7.324 7.863 5.218 6.000 6.402
20 9.092 10.788 11.660 6.181 7.160 7.636 5.204 5.962 6.432
22 8.624 10.242 11.011 5.924 6.809 7.300 5.126 5.937 6.277
24 8.222 9.715 10.463 5.622 6.514 7.051 5.123 5.891 6.244
26 7.875 9.249 9.952 5.431 6.360 6.824 5.076 5.877 6.217
28 7.531 8.864 9.495 5.301 6.176 6.654 5.072 5.860 6.191
30 7.179 8.470 9.159 5.157 6.013 6.364 5.067 5.842 6.186
35 6.545 7.720 8.254 4.893 5.746 6.156 5.058 5.837 6.178
40 6.071 7.131 7.592 4.761 5.595 5.953 5.050 5.799 6.173
50 5.305 6.279 6.701 4.608 5.442 5.826 5.048 5.792 6.167
60 4.840 5.712 6.147 4.552 5.322 5.710 5.044 5.785 6.160
70 4.544 5.410 5.784 4.536 5.313 5.693 5.039 5.777 6.156
80 4.343 5.195 5.530 4.528 5.299 5.674 5.035 5.771 6.151
90 4.257 5.053 5.440 4.513 5.290 5.662 5.030 5.766 6.144

115 4.051 4.868 5.268 4.502 5.285 5.650 5.027 5.761 6.140
140 4.032 4.797 5.221 4.496 5.278 5.642 5.025 5.754 6.138
165 4.025 4.794 5.209 4.491 5.272 5.638 5.023 5.745 6.136
190 4.023 4.787 5.182 4.486 5.267 5.635 5.021 5.732 6.134
240 4.022 4.778 5.179 4.482 5.257 5.631 5.020 5.729 6.133
290 4.020 4.770 5.177 4.480 5.248 5.629 5.018 5.726 6.132
390 4.759 5.175 2.244 5.627 5.724 6.130
490 5.174 5.625 6.129
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TABLE 2. The Control Limits Lt of the NLE Chart with Various Values of m0

m0 = 25 m0 = 50

λ = 0.05 λ = 0.1 λ = 0.05 λ = 0.1

ARL0 370 500 370 500 370 500 370 500

t
1 10.786 11.365 9.861 10.347 13.303 13.861 12.124 12.746
2 11.044 11.688 9.669 10.334 13.358 14.228 11.802 12.519
3 11.001 11.681 9.236 9.858 13.256 14.236 11.255 11.996
4 10.856 11.627 8.837 9.437 12.916 14.027 10.690 11.316
5 10.551 11.313 8.294 8.842 12.605 13.735 10.037 10.628
6 10.209 11.041 7.744 8.344 12.253 13.284 9.406 10.048
7 9.878 10.619 7.230 7.849 11.905 12.877 8.849 9.437
8 9.529 10.301 6.777 7.352 11.498 12.401 8.343 8.844
9 9.179 9.852 6.353 6.859 11.095 12.022 7.842 8.271

10 8.816 9.499 5.983 6.468 10.708 11.608 7.362 7.813
11 8.505 9.149 5.665 6.047 10.271 11.180 6.974 7.387
12 8.153 8.758 5.339 5.726 9.908 10.767 6.568 7.030
13 7.828 8.411 5.068 5.414 9.551 10.404 6.246 6.661
14 7.522 8.091 4.834 5.168 9.218 9.986 5.926 6.324
15 7.240 7.791 4.618 4.933 8.870 9.598 5.676 6.062
16 6.952 7.498 4.416 4.732 8.575 9.283 5.433 5.792
17 6.692 7.193 4.243 4.520 8.261 8.949 5.224 5.571
18 6.432 6.927 4.087 4.386 7.964 8.612 5.065 5.344
19 6.205 6.669 3.956 4.241 7.698 8.340 4.858 5.180
20 5.968 6.425 3.853 4.081 7.426 8.047 4.705 5.030
22 5.560 5.993 3.655 3.874 6.926 7.497 4.454 4.722
24 5.179 5.586 3.485 3.713 6.484 7.005 4.260 4.479
26 4.844 5.207 3.391 3.595 6.110 6.561 4.120 4.336
28 4.546 4.878 3.307 3.499 5.741 6.186 3.972 4.205
30 4.293 4.579 3.253 3.449 5.423 5.836 3.895 4.113
35 3.767 4.032 3.173 3.370 4.758 5.145 3.742 3.943
40 3.370 3.583 3.162 3.366 4.285 4.587 3.697 3.888
50 2.921 3.119 3.245 3.403 3.668 3.890 3.678 3.908
60 2.734 2.895 3.345 3.553 3.315 3.556 3.752 3.922
70 2.660 2.820 3.465 3.675 3.178 3.386 3.778 3.981
80 2.663 2.846 3.570 3.782 3.103 3.290 3.841 4.072
90 2.712 2.916 3.672 3.896 3.092 3.283 3.891 4.172

115 2.892 3.088 3.867 4.128 3.172 3.389 4.053 4.266
140 3.085 3.307 3.989 4.256 3.291 3.500 4.140 4.378
165 3.265 3.466 4.086 4.359 3.402 3.634 4.243 4.484
200 3.436 3.692 4.231 4.463 3.538 3.832 4.345 4.605
250 3.608 3.878 4.334 4.682 3.712 3.987 4.481 4.714
370 3.820 4.285 4.547 4.778 3.886 4.331 4.617 4.923
500 4.103 4.509 4.705 5.061 3.995 4.559 4.745 5.065
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TABLE 2. Continued

m0 = 100 m0 = 200

λ = 0.05 λ = 0.1 λ = 0.05 λ = 0.1

ARL0 370 500 370 500 370 500 370 500

t
1 15.057 16.062 13.721 14.416 16.057 16.756 14.827 15.747
2 15.071 15.983 13.179 14.285 15.927 16.876 14.056 15.016
3 14.802 15.867 12.405 13.503 15.719 16.803 13.323 14.274
4 14.514 15.767 11.832 12.842 15.386 16.463 12.622 13.519
5 14.212 15.443 11.101 12.193 14.958 16.150 11.905 12.762
6 13.723 14.880 10.377 11.412 14.517 15.668 11.206 12.016
7 13.332 14.530 9.830 10.718 14.133 15.248 10.553 11.336
8 12.843 14.016 9.241 10.052 13.636 14.768 9.949 10.684
9 12.449 13.623 8.728 9.440 13.202 14.295 9.416 10.108

10 12.024 13.135 8.260 8.866 12.751 13.854 8.836 9.581
11 11.566 12.668 7.826 8.429 12.325 13.466 8.393 9.004
12 11.123 12.209 7.454 7.977 11.930 13.050 7.976 8.524
13 10.763 11.720 7.093 7.585 11.562 12.597 7.583 8.116
14 10.403 11.366 6.773 7.189 11.169 12.163 7.283 7.878
15 10.061 10.957 6.473 6.895 10.835 11.698 7.007 7.446
16 9.707 10.551 6.256 6.641 10.477 11.283 6.747 7.195
17 9.396 10.204 6.005 6.339 10.134 10.916 6.505 6.928
18 9.095 9.866 5.776 6.115 9.799 10.597 6.323 6.760
19 8.779 9.563 5.614 5.913 9.529 10.246 6.117 6.541
20 8.519 9.238 5.436 5.753 9.246 9.956 5.958 6.332
22 8.002 8.648 5.131 5.479 8.696 9.360 5.662 6.001
24 7.524 8.160 4.944 5.218 8.234 8.863 5.460 5.760
26 7.121 7.679 4.784 5.045 7.819 8.409 5.257 5.592
28 6.746 7.239 4.603 4.890 7.418 7.984 5.114 5.394
30 6.410 6.881 4.477 4.790 7.095 7.586 4.994 5.274
35 5.683 6.054 4.296 4.539 6.359 6.749 4.722 5.048
40 5.126 5.472 4.188 4.436 5.803 6.164 4.653 4.917
50 4.404 4.706 4.075 4.320 4.986 5.337 4.512 4.772
60 3.977 4.236 4.102 4.328 4.560 4.826 4.498 4.740
70 3.749 3.959 4.110 4.346 4.251 4.503 4.442 4.707
80 3.598 3.863 4.173 4.391 4.086 4.359 4.469 4.717
90 3.528 3.766 4.187 4.433 3.967 4.255 4.488 4.767

115 3.510 3.759 4.273 4.531 3.887 4.161 4.528 4.843
140 3.567 3.811 4.342 4.587 3.925 4.167 4.575 4.855
165 3.676 3.882 4.408 4.661 3.943 4.212 4.597 4.877
200 3.749 3.979 4.455 4.765 3.986 4.268 4.645 4.894
250 3.858 4.148 4.588 4.878 4.114 4.331 4.704 4.974
370 4.090 4.380 4.679 5.051 4.233 4.502 4.776 5.164
500 4.187 4.549 4.723 5.124 4.302 4.689 4.832 5.207
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procedures for finding the control limits, is available
from the authors on request.

Choosing λ

In general, a smaller λ leads to a quicker de-
tection of smaller shifts (c.f., e.g., Lucas and Sac-
cucci (1990)). This statement is still valid with the
NLE chart. Here we present some simulation re-
sults regarding the effect of λ on the performance
of NLE. Because of the importance of the moni-
toring of mean change for the normal distribution,
we evaluate the OC ARL (denoted as ARLδ) under
the scenario N(0, 1) versus N(δ, 1) for δ �= 0. We
only report the steady-state ARLδ behavior here. To
evaluate the ARLδ, any series in which a signal oc-
curs before the (τ + 1)-th observation is discarded
(Hawkins et al. (2003)). τ = 50 and ARL0 = 370
are fixed in this example, and 20,000 replications are
used. Figures 1(a) and 1(b) show the ARLδs (in log
scale) of NLE with the λ values of 0.05, 0.1, 0.2, and
0.5 when F0 is known and m0 = 100, respectively.
We can clearly see that, in both cases, a smaller λ
leads to a quicker detection of smaller shifts and a
larger λ performs better in detecting larger shifts.
This is consistent with the properties of the con-
ventional EWMA chart (Lucas and Saccucci (1990))
and its self-starting version (Quesenberry (1995)).
Based on our empirical results, we suggest choos-
ing λ ∈ [0.05, 0.2], which is a reasonable choice. To
obtain more robust protection against various shift
sizes, the adaptive EWMA (Capizzi and Masarotto

(2003)) or multi-EWMA (Han et al. (2007)) schemes
may be extended to the NLE chart. These studies are
beyond the scope of this paper but could be subjects
of future research.

Computation

In comparison with Zhou et al.’s (2009) change-
point control chart, the NLE chart does not require
binary segmentation. At any time point t, it involves,
at most, order t−1 computations (i.e., comparing Xt

with X−m0+1, . . . Xt−1), and thus the computational
task is actually quite simple. Using the dichotomy
method and updating the ranks of X−m0+1, . . . Xt in
a recursive manner could further alleviate the com-
putational burden. For instance, when ARL0 = 200,
it takes about 3 minutes to search for the control
limits based on 200,000 simulations, using a Pentium
2.4MHz CPU.

Post-Signal Diagnostic

In the practice of quality control, in addition to
detecting a process change quickly, it is also critical
to diagnose the change and to identify if there has
been a shift in location, scale, or both after an OC
signal occurs. A diagnostic aid to locate the change
point in the process and to isolate the type of pa-
rameter change will help an engineer to identify and
eliminate the root cause of a problem quickly and
easily.

An estimate of the change point based on the non-

FIGURE 1. The Steady-State OC ARL Curves of the NLE Charts with Various Values of λ for Monitoring N(0, 1) Versus

N(δ, 1) When: (a) F0 Is Known; (b) m0 = 100.
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parametric test ZA is proposed to assist in the diag-
nosis of our NLE chart. We assume that the chart sig-
nals at the kth observation, i.e., there are m0 histor-
ical IC observations and k future observations, and
a shift occurred after the τth sample (0 ≤ τ < k) as
illustrated by model (1). Given an estimate of change
point v, we can derive the following generalized ver-
sion of ZA:

ZA(v, k)

=
k∑

i=v+1

{
1

1 − Fv,k(Xi)
ln

(
Fv,k(Xi)

F−m0,v(Xi)

)
+

1
Fv,k(Xi)

ln
(

1 − Fv,k(Xi)
1 − F−m0,v(Xi)

) }
,

(9)

where Fk1,k2(Xi) is defined by

(k2 − k1)−1
k2∑

j=k1+1

I{Xj≤Xi}

as before. Actually, the ZA(v, k) can intuitively be
understood as a test statistic based on ZA in Equa-
tion (3) for testing if the sample {Xi, i = v+1, . . . , k}
has the same distribution as F−m0,v(·), where F−m0,v

can be regarded as an estimate of F0. Then our sug-
gested estimator of the change point, τ , is given by

τ̂ = arg max
0≤v<k

{ZA(v, k)}. (10)

Such type of estimator is often used for off-line nonse-
quential change-point detection in the literature (c.f.,
Csorgo and Horvath (1998)). In this paper, we uti-
lize it in an on-line SPC application. Among others,
Pignatiello and Samuel (2001), Hawkins and Zamba
(2005), and Zou et al. (2007) have used analogous es-
timators based on parametric generalized likelihood
ratios in various monitoring problems. Under some
mild conditions, we can have asymptotic results on
the consistency of this change-point estimator, which
ensure that it is asymptotically effective. Because
this is out of the scope of this paper, we will discuss
this problem in a separate paper. We will demon-
strate the effectiveness of τ̂ by simulation in the next
section.

After an estimate of the shift location is obtained,
we have (k − τ̂) OC observations that have shifts in
their distributions. Among these (k−τ̂) observations,
a few might actually be IC observations, because τ̂ is
only an estimator of the true shift location τ . At first
glance, our proposed method based on an omnibus
chart seems not able to diagnose whether a shift

in location or scale occurred. However, as Reynolds
and Stoumbos (2005) pointed out, the control charts
used as diagnostic aids do not necessarily have to be
the same control charts that were used to determine
when to signal. Similar arguments can also be found
in Hawkins and Zamba (2005), where two parametric
tests are used to determine if the shift comes from
the mean or the variance. Thus, in this paper, we
propose using a nonparametric test method as an
auxiliary tool to determine which parameters have
changed after the chart has triggered a signal.

We suggest using the following nonparametric
two-sample tests: the well-known Wilcoxon rank sum
test (or called Mann–Whitney–Wilcoxon test; e.g.,
see Conover (1999)) for location and the aligned rank
scale test (Fligner and Killeen (1976)), denoted as
TW and TA respectively. To be specific,

TW =
τ̂∑

i=−m0+1

k∑
j=τ̂+1

I{Xj≤Xi}. (11)

Denote X∗
j = Xj−θ̂−m0,τ̂

for j = −m0+1, . . . , τ̂ and

Y ∗
j = Xj−θ̂

τ̂ ,k
for j = τ̂ +1, . . . , k, where θ̂−m0,τ̂

and

θ̂
τ̂ ,k

are the sample medians of the samples before
and after τ̂ . Then TA is defined as

TA =
k∑

j=τ̂+1

(
Φ−1

(
R(|Y ∗

j |)
2(n + 1)

+
1
2

))2

, (12)

where R(|Y ∗
j |)’s denote the rankings that are over

the absolute values of the aligned observations
{X∗

−m0+1, . . . , X
∗
τ̂
, Y ∗

τ̂+1
, . . . , Y ∗

k } and Φ−1(·) is the
inverse of the standard normal cumulative distribu-
tion function. This scale test possessed both robust-
ness of validity and power in the study by Conover et
al. (1981) and was one of the few tests of their study
that they recommended for general use. One may
obtain the critical values of TW and TA by means of
simulation methods or normal approximations (c.f.,
Conover (1999)). We will study their performance in
the next section. As a side note, using the traditional
two-sample t- and F -tests for location and dispersion
parameters, respectively, suggested by Hawkins and
Zamba (2005), may be an alternative choice but we
do not elaborate on them here.

Group Observations

When a group of g observations, say {Xj1, . . . ,
Xjg}, are taken sequentially from the process at each
time point, the NLE chart can be readily defined in
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a similar way to Equation (6) by using the following
modified (weighted) empirical distribution function:

F
(g)
−m0,k(u) =

1
(k + m0)g

k∑
j=−m0+1

g∑
i=1

I{Xji≤u}

F
(λ,g)
k (u) = a−1

λ,k,g

k∑
j=1

(1 − λ)k−j

g∑
i=1

I{Xji≤u},

with

aλ,k,g = g

k∑
j=1

(1 − λ)k−j .

Then the NLE charting statistic for group observa-
tion is given by Equation (6) with

Ỹ
(g)
t =

g∑
i=1

1

1 − F
(λ,g)
t (Xti)

ln

(
F

(λ,g)
t (Xti)

F
(g)
−m0,t−1(Xti)

)

+
1

F
(λ,g)
t (Xti)

ln

(
1 − F

(λ,g)
t (Xti)

1 − F
(g)
−m0,t−1(Xti)

)
,

instead of Ỹt, where we still follow the principle that
the observations in the same group have the same
weights and more recent groups have more weight.

Numerical Performance Assessment

We present some simulation results in this section
on the numerical performance of the proposed NLE
procedure. Because a similar conclusion holds for
other cases, throughout this section, we only present
the results when ARL0 = 370 for illustration. Some
other results with other commonly used ARL0’s, such
as 200 or 500, are available from the authors on re-
quest. All the ARL results in this section are ob-
tained from 20,000 replications unless indicated oth-
erwise.

Comparisons between NLE and Conventional
Parametric Charts

First, we compare the performance of NLE with
conventional parametric charts designed under the
normality assumption. Among others, the univari-
ate nonnormality problem was studied by Borror et
al. (1999) and Stoumbos and Reynolds (2000), with
the conclusion that nonnormality can seriously de-
grade the statistical performance of the Shewhart
chart, but the EWMA and CUSUM charts can be
designed to be robust. For example, with a large
number of observations and a small smoothing pa-
rameter for the EWMA chart, a central limit the-
orem would ensure that the accumulation has ap-
proximately a normal distribution, which ensures ro-

bustness. Certainly, how small λ should be relies on
the deviation of the actual measurement distribution
from the normal distribution. Too small of smooth-
ing parameters are usually not recommended because
the corresponding procedure would not be sensitive
to relatively large shifts.

As the CUSUM and EWMA charts have simi-
lar detection abilities and robustness demonstrated
by the literature discussed, we choose only the
EWMA chart for comparison. Denote X∗

t = (Xt −
μ0)/σ0, where μ0 and σ0 are the mean and stan-
dard deviation, respectively, which are known a pri-
ori or estimated from m0 historical observations.
The classical EWMA chart for detecting the mean
change is defined as wt = (1 − λ)wt−1 + λX∗

t .
Reynolds and Stoumbos (2001) suggested using this
chart combined with the following one-sided EWMA-
type chart for monitoring the variance: vt = (1 −
λ) max{1, vt−1}+ λX∗2

t . Hereafter, for abbreviation,
we denote these two EWMA charts for the mean and
variance as the EWM and EWV charts, respectively,
and their combination as the CEW chart. Table 3
shows the ARL results of the NLE and CEW under
the normal distribution. We consider two scenarios,
N(0, 1) versus N(δ, 1) for δ �= 0 and N(0, 1) versus
N(0, δ2) for δ �= 1, which correspond to the conven-
tional univariate normal mean and variance moni-
toring problems, respectively. Three values of λ, 0.05,
0.1, and 0.2, were considered for both charts. Two m0

values, 20000 and 200, are used, which correspond to
the cases that F0 is approximately known and the
parameters are estimated. The control limits of the
CEW chart with various combinations of m0 and λ
are obtained through simulations with the standard
normal distribution. Because the CEW chart does
not update the parameter estimates sequentially, we
only report the zero-state OC ARLs here.

From this table, we observe that the CEW chart
has superior efficiency for monitoring the mean
change, as we would expect, because the paramet-
ric hypothesis is the correct one in this case. The
NLE chart also offers quite satisfactory performance
and the difference between NLE and EWMA is not
very significant in detecting the small and moder-
ate shifts. It should be pointed out that the supe-
riority of EWMA becomes more significant when
m0 = 200 and δ is quite large, say, δ ≥ 2. The
analogous phenomenon for univariate nonparamet-
ric charts has been mentioned in the literature, e.g.,
by Hackl and Ledolter (1991) and Zhou et al. (2009).
The NLE, which is essentially based on ranks rather
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TABLE 3. The Zero-State ARL Comparisons Between NLE and CEW Under the Normal Distribution

N(0, 1) versus N(δ, 1) N(0, 1) versus N(0, δ2)

NLE CEW NLE CEW

δ λ δ λ
m0 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

0.00 369 370 370 370 372 369 1.00 370 370 371 370 368 371
0.25 98.0 120 163 84.9 107 150 1.10 123 127 131 119 131 140
0.50 36.1 37.7 49.2 29.3 33.0 43.9 1.20 57.0 58.4 61.4 54.6 60.8 66.8
0.75 20.1 19.1 21.2 16.2 16.0 19.0 1.30 33.7 33.4 35.6 31.7 34.3 38.0

20000 1.00 14.1 12.2 11.9 11.0 10.3 10.7 1.40 23.0 22.4 23.1 21.1 22.6 24.9
1.50 7.65 6.54 5.95 6.28 5.66 5.30 1.60 13.6 12.8 12.7 12.4 12.5 13.4
2.00 4.57 4.01 3.67 4.04 3.69 3.44 1.80 9.47 8.82 8.60 8.64 8.51 8.76
3.00 2.08 1.95 1.87 2.11 1.99 1.84 2.00 7.12 6.66 6.50 6.71 6.56 6.54
4.00 1.30 1.26 1.24 1.41 1.32 1.25 3.00 3.30 3.19 3.10 3.28 3.15 3.06

0.00 371 368 369 369 369 371 1.00 370 372 369 370 371 369
0.25 152 192 243 112 139 177 1.10 212 215 220 132 139 151
0.50 37.2 46.8 79.1 33.8 37.4 51.8 1.20 114 115 124 60.1 63.7 71.5
0.75 20.4 19.4 23.8 18.1 17.6 20.7 1.30 64.2 65.0 72.7 34.4 36.7 40.4

200 1.00 14.3 12.5 12.5 12.3 11.1 11.6 1.40 41.4 41.2 44.7 23.1 23.8 26.0
1.50 9.13 7.86 6.58 7.16 6.18 5.66 1.60 25.8 22.6 22.4 13.7 13.4 13.7
2.00 6.73 5.79 4.68 4.67 4.10 3.66 1.80 19.4 16.4 14.9 9.51 9.15 9.21
3.00 4.63 4.07 3.28 2.37 2.16 1.99 2.00 16.1 13.3 11.5 7.35 6.89 6.90
4.00 4.02 3.54 2.89 1.52 1.39 1.30 3.00 10.1 8.27 6.49 3.53 3.32 3.18

than magnitudes, suffers from a similar drawback
as those rank-based charts for univariate processes.
That is, even though the shift is quite large, the ranks
or signs of the observations may not be able to grow
larger if m0 is not large enough. It is interesting to
see that, when m0 is very large, the NLE even per-
forms slightly better than the EWMA chart with the
same value of λ in detecting very large shifts, say,
δ ≥ 3. With respect to shifts in variance, the NLE
chart performs better than CEW when m0 = 20000
but the CEW is significantly superior to the NLE
when m0 = 200. We may conclude that, compared
with the mean change, for detecting the dispersion
change more efficiently, the NLE chart requires more
IC observations before the change occurs.

Note that it may not be very fair to compare NLE
and CEW using the zero-state OC ARL when m0

is not large because the NLE is a self-starting one
of which the performance may be severely contami-
nated if a change has occurred but the chart fails to
signal quickly. However, if τ is large, the self-starting
chart is capable of updating the IC distribution in-

formation with more IC observations, which in turn
improves the detection ability. To appreciate this, Ta-
ble 4 gives the ARLδ values of the NLE chart with
τ = 0, 50, 100, 200 when λ = 0.1 and m0 = 200. Nat-
urally, the OC ARL will be affected by the number
of reference samples gathered before a shift actually
occurs. Yet the benefit is much more obvious in the
case of detecting a small or large shift than in detect-
ing a moderate shift.

Following the robustness analyses in Stoumbos
and Reynolds (2000), besides the standard normal
distribution, we consider the following distributions:
(i) t(3), the student t-distribution with three degrees
of freedom; (ii) χ2

3, the chi-square distribution with
three degrees of freedom. For these two distributions,
we standardize them so that they both have zero
mean and unit variance. It is worth noting that we
expect the EWV chart cannot easily be designed ro-
bust because the statistic vt is not normal when the
process observations Xt’s are normally distributed.
Thus, the CEW chart may not be relatively robust
compared with the EWM chart. Therefore, the ARLδ
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TABLE 4. OC ARLs Values of the NLE Chart with Various Values of τ

N(0, 1) versus N(δ, 1) N(0, 1) versus N(0, δ2)

δ τ δ τ

0 50 100 200 0 50 100 200

0.00 368 367 362 366 1.00 372 367 364 365
0.25 192 182 169 160 1.10 215 195 187 173
0.50 46.8 44.4 41.8 39.8 1.20 115 98.1 89.1 80.7
0.75 19.4 19.6 19.1 18.9 1.30 65.0 52.0 47.5 43.0
1.00 12.5 12.3 12.2 12.2 1.40 41.2 32.1 30.0 28.1
1.50 7.86 6.78 6.63 6.61 1.60 22.6 17.5 16.6 15.7
2.00 5.79 4.34 4.26 4.21 1.80 16.4 12.2 11.5 11.1
3.00 4.07 2.47 2.39 2.34 2.00 13.3 9.41 8.99 8.58
4.00 3.54 1.94 1.89 1.83 3.00 8.27 5.09 4.83 4.59

results of EWM will also be presented for illustra-
tion. Two values of λ, 0.05 and 0.1, were considered
for all three charts. As in Table 3, two m0 values,
20000 and 200, are used. The control limits of the
NLE and CEW charts with various combinations of
m0 and λ are the same as those in Table 3, while
the control limits of the EWM chart are searched
through simulations with the standard normal dis-
tribution. The simulation results with τ = 0 for the
distributions t(3) and χ2

3 are tabulated in Tables 5
and 6, respectively.

Just as in our intuitive analysis, the CEW usually
has a very large bias in the IC ARL and, even when
λ = 0.05, the degradation is still pronounced. Our
other simulation results (not reported here) show
that the IC ARL of CEW is close to the nominal
one only when using λ ≤ 0.001 in the EWV chart.
In contrast, the EWM chart is much more robust
with λ = 0.05. In these situations, comparing the
OC performance of CEW with the other two charts is
meaningless. With similar IC ARL, the NLE is much
better than the EWM in detecting small and moder-
ate mean shifts when m0 = 200, while the EWM has
a certain advantage for the large shifts, as expected.
For monitoring the shift in variance, the superior-
ity of NLE over EWM is quite remarkable because
the EWM is not sensitive to the variance change, as
mentioned before. Note that Stoumbos and Reynolds
(2000) also considered a combination of the EWM
chart for the mean and an EWMA chart based on
the absolute deviations from target for monitoring
the variance. The absolute deviation chart may be a
more robust alternative to the EWV chart for moni-

toring the variance. The performance comparison be-
tween this combination and NLE deserves future re-
search.

Comparisons between NLE and Alternative
Nonparametric Charts

Now we consider comparing NLE with some other
nonparametric methods. Comparing the NLE proce-
dure with alternative nonparametric methods turns
out to be difficult due to the lack of an obvious
comparable method. This is because most of the ap-
proaches in the literature are designed for monitoring
locations. We only consider individual observations
and comparable conclusions are similar for group
observations. The EWMA chart with “standardized
ranks” proposed by Hackl and Ledolter (1991) is a
possible benchmark. Another alternative method is
McDonald’s (1990) CUSUM procedure based on “se-
quential ranks”, but to avoid tuning of the refer-
ence parameter, its analogous EWMA procedure is
considered. Hereafter, Hackl and Ledolter’s chart is
called HLE for short and McDonald’s chart is called
McE for short. In addition, we consider a natural
modification of HLE, which is to replace the e.d.f.
based on the reference sample by its sequential es-
timator. This modification is referred to as the self-
starting HLE procedure (SHL) hereafter. To be spe-
cific, if the chart does not signal after the tth ob-
servation, then replace F−m0,0(Xt) used in HLE by
F−m0,t−1(Xt). In these three charts and the NLE
chart, we choose λ = 0.1. Note that the Shew-
hart chart for individual observations proposed by
Chakraborti and Van de Wiel (2008) is a special case
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TABLE 5. The Zero-State OC ARL Values of NLE, CEW, and EWM Under t(3)

t(3)/
√

3 versus t(3)/
√

3 + δ t(3)/
√

3 versus δ · t(3)/
√

3

NLE CEW EWM NLE CEW EWM

δ λ δ λ
m0 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

0.00 372 371 127 108 365 272 1.00 370 369 128 108 362 266
0.25 72.1 86.7 73.5 81.9 82.4 107 1.10 218 220 88.3 78.7 242 188
0.50 28.4 26.8 28.6 34.5 27.0 32.0 1.20 127 132 65.6 59.0 175 137
0.75 17.9 15.4 16.3 16.6 15.2 15.3 1.30 80.7 85.5 49.0 44.4 130 104

20000 1.00 13.3 10.9 11.1 10.4 10.6 9.67 1.40 56.7 60.3 38.1 35.6 103 80.0
1.50 8.42 6.86 6.73 5.93 6.62 5.66 1.60 34.3 34.4 24.5 23.6 68.9 52.2
2.00 6.04 4.89 4.44 3.93 4.90 4.10 1.80 24.2 23.2 17.4 16.5 49.9 38.0
3.00 3.74 3.14 2.26 2.06 3.31 2.74 2.00 18.8 17.6 13.1 12.6 38.3 29.1
4.00 2.70 2.35 1.43 1.29 2.56 2.12 3.00 9.21 8.10 5.78 5.49 16.4 12.2

0.00 370 371 131 113 408 300 1.00 370 369 128 115 401 303
0.25 100 138 96.7 93.2 160 163 1.10 290 278 94.3 83.4 285 215
0.50 25.5 26.2 49.7 55.5 48.4 58.1 1.20 206 207 73.9 63.7 213 162
0.75 15.7 13.8 25.8 29.0 26.3 30.7 1.30 142 146 55.4 51.3 160 122

200 1.00 11.8 10.1 16.5 19.1 18.2 16.2 1.40 95.3 100 46.6 39.9 136 99.3
1.50 8.16 7.05 9.40 11.5 9.31 10.3 1.60 50.3 52.9 28.9 27.8 90.1 64.6
2.00 6.53 5.66 6.84 5.63 6.30 7.40 1.80 33.3 32.5 21.2 20.0 67.8 45.4
3.00 5.01 4.40 2.34 2.92 3.36 3.93 2.00 25.8 23.6 15.9 14.2 51.6 38.4
4.00 4.42 3.88 1.47 2.56 2.56 2.15 3.00 14.3 11.8 6.88 6.43 19.7 14.3

of the HLE chart with λ = 1, while the change-point
scheme proposed by Zhou et al. (2009) is an analog
of the SHL chart. Their difference lies mainly in how
to use the Mann–Whitney statistic to construct the
control scheme rather than in the test itself. Hence,
we believe that the comparison of these four EWMA
charts suffices to show the effectiveness of our pro-
posed scheme. Table 7 lists the abbreviations and
brief descriptions of the nonparametric charts uti-
lized for performance comparisons.

In order to assess the overall performance of a
chart among all the charts considered across a range
of shift sizes, besides OC ARLs, we also compute
their relative mean index (RMI) values. The RMI in-
dex of a control chart is suggested by Han and Tsung
(2006) and is defined as

RMI =
1
N

N∑
l=1

ARLδl
− MARLδl

MARLδl

,

where N is the total number of shifts considered,
ARLδl

is the OC ARL of the given control chart when

detecting shift δl, and MARLδl
is the smallest OC

ARL among all OC ARL values of the charts consid-
ered when detecting shift δl. So (ARLδl

− MARLδl
)/

MARLδl
can be considered as a relative efficiency

measure of the given control chart, compared with
the best chart, when detecting shift δl, and RMI is
the average of all such relative efficiency values. By
this index, a control chart with a smaller RMI value
is considered better on the whole. For various IC and
OC distributions, all simulated OC ARLs are illus-
trated with graphs in the log scale, where the ARLs
are plotted against the shift magnitude, δ, which is
selected with different ranges in different comparison
scenarios. In the legend of each plot, the numbers
in parentheses are the RMI values evaluated with
N = 20 magnitudes of shifts across the considered
range of δ. The solid, dashed, dotted, and dashed-
dotted curves represent the OC ARLs of the NLE,
HLE, McE, and SHL charts, respectively.

We first consider the following two comparison
scenarios under the normal distribution: (I) N(0, 1)
versus N(δ, 1) for δ �= 0 and (II) N(0, 1) versus

Journal of Quality Technology Vol. 42, No. 2, April 2010



LIKELIHOOD RATIO-BASED DISTRIBUTION-FREE EWMA CONTROL CHARTS 15

TABLE 6. The Zero-State OC ARL Values of NLE, CEW, and EWM Under χ2
3

(χ2
3 − 3)/

√
6 versus (χ2

3 − 3)/
√

6 + δ (χ2
3 − 3)/

√
6 versus δ · (χ2

3 − 3)/
√

6

NLE CEW EWM NLE CEW EWM

δ λ δ λ
m0 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

0.00 373 370 120 101 373 297 1.00 374 372 118 100 366 296
0.25 54.4 88.7 65.0 61.7 72.0 75.3 1.10 23.6 23.4 72.9 66.6 224 193
0.50 30.7 26.8 29.4 30.9 27.7 29.1 1.20 11.0 10.9 48.4 46.9 153 131
0.75 22.7 18.4 17.1 17.0 16.0 15.6 1.30 7.49 7.36 34.4 34.7 109 92.8

20000 1.00 17.9 14.4 11.8 11.0 11.1 10.3 1.40 5.69 5.67 25.8 26.1 82.2 69.5
1.50 12.3 9.82 7.03 6.23 6.95 6.02 1.60 4.06 4.06 16.5 16.9 53.5 42.2
2.00 8.91 7.12 4.65 4.17 5.09 4.28 1.80 3.35 3.30 11.7 11.7 37.9 29.0
3.00 5.11 4.22 2.32 2.16 3.42 2.81 2.00 2.92 2.92 9.03 9.01 28.8 21.6
4.00 3.22 2.76 1.48 1.39 2.65 2.17 3.00 2.05 2.03 3.99 3.80 12.1 8.62

0.00 373 366 122 105 421 380 1.00 370 373 121 105 425 381
0.25 57.1 191 75.4 68.0 101 97.8 1.10 117 128 75.9 68.5 255 236
0.50 22.9 22.9 34.0 34.9 31.8 34.1 1.20 46.2 49.8 51.6 48.6 173 151
0.75 16.9 14.9 18.4 18.3 17.2 16.9 1.30 29.6 27.9 36.4 35.7 125 105

200 1.00 13.9 11.9 12.3 11.6 11.6 10.8 1.40 22.9 19.9 28.1 27.1 95.1 77.5
1.50 10.3 8.85 7.26 6.36 7.08 6.11 1.60 17.0 14.2 17.9 17.7 60.9 46.8
2.00 8.32 7.15 4.93 4.26 5.17 4.30 1.80 14.1 11.7 12.8 12.5 44.3 31.9
3.00 5.94 5.17 2.51 2.28 3.44 2.80 2.00 12.4 10.2 9.75 9.40 33.3 23.5
4.00 4.77 4.17 1.57 1.44 2.66 2.13 3.00 8.92 7.47 4.44 4.09 13.8 9.49

N(0, δ2) for δ > 1. The cases that m0 = 50, 200 and
τ = 50, 150 were considered. The simulation results
are shown in Figures 2 and 3. We observe the fol-
lowing results. First, the NLE chart is more effective
than the other three charts in detecting moderate
and large shifts in the process mean. The superior-
ity of NLE becomes more significant as δ becomes
larger while the OC ARLs of the other three charts
hardly change when δ > 3. The control charts based

on linear transformation of ranks, such as HLE, McE,
and SHL charts, share this drawback. Even though
the shift is quite large, the ranks of the observations
may not be able to grow larger because the refer-
ence sample for calculating the ranks is usually not
sufficiently large. The NLE chart, which derives from
the nonparametric likelihood ratio test, is a nonlinear
function of ranks and thus overcomes this drawback
to some degree. Second, for small shifts, the other

TABLE 7. The Abbreviations and Descriptions of the Nonparametric Charts Utilized for Performance

Comparisons. The generic notation Ri, R∗
i , and wt are used in each chart, which should not cause any confusion

HLE: Define the standardized rank as Ri = 2(m0 + 1)−1[R∗
i − (m0 + 2)/2], where R∗

i is the rank of Xi with
respect to the historical sample. The HLE charting statistic is wt = (1 − λ)wt−1 + λRt with w0 = 0.

SHL: Define the standardized rank as Ri = 2(m0 + i)−1[R∗
i − (m0 + i + 1)/2] where R∗

i is the rank of Xi

with respect to the aligned observations of the historical and i − 1 Phase II observations. Say,
Ri = 1 +

∑i−1
j=−m0+1 I{Xj≤Xi}. The SHL charting statistic is wt = (1 − λ)wt−1 + λRt with w0 = 0.

McE: Define the sequential rank Ri of an observation Xi as Ri = 1 +
∑i−1

j=1 I{Xj≤Xi}. The McE charting
statistic is wt = (1 − λ)wt−1 + λ(Rt/(t + 1) − 0.5) with w0 = 0.
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FIGURE 2. OC ARL Comparison of the NLE, HLE, McE, and SHL Charts for Monitoring N(0, 1) Versus N(δ, 1) When:

(a) m0 = 50, τ = 50; (b) m0 = 50, τ = 150; (c) m0 = 200, τ = 50; (d) m0 = 200, τ = 150.

three EWMA charts generally offer faster detection
than NLE does, although the difference is relatively
small, especially when τ = 150. This is because the
NLE chart is an omnibus chart, whereas the oth-
ers are designed to be sensitive to location shifts.
Third, the NLE chart outperforms the other charts
in detecting variance shifts by quite a large margin,
which demonstrates the fact that it is more sensitive
to the scale compared with the conventional rank
tests. Note that here we only report the performance
comparison in detecting the increase in variance. In

fact, our additional simulation results (not reported
here but available from the authors) show that the
NLE chart is quite effective in detecting the decrease
in variance as well. Fourth, in terms of the RMI in-
dex, NLE performs the best overall. Its superiority
becomes more remarkable as m0 and τ increase due
to making full use of information from the historical
and new observations. It is worth mentioning that
SHL performs a little better than HLE when τ is
large because the “masking” effect (Hawkins and Ol-
well (1998)) is diminished in such a situation, which
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FIGURE 3. OC ARL Comparison of the NLE, HLE, McE, and SHL Charts for Monitoring N(0, 1) Versus N(0, δ2) When:

(a) m0 = 50, τ = 50; (b) m0 = 200, τ = 50.

is consistent with the findings in Quesenberry (1995)
and Hawkins et al. (2003) about univariate normal
processes.

Figure 4 shows the ARLδ curves for monitoring
the mean and variance change when the underlying
process distributions are t(3) and χ2

3. The shift mod-
els considered in this figure are the same as those
in Tables 5 and 6. Because a similar conclusion holds
for other cases, here we only present the results when
m0 = 200 and τ = 50 for illustration. In both figures,
the ARLδ improvement in NLE over the other three
charts for detecting the change in scale is tremen-
dous, as we would expect. It has at least compara-
ble performance when the shift comes only from the
mean. This demonstrates that the NLE chart offers
robust protection against variation in various under
lying distributions. Some additional simulation re-
sults (not reported here; available from the authors)
also show that the NLE chart is capable of detect-
ing other distributional changes, such as the shifts in
shape.

Diagnostic Performance Analysis

Finally, we investigate the performance of the pro-
posed approach in estimating the change point and
the diagnostic ability of the tests TW and TA after
the NLE chart has signalled. Ten thousand indepen-
dent series were generated in the simulations. Note
that any series for which no signal was trigged was

discarded. Again, the process change point was sim-
ulated at τ = 50 and m0 = 200. To quantify the
diagnostic precision of the estimator τ̂ in Equation
(10), in addition to calculating the median (MED)
of the change-point estimates, we also tabulate the
probabilities, Pr(|τ̂ − τ | = 0), Pr(|τ̂ − τ | ≤ 1), and
Pr(|τ̂ − τ | ≤ 2) (denoted as P0, P1, and P2, re-
spectively) in Table 8. Also, columns 7–9 of Table
8 give, respectively, estimates of the probabilities
Pr(TW issignificantalone), Pr(TA issignificantalone),
and Pr(bothtestsaresignificant), denoted as PTW

,
PTA

, and PBoth, for shifts in the mean alone, in the
dispersion alone, and in both. The significant level
was fixed at 0.01 for both tests. Four scenarios were
considered: (i) N(0, 1) versus N(δ, 1); (ii) N(0, 1) ver-
sus N(0, δ2); (iii) t(3)/

√
3 versus t(3)/

√
3 + δ; (iv)

t(3)/
√

3 versus δ · t(3)/
√

3. Note that, for a given en-
try with relative frequency π̂, its standard error can
be computed by the formula

√
π̂(1 − π̂)/10000.

Table 8 shows that the proposed change-point es-
timator performs well from the viewpoint of the me-
dian for any shift size and τ̂ has better precision as
the magnitude of the shift increases. We can also see
that τ̂ performs much better for monitoring mean
changes than for dispersion changes in terms of the
accurate probabilities. With respect to the combina-
tion of two diagnostic tests, it is likely that the TW

alone will be significant when there is a small shift
in the mean, and both tests will be significant when
there is a large shift in the mean. It is likely that
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FIGURE 4. ARL Comparison of the NLE, HLE, McE, and SHL Charts for Monitoring: (a) t(3)/
√

3 Versus t(3)/
√

3 + δ;

(b) t(3)/
√

3 Versus δ · t(3)/
√

3; (c) (χ2
3 − 3)/

√
6 Versus (χ2

3 − 3)/
√

6 + δ; (d) (χ2
3 − 3)/

√
6 Versus δ · (χ2

3 − 3)/
√

6

When m0 = 200, τ = 50.

rolling, soaking, assembly, cleaning, aging, and clas-
sifying. The quality of unfinished AEC products that
are called capacitor elements in terms of appear-
ance condition and functional performance will be in-
spected by sampling after each stage. In each stage,
some important characteristics in the specification
of an AEC, such as the capacitance and loss tangent
(or equivalently dissipation factor), are automatically
calibrated by an electronic device at some given mea-
suring voltage, frequency, and temperature.

To illustrate, we consider the monitoring of the ca-
pacitance values (Xt) at the aging stage. The dataset
comprises 200 observations. Figure 5(a) shows the
time-series plots of the raw data. Among them, the
last 30 observations are suspected as inferior prod-
ucts based on engineering knowledge. So we use the
first 170 observations as the historical sample (i.e.,
m0 = 170) and the others for test. A calibration
sample of this size may be smaller than ideal to de-
termine fully the IC distribution but it suffices to use
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TABLE 8. Diagnostic Results of the Change-Point Estimate τ̂ in (10) and TW and TA Tests in the Cases When

(i) N(0, 1) Versus N(δ, 1); (ii) N(0, 1) Versus N(1, δ2); (iii) t(3)/
√

3 Versus t(3)/
√

3 + δ; (iv) t(3)/
√

3 Versus δ · t(3)/
√

3

δ MED P0 P1 P2 PTW
PTA

Pboth

0.50 51 0.076 0.166 0.235 0.783 0.048 0.043
0.75 50 0.144 0.287 0.384 0.790 0.047 0.074
1.25 50 0.221 0.404 0.518 0.742 0.061 0.133

(i) 1.50 50 0.307 0.513 0.629 0.639 0.084 0.224
1.75 50 0.396 0.609 0.724 0.512 0.109 0.332
2.00 50 0.469 0.681 0.778 0.368 0.146 0.443
2.50 50 0.538 0.741 0.820 0.233 0.197 0.526

1.50 52 0.066 0.156 0.232 0.106 0.613 0.145
1.75 51 0.095 0.202 0.289 0.081 0.630 0.163
2.00 50 0.129 0.264 0.360 0.062 0.667 0.161

(ii) 2.25 50 0.194 0.357 0.475 0.037 0.689 0.181
2.50 50 0.245 0.439 0.552 0.027 0.723 0.171
3.00 50 0.292 0.493 0.612 0.020 0.736 0.171
4.00 50 0.311 0.523 0.637 0.016 0.749 0.167

0.50 50 0.123 0.244 0.331 0.820 0.036 0.115
0.75 50 0.241 0.421 0.530 0.838 0.026 0.121
1.25 50 0.364 0.571 0.687 0.803 0.027 0.157

(iii) 1.50 50 0.471 0.670 0.777 0.728 0.029 0.231
1.75 50 0.571 0.762 0.846 0.612 0.039 0.334
2.00 50 0.635 0.811 0.877 0.448 0.053 0.484
2.50 50 0.695 0.843 0.897 0.291 0.082 0.610

1.50 54 0.031 0.078 0.118 0.144 0.558 0.166
1.75 52 0.055 0.121 0.178 0.122 0.596 0.173
2.00 51 0.072 0.164 0.238 0.110 0.611 0.187

(iv) 2.25 51 0.126 0.252 0.348 0.069 0.652 0.203
2.50 50 0.159 0.311 0.420 0.058 0.663 0.212
3.00 50 0.202 0.374 0.487 0.042 0.669 0.228
4.00 50 0.226 0.412 0.532 0.037 0.688 0.222

the TA alone will be significant when there is a shift
in the dispersion. Actually, this finding is consistent
with that of using the combination of two EWMA
charts in Reynolds and Stoumbos (2001). By com-
paring the results given in Table 3 of Reynolds and
Stoumbos (2001), the main conclusion is that the use
of nonparametric post-diagnostic tests is at least as
reliable as the combination of two EWMA charts in
identifying the type of parameter change that has
occurred. Our additional simulation results (not re-
ported here) also indicate that the same conclusion
could be drawn in the case that both the mean and
variance change at the same time.

A Real-Data Application

In this section, we demonstrate the proposed
methodology by applying it to a real dateset from
an aluminium electrolytic capacitor manufacturing
process. The aim of an aluminium electrolytic capac-
itor (AEC) process is to transform the raw materials
(anode aluminum foil, cathode aluminum foil, guid-
ing pin, electrolyte sheet, plastic cover, aluminum
shell, and plastic tube) into AECs with specific spec-
ifications. The whole manufacturing process, which
is a typical multistage process (c.f., Shi (2007)), in-
cludes a sequence of operations, such as clenching,
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FIGURE 5. (a) The Time Series Plot of the Aluminium Electrolytic Capacitors Data. (b) The Normal Q-Q Plot for the

Capacitance Observations.

our proposed NLE chart because it is a distribution-
free scheme. We use the standard X and MR con-
trol charts (Montgomery (2005)) to see whether these
observations were taken from a stable process. Nei-
ther of the two charts triggers a signal with the
false-alarm rate 0.01. The normality assumption on

the distribution may be poor, as suggested by the
quantile-quantile (Q-Q) plot for the 170 historical
observations in Figure 5(b). In fact, a one-sample
Kolmogorov–Smirnov test for normality is highly sig-
nificant (p-value is smaller than 0.0001). All these
checkings suggest that the normality assumption on

FIGURE 6. (a) The NLE Control Chart along with the Control Limits (Dashed Line) for Monitoring the Aluminium

Electrolytic Capacitor Process. (b) The Normalized NLE Control Chart along with the Normalized Control Limit One for

Monitoring the Aluminium Electrolytic Capacitor Process.
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F0 is not valid and, thus, we would expect that the
nonparametric scheme should be more robust and
powerful than normal-based schemes for this dataset.

Now we are ready to construct the proposed NLE
chart for Phase II analysis. Its IC ARL is fixed at
370 and λ is chosen to be 0.1. Note that m0 = 170 is
not contained in Table 2 and, thus, the control limits
are obtained from Equation (8) through additional
simulations (it costs about 4 minutes to find the
control limits based on 250,000 replications). Figure
6(a) shows the resulting NLE chart (solid curve con-
necting the dots) along with its dynamic control lim-
its (the dashed line). The corresponding normalized
NLE chart (dashed curve connecting circles) and its
constant control limit are presented in Figure 6(b).
The charting statistics and the diagnostic statistics
ZA(t, k) are tabulated in Table 9. From the plot and
table, it can be seen that the NLE chart passes the
control limit at around the 194th observation and
it remains above the control limit for the remaining
observations. This excursion suggests that a marked
step change has occurred. Then by looking at the val-
ues of ZA(t, 24) for t = 0, 1, · · · , 23, we find that its
maximum occurs at t = 9 with ZA(9, 24) = 48.244.
In addition, by computing the test statistics given
TW and TA in Equations (11) and (12), respectively,
we can obtain the corresponding p-values of 2×10−4

and 0.03, which indicate that there has been a shift
in the location.

Concluding Remarks

In this paper, we propose a univariate distribution-
free control chart. This chart integrates Zhang’s
(2002) powerful goodness-of-fit test and EWMA pro-
cess monitoring. It can be easily implemented when
the underlying process distribution is unknown and,
thus, a lengthy data-gathering step can be avoided.
The proposed scheme is fast in computation, con-
venient to use, and efficient in detecting potential
shifts in location or scale. Numerical results show
that it is not only sensitive to shifts in location or
mean in the process, but also remarkably effective in
detecting changes in the scale and shape at which
the conventional rank-based control charts are ineffi-
cient. Additional numerical studies (not reported in
the paper) show that it is effective in detecting cer-
tain drift changes as well.

Hawkins et al.’s (2003) change-point scheme for
on-line monitoring can also be seen as a self-starting
method. Zhou et al. (2009) and Hawkins and Deng
(2010) extended this strategy to the nonparametric

TABLE 9. Data and Statistics for the Aluminium

Electrolytic Capacitor Dataset

t Xt Z̃t Lt Z̃t/Lt ZA(t, k)

0 8.122
1 456 0.098 14.639 0.007 18.589
2 443 0.198 13.842 0.014 17.306
3 447 0.358 13.159 0.027 18.055
4 465 0.345 12.382 0.028 27.551
5 447 1.001 11.709 0.085 28.524
6 447 1.889 11.006 0.172 29.801
7 447 3.000 10.339 0.290 31.301
8 448 2.751 9.715 0.283 33.756
9 453 2.476 9.209 0.269 48.244

10 438 2.360 8.717 0.271 41.123
11 442 2.127 8.280 0.257 37.788
12 442 1.915 7.871 0.243 33.811
13 439 2.283 7.492 0.305 28.963
14 445 2.297 7.191 0.319 27.327
15 439 2.483 6.945 0.358 22.382
16 446 2.522 6.650 0.379 22.749
17 440 2.885 6.372 0.453 19.244
18 436 2.800 6.188 0.452 13.205
19 439 3.306 6.004 0.551 8.643
20 440 4.131 5.835 0.708 5.425
21 447 4.423 5.695 0.777 7.815
22 441 5.132 5.555 0.924 4.526
23 437 5.154 5.433 0.949 0.596
24 443 6.121 5.322 1.150 1.292
25 445 6.640 5.229 1.270 0.047
26 446 7.052 5.151 1.369
27 449 8.680 5.080 1.709
28 459 8.658 5.007 1.729
29 449 7.947 4.951 1.605
30 456 7.256 4.919 1.475

setting by utilizing the two-sample Mann–Whitney
test statistics. In an ongoing effort, we are developing
a control scheme that integrates sequential change-
point detection and the two-sample GOF test pro-
posed by Zhang (2006), which might be expected to
be more robust in detecting various magnitudes of
shifts and in further alleviating the masking effect at
a certain expense of computational effort.
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