
Outlier Detection in General Profiles Using
Penalized Regression Method

Changliang Zou1, Sheng-Tsaing Tseng2 and Zhaojun Wang1

1LPMC and School of Mathematical Sciences, Nankai University, PR China;
2Institute of Statistics, National Tsing Hua University, Taiwan;

Abstract

Profile monitoring is a technique for checking the stability of functional relation-

ships between a response variable and one or more explanatory variables over time.

The presence of outliers has seriously adverse effects on the modeling, monitoring and

diagnosis of profile data. This paper proposes a new outlier detection procedure from

the viewpoint of penalized regression, aiming at identifying any abnormal profile ob-

servations from a baseline dataset. We treat profiles as high-dimension vectors and

re-formulate the model into a specific regression model. We then apply a group-type

regularization favoring a sparse vector of mean shift parameters. Using the classical

hard-penalty yields a computationally efficient algorithm and delivers robust detection

ability. By appropriately choosing the only one tuning parameter in our procedure,

it enables us to control the type-I error. Simulation results show that the proposed

method has outstanding performance in identifying outliers in various situations com-

pared with other existing approaches. This methodology is also extended to the case

that within-profile correlations exist.

Keywords: High-dimensional inference; Masking effect; Outlier detection; Profile

monitoring; Sparsity; Statistical process control
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1 Introduction

Because of recent progress in sensing and information technologies, automatic data acquisi-

tion has become the norm in various industries. Consequently, a large amount of quality-

related data of certain processes have become available. Statistical process control (SPC)

based on such data is an important component of process monitoring and control. In many

applications, the quality of a process is characterized by the relationship between a response

variable and one or more explanatory variables. A collection of data points of these variables

can be observed at each sampling stage, which can be represented by a curve or profile. In

some calibration applications, the profile can be described adequately by a linear regression

model. In other applications, however, more flexible and complex models are necessary in

order to describe the profiles properly. Extensive discussion of the related research problems

can be found in Woodall (2007) and Noorossana et al. (2011).

In the SPC of profile problems, one of the most crucial steps is to identify any outlying

profiles among a set of complex profiles and to remove them from the the reference dataset

because the presence of outliers has seriously adverse effects on the modeling of functional

curve and accordingly on the properties of control charts (Qiu et al. 2010). The outlier

detection problem is a fundamental task in Phase-I analysis of profiles and has attracted

certain attention in the literature. Among others, Jin and Shi (1999), Lada et al. (2002),

Ding et al. (2006) and Paynabar and Jin (2011) investigated a general class of nonlinear

profiles, using dimension-reduction techniques, wavelet transformations, independent com-

ponent analysis and mixed-effect modelling. Mahmoud and Woodall (2004) and Mahmoud

(2008) studied simple and multiple linear Phase-I profile monitoring respectively. Williams

et al. (2007) suggested three general approaches to nonlinear profile monitoring in Phase-I

analysis, based on Hotelling’s T 2 statistics and non-linear regression. Colosimo and Pacella

(2007) proposed methods for monitoring roundness profiles of manufactured items. Recently,

Zou et al. (2010) extended the nonparametric smoothing based method suggested by Zou

et al. (2008) to Phase I analysis of general profiles. However, their method relies on a basic

assumption that the underlying functional relationship possesses certain smoothness, which

is often invalid in applications. For instance, see stamping tonnage profile in Jin and Shi
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(1999) and a semiconductor example in Section 4. Alternatively, Zhang and Albin (2009)

proposed to treat profiles as vectors and applied a χ2 control chart to identify outliers. Zhang

and Albin (2009) argued that the χ2 control chart is especially useful, and sometimes the

only option, when profiles are highly complex. It is usually hard, if not impossible, to fit a

regression function (parametric or nonparametric) to express the complex relationship be-

tween the response and explanatory variables. Comparing it with the existing non-linear

regression method shows that the χ2 chart has a better performance for complex profiles.

The χ2 chart is simple and effective, however, when there are many outliers in baseline

dataset, this method may fail to identify true outliers with larger probabilities. This tendency

is not surprising since it suffers from the so-called “masking effect”. When there are multiple

outliers in the sample, estimates of parameters in the χ2 chart would be contaminated to

certain degree, and as a result, outlying profiles may not look like outliers. Therefore,

multiple outliers may mask each other and go undetected. Some evidence can be found from

the simulation results in Zhang and Albin (2009).

To this end, this paper proposes a new outlier detection procedure from the viewpoint of

penalized regression. We start by assuming within-profile observations are independent and

follow Zhang and Albin (2009) to treat profiles as high-dimension vectors. The profile model

is re-formulated as a specific regression model. We then apply a group-type regularization

favoring a sparse vector of mean shift parameters. Using the classical hard-penalty yields a

computationally efficient algorithm and delivers a robust detection ability. By appropriately

choosing the only one tuning parameter in our procedure, it enables us to control the type-I

error. Simulation results show that the proposed method has outstanding performance in

identifying outliers in various situations. Compared with the χ2 chart, the proposed method

misidentifies much smaller fractions of outlier profiles as non-outliers when the number of

outlying profiles is large. Moreover, in practice, within-profile data are usually spatially or

serially correlated. For instance, within-profile data of the vertical-density profiles (VDPs)

considered by Walker and Wright (2002) are spatially correlated, since the density measure-

ments are taken in intervals that are close to each other along the vertical depth of a particle

board. As another example, within-profile data in the AEC example considered by Qiu et al.

(2010) exhibit obvious serial correlation over time. This motivates us to extend the proposed
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methodology to the case that within-profile correlations exist.

Our proposed procedure is described in detail in Section 2. Its numerical performance

is investigated in Section 3. In Section 4, we apply this method to a dataset from a semi-

conductor manufacturing process. Several remarks conclude the article in Section 5. Some

technical details are provided in an appendix.

2 Methodology

2.1 Problems and existing works

Suppose we have a baseline profile dataset which consists of m profiles. The explanatory

variable takes a set of n fixed values X = {x1, x2, . . . , xn}. Assume the m profile observations

{(yi1, x1), . . . , (yin, xn)}m
i=1 are collected from the following model

yij =

{
g0(xj) + σ0εij, j = 1, . . . , n, if i /∈ O
gi(xj) + σiεij, j = 1, . . . , n, if i ∈ O,

(1)

where O is the outlying profile set (a subset of {1, . . . , m}) and yij is the j-th response

variable in the i-th profile. Here g0 and gi, i ∈ O are the unknown in-control (IC) and out-

of-control (OOC; outlying) regression functions, σ0 and σi are the unknown IC and OOC

profile variations, and εij are independently and identically distributed (i.i.d.) as N(0, 1).

Any profile with gi 6= g0 and/or σ2
i > σ2

0 is considered as an outlier. We assume that the

explanatory variables are fixed for different j. This assumption is often valid in calibration

applications of manufacturing industry, and is also consistent with the existing literature on

profile monitoring. Possible extensions of the proposed method to cases in which the design

points are random or unbalanced, are briefly discussed in Section 5.

When g0 and gi, i ∈ O are complex, it is difficult to fit explicit expressions for them.

To this end, Zhang and Albin (2009) took the m profile responses as vectors in n-dimension

space, among which mo ≡ |O| profiles are outliers. Write yi = (yi1, . . . , yin)T . They proposed

to use the following χ2-type statistic for outlier detection

∆i =
n∑

j=1

(yij − ŷj)
2

((m− 1)/m)σ̃2
0

, (2)
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where ŷj and σ̃2
0 are the robust estimators for E(yij), i /∈ O and σ2

0 respectively. µ̃0 =

(ŷ1, . . . , ŷn)T is defined as the median of the vectors in profile baseline data, say,

ŷj = Median{y1j, . . . , ymj}.

σ̃2
0 is the median of the m(m− 1)/2 pair-wise estimates, σ2

(i,k), defined as

σ2
(i,k) =

1

2n

n∑
j=1

(yij − ykj)
2, i = 1, . . . , m− 1, k = i + 1, . . . , m.

The reason for using the estimators ŷj and σ̃2
0 rather than the regular sample mean and

variance is that the median is usually more robust to outlier as well known. Profile i is

considered an outlier if ∆i > χ2
α,n, where χ2

α,n is the upper α percentile of the chi-square

distribution with n degrees of freedom.

2.2 A framework for detecting outliers based on penalty function

Here we follow Zhang and Albin (2009) to consider the m profile responses as n-dimensional

vectors. We firstly focus on identifying outliers with gi 6= g0, but later we will show our

suggested procedure is also effective for the case σ2
i 6= σ2

0. Denote

µ0 = (g0(x1), . . . , g0(xn))T ,

γi = (gi(x1)− g0(x1), . . . , gi(xn)− g0(xn))T ,

εi = (εi1, . . . , εin)T .

Note that the model (1) can be reformulated as the following form

Y = θ + γ + σ0ε, (3)

where Y = (yT
1 , . . . ,yT

m)T , θ = (µT
0 , . . . , µT

0 )T , γ = (γT
1 , . . . , γT

m)T , and ε = (εT
1 , . . . , εT

m)T .

The χ2 test statistic ∆i for whether the i-th profile is an outlier is essentially the same as

testing whether the parameter γi is 0 in model (3), where 0 is the zero vector. Because we

do not know which observations might be outliers, the goal is to determine which γk of γ are

not zero vector. A natural way to accomplish this task is to obtain an appropriate estimate

5



of γ and to find out which components are non-zero. However, usual estimations suffer from

inadequacy because those components usually take non-zero values.

Hawkins (1980) defined an outlier as an observation that deviates so much from other

observations as to arouse suspicion that it was generated by a different mechanism. Thus, in

outlier detection or Phase I study, we often assume that only a small portion of profiles are

outliers, i.e., the so-called sparsity characteristic (Wang and Jiang 2009; Zou and Qiu 2009).

Accordingly, the outlier detection is essentially analogous to the variable or model selection

problem, that is to say, one wishes to select those parameters (γk’s) that deviate significantly

from zero. In this spirit, stepwise or all subset selection procedures along with a model

selection criterion (e.g., AIC or BIC) may be employed. Such model selection procedures are

practically useful; but they have several limitations, including lack of stability and extensive

computation (cf., Tibshirani 1996). To overcome these limitations, some penalized least

squares methods, such as the LASSO and SCAD, become quite popular over the last two

decades (see Zou et al. 2011 for related discission in the context of SPC). To this end, in

what follows, we will derive our procedure from the viewpoint of penalized regression.

It is firstly worth noting that although it can be regarded as a specific linear regression

model with both the sample size and dimension being mn, the variable selection problem in

model (3) is not a typical one because we want to identify which sub-vector γi of γ is not

0 rather than which components of γ are non-zero. By taking this issue into account, we

re-express (3) as the following model

Y = θ +
m∑

i=1

X iγi + σ0ε, (4)

where

X i = (0n, . . . ,0n︸ ︷︷ ︸
1,...,i−1

, In︸︷︷︸
i

,0n, . . . ,0n︸ ︷︷ ︸
i+1,...,m

)T

is a mn× n pseudo-covariate matrix, and 0n and In are the n-dimensional zero and identity

matrices respectively. (4) is a specific regression model with m factors (X i) considered by

Yuan and Lin (2006). Our task now amounts to deciding whether to set the vector γi to

zero vectors for each i. Similar to Yuan and Lin (2006), the assumed sparsity of γ motivates
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using a grouped penalized regression to minimize

f(µ0, γ; λ) ≡ 1

2
||Y − θ −

m∑
i=1

X iγi||2 +
m∑

i=1

Pλ(||γi||), (5)

where || · || denotes the Euclidean norm and Pλ(·) is a penalty function with a tuning param-

eter λ > 0. This group penalized method encourages sparsity at the factor level which well

serves our purpose of selecting γi. Given an appropriate function Pλ(·) and a well-chosen λ,

the i-th profile is identified as an outlier if the minimizer of γi is not a zero vector.

By describing the connection between outlier detection based on penalized regression and

M-estimator, She and Owen (2011) argued that the usual L1 penalty (Tibshirani 1996) fails

to deliver a robust outlier detection result in regression diagnostic. Following their recom-

mendation, we consider the following hard penalty (Donoho and Johnstone 1994) function

Pλ(x) = I{|x|<λ}(λ|x| − x2

2
) + I{|x|≥λ}

λ2

2
, (6)

where I{·} is the indicator function. Using the above Pλ(x) would not only result in a

simple and intuitively meaningful detection procedure as shown in Section 2.3 but also could

correctly identify outliers on some extremely hard test problems as shown in Section 3.

As a convention, λ can be chosen by using cross-validation, Akaike information criterion

(AIC), Schwarz’s Bayesian information criterion (BIC), or other model selection criteria. In

the literature, it is well demonstrated that AIC tends to select the model with the optimal

predication performance, while BIC tends to identify the true sparse model well if the true

model is included in the candidate set (Yang 2005). As we want to identify the non-zero

components in γ rather than obtaining an estimate, BIC is more relevant and appealing

here. Please refer to Zou et al. (2011) and She and Owen (2011) for related formulations

and discussions. However, in the context of SPC, it is more reasonable and typical to use

type I error (false alarm rate) as a criterion for measuring the performance of procedures

(Montgomery 2001). The type-I error is defined as either the percentage of non-outlier

profiles identified as outliers (Zhang and Albin 2009) or the probability of identifying at

least one outlier under the null hypothesis of no outliers (Mahmoud and Woodall 2004).

The former focuses more on the accuracy of outlier isolation while the latter cares mainly on

the overall testing power. Thus, it is more appealing to consider the one used by Zhang and
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Albin (2009) here because our aim is to identify the true outliers as accurately as possible.

In the next section, λ will be determined in terms of controlling the type-I error.

2.3 An efficient and practical procedure

In what follows, our discussion focuses on using Pλ(x) in (6). Given a λ and µ0, the solution

of the objective function (5) is motivated by the following proposition.

Proposition 1 A necessary condition for γ to be a solution to min f(µ0, γ; λ) given µ0 and

λ is

XT
i (Y − µ−

m∑
i=1

X iγi) = 0, ∀||γi|| ≥ λ,

−XT
i (Y − µ−

m∑
i=1

X iγi) + (λγi/||γi|| − γi) = 0, ∀ 0 6= ||γi|| < λ, (7)

||XT
i (Y − µ)|| ≤ λ, ||γi|| = 0.

This result is a direct consequence of the Karush-Kuhn-Tucker conditions. Note that X i
T X i =

In and X i
T Xj = 0n. It can be easily verified that the solution to the expressions above is

(see the proof of Proposition 2)

γ̂i = I{||yi−µ0||>λ}(yi − µ0). (8)

In other words, the solution to (5) given µ0 and λ is simply zero or (yi − µ0) depending

on whether ||yi − µ0|| is larger than λ, which coincides with χ2-chart mentioned above in

certain degree. Now, given γ̂i, the objective function (in µ0) becomes

1

2

∑

{i:γ̂i=0}
||yi − µ0||2 +

m∑
i=1

Pλ(||γ̂i||), (9)

whose minimizer is simply µ̂0 = q−1
∑

{i:γ̂i=0} yi with q =
∑

I{γ̂i=0}. This together with (8)

suggest the following iterative algorithm for the proposed procedure which is called penalized

profile outlier detection (PPOD).

Algorithm 1 (PPOD)
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1. Given Y . Specify λ > 0, ε > 0 and an initiate robust estimator µ̂
(0)
0 ;

2. Obtain γ̂
(k)
i = I{||yi−µ̂

(k−1)
0 ||>λ}(yi − µ̂

(k−1)
0 );

3. Compute µ̂
(k)
0 = 1

q(k)

∑
{i:γ̂(k)

i =0} yi with q(k) =
∑

I{γ̂(k)
i =0};

4. Repeat 2-3 until
∑m

i=1 ||γ̂(k)
i − γ̂

(k−1)
i || < ε.

To initialize the algorithm, we must specify µ̂
(0)
0 . Empirically, the starting point is not

crucial and the median of Y , µ̃0, is recommended. The algorithm is found to be very stable

and usually reaches a reasonable convergence tolerance within a few iterations. The following

proposition guarantees the PPOD procedure converges.

Proposition 2 The PPOD iteration sequence (µ̂
(k)
0 , γ̂(k)) satisfies

f(µ̂
(k)
0 , γ̂(k); λ) ≥ f(µ̂

(k)
0 , γ̂(k+1); λ) ≥ f(µ̂

(k+1)
0 , γ̂(k+1); λ), for any k ≥ 0. (10)

Any limit point of (µ̂
(k)
0 , γ̂(k)) must be a stationary point of (5). It is worth pointing out that

this suggested iterative procedure is essentially a coordinate descent algorithm (Friedman

et al. 2010). See also Breheny and Huang (2011) for some discussions on the convergence

of the coordinate descent algorithm in solving non-convex penalized regression problems. It

should be emphasized that although designing for detecting the outliers with gi 6= g0, the

PPOD procedure is effective for the case σ2
i ≥ σ2

0 in which ||yi − µ̂
(k−1)
0 || would be large as

well. See some numerical evidence in Section 3.

Before proceeding, the tuning parameter λ needs to be specified. To control the type-I

error (the percentage of non-outlier profiles identified as outliers), a direct way is to find λ

so that

Pr(||yi − µ̂0|| > λ | yi is non-outlier) ≈ α.

Similar to the arguments in Zhang and Albin (2009), we can conclude that

||yi − µ̂0||2
q−1

q
σ2

0

≈ χ2
n.
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Accordingly, α can be chosen as

λ =

[
q − 1

q
χ2

n,α

]1/2

σ0

As σ2
0 is unknown, it could be estimated (updated) in the iterative procedure with σ̃2

0 being

an initiate one. This suggests the following Algorithm 2, denoted as (PPOD-R), which is a

revised (practical) version of Algorithm 1 by updating the estimate of σ2
0 and specifying λ

iteratively.

Algorithm 2 (PPOD-R)

1. Given Y . Specify λ > 0, ε > 0. Let µ̂
(0)
0 = µ̃0, σ̂

(0)
0 = σ̃0, and q(0) = m;

2. Let λ(k−1) =
[

q(k−1)−1
q(k−1)n

χ2
n,α

]1/2

σ̂
(k−1)
0 . Obtain γ̂

(k)
i = I{||yi−µ̂

(k−1)
0 ||>λ(k−1)}(yi − µ̂

(k−1)
0 );

3. Compute µ̂
(k)
0 = 1

q(k)

∑
{i:γ̂(k)

i =0} yi with q(k) =
∑

I{γ̂(k)
i =0}; Update the estimate of σ2

0

by

σ̂
2(k)
0 =

1

n

n∑
j=1

1

q(k) − 1

∑

{i:γ̂(k)
i =0}

(yij − µ̂
(k)
0j )2,

where µ̂
(k)
0j denotes the j-th component of µ̂

(k)
0 .

4. Repeat 2-3 until
∑m

i=1 ||γ̂(k)
i − γ̂

(k−1)
i || < ε.

PPOD-R is computationally efficient and usually requires no more than a dozen of iter-

ations to achieve convergence criterion with ε = 10−3. Certainly, due to involve estimating

λ, there is no theoretical justification on its convergence. However, we never occur any non-

convergence in all our simulation studies and real-data analysis with the suggested initial

values. It is easy to implement because the iteration does not involve complicated operations

like matrix inversion. Also note that the dominant computational cost in each iteration is

essentially similar to that of Zhang and Albin’s (2009) χ2-chart. In other words, the total

cost of PPOD-R is several times that of the χ2-chart. However, as we mentioned, the χ2-

chart is more prone to masking effects (see also simulation results in Section 3). In contrast,

PPOD-R is derived from a well-formulated model and optimal criterion. In each iteration,
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potential outliers have been removed from estimation by a large amount and thus the up-

dated (refined) estimates would be more robust. As a consequence, PPOD-R would be more

resistant to masking effects. In spite of more computationally extensive, PPOD-R is still an

acceptable candidate, because we consider speed to be secondary compared with robustness

as masking causes much harm in Phase I analysis.

Remark 1 The main idea of PPOD-R also differs from the so-called retrospective Phase-I

analysis in univariate SPC practice (Montgomery 2001). In retrospective analysis, a control

chart is established to find some outlying observations in a baseline dataset. Then, those

observations identified as outliers are removed from the baseline dataset and the control

chart is is re-designed based on the new baseline dataset. The procedure is repeated until

all the observations in the baseline dataset are classified as in-control (fall within the control

limits). That is, in retrospective analysis an observation cannot be involved in the analysis

(model estimation) once it is identified as an outlier, while in PPOD-R the observations

with γi 6= 0 in the k-th iteration may still be useful in the (k + 1)-th iteration. In other

words, the difference between PPOD-R and retrospective Phase-I analysis is analogous to

that between the stepwise and backward regression. The benefit of using PPOD-R partly

lies that it may be more robust to swamping. In swamping, the effect of outliers is to make

the charting statistic large for a nonoutlying case i. Swamping could lead one to delete good

observations, and correspondingly the type-I error would be increased. It becomes more

serious in the presence of multiple outliers, and is often a matter of lost efficiency. Of course,

it should be also pointed out that if the hard penalty is replaced by other appropriate penalty

functions, the resulting penalized-based profile outlier detection procedure would be much

more different from classical methods used in SPC. The PPOD is advocated here because

of its intuitive explanation, fast computation and good detection ability. Similar procedures

with other penalty functions definitely deserve future research.

2.4 Extensions to cases that within-profile correlations exist

One limit of the proposed PPOD-R method is that it is based on the assumption of inde-

pendence among noise terms. Although this assumption is reasonable in many applications

and commonly used in the literature, it might still be violated in some applications. See Qiu
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et al. (2010) and the references therein for discussions and examples. The PPOD-R may

give higher type-I and type-II errors when within-profile correlations are strong. One way

to overcome this issue is to replace the Euclidean distance used in (5) with the Mahalanobis

distance by plugging a robust estimator of covariance matrix. Although standardizing by

the covariance brings benefits for data with a fixed dimension, it becomes a liability for high

dimensional data (when n is large). In particular, the sample covariance matrix may not

converge to the population covariance when n and m are of the same order (Bai and Yin

1993). Even worse, in many applications, profile may have a huge number of fixed values

of the explanatory variable but we only have a few profiles in a baseline dataset. Since the

estimator of covariance matrix would often not be invertible when the dimension n is larger

than m, the corresponding PPOD-R cannot be used.

Therefore, we still use the proposed PPOD method (5) based on the Euclidean distance

but suggest some modifications to account for within-profile correlations. Our main idea is

to adjust the value of λ to make the type-I error acceptable. Assume εi
iid∼ Nn(0,Σ), where

Σ is a positive correlation matrix. Let η1 ≤ η2 ≤ · · · ≤ ηn be the eigenvalues of Σ. The

following result establishes the asymptotic null distribution of ||yi − µ̂0||2.

Proposition 3 Assume yi = µ0 + εi. Under the condition that η2
n/tr(Σ

2) → 0 as n →∞,

we have
||yi − µ̂0||2 − nσ2

0√
2tr(Σ2)

d→N(0, 1).

The condition imposed here is quite mild. Note that if all eigenvalues are bounded, then

the condition is trivially true. The condition is also valid for the most common case that

Σ = In. By this result, λ can be modified as

λ =

[
n + zα

√
2tr(Σ2)

]1/2

σ0, (11)

where zα is the upper α quantile of standard normal distribution. Our simulation results

show that such choice of λ works reasonably well in many cases. The reason for attaining

this in the face of high data dimension is because the statistic ||yi − µ̂0||2 is univariate, of

which limiting distribution depends only on univariate quantities (σ2
0 and tr(Σ2)), despite
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the hypothesis is of high dimensional. Thus, it is possible to use asymptotical normality for

calibration if proper estimates of unknown quantities are available.

Since profile baseline data may contain multiple outliers, we need to derive robust es-

timators of tr(Σ2) which is resistent to the presence of outliers. To remove the adverse

effect of outliers, we suggest to implement PPOD-R in Algorithm 2 firstly and then use

a revised PPOD-R with adjusted λ again to obtain the final diagnosis result. Denote the

corresponding identified outlier subset as O1, the final estimates of µ0 and σ2
0 as µ̂

(0)
0c and

σ̂
2(0)
0c respectively after a preliminary PPOD-R is completed. Let q

(0)
c = m − |O1| . Similar

to the proposal in Chen and Qin (2010), we use the following estimator of tr(Σ2)

t̂r(Σ2) =
2

q
(0)
c (q

(0)
c − 1)σ̂

4(0)
0c

∑

l /∈O1

∑

k/∈O1,k>l




(
yl −

∑
i/∈O1,i6=l,k yi

q
(0)
c − 2

)T (
yk −

∑
i/∈O1,i6=l,k yi

q
(0)
c − 2

)


2

.

This estimator is similar to the idea of cross-validation, in the sense that when we construct

the deviations of yl and yk from the sample mean, both yl and yk are excluded from the

sample mean calculation. By doing so, the above estimator would be more accurate than

traditional sample estimators in high-dimensional cases as argued by Chen and Qin (2010).

Theorem 2 of Chen and Qin (2010) reveals the following consistency of t̂r(Σ2) under certain

conditions

t̂r(Σ2)/tr(Σ2)
p→ 1, as m →∞, n →∞.

Thus, by Slutsky’s theorem, plugging this estimate into (11) results in an asymptotically

correct λ which is able to control the type-I error of the proposed procedure. To alleviate

the computational effort, we do not update this t̂r(Σ2) any more in the following steps. Now,

with initial values obtained from PPOD-R, we can implement a new PPOD-R again with

new values of λ. The whole procedure, called PPOD-C is summarized in Algorithm 3.

Algorithm 3 (PPOD-C)

1. Implement PPOD-R and obtain µ̂
(0)
0c , σ̂

2(0)
0c and q

(0)
c = m− |O1|.

2. Compute t̂r(Σ2) and set

λ(k−1) =

[
n + zα

√
2t̂r(Σ2)

]1/2

σ̂
(k−1)
0c . (12)
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3. Execute the steps 2 and 3 in PPOD-R with updated λ(k−1) in (12) until convergence.

We will see in Section 3 that PPOD-C is able to largely reduce type-I errors in comparison

with PPOD-R when within-profile correlations cannot be ignored.

3 Numerical comparison

To see the performance of PPOD-R and PPOD-C, we have conducted many simulation

studies. Some of the results are reported here. Firstly, we compare the proposed PPOD-R

with Zhang and Albin’s (2009) χ2 chart. The non-linear regression method by Williams

et al. (2007) is not included here because Zhang and Albin’s (2009) has shown that it is

outperformed by the χ2 chart. Choosing group L1 penalty in (5) seems to be a natural

alternative solution. As thoroughly investigated by She and Owen (2011), using the L1

penalty is unable to obtain satisfactory detection results. By empirical studies, we find that

this is still true for the group L1 in the present problem and its detection performance is

worse than the χ2 chart in many cases. Thus, we choose not to include it as a comparison

benchmark.

For a fair and clear comparison, we follow all the settings and scenarios used in Zhang

and Albin (2009). To be more specific, we use type-I and type-II detection errors to assess

the performance of PPOD-R and compare it with χ2 chart. Suppose among the m − mo

non-outlier profiles, m1 profiles are incorrectly identified as outlier profiles, and among the

mo outlier profiles, m2 profiles are correctly identified, then type-I and type-II errors are

defined as 100m1/(m − mo) and 100(mo − m2)/mo respectively. To determine the control

limit in the χ2 chart and the value of λ, we choose α = 0.05. We generate profile datasets,

each with m = 200 profiles, that consist of m − mo non-outlier and mo outlying profiles

where mo takes values of 20, 40, 60 or 80. The profiles are generated as follows:

yij = fa(x) + εij, εij ∼ N(0, σ2), (13)

fa(x) = 10− 20ae−axj sin(
√

4− a2xj)/
√

4− a2 + 10e−axj cos(
√

4− a2xj),

in which there are n = 100 covariates, taking values of 0.08, 0.16, . . . , 8. The non-outlier

profiles have a = 0.5 and σ = 1.
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Table 1: Average percentage of type-I and type-II errors for various values of a and mo when
σ = 1; The standard deviations are given in parentheses; In each category, the type-I and
type-II errors are given in the left and right columns respectively

mo PPOD-R χ2 chart

a = 0.5 a = 0.7 a = 0.5 a = 0.7

20 6.9 (2.1) - 6.1 (2.0) 36.6 (14.1) 6.0 (1.7) - 4.1 (1.3) 50.2 (11.6)

40 6.9 (2.1) - 5.0 (2.1) 51.0 (13.4) 6.0 (1.7) - 3.4 (1.4) 68.5 (7.2)

60 6.9 (2.1) - 4.1 (1.8) 72.4 (10.5) 6.0 (1.7) - 3.3 (1.5) 81.5 (4.9)

80 6.9 (2.1) - 4.7 (2.1) 87.2 (5.2) 6.0 (1.7) - 4.1 (1.7) 89.7 (3.3)

a = 0.9 a = 1.1 a = 0.9 a = 1.1

20 6.7 (2.2) 0.1 (0.7) 6.6 (2.3) 0.0 (0.0) 3.4 (1.2) 1.0 (2.3) 3.4 (1.3) 0.0 (0.0)

40 6.7 (2.2) 0.1 (0.5) 6.6 (2.3) 0.0 (0.0) 2.2 (1.1) 8.9 (4.7) 2.2 (1.1) 0.1 (0.4)

60 6.5 (2.5) 0.1 (0.4) 6.5 (2.5) 0.0 (0.0) 1.7 (1.0) 36.6 (6.3) 1.7 (0.9) 2.9 (2.3)

80 6.2 (2.5) 1.4 (9.8) 6.3 (2.6) 0.0 (0.0) 2.4 (1.3) 74.3 (5.0) 1.8 (1.1) 40.7 (6.1)

a = 1.3 a = 1.5 a = 1.3 a = 1.5

20 6.7 (2.2) 0.0 (0.0) 6.7 (2.2) 0.0 (0.0) 3.5 (1.2) 0.0 (0.0) 3.5 (1.2) 0.0 (0.0)

40 6.6 (2.3) 0.0 (0.0) 6.6 (2.3) 0.0 (0.0) 2.4 (1.1) 0.0 (0.0) 2.5 (1.1) 0.0 (0.0)

60 6.4 (2.4) 0.0 (0.0) 6.5 (2.4) 0.0 (0.0) 2.0 (1.1) 0.0 (0.3) 2.3 (1.1) 0.0 (0.0)

80 6.2 (2.6) 0.0 (0.0) 6.5 (2.6) 0.0 (0.0) 2.4 (1.3) 7.8 (3.4) 3.5 (1.4) 0.5 (0.8)

Tables 1 and 2 give the average type-I and type-II errors of applying two methods on

simulated data when a and σ increases respectively. All the results are obtained with 1,000

replications. For clear comparisons, we also list the standard deviations of the type-I and

type-II errors in parentheses. Note that in Table 1, when a = 0.5, the calculation of type-

II error is not applicable (“-”) because there are no outlying profiles. In both tables, the

realized type-I error of PPOD-R is slightly higher than the nominal one 5% because several

approximations are made in deriving λ. It is interesting to see that type-I errors of PPOD-R

do not change too much in different settings. In contrast, the χ2 control chart has quite

different type-I errors in different combinations of (mo, a) or (mo, σ). This is mainly due to

over-estimation of the error variance. Specially, as shown in Table 2, the type-I errors of χ2

chart tend to be extremely small, and as a result its outlier detection ability (in terms of

type-II error) would be largely compromised. In other words, the χ2 chart cannot attain the

targeted type-I error in certain cases and thus pays too much price on reducing swamping
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effect. In outlier detection, masking is usually more serious than swamping. The former

can cause gross distortions, whereas the latter is often just a matter of lost efficiency. In

most cases, our proposed method approximately achieves the designed type-I error (thus

swamping effect is not serious) and has a much lower type-II errors (thus alleviates masking

effect) when mo is large.

Table 2: Average percentage of type-I and type-II errors for various values of σ and mo when
a = 0.5; The standard deviations are given in parentheses; In each category, the type-I and
type-II errors are given in the left and right columns respectively

mo PPOD-R χ2 chart

σ = 1.2 σ = 1.4 σ = 1.2 σ = 1.4

20 6.5 (2.2) 14.3 (8.3) 6.7 (2.3) 0.1 (0.8) 3.5 (1.3) 20.9 (8.8) 2.9 (1.2) 0.3 (1.3)

40 5.8 (2.2) 15.8 (6.5) 6.6 (2.4) 0.1 (0.6) 1.9 (1.0) 29.2 (6.8) 0.9 (0.7) 1.0 (1.6)

60 5.2 (2.3) 17.1 (6.3) 6.5 (2.5) 0.1 (0.5) 0.8 (0.7) 39.3 (5.6) 0.1 (0.2) 4.3 (2.4)

80 4.3 (2.2) 18.8 (6.3) 6.1 (2.5) 0.1 (0.4) 0.3 (0.5) 50.5 (4.5) 0.0 (0.0) 16.5 (3.0)

σ = 1.6 σ = 1.8 σ = 1.6 σ = 1.8

20 6.7 (2.2) 0.0 (0.0) 6.6 (2.2) 0.0 (0.0) 2.9 (1.2) 0.0 (0.0) 2.9 (1.2) 0.0 (0.0)

40 6.5 (2.2) 0.0 (0.0) 6.6 (2.3) 0.0 (0.0) 0.7 (0.7) 0.0 (0.0) 0.8 (0.7) 0.0 (0.0)

60 6.5 (2.5) 0.0 (0.0) 6.5 (2.4) 0.0 (0.0) 0.0 (0.0) 0.3 (0.7) 0.0 (0.0) 0.0 (0.3)

80 6.3 (2.6) 0.0 (0.0) 6.1 (2.5) 0.0 (0.0) 0.0 (0.0) 6.1 (2.3) 0.0 (0.0) 2.6 (1.7)

A question naturally arise. If two methods have a similar type-I error, whether PPOD-R

still performs better? To get a fairer picture, we perform a type-I-corrected comparison in

the sense that the control limit is found through simulations so that the χ2 chart has the

same type-I error as PPOD-R with α = 0.05. Note that such a scheme with adjustment is

only for comparison use in our simulations but not applicable in practical applications since

the type-I error of χ2 chart depends on both the number of outliers and shift model which

are unknown. Figure 1 shows the type-II error comparison between PPOD-R and χ2 chart

under various signal strength (a) with corrected type-I errors. Clearly, the proposed PPOD-R

outperforms χ2 chart by a quite large margin in detecting multiple outliers, which justifies our

claim in Section 2 that masking effects can be avoided to certain degree through a penalized-

type procedure. We conducted some other simulations with various combinations of m and

mo to check whether the above conclusions are true in other settings. Some representative
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results are tabulated in Table 3 which shows type-I and type-II errors of PPOD-R when m

is relatively small. The ratio of the outliers in the sample, mo/m, varies from 0.05 to 0.40 in

this table. As we found n does not affect the results much, n = 50 is fixed in Table 3. The

values given here and some other results show that the proposed PPOD-R chart performs

quite satisfactorily under these other settings as well.

10 20 30 40 50 60 70 80

0
20

40
60

80

a = 0.8

mo

ty
pe

−I
I e

rro
r

PPOD − R
χ2

(a)

10 20 30 40 50 60 70 80

0
20

40
60

80

a = 0.9

mo

ty
pe

−I
I e

rro
r

PPOD − R
χ2

(a)

10 20 30 40 50 60 70 80

0
20

40
60

80

a = 1

mo

ty
pe

−I
I e

rro
r

PPOD − R
χ2

(a)

Figure 1: Type-II error comparison between PPOD-R and χ2 chart under various signal strength
(a) when both type-I errors are controlled to be the same. In each plot, the type-II error is plotted
against mo.

Finally, we evaluated the performance of PPOD-C and PPOD-R when within-profile

correlations exist. Specifically, the profile model (13) and its associated parameter settings

are still considered expect that the following two error structures are used instead. Scenario

(I): εi’s are distributed as multivariate normal with mean zero vector and covariance matrix

Σ = (σkl) being σkk = 1 and σkl = 0.5|k−l|, for k, l = 1, 2, . . . , n; Scenario (II): AR(1)

process with autocorrelation parameter 0.6. The type-I and type-II errors of PPOD-R and

PPOD-C under Scenarios (I) and (II) when a changes are tabulated in Table 4. Again,

α = 0.05 is chosen. We can observe that the within-profile correlations indeed have adverse

effect on PPOD-R in the sense that the type-I error usually has a quite large bias and

the degradation becomes more pronounced under Scenario (II). That is to say, PPOD-R

would suffer high swamping probabilities. In comparison, by taking the correlation into

consideration, the PPOD-C procedure is more robust, giving a reasonably reduction in type-

I errors. Certainly, the type-I errors of PPOD-C are still higher than the nominal one due to

the use of inaccurate estimation and limiting distribution. However, considering its simplicity
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Table 3: Average percentage of type-I and type-II errors of PPOD-R under various combi-
nations of (mo,m, a); In each category, the type-I and type-II errors are given in the left and
right columns respectively

mo/m a = 0.75 a = 1.0 a = 1.5
0.05 7.5 8.4 7.3 0.0 7.5 0.0
0.10 6.1 11.7 6.2 0.0 6.4 0.0
0.15 5.8 13.4 6.3 0.0 6.2 0.0
0.20 5.1 18.3 5.8 0.0 5.6 0.0

m = 30 0.25 4.9 21.9 5.4 0.0 5.8 0.0
0.30 4.2 37.4 5.0 0.0 5.9 0.0
0.35 3.9 50.5 4.8 0.0 5.5 0.0
0.40 4.3 74.1 4.2 2.0 5.1 0.0
0.05 6.8 7.8 6.8 0.0 6.8 0.0
0.10 6.6 9.5 6.6 0.0 6.4 0.0
0.15 5.9 10.9 6.4 0.0 6.5 0.0
0.20 5.8 13.0 6.3 0.0 6.4 0.0

m = 60 0.25 5.1 18.7 6.2 0.0 6.4 0.0
0.30 4.6 31.5 6.0 0.0 6.3 0.0
0.35 3.9 53.2 5.7 0.0 6.5 0.0
0.40 3.9 76.3 5.5 0.3 6.5 0.0
0.05 6.8 7.4 6.9 0.0 6.9 0.0
0.10 6.3 8.8 6.9 0.0 6.8 0.0
0.15 6.3 9.5 6.6 0.0 6.8 0.0
0.20 6.0 10.9 6.5 0.0 6.5 0.0

m = 90 0.25 5.5 13.7 6.4 0.0 6.4 0.0
0.30 5.0 25.3 6.2 0.0 6.6 0.0
0.35 4.2 46.7 6.0 0.0 6.7 0.0
0.40 3.8 76.2 5.8 0.1 7.0 0.0

and generality, PPOD-C could be an ideal candidate for outlier detection in practice.

4 A real-data example

In this section, we apply the proposed methodology to a real dataset taken from an industrial

etching process in semiconductor manufacturing. In this example, the etching chamber is

equipped with more than 50 sensors which record the values of several variables with time

during a batch. For illustrative purposes, only the variables related to spectral analysis of
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Table 4: Performance comparison between PPOD-R and PPOD-C under correlated Scenarios
(I) and (II) and σ = 1; The standard deviations are given in parentheses; In each category,
the type-I and type-II errors are given in the left and right columns respectively

mo PPOD-C PPOD-R

Scenario (I)

a = 0.9 a = 1.1 a = 0.9 a = 1.1

20 10.5 (3.1) 2.5 (3.6) 10.5 (3.0) 0.0 (0.4) 16.2 (3.7) 1.4 (2.6) 16.1 (3.6) 0.0 (0.3)

40 10.6 (3.4) 2.6 (2.8) 10.4 (3.3) 0.0 (0.3) 16.2 (4.0) 1.4 (2.0) 16.0 (4.0) 0.0 (0.2)

60 10.6 (3.6) 2.9 (2.6) 11.0 (3.6) 0.0 (0.3) 15.7 (4.1) 1.8 (2.0) 15.9 (4.0) 0.0 (0.2)

80 10.6 (4.2) 3.4 (5.6) 11.0 (4.0) 0.0 (0.2) 15.5 (4.3) 2.0 (3.4) 15.5 (4.3) 0.0 (0.2)

Scenario (II)

a = 0.9 a = 1.1 a = 0.9 a = 1.1

20 11.0 (3.3) 21.9 (11.6) 11.5 (3.3) 3.6 (4.6) 22.2 (4.6) 11.3 (8.2) 22.9 (4.5) 1.5 (3.0)

40 9.8 (3.3) 26.8 (11.6) 11.3 (3.6) 4.0 (3.6) 21.4 (4.7) 12.9 (7.6) 22.5 (4.8) 1.6 (2.1)

60 8.2 (3.3) 40.6 (16.3) 11.3 (4.0) 4.4 (3.7) 20.3 (5.0) 18.2 (10.0) 22.0 (5.1) 1.7 (1.9)

80 5.8 (2.9) 73.5 (17.5) 11.1 (4.6) 5.6 (7.2) 19.0 (4.9) 36.6 (18.5) 21.6 (5.4) 2.1 (3.5)

chamber gas, is considered. There are many steps involved in the batch operation, but here

we only focus on the second step since engineers consider that this step is one of the most

crucial steps which usually contains enough critical information to distinguish the out-of-

control conditions in the process. In each batch, the observations of chamber gas are collected

at many time-points. See Figure 2-(a) for illustration. The engineers are usually concerned

about significant changes of those profiles which may indicate some assignable causes in the

process have occurred. More detailed discussion about this example can be found in Lee et

al. (2011).

The entire dataset contains 364 wafer. The profile observations are synchronized so that

the number and positions of covariate points (say, time, in this example) are equal. Figure

2-(a) shows the profiles for 364 wafers. The x-axis represents totally 137 synchronized profile

points. Clearly, the profile curves present a similar functional change along with the time

point. It is not easy to obtain a parametric or nonparametric model for representing these

profiles because it seems that there is a very sharp peak at the beginning of each profile. Such

a peak is partly due to the on-off feature in the etching process. Please refer to Lee et al.
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(2011) for detailed explantation. We also note that some of the profiles significantly deviate

from the population curves and should be regarded as outlying profiles which we would like to

automatically screen out with some detection procedures. Thus, in this example, we consider

to apply our proposed PPOD method to this dataset. As illustrated by Lee et al. (2011),

in this dataset, there is a significant aging trend caused by the change of environmental

temperature. Hence, we firstly apply the method suggested by Lee et al. (2011) to remove

the aging drifts.

Since the measurements in each profile (wafer) are taken in consecutive time intervals,

the data exhibit a considerable amount of positive serial autocorrelation in each profile,

which is confirmed by Figure 2-(b). This figure depicts the estimated within-profile corre-

lations ρ̂(t, 5), ρ̂(t, 35), and ρ̂(t, 65), for t = 1, . . . , 137, where ρ̂(t1, t2) denotes the estimated

correlation between the observations at t1 and t2 time points. From the plot, we can see

that correlation within profiles is substantial; thus, it should not be ignored. Accordingly,

the PPOD-C procedure, which takes the within-profile correlations into consideration, seems

more appropriate for this example.

We choose the type-I error as 0.01 and apply PPOD-C described in Algorithm 3 to this

dataset. The PPOD-C procedure is completed with four iterations and identifies totally 28

outlying profiles. Figure 3 shows all the identified curves along with the final estimate of

µ0, µ̂
(4)
0c . The deviation of these curves from the mean function is quite clear. The validity

of these detection results needs to be checked by engineers based on physical knowledge and

experience in a follow-up analysis.

5 Concluding remarks

The main contribution of this paper is to consider a penalized function, under the framework

of treating profiles as vectors, defined by adding a hard-penalty function to the Euclidian

distance, which can be directly minimized by a recursive algorithm. With a good design

of tuning parameter, the proposed method successfully identified the outliers given a type-I

error. This technique is associated with the χ2 chart, but provides a new characterization

in form of penalized regressions and thus is able to alleviate masking effects to a large
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Figure 2: (a): The synchronized profiles of sensor variable chamber gas over a 364 wafer batch;
(b): Solid, dashed and dotted curves represent estimated within-profile correlations ρ̂(t, 5), ρ̂(t, 35),
and ρ̂(t, 65)

extent. Furthermore, we successfully generalized this penalized/thresholding methodology

to correlated profile problems to reduce the type-I error by accommodating within-profile

correlations.

We assume that there is only one response variable and one explanatory variable. How-

ever, the proposed PPOD-R and PPOD-C can be also applied with one response variable and

multiple explanatory variables or with multiple response variables (Noorossana et al. 2010).

We also assume that the explanatory variable takes a fixed set of values in all profiles. If

this is violated in practice, we can use linear interpolation or local smoothing to synchronize

the profile observations of so that all profiles share a fixed set of values for the explanatory

variable (as done for the real-data example in Section 4). In addition, the standpoint of

this paper is that profile data may sometimes be so complex that all parametric or non-

parametric modelling methods do not apply. However, in many applications, the functional

relationship in profile data is indeed sufficiently smooth which allows us to consider some

methods based on functional data analysis (Ramsay and Silverman 2005). Recently, Yu

et al. (2012) proposed a new testing procedure for profile outliers based on the functional

principal component analysis. Their procedure is essentially a retrospective one and thus

also suffers from masking effect much as they have shown. One of our ongoing work is to

integrate PPOD with their test to construct some more robust outlier detection methods in

detecting outlying profiles with certain smoothness.
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Appendix:

Proof of Proposition 2

The second inequality in (10) is straightforward from the algorithm and the fact that

µ̂0 is the minimizer of (9) given γ. The first inequality is clearly true by Proposition 1,

provided γ̂i = I{||yi−µ0||>λ}(yi −µ0) is the solution to (7). Note that the second equation in
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the simultaneous equations (7) can be reduced to

yi − µ =
λγi

||γi||
, ∀ 0 6= ||γi|| < λ,

which leads to the fact that for any 0 6= ||γi|| < λ, ||yi − µ|| = λ. Thus, if ||yi − µ|| 6= λ,

||γi|| ≥ λ or ||γi|| = 0. On the other hand, when ||yi − µ|| > λ, γi = yi − µ from the

first equation in (7), while γi = 0 if ||yi − µ|| ≤ λ by using the third equation in (7). This

completes the proof. ¤

Proof of Proposition 3 In what follows, we always assume that µ̂0 is the overall mean

of yi, i = 1, . . . , m as in Zhang and Albin (2009), which will facilitate our exposition much.

Note that |||yi − µ̂0||2 − ||yi − µ0||2| ≤ ||µ̂0 − µ0||2 and m||µ̂0 − µ0||2 is distributed as the

same as ||yi − µ0||2. Consequently, ||yi − µ̂0||2 = ||yi − µ0||2(1 + Op(m
−1)). It suffices to

show the asymptotic distribution of ||yi − µ0||2.

By standard theory in multivariate analysis (Box 1954), the distribution of ||yi − µ0||2
can be shown to be equivalent to the distribution of the linear combination of independent

χ2
1-variates with coefficients given by the eigenvalues of Σ, say

||yi − µ0||2 d
=

n∑
j=1

λjz
2
j ,

where zj
iid∼ N(0, 1). Note that

∑n
j=1 λjz

2
j is a weighted sum of i.i.d random variables. By

Hajek-Sidak central limit theorem,
∑n

j=1 λjz
2
j − E√

V

d→N(0, 1),

where E and V denote the expectation and variance of
∑n

j=1 λjz
2
j respectively, provided

η2
n/tr(Σ

2) → 0 is valid. The proof can be completed by directly calculating the closed-forms

of E and V . ¤
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