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Profile monitoring is a technique for checking the stability of the functional relationship between a response variable and one or
more explanatory variables over time. Linear profile monitoring is particularly useful in practice due to its simplicity and flexibility.
The existing monitoring methods suffer from a drawback in that they all assume the error distribution to be normal. When the
underlying distribution is misspecified, the efficiency of the commonly used Least Squares Estimation (LSE) is likely to be low and
as a consequence the detection ability of procedures based on LSE is reduced. To overcome this drawback, this article develops
a non-parametric methodology for monitoring the linear profile, including the regression coefficients and profile variations. The
Multivariate Sign exponentially weighted moving average (MSEWMA) control scheme is applied to the estimated profile parameters
obtained using a rank-based regression approach. Benefiting from certain favorable properties of MSEWMA and the efficiency of
rank-based regression estimators, the proposed chart is robust from the point of view of the in-control and out-of-control average run
length, particularly when the process distribution is heavily tailed. An example with real data from a manufacturing facility shows
that it performs well in application.
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1. Introduction

Due to recent progress in sensing and information technol-
ogy, automated data acquisition has been widely adopted in
various industries. Consequently, large amounts of quality-25
related data have become available. Statistical Process Con-
trol (SPC) based on such data is an important component
of process monitoring and control. In many applications,
the quality of a process is characterized by the relationship
between a response variable and one or more explanatory30
variables. A collection of data points of these variables can
be observed at each sampling stage, which can be repre-
sented by a curve (i.e., a profile). In some calibration appli-
cations, the profile can be described adequately by a linear
regression model. In other applications, however, more flex-35
ible models are necessary if the profiles are to be described
properly. An extensive discussion of the related research
problems has been given by Woodall et al. (2004).

Studies focusing on simple linear profiles have flour-
ished. See, for instance, Kang and Albin (2000), Kim et al.40
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(2003), Mahmoud and Woodall (2004), Zou et al. (2006),
and Mahmoud et al. (2007), among several others. Multiple
and polynomial regression profile models are considered by
Zou, Tsung, and Wang (2007); Kazemzadeh et al. (2008);
Mahmoud (2008); and Jensen et al. (2008). Non-linear pro- 45
file models are investigated by Williams et al. (2007), Jensen
and Birch (2009), Zhang and Albin (2009), etc. Yeh et al.
(2009) studied Phase I profile monitoring for binary re-
sponses that could be represented by the logistic regression
model. Recently, profile monitoring for the general profile 50
model has also attracted considerable attention. See Zou
et al. (2008) and Qiu et al. (2010) for Phase II methods based
on non-parametric regression and Lada et al. (2002), Ding
et al. (2006), and Chicken et al. (2009) for procedures using
various dimension reduction techniques, such as wavelet 55
transformations and independent component analysis. A
recent review of the literature has been given by Woodall
(2007).

This article focuses on monitoring linear profiles para-
metrically over time. In particular, we consider the linear 60
profile model given by Zou, Tsung, and Wang (2007), and
concentrate on Phase II. Most of the aforementioned work
on linear profile monitoring relies on an unambiguous
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specification of the error distribution, e.g., a normal dis-
tribution, and the corresponding control schemes are con-65
structed based on integrating conventional SPC procedures
with the Least Squares Estimate (LSEs) or, equivalently,
Maximum Likelihood Estimate (MLEs) of the parameters
of each profile. While the normal assumption and LSE are
useful and popular in applications, questions have arisen70
about the appropriateness of this assumption and about
the potential impact of misspecifying the distribution in
statistical analyses. In the literature of non-parametric uni-
variate or multivariate SPC (see Chakraborti et al. (2001),
Qiu and Hawkins (2001), Qiu (2008), Zhou et al. (2009),75
Zou and Tsung (2010) and the references therein), it is well
recognized that the underlying process distribution in many
applications is not normal, so that the statistical properties
of commonly used charts, which perform best under the
normal distribution, could potentially be (highly) affected.80
This is also true in the present profile monitoring problem.

The effects of misspecifying the error distribution on pro-
file monitoring are two-fold. On one hand, when the under-
lying probability distribution is misspecified, LSE is likely
to be inefficient (see Hettmansperger and McKean (2010)).85
Consequently, the detection ability of the mentioned proce-
dures based on LSE would be reduced in certain situations
(see the simulation results in Tables 3 and 4 in Section 3). In
such situations, robust linear regression will be particularly
useful and desirable. On the other hand, the control charts90
for monitoring the estimated profile parameters, designed
under the normality assumption, usually take quadratic
forms (the Multivariate exponentially weighted moving av-
erage (MEWMA) chart; Zou, Tsung, and Wang (2007)) or
adopt the max operator (multi-charts; Kim et al. (2003)) of95
the related parameter estimates. In heavy-tailed situations,
these control charts would result in some biases from the
nominal value of the In-Control (IC) Average Run Length
(ARL); i.e., the IC ARL tends to be smaller than intended
if the smoothing parameter is not chosen appropriately (see100
Table 1 in Section 3).

It should be emphasized that the issue of not being able
to attain the nominal IC ARL is actually inherited from
the conventional multivariate control charts when the
multinormality assumption is violated because parametric105
profile monitoring can be regarded as a special case of
multivariate SPC to some extent (Woodall, 2007; Zou,
Tsung, and Wang, 2007). Therefore, it is natural to consider
certain non-parametric multivariate schemes instead of the
MEWMA chart. However, Stoumbos and Sullivan (2002)110
argued that multivariate non-parametric control charts
“are less powerful, more computationally intensive, and
generally do not apply to skewed distributions.” As a solu-
tion, Zou and Tsung (2011) recently proposed a new mul-
tivariate control chart, called the multivariate sign EWMA115
(or simply MSEWMA), for monitoring location parame-
ters. The MSEWMA adapts a powerful multivariate sign
test proposed by Randles (2000) to online sequential mon-
itoring and can be seen as a non-parametric counterpart

of the classic MEWMA. It is efficient in detecting shifts in 120
location parameters, particularly small or moderate shifts
when the process distribution is heavy-tailed or skewed.
More important, it is appealing in that for a broad class of
distributions, its IC run length distribution can reach (or is
always very close to) the nominal one when the same con- 125
trol limit designed for a multinormal distribution is used.

Here we develop a non-parametric SPC methodology
for monitoring linear profiles, including the regression co-
efficients and profile variations. We apply MSEWMA to
the estimated profile parameters that are obtained by using 130
a rank-based regression approach. Due to certain favor-
able properties of MSEWMA and the efficiency of rank-
based regression estimators, the proposed chart is robust
from both the IC and out-of-control (OC) ARLs’ point
of view, particularly when the process distribution is very 135
heavy-tailed. The remainder of this article is organized as
follows: our proposed methodology is described in detail in
Section 2 and its numerical performance is investigated in
Section 3. The method is demonstrated using a real exam-
ple in Section 4 and several remarks conclude the article in 140
Section 5. Some technical details are provided in the Ap-
pendix. A supplemental file, which contains several other Q2

results and dataset, can be found on the webpage of the
corresponding author.

2. Methodology 145

We describe the proposed control chart in four parts. In Sec-
tion 2.1, the linear model formulation and the associated
assumptions are introduced. Then, a brief introduction of
the rank-based regression is presented in Section 2.2. A
new EWMA control chart combined with rank-based es- 150
timation is derived in Section 2.3. Practical guidelines for
design and computation are given in Section 2.4.

2.1. Model and assumption

Consider the linear profile model given by Zou, Tsung, and
Wang (2007). Assume that for the j th ( j ≥ 1) random sam- 155
ple collected over time we have the observations (X j , y j ),
where y j = (yj1, . . . , yjn j ) is an n j -variate response vector Q3

and X j is an n j × p regressor matrix. It is assumed that
the profile is a linear combination of the covariates without
time delay, i.e., the process observations are collected over 160
time using the following profile model:

yji = α j + xT
j iβ j + ε j i , i = 1, · · · , n j ;

j = −m0 + 1, . . . , 0, 1, . . . , τ, τ + 1, . . . , (1)

where τ is the unknown change-point, {(X j , y j )}0
j=−m0+1

denotes the historical dataset, xT
j i denotes the i th row of

X j , α j is the intercept parameter, β j is a p-dimensional
coefficient vector, and the ε j i are independent and identi- 165
cally distributed (i.i.d.) from a distribution F (its density is
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denoted as f ) and satisfy E[ε j i ] = 0, and σ 2
j = Var[ε j i ] <

∞. Let us suppose that:

α j = α(0),β j = β (0), σ
2
j = σ 2

(0) for j ≤ τ,

α j = α(1),β j = β (1), σ
2
j = σ 2

(1) for j > τ,

and α(0) �= α(1) and/or β(0) �= β (1) and/or σ 2
(0) �= σ 2

(1), where
the parameters with subscripts (0) and (1) denote the IC170
and OC profile parameters, respectively.

In what follows, for ease of exposition, the n j s are taken
to be equal (denoted as n), and the explanatory variable
matrix, X j , is assumed to be fixed for different values of j
(denoted as X). This is usually the case in practical calibra-175
tion applications in industrial manufacturing and is also
consistent with the literature, such as Kim et al. (2003) and
Zou, Tsung, and Wang (2007, 2008). For profile monitoring
with more complex covariate designs, see Qiu et al. (2010).
Without loss of generality, let us suppose that all of the180
columns of X are orthogonal to 1 where 1 is an n-variate
vector of all ones. We can also obtain this form through
some appropriate transformations. We mainly consider the
Phase II case in which the necessary IC parameters are
assumed to be known, as is a common convention in the185
literature. It is essentially equivalent to saying that m0 is
sufficiently large. Once the IC models are established as the
baseline in Phase II, we would want to detect any change
in the regression coefficients and the profile variance as
quickly as possible. In a Phase I study, although the meth-190
ods based on the normal assumption may not be the most
efficient, they can still be applied and usually work just as
well. Interested readers can refer to Jensen et al. (2008),
Kazemzadeh et al. (2008), and Mahmoud (2008).

2.2. A brief review of rank-based regression195

For notational convenience, we choose to suppress the in-
dex j in the notation of Equation (1) and consider only
one fixed profile sample to illustrate the method. It is well
understood that the LSE

β̂L = arg min
β

n∑
i=1

(
yi − α − xT

i β
)2
, (2)

is sensitive to outliers and is less efficient if the error dis-200
tribution has heavier tails than the normal distribution. In
particular, the efficiency of the LSE is zero if the error dis-
tribution is Cauchy (Hettmansperger and McKean, 2010).
On the other hand, formulation of an efficient MLE re-
quires estimating the closed form of f , which creates extra205
technical difficulties and inconvenience in practice.

A natural alternative seems to be the Least Absolute De-
viation Estimator (LADE; Bloomfield and Steiger, 1983):

β̂ A = arg min
β

n∑
i=1

∣∣yi − α − xT
i β
∣∣,

which may be more robust because it is resistant to heavy-
tailed errors and/or extreme observations (outliers). Nev- 210
ertheless, the asymptotic efficiency of LADE compared
with the LSE is proportional to the density at the median
(Pollard, 1991); that is,

ARE(β̂A, β̂L) = 4σ 2 f 2(θ),

where ARE(E1, E2) denotes the Asymptotic Relative Effi-
ciency (ARE) of estimator E1 with respect to E2 and θ is 215
the median of f . For the normal distribution, this quantity
is only 0.637. And worse still, the efficiency is arbitrarily
small if the density value at the median is close to zero.
Please refer to Section 1.5 of Hettmansperger and McKean
(2010) for a thorough discussion and some finite-sample 220
analysis.

To overcome the inefficiency issue of LADE, a commonly
used method is the so-called Wilcoxon-type rank-based es-
timate, β̂R, which minimizes:

Wn(β) :=
n∑

i=1

{
R
(
yi − xT

i β
)

n + 1
− 1

2

} (
yi − xT

i β
)
, (3)

where R(yi − xT
i β) denotes the rank of yi − xT

i β among 225
{y1 − xT

1 β, . . . , yn − xT
n β}. This estimator, which was pro-

posed by Jaeckel (1972), is asymptotically equivalent to the
rank estimator of Jureǎková (1971). Clearly, the above min-
imization is analogous to the least squares procedure except
that the Euclidean norm is substituted by a Wilcoxon-type 230
rank norm. Moreover, the objective function (3) is a non-
negative convex function and provides a robust measure
of the dispersion of the residuals (see Theorems 2.5.1 on
page 99 of Hettmansperger and McKean (2010)). McKean
and Schrader (1980) further revealed an intuitive geometric 235
interpretation of Equation (3).

Under some mild assumptions, the Wilcoxon rank esti-
mator has an approximate normal distribution (see The-
orem 3.5.4 and Corollary 3.5.1 of Hettmansperger and
McKean (2010)): 240

β̂R → Np(β, η2(XTX)−1),

where η2 = 1/[12(
∫

f 2(t)dt)2]. Consequently, its ARE with
respect to LSE is ARE(β̂R, β̂L) = σ 2/η2. Note that this
ARE is closely related to that of the signed-rank Wilcoxon
test with respect to the t-test in the context of classic non-
parametric statistics. Hence, β̂R is quite robust and highly 245
efficient in both testing and estimation when the error
distribution is heavy-tailed. For instance, it has a lower
bound of 0.864 among all symmetric distributions (see
Hettmansperger and McKean (2010, Section 1.7.2)). For
the normal error distribution, this quantity is 0.955. For a 250
comprehensive presentation of the rank-based analysis of
linear models, see Hettmansperger and McKean (2010). In
our profile monitoring problem, we are inclined to consider
the Wilcoxon Rank Estimator (WRE) based on the above
reasoning. 255
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We emphasize here that the WRE belongs to the family
of general rank-norm estimators (see Hettmansperger and
McKean (2010, Section 3)), which is defined as

arg min
n∑

i=1

a
(
R
(
yi − α − xT

i β
))(

yi − α − xT
i β
)
,

where a(1) ≤ a(2) ≤ · · · ≤ a(n) is a set of scores generated
as a(i ) = ψ(i/(n + 1)), satisfying

∑n
i=1 a(i ) = 0, for some260

non-decreasing score function ψ(u) defined on the inter-
val (0, 1) and standardized such that

∫
ψ(u)du = 0 and∫

ψ2(u)du = 1. The Wilcoxon norm is generated by the
linear score function ψ(u) = √

12(u − 1/2). It can also be
seen that using ψ(u) = sign(u − 1/2) leads to the LADE.265
With this general rank-norm loss function, by choosing
some appropriate ψ(·), we may define various estimators
with better efficiencies for some specific error distributions,
such as heavy-tailed distributions. These estimators are cer-
tainly suitable candidates other than the WRE for tack-270
ling the present profile monitoring problem. However, as
demonstrated in the literature, the WRE is one of the most
popular and efficient rank-norm estimators and has been
shown to perform remarkably well in a wide variety of set-
tings; e.g., see Leng (2010) for variable selection and Wang275
et al. (2009) for non-parametric regression. Thus, we adopt
the WRE here, but further research on using some other
rank-norm estimators would be useful.

It is worth pointing out that the intercept term α is not
involved in Equation (3). This is because α does not affect280
the value of the Wilcoxon-type rank-based loss function
when we use yi − α − xT

i β instead due to

n∑
i=1

{
R
(
yi − xT

i β
)

n + 1
− 1

2

}
= 0.

Hence, the Wilcoxon-type rank-based method cannot be
used to estimate the intercept. In contrast, the LSE and285
LADE methods are able to estimate intercept and regres-
sion coefficients simultaneously. Thus, the WRE should be
used together with some other estimate of α, which will be
discussed later.

2.3. Control charts for monitoring the linear profile290

To monitor the linear profile (1), the p regression coeffi-
cients, the intercept, and the standard deviations σ must
be controlled simultaneously. For the j th profile collected
over time, denote β̂ jL and β̂ jR as the corresponding LSE
and WRE for the regression coefficient using Equations (2)295
and (3), respectively. Then, we could use

α̂ j = 1
n

n∑
i=1

yji , σ̂
2
jR = 1

n − p − 1

n∑
i=1

(
yji − α̂ j − xT

i β̂ jR

)2
,

as the estimates of the intercept α and variance σ 2, respec-
tively. When using β̂ jL in the above equation instead of

β̂ jR, we obtain the corresponding σ̂ 2
jL. By Theorem 3.9.5

of Hettmansperger and McKean (2010), we know that both 300
σ̂ 2

jR and σ̂ 2
jL are consistent estimators of σ 2. Note that

the median, which may be more robust in certain cases,
could be used to estimate the intercept. Nevertheless, its
asymptotic efficiency compared with the mean is the same
as ARE(β̂A, β̂L). Thus, using the median instead of the 305
mean would make charts largely inefficient in detecting the
change of intercept except for very heavy-tailed distribu-
tions and we choose to use the sample mean here.

Zou, Tsung, and Wang (2007) defined a working vector,

z jL = [̂α j , β̂ jL,�
−1{	((n − p − 1)σ̂ 2

jL/σ
2
(0); n − p − 1

)}]T
,

where �−1(·) is the inverse of the standard normal cumu- 310
lative distribution function and 	(·; ν) is the chi-square
distribution function with ν degrees of freedom (χ2

ν ).
When the process is IC and the ε j i values are nor-
mally distributed, the vector is multivariate normally dis-
tributed with mean (α(0),β(0), 0)T and covariance matrix 315
� = diag{n−1σ 2

(0), σ
2
(0)(X

TX)−1, 1}. Zou, Tsung, and Wang
(2007) applied the MEWMA chart to z jL, which we denote
as the MEWMA-L chart hereafter. The advantage of trans-
forming σ̂ 2

jL into a normal variable is that the control chart
can be made sensitive to decreases in the standard deviation 320
as well. However, when the ε j i values are heavy-tailed, this
transformation would yield a variable whose distribution
will deviate greatly from normality since σ̂ 2

jL is no longer
chi-square distributed. The above covariance matrix � is
also inappropriate in such situations. 325

Even though z jL is not normally distributed, the
MEWMA is still applicable after the mean and covari-
ance of z jL, denoted as µ(0) and �(0), are estimated from
the historical dataset. As demonstrated by Stoumbos and
Sullivan (2002), the MEWMA chart would still be more 330
appealing than some multivariate non-parametric schemes
because MEWMA charts are quite robust when the weight-
ing parameter λ is sufficiently small. With a large number of
observations and a small smoothing parameter, the central
limit theorem would ensure that the accumulation vector 335
has approximately a multinormal distribution, which en-
sures robustness. In fact, the IC run length distribution for
a continuous non-normal process is quite close to the dis-
tribution for a multivariate normal process with the same
control limit. However, how small λ should be depends on 340
the deviation of the actual measurement distribution from
the multinormal distribution, which may not be easy to
measure in practice.

Alternatively, we consider applying the MSEWMA chart
proposed by Zou and Tsung (2011) to the estimated param- 345
eter vector:

z jR = [̂α j , β̂ jR, σ̂
2
jR]T.

As illustrated in Section 2.2, β̂ jR is more robust than
β̂ jL for some error distributions, especially for heavy-tailed
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distributions. In turn, we may expect the use of z jR to yield a350
more efficient test than the use of z jL if the error distribution
is very heavy-tailed. Note that z jR is not exactly multinor-
mally distributed in a small-sample situation, even when
the error distribution is normal. Hence, the MSEWMA
chart is employed to deal with its non-normality.355

Next, we present a succinct description of how to con-
struct the MSEWMA chart based on z jR, but readers are
advised to refer to Zou and Tsung (2011) for more theo-
retical and empirical justifications about the efficiency of
this chart in multivariate settings. The proposed control360
scheme contains two steps. The first step is to obtain an IC
multivariate median, θ(0), and a corresponding IC transfor-
mation matrix, �(0), of the vector z jR. This step is similar to
constructing the MEWMA-L chart in which µ(0) and �(0)
for z jL are usually estimated from the historical data before365
monitoring. We consider using the affine equivariant mul-
tivariate median and the associated transformation matrix
proposed by Hettmansperger and Randles (2002), given as
the solutions of the following equations:

E
(

�(z − θ )
||�(z − θ )||

)
= 0, E

(
�(z − θ)(z − θ)T�T

||�(z − θ )||2
)

= 1
p + 2

Ip+2, (4)

where z denotes the random vector, which has the same370
distribution as z jR, and � is a (p + 2) × (p + 2) upper tri-
angular positive-definite matrix with a one in the upper
left-hand element. In practice, θ(0) and �(0) are estimated
from the IC historical profile samples, defined as the solu-
tions of the following sample equations:375

1
m0

0∑
j=−m0+1

(
�(z jR − θ)

||�(z jR − θ)||
)

= 0, (5)

1
m0

0∑
j=−m0+1

(
�(z jR − θ)(z jR − θ)T�T

||�(z jR − θ )||2
)

= 1
p + 2

Ip+2.

(6)

Hettmansperger and Randles (2002) presented an iterative
procedure to solve Equations (5) and (6) simultaneously
that is efficient in obtaining (θ(0),�(0)) from a given sample.
A detailed step-by-step description of the algorithm can
also be found in the Appendix of Zou and Tsung (2011).380

After (θ(0),�(0)) is specified or estimated, we standardize
and transform our online estimated parameter vector z j
from the j th collected profile to obtain the unit vector v j
through:

v j = �(0)(z jR − θ (0))
||�(0)(z jR − θ (0))|| . (7)

The unit vectors of the transformed data have a variance–385
covariance structure like the one for a random variable
that is uniform on the unit p-sphere. Define an EWMA
sequence in a similar way to Lowry et al. (1992) and Zou,

Tsung, and Wang (2007),

w j = (1 − λ)w j−1 + λv j , (8)

where w0 = 0. Finally, the proposed control chart triggers 390
a signal if

Q j = 2 − λ

λ
pwT

j w j > L, (9)

where L > 0 is a control limit chosen to achieve a specific
IC run length distribution. We also make use of the fact that
Cov(w j ) ≈ λCov(v j )/(2 − λ) = p−1λIp/(2 − λ) by Equa-
tion (4). 395

As has been shown by Zou and Tsung (2011), the
MSEWMA chart is distribution free in the sense that its
IC run length distribution is the same for all distributions
with elliptical directions in which random variables are gen-
erated via zi = ri Dui , where the ui are i.i.d. uniform on the 400
unit p sphere, D is a non-singular matrix, and the ri are
positive scalars. The elliptical directions family contains all
of the elliptically symmetric distributions, such as multi-
normal and multivariate t distributions and certain skewed
distributions. Moreover, its IC run-length performance is 405
quite robust under various process distributions, including
very skewed distributions. We can expect these properties to
remain (approximately) valid in the present profile monitor-
ing example. We shall call the MSEWMA chart that uses
z jR the MSEWMA-R chart. Although its exact charting 410
performance is difficult to derive because the small-sample
distributional properties of z jR are not available to us, the
IC and OC performance of MSEWMA-R will be assessed
in Section 3 to verify its effectiveness.

2.4. Design and implementation of the proposed schemes 415

2.4.1. On computation
For online detection, after obtaining the vectors of esti-
mated parameters from each profile, the computation bur-
den of the MSEWMA-R chart is similar to that of the
MEWMA-L chart since both only require computing a 420
working EWMA sequence and a quadratic form. In com-
parison with LSE, the MSEWMA-R chart is more com-
plicated because the minimization of Equation (3) has no
closed-form solution. The WRE can be obtained with the
function “wwest” in R software developed by Terpstra and 425
McKean (2005). Alternatively, β̂ jR can be calculated by
applying the iterative reweighted least squares algorithm
of Sievers and Abebe (2004), with the help of major soft-
ware packages. The detailed algorithm is provided in the
Appendix. Note that the computation task here is not too 430
difficult by virtue of the massive computing and data stor-
age capabilities of modern computers. For instance, for
p = 8 and n = 20, usually less than 1/1000 of a second is
required to complete the iterative procedure to obtain an es-
timate using a Pentium-M 2.4 MHz CPU. The MSEWMA- 435
R chart is generally applicable to online monitoring.
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In addition, by using the efficient algorithms provided
by Hettmansperger and Randles (2002), the convergence
of (θ(0),�(0)) from the historical profile data with any prac-
tical p and m0 is guaranteed and is usually quite fast. Since440
this is a one-time computation before Phase II online pro-
cess monitoring, it is easy to accomplish in practice. The
Fortran codes for implementing the proposed schemes, in-
cluding solving Equations (5) and (6) and obtaining β̂ jR,
are available from the authors upon request.445

2.4.2. On the control limits and robustness
As shown in Propositions 2 and 3 of Zou and Tsung (2011),
the MSEWMA chart is distribution free in the sense that
its IC run-length distribution is the same for all distribu-
tions with elliptical directions. The Q j process is a Markov450
chain if the underlying distribution has elliptical directions.
Zou and Tsung (2011) claimed that the MSEWMA shares
a similar key property with its parametric counterpart, the
MEWMA, which is that the IC ARL of MSEWMA for dis-
tributions with elliptical directions can be calculated via the455
Markov chain model, which greatly facilitates the search for
the control limits of the MSEWMA-R chart. The detailed
algorithm can be obtained from Zou and Tsung (2011).

Table 1 tabulates the control limits of the MSEWMA-R
chart for various commonly used combinations of λ, p,460
and IC ARL obtained using a Markov chain with m = 200
transition states. The simulation results shown in the next
section demonstrate that the IC run-length performance of
the MSEWMA-R chart is robust under various process
distributions including some skewed error distributions.465
Therefore, the control limits tabulated in Table 1 could be
used in practice when there is little knowledge about error
distributions. Note that the control limits with p corre-
spond to the control limits presented in Table 1 of Zou and
Tsung (2011) with p + 2 because in MSEWMA-R there are470
actually p + 2 parameters to be monitored.

2.4.3. On choosing the smoothing weight
λ: The MSEWMA-R chart is robust under IC for λ ∈
(0, 0.2]. In general, a smaller λ leads to a quicker detec-
tion of small shifts (see, for example, Lucas and Saccucci 475
(1990)). Based on our simulation results, we suggest choos-
ing λ ∈ [0.05, 0.2] in practice.

3. Comparison of numerical performance

In order to see when the proposed MSEWMA-R chart
should be considered for use, we present some simulation 480
results in this section regarding its run-length performance,
as compared with that of the MEWMA-L chart. We do not
consider the chart proposed by Kim et al. (2003), which is
a combination of three charts, because Zou, Tsung, and
Wang (2007) have shown that it has similar performance 485
to MEWMA-L for the simple linear model and is not di-
rectly applicable to more complex models, such as multiple
regression models and polynomial models. As is the con-
vention in the Phase II literature, we assume that m0 is
sufficiently large so that all parameters are estimated with 490
negligible error. The control limits of the MEWMA-L chart
are determined using the Markov chain method given by
Zou, Tsung, and Wang (2007) to attain the nominal IC
ARL under the standard normal error distribution, while
the control limits given in Table 1 are used for MSEWMA- 495
R. Since the zero-state and Steady-State ARL (SSARL)
results are similar, only the results for OC SSARLs are pro-
vided. To evaluate the OC SSARL behavior of each chart,
any series in which a signal occurs before the (τ + 1)th
observation is discarded (see Hawkins and Olwell (1998)). 500
Because a similar conclusion holds for other cases, here we
only present the results for when IC ARL = 200 and τ = 50
for illustration. All of the ARL results in this section are
obtained from 10 000 replications.

Table 1. The control limits of the MSEWMA-R chart with IC ARL = 200, 370, and 500 for the p-variate linear profile model

IC ARL λ P = 1 P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8

200 0.4 7.920 9.668 11.321 12.911 14.448 15.946 17.402 18.841
0.2 9.830 11.674 13.414 15.084 16.708 18.284 19.812 21.329
0.1 10.052 11.896 13.636 15.310 16.911 18.489 20.027 21.532
0.05 9.177 10.963 12.646 14.264 15.819 17.340 18.837 20.288
0.025 7.691 9.345 10.906 12.408 13.864 15.290 16.694 18.066

370 0.4 8.294 10.125 11.847 13.505 15.083 16.633 18.140 19.628
0.2 10.687 12.626 14.448 16.192 17.876 19.514 21.093 22.649
0.1 11.303 13.249 15.077 16.828 18.511 20.150 21.750 23.310
0.05 10.700 12.607 14.404 16.110 17.774 19.371 20.939 22.472
0.025 9.392 11.205 12.918 14.551 16.124 17.668 19.176 20.644

500 0.4 8.459 10.329 12.083 13.772 15.388 16.951 18.489 19.983
0.2 11.074 13.058 14.924 16.705 18.409 20.068 21.688 23.284
0.1 11.887 13.877 15.750 17.525 19.247 20.929 22.549 24.147
0.05 11.417 13.375 15.216 16.971 18.663 20.293 21.903 23.462
0.025 10.198 12.081 13.852 15.536 17.165 18.755 20.293 21.812
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To illustrate the effectiveness of our proposed monitoring505
scheme, the simulations cover two models: a simple linear
model and a multiple regression model.

Scenario 1: The straight line regression model:

yji = α + βxi + ε j i , i = 1, . . . , 7,

where (α, β) = (3, 2) and the design points xi are fixed as

{−0.429,−0.286,−0.143, 0, 0.143, 0.286, 0.429},

in each profile. In fact, these points are generated from xi =
(i − 0.5)/n, i = 1, . . . , 7, by centering so that their mean is510
zero. This model has been used for performance evaluation
by Kang and Albin (2000), Kim et al. (2003), Zou, Tsung,
and Wang (2007), etc. In this scenario, p = 1.

Scenario 2: A multiple regression model (Zou, Zhou, Wang,
and Tsung, 2007; Mahmoud 2008):Q4 515

yji = α + β11xi1 + β21xi2 + β12x2
i1 + β22x2

i2 + ε j i ,

i = 1, . . . , 15, (10)

where (α, β11, β21, β12, β22) = (1, 2, 4, 3, 6). In this scenario,
the design points xi are

(x11, . . . , x15,1) = (0.374,−0.394, 0.461,−0.045, 0.115,
− 0.291,−0.268, 0.437,−0.367,−0.243,
0.337, 0.145,−0.458, 0.472,−0.276),

(x12, . . . , x15,2) = (−0.190, 0.000, 0.311, 0.268,−0.323,
0.304,−0.300, 0.098, 0.240,−0.016,
−0.349, 0.023, 0.104,−0.276, 0.109),

which are independently generated from the uniform distri-
bution U[0, 1] and centered so that their mean is zero. This
scenario, containing both multiple and polynomial regres- 520
sion terms, is also quite common in practical applications.
It is a higher dimensional case than Scenario 1, with p = 4.
Following the robustness analyses in the literature (e.g., Zou
and Tsung (2010) and the references therein), we consider
the following three error distributions: (i) standard normal 525
N(0, 1); (ii) t distribution with ζ degrees of freedom, de-
noted as tζ ; and (iii) chi-square distribution with ζ degrees
of freedom, denoted as Chiζ . The generated variables in
both cases (ii) and (iii) are standardized so that they have
zero mean and unit variance. 530

We first compare the IC performance between
MSEWMA-R and MEWMA-L. The simulation results for
the two charts with different values of λ under Scenarios 1
and 2 are presented in Table 2. In addition to the ARLs,
the corresponding Standard Deviation of the Run Lengths 535

Table 2. IC ARL and SDRL values of the MSEWMA-R and MEWMA-L charts with some non-normal distributions. Numbers in
parentheses are SDRL values

MSEWMA-R MEWMA-L

f ζ λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.2 λ = 0.1 λ = 0.05 λ = 0.025

tζ 3 194 (188) 202 (196) 201 (190) 86.4 (84.7) 139 (136) 188 (177) 208 (188)
4 198 (194) 197 (189) 196 (184) 102 (100) 151 (145) 181 (170) 197 (174)
5 195 (190) 196 (188) 197 (186) 120 (117) 162 (156) 187 (176) 193 (171)
7 199 (192) 200 (193) 200 (190) 147 (142) 175 (168) 192 (178) 195 (172)

10 198 (190) 197 (188) 198 (185) 166 (161) 187 (181) 196 (184) 197 (172)
Scenario 1 Chiζ 1 187 (186) 194 (187) 197 (179) 92.4 (89.6) 145 (139) 189 (176) 197 (177)

2 191 (188) 198 (192) 199 (180) 115 (113) 164 (160) 192 (180) 202 (174)
3 192 (187) 198 (193) 202 (184) 129 (126) 173 (166) 201 (188) 203 (188)
5 193 (192) 198 (194) 198 (185) 149 (148) 185 (177) 201 (185) 204 (182)
8 196 (190) 200 (198) 201 (193) 164 (162) 193 (186) 202 (189) 201 (180)

Control limit 9.830 10.052 9.177 11.865 10.786 9.376 7.707
tζ 3 194 (188) 197 (190) 202 (190) 68.5 (66.5) 108 (104) 160 (150) 195 (173)

4 194 (189) 196 (189) 198 (183) 88.1 (84.7) 134 (127) 168 (155) 192 (165)
5 199 (190) 200 (193) 200 (185) 108 (105) 150 (142) 179 (163) 193 (166)
7 200 (190) 201 (189) 199 (184) 136 (130) 168 (158) 188 (169) 195 (165)

10 197 (191) 199 (186) 201 (184) 157 (152) 182 (171) 189 (170) 197 (169)
Scenario 2 Chiζ 1 183 (180) 191 (184) 194 (180) 73.6 (70.9) 124 (116) 166 (156) 191 (164)

2 190 (184) 198 (186) 201 (185) 96.3 (93.8) 149 (141) 184 (166) 193 (165)
3 191 (188) 197 (191) 201 (187) 116 (112) 164 (152) 190 (176) 199 (170)
5 194 (188) 197 (186) 198 (182) 137 (133) 172 (166) 189 (172) 196 (168)
8 196 (189) 200 (190) 199 (184) 146 (142) 175 (167) 191 (173) 196 (168)

Control limit 15.084 15.310 14.264 17.501 16.264 14.582 12.487
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(SDRL) values are also included in this table to give a
broader picture of the run-length distribution. The two
non-normal error distributions tζ and Chiζ with various de-
grees of freedom ζ are considered. The normal distribution
is not considered, though, because both the MSEWMA-R540
and MEWMA-L charts can accurately attain the nominal
IC ARL in the two considered scenarios.

From Table 2, we can see that the MSEWMA-R is sat-
isfactorily robust to the heavy-tailed and skewed distribu-
tions. When the error distribution is very skewed, as is545
Chi1, using λ = 0.2 results in a slightly smaller IC ARL
than the nominal one, but this bias is smaller than that of
MEWMA-L. When λ ≤ 0.1, the MSEWMA-R’s IC ARL
is always close to the nominal one even for the extremely
non-normal distribution. Note that in this table, the values550
with λ = 0.025 are not presented since they are almost 200
in all cases. The MEWMA-L usually has a certain bias in
the IC ARL if λ is not small. For Scenario 2, when λ is 0.025
the MEWMA-L chart is able to maintain approximately a
desired IC ARL (based on the criterion given by Jones et al.555
(2001) that the bias should be less than 5% percent of the
nominal IC ARL).

Next, we compare the OC performance. Table 3 shows
the ARLs for monitoring a shift in the intercept, slope,
and variance (including increases and decreases) under560
Scenario 1. We use a generic notation δ to represent the shift
size and consider the OC model with α(0) + δσα, β(0) + δσβ ,

or δσ , where σα and σβ are the standard deviations of α̂ j

and β̂ jL, respectively. Note that for a relatively fair com-
parison, the MSEWMA-R with λ = 0.1 and 0.05 and the 565
MEWMA-L chart with λ = 0.05 and 0.025 are considered
because when λ = 0.2 or 0.1, the IC ARL of MEWMA-L
deviates considerably from 200 as shown in the preceding
example. From this table, when the error distribution is
normal, we observe that the MEWMA-L chart has better 570
efficiency as we would expect, since the parametric hypoth-
esis is the correct one in this case. The MSEWMA-R chart
also offers satisfactory performance for small and mod-
erate shifts and the difference between MSEWMA-R and
MEWMA-L is not significant. It should be pointed out that 575
the superiority of MEWMA-L becomes more significant
when δ is large. The analogous phenomenon for univariate
non-parametric charts has been mentioned in the literature;
e.g., by Zou and Tsung (2010). The MSEWMA-R, which
is essentially based on signs rather than distances, shares 580
a similar drawback with those rank-based charts for uni-
variate processes. That is, even though the shift is large, the
ranks or signs of the observations may not increase. When
the error distribution ( f ) is not normal, the MSEWMA-R
chart is more efficient in detecting the small and moder- 585
ate shifts in slope than is the MEWMA-L chart with the
same value of λ. This is mainly due to the benefit of us-
ing rank-based estimation. For detecting the shifts in the
intercept, the MSEWMA-R chart does not seem to have

Table 3. A comparison of the ARLs of MSEWMA-R and MEWMA-L under Scenario 1 when the nominal IC ARL = 200

N(0, 1) t3 Chi1

MSEWMA-R MEWMA-L MSEWMA-R MEWMA-L MSEWMA-R MEWMA-L

δ λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025 λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025 λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025

α 0.25 86.4 73.2 67.7 61.6 67.4 57.0 73.6 65.8 29.5 27.2 31.0 30.5
0.50 34.2 30.7 26.2 27.4 24.1 23.1 28.2 28.4 10.9 11.8 12.0 13.5
1.00 12.2 13.1 10.6 12.3 9.63 10.7 10.8 12.6 6.43 7.60 5.00 6.07
1.50 7.84 9.03 6.37 7.70 6.72 7.95 6.46 7.80 5.54 6.70 3.00 3.78
2.00 6.19 7.39 4.44 5.53 5.72 6.91 4.51 5.59 5.17 6.30 2.10 2.71
3.00 5.05 6.22 2.69 3.44 5.04 6.16 2.73 3.49 4.83 5.92 1.32 1.69
5.00 4.58 5.68 1.46 1.90 4.67 5.77 1.47 1.91 4.57 5.64 1.00 1.05

β 0.25 84.2 71.2 67.1 61.4 57.7 48.2 74.7 66.7 27.5 25.8 70.0 64.2
0.50 32.6 29.4 26.6 27.2 20.6 20.1 28.4 28.9 11.6 12.6 27.1 28.0
1.00 12.1 12.9 10.5 12.2 8.55 9.71 10.9 12.6 6.51 7.67 10.6 12.3
1.50 7.81 8.89 6.35 7.64 6.22 7.38 6.47 7.85 5.39 6.51 6.35 7.70
2.00 6.14 7.27 4.45 5.50 5.37 6.50 4.52 5.61 4.94 6.06 4.43 5.52
3.00 5.05 6.11 2.71 3.44 4.79 5.88 2.74 3.51 4.61 5.69 2.69 3.46
5.00 4.55 5.58 1.47 1.91 4.52 5.58 1.47 1.91 4.41 5.48 1.47 1.90

σ 0.40 4.81 5.94 5.56 6.70 5.92 7.14 9.09 10.7 4.70 5.80 5.66 6.82
0.60 6.52 7.75 9.38 11.0 10.2 11.4 16.7 18.3 6.09 7.24 9.55 11.2
0.80 18.4 18.3 23.9 25.0 33.9 30.9 53.4 45.7 14.7 15.3 24.6 25.7
1.20 30.9 27.9 18.6 21.1 48.3 41.6 34.9 36.9 24.1 23.1 20.2 22.1
1.50 10.7 11.9 6.24 7.61 14.9 15.6 11.6 13.6 9.30 10.6 6.60 8.18
1.80 7.58 8.79 3.68 4.57 9.51 10.7 6.85 8.29 6.94 8.20 3.91 5.04

IC ARL 201 200 199 200 202 201 188 208 194 197 189 197
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Table 4. A comparison of the ARLs of MSEWMA-R and MEWMA-L under Scenario 2 when the nominal IC ARL = 200

N(0, 1) t3 Chi1

MSEWMA-R MEWMA-L MSEWMA-R MEWMA-L MSEWMA-R MEWMA-L

δ λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025 λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025 λ = 0.1 λ = 0.05 λ = 0.05 λ = 0.025

α 0.25 100 80.6 79.1 70.9 85.2 69.7 79.9 74.5 48.5 40.5 39.4 39.0
0.50 39.6 34.1 32.2 32.6 30.6 28.0 33.2 33.3 15.6 16.1 15.5 17.4
1.00 13.6 14.3 12.5 14.5 11.0 12.2 12.9 14.6 6.72 7.95 6.37 7.85
1.50 8.19 9.43 7.43 9.13 7.00 8.36 7.63 9.16 5.00 6.17 3.84 4.94
2.00 6.11 7.37 5.20 6.57 5.56 6.76 5.32 6.61 4.41 5.49 2.70 3.54
3.00 4.59 5.72 3.15 4.11 4.41 5.51 3.21 4.15 3.92 4.93 1.65 2.20
5.00 3.82 4.83 1.69 2.27 3.80 4.80 1.71 2.27 3.60 4.57 1.02 1.23

β11 0.05 102 86.9 78.4 70.1 69.6 57.1 75.4 69.19 42.0 36.2 76.0 70.5
0.10 41.4 35.4 30.8 31.8 24.2 22.9 31.0 31.32 14.7 15.4 31.3 32.1
0.15 20.8 20.4 17.62 19.6 13.0 13.9 17.6 19.59 8.90 10.1 17.9 20.1
0.30 8.21 9.48 7.21 8.83 6.06 7.25 7.15 8.83 5.00 6.11 7.30 8.94
0.50 5.15 6.30 3.85 4.91 4.38 5.43 3.80 4.91 4.02 5.03 3.89 4.99
0.75 4.17 5.22 2.34 3.07 3.83 4.83 2.31 3.06 3.68 4.65 2.35 3.10
1.00 3.83 4.82 1.65 2.18 3.64 4.59 1.62 2.17 3.56 4.51 1.66 2.22

β12 0.05 106 88.5 80.3 71.9 71.5 58.0 76.2 70.2 43.6 37.0 77.8 71.9
0.10 43.2 36.2 31.6 32.5 24.8 23.4 31.9 32.1 15.0 15.5 32.2 32.8
0.15 21.6 21.0 18.0 20.1 13.4 14.1 18.2 20.0 9.11 10.3 18.4 20.5
0.30 8.40 9.72 7.40 9.04 6.14 7.33 7.34 8.98 5.05 6.14 7.48 9.13
0.50 5.25 6.42 3.95 5.05 4.40 5.46 3.89 5.00 4.04 5.04 3.97 5.09
0.75 4.22 5.26 2.39 3.15 3.84 4.80 2.35 3.13 3.68 4.64 2.40 3.17
1.00 3.84 4.86 1.68 2.23 3.62 4.59 1.65 2.21 3.56 4.49 1.69 2.25

σ 0.60 5.03 6.21 7.83 9.51 8.79 10.1 15.4 17.5 5.36 6.55 9.01 10.9
0.80 12.6 13.6 18.7 20.8 29.8 27.2 48.3 42.9 14.4 15.2 22.3 24.2
1.20 19.5 19.6 13.2 15.8 41.8 35.7 26.1 29.5 26.0 24.4 15.9 18.4
1.50 7.29 8.54 4.36 5.71 12.4 13.3 8.86 10.9 9.09 10.3 5.31 6.81
1.80 5.33 6.52 2.55 3.46 7.94 9.17 5.21 6.57 6.42 7.68 3.15 4.20

IC ARL 200 199 199 201 197 202 160 195 191 194 166 191

any advantage over MEWMA-L. It is also worth noting590
that the MSEWMA-R chart outperforms the MEWMA-L
in detecting a decrease in variance, whereas the MSEWMA-
R is not as good at detecting an increase in variance as the
MEWMA-L.

The above findings on the performance of MSEWMA-595
R and MEWMA-L are also valid for Scenario 2, which
can be seen from the ARL results shown in Table 4. For
simplicity, in Table 4, we only report the shift in α, β11, β12,
and σ . Again, the OC model is α(0) + δσα, β11(0) + δσβ11 ,
β12(0) + δσβ12 , or δσ , where σβ1i are the standard deviations600
of the LSEs of β1i for i = 1, 2. Note that in Table 4 the
scales of δ for α and β1i , i = 1, 2 are different. This settingQ5

is to make the non-centrality parameter:

1
σ

√
(β (1) − β (0))TXTX(β(1) − β(0)).

for different shifts are comparable as the charting perfor-605
mance of the considered charts is essentially related to this
parameter (Zou, Tsung, and Wang, 2007). Similar to Sce-
nario 1, the MSEWMA-R performs better than MEWMA-

L in detecting the small or moderate shifts in the regression
coefficients β11 and β12, which demonstrates the advantage 610
of using β̂R when f is heavy-tailed. Of course, this advan-
tage would be compromised if larger values of ζ are used
(the error distribution is not as heavy-tailed as the consid-
ered t3 or Chi1). With respect to the intercept, the difference
in the performance between MSEWMA-R and MEWMA- 615
L comes mainly from the difference between MSEWMA
and MEWMA because both z jR and z jL use the LSE α̂ j .
Also, the MSEWMA-R is outperformed by MEWMA-L
when the shift size is very large in all of the cases due to the
use of sign-based charts. Simultaneous shifts in multiple 620
parameters are also of interest in practice. The OC ARL
values for Scenario 2 with simultaneous shifts in (α, β11),
(α, σ ), and (β11, σ ) are available in the supplemental file.
In this situation, the two charts have comparable perfor-
mance and neither one is better than the other. In words, 625
the MSEWMA-R should be a reasonable alternative to ex-
isting charts for non-normal profile processes by virtue of
its robustness.

To show the advantage of using rank-based estima-
tors, we also include some comparisons between this chart 630
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Fig. 1. A comparison of the OC ARLs of the MSEWMA-R and MSEWMA-L charts with λ = 0.1 and 0.05 for monitoring a shift
in β11 (β11(0) + δ) under Scenario 2 (a multiple regression model with p = 4): (a) t3; (b) Chi1.

and a modified version of it using the LSE β̂ jL. To be
specific, different from z jR we define z′

jL = [̂α j , β̂ jL, σ̂
2
jL]T

and the corresponding MSEWMA chart (we shall denote it
as MSEWMA-L) based on z′

jL can be constructed by mim-
icking Equations (5) to (10). Although both MSEWMA-R635
and MSEWMA-L inherit certain features of MSEWMA,
their OC performance would be quite different for different
error models due to the use of different parameter estimates.
Figure 1 summarizes the ARL curves (in log scale) of the
MSEWMA-R and MSEWMA-L charts for monitoring a640
shift in β11 under Scenario 2. In this figure, we consider
λ = 0.1 and 0.05, and the results for error distributions t3
and Chi1 are shown in the left and right panels, respectively.
It can be readily seen that the MSEWMA-L chart is out-
performed by the MSEWMA-R chart with the same value645
of λ in detecting various magnitudes of shifts, especially for
the Chi1.

4. A real data application

In this section, we apply the proposed methodology to
a real dataset from an Aluminum Electrolytic Capacitor650
(AEC) manufacturing process (provided by ENW Elec-
tronics Ltd.). The aim of the process is to transform the
raw materials (anode aluminum foil, cathode aluminum
foil, guiding pin, electrolyte sheet, plastic cover, aluminum
shell, and plastic tube) into AECs with certain specifica-655
tions. The whole manufacturing process, which is a typical
multistage process (see Shi (2007)), includes a sequence of
operations, such as clenching, rolling, soaking, assembly,
cleaning, aging, and classifying. The quality of unfinished

AEC products, which are called capacitor elements, in terms 660
of appearance and functional performance is inspected by
sampling after each stage. At each stage, certain important
characteristics of an AEC, such as the capacitance and
loss tangent (or equivalently dissipation factor), are auto-
matically calibrated by an electronic device at some given 665
measuring voltage, frequency, and temperature. The rela-
tionship between the characteristics of an AEC from one
stage to another stage can often be described by linear mod-
els as demonstrated in the literature (see Shi (2007)). The
engineers are usually concerned about significant changes 670
in such relationships (or profiles) that may indicate that
some assignable causes in the process have occurred.

To illustrate the above, we consider dissipation factor
values in the aging stage as the response variable (y) and
the values of capacitance and dissipation factor observa- 675
tions (denoted as x1 and x2) from the soaking stage as the
explanatory variables. The dataset comprises 243 profile
samples of size n = 10. Among them, 16 profiles are clas-
sified as inferior profiles based on physical knowledge and
experience of the engineers. We use the other 227 profiles as 680
the historical sample to calibrate the necessary parameters
for monitoring. Such a reference sample may not be ideal
for fully determining the IC distribution, but it suffices to
illustrate the use of the method in a real-world setting. All
of the data, including the 227 IC profiles used for calibra- 685
tion and 16 inferior profiles, are available in the supple-
mental file. In addition, in this example, the sample size is
fixed for each profile sample but the xi are not exactly the
same. However, the MEWMA-L and MSEWMA-R charts
are still applicable for this case. To calibrate the model, 690
we pool all 227 profiles into a single sample; i.e., 2270
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Fig. 2. Checking the normality assumption of the AEC dataset: (a) histogram of the LSE and residuals and (b) Q–Q plot of the LSE
residuals.

observations. Using standard linear regression graphic
analysis (Cook, 1998) and LSE, we obtain the following
estimated IC model:

yi = α + β11x1i + β2x2i + β12x2
1i + εi , i = 1, · · · , 10,

(11)

where α = 26.25, β11 = 7.124, β2 = 3.833, β12 = 0.215,695
σ 2 = 0.482 and the covariates have been transformed so
that all of the columns of X are orthogonal to 1. The nor-
mality assumption on the error distribution may be poor,
as suggested by the histogram and the Quantile–Quantile
(Q–Q) plot of the standardized LSE residuals in Figures700
2(a) and 2(b). In fact, a one-sample Kolmogorov-Smirnov
test on the residuals is highly significant (p-value is smaller
than 0.001). All of these indications suggest that the nor-
mality assumption of f may not be valid. Thus, we may
expect the rank-based regression to be more robust for this705
particular dataset. The estimated mean vector and covari-
ance matrix (µ(0),�(0)) for MEWMA-L and (θ(0),�(0)) for
MSEWMA-R are presented in Table 5. Note that the first

four elements of µ(0) given in Table 5 are slightly differ-
ent from those pooled estimates given below Equation (11) 710
since µ(0) is the average of all 227 individual LSE vectors.
In addition, σ 2

(0) in the definition of z jL is replaced by its
pooled estimate 0.482.

After computing all of the necessary estimates from the
IC data, we are ready to construct the proposed chart for 715
Phase II analysis. We set the IC ARL to 200 and λ to
0.1. The control limit is 13.636 (p = 3) as given in Table 1.
Figure 3 shows the resulting MSEWMA-R chart (solid line
connecting the dots) along with its control limit (the solid
horizontal line). The corresponding MEWMA-L chart 720
with λ = 0.025 (dashed line connecting circles) is also pre-
sented in the figure, along with its control limit of 10.970
(the dotted horizontal line). Note that λ = 0.025 is used in
MEWMA-L to make it robust to this heavy-tailed data. For
illustration, we have generated four IC profiles by adding 725
random errors to the estimated model (11). These random
errors were drawn from the LSE residuals based on the 227
IC profiles with replacement. In this example, we assume

Table 5. The estimated (µ(0),�(0)) for MEWMA-L and (θ(0),�(0)) for MSEWMA-R for the AEC data

MEWMA-L MSEWMA-R

µ(0) θ(0)

26.25 6.921 3.799 0.276 −0.181 26.26 6.876 3.859 0.248 0.410

�(0) �(0)

0.045 0.090 −0.000 −0.010 −0.017 1.000 0.000 0.000 0.000 0.000
0.090 178.3 19.23 −28.79 1.278 0.004 0.254 0.000 0.000 0.000

−0.000 19.23 2.835 −3.389 −0.150 0.004 0.703 0.350 0.000 0.000
0.010 −28.79 −3.389 4.782 −0.047 0.022 2.001 0.241 0.134 0.000

−0.017 1.278 −0.150 −0.047 1.980 0.120 −0.082 0.056 −0.064 0.633
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Fig. 3. The MSEWMA-R and MEWMA-L control charts for monitoring the AEC profile, with the solid and dashed horizontal lines
indicating their control limits, respectively.

that we first monitor these four simulated IC samples (the
IC model (11) plus errors from N(0, σ 2

(0))) and then obtain730

the 16 OC profiles. From the plot, it can be seen that the
MSEWMA-R chart passes its control limit at around the
ninth profile and remains above the control limit for
the remaining profiles. This excursion suggests that a
marked step-change has occurred. In comparison, the735
MEWMA-L chart does not give any signal until the 12th
profile. All of the intermediate results for obtaining this
figure, including the z jR, z jL and the charting statistics, are
also provided in the supplemental file.

5. Concluding remarks740

Linear profile monitoring is particularly useful in practice
due to its simplicity and flexibility. The existing monitoring
methods suffer from a drawback in that they all assume a
normal error distribution. When the underlying distribu-
tion is misspecified, the performance of control charts in745
monitoring the estimated profile parameters, designed un-
der the normality assumption, may deteriorate to a certain

degree. Hence, there is a need for SPC schemes to moni-
tor profiles robustly. To achieve this goal, we have devel-
oped a non-parametric methodology for monitoring linear 750
profiles, including the regression coefficients and profile
variation. We have proposed the use of a WRE instead of
LSE. As the resulting estimated profile parameter vectors
are non-normal, we apply the MSEWMA control scheme
to them. Benefiting from certain favorable properties of 755
MSEWMA and WRE’s efficiency, the proposed chart is
robust in terms of both the IC and OC ARLs, particularly
when the process distribution is heavy-tailed. A real data
example from manufacturing has shown that our method-
ology performs quite well in application. 760

As we have shown in Section 3, the main advantage of
MSEWMA-R in terms of OC ARL lies in its detection
ability for small or moderate shifts in β when the error
distribution is very heavy-tailed. The MSEWMA-R is out-
performed by MEWMA-L in detecting very large shifts 765
especially for the change in the intercept. The MSEWMA-
R is more sensitive to a decrease in error variance but
the MEWMA-L performs better for an increase in vari-
ance. In addition, the proposed method requires more
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computational effort than a traditional parametric method770
such as MEWMA-L. In practice, engineers need to choose
an appropriate chart according to their major concern.
First of all, one should perform some residual analysis
to determine whether the underlying error distribution is
heavy-tailed. Some technical, empirical, and engineering775
knowledge about the profile modeling should also be taken
into consideration. If the error distribution is close to nor-
mal or light-tailed, the MEWMA-L is preferred. Other-
wise, one may consider its alternative, the MSEWMA-R,
especially when the shifts in the regression coefficient β780
are more important to detect. However, when the process
tends to incur a quite large change in some parameters, the
MEWMA-L is more favorable because the MSEWMA-
R chart is not as efficient as the MEWMA-L chart for
very large shifts, as shown in Section 3. This drawback,785
which is common to almost all rank-based non-parametric
charts, is mainly inherited from the way that MSEWMA
is constructed where only the direction of multivariate ob-
servations from the origin is used. Of course, the benefit
of using MSEWMA is its robustness in terms of IC ARL.790
In particular, when the normality assumption is doubtful
and the control of nominal false alarm rates (IC ARL) is
important, the MSEWMA-R may be preferred.

The proposed MSEWMA-R chart incorporates three as-
pects that differ from the existing MEWMA-L method.795
Most of the improvement derives from the use of the robust
rank-based estimator of the regression coefficient rather
than the LSEs, which are known to break down with lep-
tokurtic error distributions. Another difference, the use of
the sign-based chart instead of conventional MEWMA, is800
to make the control chart more robust in terms of IC ARL.
This aspect seems to be less important since the MEWMA
chart would attain the nominal IC ARL provided that the
smoothing parameter is chosen small enough (Stoumbos
and Sullivan, 2002). A third difference is that MSEWMA-805
R does not applies the transformation of Zou, Tsung, and
Wang (2007) to the estimated variance. Various variants of
MSEWMA-R could be considered. For instance, we may
expect that the MEWMA chart with the WRE β̂ jR would
alleviate the issue of insensitivity to very large shifts at810
the expense of choosing the smoothing parameter λ more
carefully to achieve IC ARLs. A thorough study on those
three aspects and variants of MSEWMA-R would be an
opportunity for future research.

As we can expect, the performance of both MEWMA-L815
and MSEWMA-R is affected by the amount of data in the
reference dataset. Through simulation, we find that the per-
formances of MSEWMA-R and MEWMA-L are similarly
affected when m0 is small and very large Phase I samples
must be collected for both charts to perform as well as those820
with known parameters. Thus, determination of the Phase
I sample size required to remove the effects of estimated pa-
rameters is critical and warrants future research. In quality
control, besides detecting a process change quickly, it is
also critical to diagnose the change and to identify which825

parameter or parameters in a profile have shifted after an
OC signal occurs. Zou, Zhou, Wang, and Tsung (2007) and Q8

Mahmoud (2008) have suggested some parametric testing
methods that are based on the normality as well. A robust
diagnostic aid to locate the change-point in the process 830
and to isolate the type of parameter change in a profile
with non-normal error distributions may be desired and
deserves further study.
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Appendix
Algorithm for Computing β̂R

For notation convenience, we denote:

Ti (β) = R
(
yi − xT

i β
)

n + 1
− 1

2

and let m(β) be the median of the residuals {ri (b) = yi −
xT

i β, i = 1, . . . , n}. We define: 960

wi (β) =
⎧⎨⎩

Ti (β)
ri (β) − m(β)

if ri (β) �= m(β),

0 otherwise .

Since
∑n

i=1 Ti (β) = 0 the dispersion function given in
Equation (3) may be written as

Wn(β) : =
n∑

i=1

Ti (β)[ri (β) − mv(β)]

=
n∑

i=1

wi (β)[ri (β) − mv(β)]2.

The iterated reweighted least squares algorithm given by
Sievers and Abebe (2004) for computing β̂R is described as
follows: 965

Step 1. Start by finding the initial valve of β̂
(1)
R . We recom-

mend using the LSE β̂L.
Step 2. Given the kth step estimate, β

(k)
R , the (k + 1)th step

estimate of β minimizes the kth step dispersion
given by 970

W∗
n

(
β|β (k)

R

)
:=

n∑
i=1

wi
(
β

(k)
R

)[
ri (βR) − mv

(
β

(k)
R

)]2
.

Thus, the (k + 1)th step estimate, β
(k+1)
R , satisfies

∇W∗
n (β (k+1)

R |β (k)
R ) = 0. This may be written as

n∑
i=1

wi
(
β

(k)
R

)[
yi − mv

(
β

(k)
R

)− xT
i β

(k+1)
R

]
xi = 0.

(A1)
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Assuming that the p × p matrix
∑n

i=1wi (β
(k)
R )xi xT

i
is non-singular, Equation (A1) leads to

β
(k+1)
R = β

(k)
R +

(
n∑

i=1

wi (β
(k)
R )xi xT

i

)−1

×
n∑

i=1

wi
(
β

(k)
R

)[
ri
(
β

(k)
R

)− mv

(
β

(k)
R

)]
xi .

Step 3. Repeat Step 2 until the following condition is
satisfied: ∣∣Wn

(
β

(k+1)
R

)− Wn
(
β

(k)
R

)∣∣ ≤ ε,

where ε is a pre-specified small positive number975
(e.g., ε = 10−3). Then the algorithm stops at the
(k + 1)th iteration and returns the value of β

(k+1)
R

as the final estimate for β̂R.
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