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Abstract

Statistical process control (SPC) including monitoring and diagnosis is very important and chal-

lenging for multistage processes with categorical data. This paper proposes a binary state space

model (BSSM) for modeling multistage processes with binomial (binary) data and develops

corresponding monitoring and diagnosis schemes by utilizing a hierarchical likelihood approach

and directional information based on the BSSM. The proposed schemes not only provide an

SPC solution that incorporates both interstage and intrastage correlations, but they also re-

solve the confounding issue in monitoring and diagnosis due to the cumulative effects from stage

to stage. Our simulation results show that the proposed schemes consistently outperform the

∗Corresponding author. Email: chlzou@yahoo.com.cn

1



existing χ2 scheme in monitoring and diagnosing for binomial multistage processes. An alu-

minum electrolytic capacitor example from the manufacturing industry is used to illustrate the

implementation of the proposed approach.

Keywords: Binary State Space Model; Categorical Data; Hierarchical Likelihood; Multistage

Processes; Statistical Process Control

1 Introduction

Statistical process control has been demonstrated to be an important tool for monitoring process

or product quality in the manufacturing and/or service industries. As modern technologies become

increasingly sophisticated, most manufacturing operations, such as semiconductor manufacturing

and automotive body assembly, comprise multiple stages. For example, print circuit board (PCB)

manufacturing is a typical multistage process that involves exposure to black oxide, lay-up, hot

press, cutting, drilling, and then inspection. Shi (2007) has provided an extensive review of the

multistage process control problem with many industrial examples.

In many modern manufacturing and service environments, due to some restrictions, for instance

the time, cost or intrinsic character of the variables, quantitative observations cannot be measured

directly or collected promptly for on-line monitoring use. Instead, only qualitative or categorical

observations can be obtained. For example, Lee and Yano (1988) studied a three-stage process for

the light-emitting diode fabrication, including the die attach stage, the wire bond stage, and casting

stage. The inspectors at each stage only reported either binary observations (e.g., pass/no pass)

or nominal observations (e.g., good/scrap/rework), but no numerical measures on the inspected

items. Another real example is the manufacturing of aluminium electrolytic capacitor (AEC),

which is displayed in Figure 1. AECs are produced through several stages in the process, and in

each stage, AECs or unfinished AECs are checked by sampling inspection based on the specifications

of some variables, and the inspection output is “defective” or “good”, so binary data are collected

in each stage. Similarly, such a process in service industries also exists. For instance, the process

in hotline center (Figure 2) is one real example from service industries. Customers’ problems are

solved or answered through several stages, and in each stage, the sampled staff members’ actions or

answers are inspected by the hotline center to guarantee their service quality. The inspection output

is that the answer or action is “correct” or “not correct” (see the following motivating examples

in next section for detailed illustration). There still remain several unique challenges in how to

apply the SPC method to such multistage processes, including statistical modeling, monitoring

and diagnosing. This is the focus of this paper.
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Some research on modelling and analyzing multistage processes with categorical observations

has been conducted in the literature. Among others, Kumar et al. (2006) provided a comprehensive

review of modeling the yield of PCB manufacturing processes. Tang (1990) presented a model for

a serial production line with random yield losses and uncertain demand. Barad and Braha (1996)

addressed the problem of how to control the ordering of a single or a series of production runs

when the various stages in the production process have binomial yields. In Jin et al. (2007), the

relationship between the number of surface defects and the process settings was described with

a Logistic regression model. However, all the methods mentioned above share a severe drawback

that they lack the capability of representing variation propagation along the multiple stages. The

assumption that the defective rates of successive stages are independent of each other is commonly

invalid in practice. The malfunctioning of an upstream stage would usually increase the defective

rate of the downstream stages. In the literature, one way to utilize the multistage information

and capture the multistage relationships (e.g., the correlation structure between serially dependent

stages) is to model the multistage process as a linear state space model (c.f., Basseville and Nikiforov

1993; Jin and Shi, 1999; Shi 2007). The extensive review on the quality control of multistage

systems was presented by Shi and Zhou (2009). Although simple and popular, such a linear model

and its corresponding estimation and testing approaches are apparently not appropriate for the

multistage categorical observations since they require a fundamental assumption that the collected

data is numerical. Ning et al. (2009) discussed the necessity to monitor multistage processes with

categorical data, but they did not develop efficient SPC techniques.

With respect to the monitoring of categorical data, the conventional p and np charts are com-

monly used. In the last several years, this monitoring problem has attracted much attention from

researchers and various types of charting schemes have been developed, such as Marcucci (1985),

Gan (1993), Acosta-Mejia (1999), Bourke (1991, 2001), Steiner (1998), Reynolds and Stoumbos

(1999, 2000), Wu and Spedding (2001), Somerville et al. (2002) and Gadre and Rattihalli (2005),

etc. A nice overview on the topic of the control charts for attribute data was presented by Woodall

(1997). All the above control charts for categorical data are developed for a single stage and cannot

fully utilize the information from a multistage operation where the input of the current process

stage may be related to the outputs of the early stages. Naturally, we are led to consider using

some multivariate attribute control charts to deal with this problem, such as Patel (1973) and Lu et

al. (1998), etc. However, the latest works on multistage process SPC with linear state space model

(LSSM) have shown that the fully statistical model-based approaches usually cannot describe the

relationship among stages explicitly due to the lack of engineering background and knowledge, and

it is possible to develop much more efficient monitoring and diagnosis approaches based on some

models that integrate both the statistical and engineering information. See Zhou et al. (2003), Zou

et al. (2008), Li and Tsung (2009), and Jin and Tsung (2009) for detailed discussion.
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In this study, in order to describe the quality linkage among multiple stages, we propose to

model multistage processes with categorical data based on multivariate generalized linear mixed-

effect modeling, which can effectively incorporate physical laws and engineering knowledge. A

systematic monitoring and diagnosis framework based on the hierarchical likelihood is developed,

which is able to fully incorporate directional information from the multistage model. Numerical

studies and a real data example demonstrate that the effectiveness of the proposed schemes. The

remainder of this paper is organized as follows: in Section 2, we introduce two examples from both

the manufacturing and service industries that motivate this research. In Section 3, a new multistage

process model is defined and the approach of its parameter estimation is also included. Following

that, our methodology on monitoring and diagnosis is elaborated in Section 4. The performance

of the proposed schemes are studied by simulation in Section 5. The motivating example is used

to illustrate the implementation of the proposed approach step by step in Section 6. Finally,

concluding remarks are offered to summarize the major contributions of the paper and to suggest

issues for future research. Some technical details are provided in the Appendix.

2 Motivating examples

Here we present two examples taken from both the manufacturing and service industries to illustrate

multistage processes with categorical data.

Example 1—A multistage process with binary data in the manufacturing industry: Figure 1 is

the process flow of Aluminum Electrolytic Capacitors, which is a typical multistage process with

binary output in an electronic manufacturing industry. As shown in Figure 1, the AEC are produced

through those five stages, including clenching & rolling, soaking, assembly, cleaning & bushing and

aging & classifying. The purpose of this process is to transform the raw materials (anode aluminum

foil, cathode aluminum foil, guiding pin, electrolyte sheet, plastic cover, aluminum shell and plastic

tube) into the AEC with precise specifications. The products after each stage will be inspected

by sampling, and then the binary data (defective or good) are collected. A lot of types of defects

may be induced through the manufacturing process, which can be classified into cosmetic defects,

capacity defects, leakage current defects and dissipation factor defects. Several types of defects may

be induced in each stage. For example, in the clenching & rolling stage, the possible defects include

improper compound thickness, aluminum foil cracking, scored aluminum foil, ragged margins and so

forth. In the soaking stage, dissipation factor defects may be found. Therefore, the quality character

of AEC representing its appearance condition and functional performance condition at upstream

stages will influence that of downstream stages, and then the different stages are correlated.
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Figure 1: The manufacturing process for Aluminum Electrolytic Capacitors.

Example 2—A multistage process with binary data in the service industry: As shown in Figure

2, a process consisting of three stages represents the flow of dealing with a call in the hotline

center. When a customer calls, the staff member will initially analyze the customer’s problem and

then find solutions in the database or from other sources, e.g., senior staff. After solutions are

found, the staff member will present a solution to the customer. The hotline center aims to provide

customers with a high-quality service, which means solving problems for customers in the shortest

possible time. The service quality of staff members working in the call center is usually monitored

by sampling and recording the errors the staff members make. Defects in this process include any

error in the information and solutions provided by the staff. Therefore, the binary output in each

stage is collected (correct or not correct as shown in Figure 2). Based on this process, it is clear

that the service quality character (e.g., correctness of information or solutions) in the upstream

stage will affect that of the downstream stage. This hotline center service process, similar to the

above manufacturing process, is a typical multistage process with categorical observations. We aim

to develop an effective model for this kind of process and to propose a general framework for on-line

monitoring and diagnosis in order to control multistage processes by using binary outputs.
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Figure 2: The typical service process in a hotline center

3 Modeling of Multistage Processes with Binomial data

Consider a common manufacturing process comprised of d stages. Without loss of generality, the

stages are numbered in ascending order, such that if stage s precedes stage l, then s < l. Assume

that a multistage process dataset (or a batch) contains m vector observations in the form

yj = (y1j , y2j , · · · , ydj)T , j = 1, , . . . , m, (1)

where y1, . . . ,ym are identically and independently distributed (i.i.d), and yij is a quality measure-

ment observed from the jth sample at the ith stage and is assumed to be drawn from a binomial

(or Bernoulli) distribution, denoted as yij ∼ BIN(ni, pij). Here, pij represents the defect rate of

the sample j at stage i, say pij = E(yij)/ni, and ni denotes the sample size at stage i. In many

applications, the sample sizes at different stages are the same. However, we use ni here to em-

phasize that different stages may be of different importance and accordingly the sample size may

be different. As the LSSM has been shown by many researchers to be quite effective in describing

multistage processes, we propose to use the following two-level BSSM to link yij

logit(pij) = αi + xT
ijci,

xij = βi + Aixi−1j + ωij , i = 1, 2, . . . , d, j = 1, . . . , m,

(2)

where logit(pij) = log(pij/(1− pij)), αis are intercept parameters and xij , a q-dimensional vector,

represents the quality characteristics at stage i, which cannot be directly (or quickly) be measured

or observed.
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The first level of the model is a generalized linear model (GLM) for binary or binomial data

with a canonical link function logit(·), i.e., the Logistic model (c.f., McCullagh and Nelder 1989). It

involves the fitting of the quality measurement to the quality characteristics, and ci, a q-dimensional

vector, is used to relate the unobservable quality characteristics, xij , to the observable quality

output, yij , or the defect rate, pij . The second level of the model involves modeling the transfer

of the quality characteristics from the previous stage to the present stage, in which Ai denotes

the (q × q)-dimensional transformation coefficient matrix of the quality characteristics from stage

i− 1 to stage i, and βi is the q-dimensional intercept coefficient vector. The coefficients Ai, ci and

βi are either derived from the process/product design information, physical laws and engineering

knowledge (see Zhou et al. 2003, Xiang and Tsung 2008 and the references therein) or estimated

from the historical dataset. We will focus on the latter case in the next subsection. In addition,

ωijs, q-dimensional vectors, which signify the unmodeled errors, are assumed to be independently

and normally distributed. Similar to the assumptions commonly used in the LSSM (Zou and Tsung

2008), we assume the error ωij ∼ N(0,Σωi), and the initial value x0j ∼ N(α0,Σ0).

Note that the BSSM considered is essentially similar to the model proposed by Czado and Song

(2008), which aims to model the longitudinal discrete response where the observation equation is

specified in an additive form. Their model and associated estimation approach can be regarded as

an extension of the nonlinear state space model investigated by Carlin et al. (1992) and Fahrmeir

and Tutz (1994). Besides the fundamental difference in contexts, say the estimation problem

considered in their paper and monitoring and diagnosis considered here, they developed a Markov

chain Monte Carlo algorithm to carry out statistical inference, which is a computationally intensive

method and thus is apparently infeasible in our on-line detection problem. This will be explained

in more detail in Section 4.

Now, for the purpose of on-line monitoring and diagnosis, we propose a BSSM-based change-

point model. Assume that Y (k) is the quality measurement dataset collected at the k-th time point

which contains m ≥ 1 i.i.d vector observations {y(k)
1 , . . . ,y

(k)
m }, where y

(k)
j is defined in the same

way as in (1) and the superscript “(k)” is used to distinguish the data set collected over time.

Suppose that a fault happens in stage ζ after an unknown changepoint τ in the process. In light

of (2), we consider the following change-point model: for k = 1, 2, . . . ,

logit(p(k)
ij ) = αi + x

(k)T
ij ci,

x
(k)
ij = βi + Aix

(k)
i−1j + ω

(k)
ij + I{i=ζ,k≥τ}δ,

for i = 1, 2, . . . , d, j = 1, . . . , m, (3)

where I{·} is the indicator function and δ, a q-dimensional vector, is the unknown mean shift

magnitude. Based on this model, the major task of SPC for such a multistage process is to detect

any shift (δ) as quickly as possible, using certain control charts, and to diagnose where the detected
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shift starts (τ) and in which stage the shift occurs (ζ), so that proper adjustment to the process

can be made in a timely fashion.

For constructing a Phase II control scheme, the in-control parameters, say Ai, ci, αi, Σ0 and

Σωi , are required. In practice, a set of in-control historical process data is gathered and analyzed

in Phase I. Any unusual “patterns” in the data lead to adjustments and fine tuning of the process.

Once all such assignable causes are accounted for, we are left with a clean set of data, gathered

under stable operating conditions. Then, this dataset will be used for estimating certain in-control

parameters of the process. In the remainder of this paper, we focus on how to estimate those

parameters based on the assumption that the reference sample is statistically stable and on how to

develop an effective monitoring and diagnosis scheme is based on the assumption that the in-control

parameters are known, i.e., it is assumed that the in-control dataset used in Phase I is sufficiently

large enough to estimate the parameters well. A Phase I study, aiming at identifying the outliers

or changepoint in a reference dataset, will be presented in a separate paper.

In the Phase I estimation, to enable the model (2) estimated, observations on the quality

information, say xij for i = 0, . . . , d, are required. Such an assumption is valid in practice since we

usually expend more measurement efforts on the Phase I analysis so that the underlying regression

model can be estimated or calibrated accurately. Then, the initial parameters, α0 and Σ0, can be

determined directly by the sample mean and variance of x0j . The estimates of the coefficients, βi,

Ai and Σωi , are obtained by multivariate linear regression of xi on xi−1. The parameters ci and

αi are estimated through a logistic regression of yi on xi by means of a standard iterative weighted

least square (IWLS) procedure (McCullagh and Nelder 1989). This procedure is very popular

and available in most of statistical softwares package, such as R, SAS, and S-plus. Certainly, it

is natural to consider the estimation approaches through joint modeling of xi and yi from all the

stages, although a detailed investigation is beyond the scope of this paper. This should be a subject

of future research.

4 Monitoring and Diagnosis Schemes Using hierarchal likelihood

(h-Likelihood)

In this section, we will present a general methodology of Phase II monitoring and diagnosis based

on the proposed model (3) and h-likelihood estimation. In Section 4.1, we first reformulate the

model (2) and derive the h-Likelihood to make inferences. In Section 4.2, we discuss the directional

information from the multistage model and the corresponding estimation and testing approaches
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are developed. Then, the analogous arguments are readily extendable to construct a Shewhart-

type control scheme. Finally, practical guidelines regarding design and computational issues are

addressed in Section 4.3.

4.1 Model Transformation and the h-Likelihood

Recall model (2) and the associated notation. Moreover, denote d-dimensional vectors, νj =

(ν1j , . . . , νdj)T , and a matrix, Σ = (ρ2
ij)d×d. Firstly, we rewrite the model (2) as the following

equivalent form by replacing xij with x0j ,

yij |pij ∼BIN(ni, pij)

logit(pij) =αi +
i∑

l=1

βT
l

i∏

t=l+1

AT
t ci + xT

0j

i∏

t=1

AT
t ci

+
i∑

l=1

ωT
lj

i∏

t=l+1

AT
t ci, for i = 1, . . . , d, j = 1, . . . , m,

and then the above model can be written as the following,

yij |pij ∼ BIN(ni, pij)

logit(pij) = µ0i + νij , for i = 1, . . . , d, j = 1, . . . , m,

(4)

where νj
i.i.d∼ Nd(0,Σ), and

µ0i = αi +
i∑

l=1

βT
l

i∏

t=l+1

AT
t ci + αT

0

i∏

t=1

AT
t ci,

ρ2
ii = cT

i

[( i∏

t=1

AT
t

)T
Σ0

i∏

t=1

AT
t +

i∑

l=1

( i∏

t=l+1

AT
t

)T
Σωl

i∏

t=l+1

AT
t

]
ci,

ρ2
ir = ρ2

ri = cT
i

[( i∏

t=1

AT
t

)T
Σ0

r∏

t=1

AT
t +

i∑

l=1

( i∏

t=l+1

AT
t

)T
Σωl

r∏

t=l+1

AT
t

]
cr (i < r).

Now, the BSSM is essentially equivalent to the multivariate binomial logit-normal model studied

by Coull and Agresti (2000) and Rabe-Hesketh and Skrondal (2001). Also, this model can be

regarded as a special case of the generalized linear mixed-effects model (GLMM; c.f., McCulloch

and Searle 2001) with multivariate responses, called multivariate GLMM (MGLMM) proposed by

Gueorguieva (2001) and further analyzed by Yun and Lee (2004).
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In making inferences from such a MGLMM, the marginal likelihood, which is obtained as in the

usual GLMM by integrating out the random effects, is always considered. Since such integrations

have no explicit form, the commonly used methods are to either approximate the integration by

Gauss-Hermit quadrature (GHQ) and Monte-Carlo EM (MCEM) methods (Gueorguieva 2001;

Coull and Agresti 2000) or adopt some Bayesian inferential procedures (Czado and Song 2008).

However, all these methods involve intensive computation. Yun and Lee (2004) and Lee et al.

(2006) implement the h-Likelihood proposed by Lee and Nelder (1996), to make inferences from

the MGLMM and compare it with the GHQ method for binary outcomes. They conclude that by

using h-likelihood, neither time-consuming numerical integrations such as GHQ nor Monte-Carlo

methods to implement the expectation step are necessary to produce good estimates. Due to

its attractive features on computation, we follow the framework of h-likelihood in this paper. In

addition, as the h-likelihood is quite general and inherits certain good properties of conventional

inferences, it enables us to present a unified framework for monitoring and diagnosis of binary

multistage processes.

Formally, for model (4), the hierarchical log-likelihood function is defined as follows:

h =
m∑

j=1

{log f(yj |νj) + log f(νj)}, (5)

where f(yj |νj) is the conditional density function of yj given νj with parameters µ0 = (µ01, . . . , µ0d)T ,

log f(yj |νj) =
d∑

i=1


log

(
ni

yij

)
+ yij(µ0i + νij)− ni log(1 + exp{µ0i + νij})


 ,

and f(νj) is the density function of random effect νj with the parameter Σ,

−1
2

log |2πΣ| − 1
2
νT

j Σ−1νj .

The h-likelihood defined above is an obvious generalization of Henderson’s joint likelihood (c.f.,

Breslow and Clayton 1993; Davidian and Giltinan 1995). Given dispersion parameters Σ0 and

Σwi , we can have consistent estimates of α0, αi and βi for i = 1, . . . , d by maximizing the h-

likelihood function h, i.e., solving the simultaneous score equations of

∂h/∂α = 0, ∂h/∂β = 0, ∂h/∂ν = 0. (6)

The details of general estimation procedures and corresponding statistical software can be

found in Lee et al. (2006) and hence are omitted here. We will elaborate on model (3), which is of

our primary interest in the next section, and provide some useful formulations and algorithms to

simplify the computation for the current special problem in the Appendix.

10



4.2 Directional Information and the Corresponding Test

Suppose that a process mean shift occurs at one stage, ζ, after τ observed datasets as represented

by model (3), i.e., the unobservable quality characteristics, x
(k)
ζj , k = τ + 1, τ + 2, . . . , shift. Then,

the observable quality measurements, y
(k)
ζj , . . . , y

(k)
dj , all may deviate from their expectations. In

fact, the magnitude and type of such deviations depend on the parameters, Ai, ci, αi, Σ0, Σwi ,

the shift magnitude, δ, and the stage, ζ, of the shift occurrence. When these parameters are

specified, the finite possible shift directions of the intermediate variable logit(p(k)
ij ), i.e., µ, can be

determined. This a priori shift direction information is a particular characteristic in monitoring

and diagnosing binary multistage processes. Note that the efficiency of control schemes that make

use of the available shift information has been demonstrated by Jiang (2004) and Zou and Tsung

(2008) in related but different contexts. We shall develop the control schemes based on the BSSM

by taking the a priori knowledge of the mean shift direction into consideration.

To be more specific, similar to (4), we can see that the equivalent form of the out-of-control

model (3) can be represented as follows: for i = 1, . . . , d, j = 1, . . . , m, and k > τ ,

y
(k)
ij |p(k)

ij ∼ BIN(ni, p
(k)
ij )

logit(p(k)
ij ) = µ1i + ν

(k)
ij , µ1i = µ0i + δT ψζi,

(7)

where ψζi is a q-dimensional vector

ψζi =





i∏
t=ζ+1

AT
t ci if i ≥ ζ

0 otherwise.

Let Ψζ = (ψζ1,ψζ2, . . . ,ψζd)T . Therefore, for the multistage process with categorical data con-

sidered here, in which the mean shift occurs only in one of the d types of known directions,

Ψ1,Ψ2, . . . ,Ψd , say ζ ∈ [1, d], the hypothesis test is given by,

H0 : µ = µ0 versus H1 : µ = µ0 + Ψ1δ or µ0 + Ψ2δ · · · or µ0 + Ψdδ. (8)

Similar to the generalized likelihood ratio test (GLRT) adopted in Jiang (2004) and Zou et al.

(2008), we could use the generalized h-likelihood ratio test (GHLR) in the sense that we jointly

maximize the h-likelihood over ζ ∈ {1, . . . , d} and δ. This will result in rejecting the null hypothesis

if, for given k, the test statistic,

T
(k)
L = max

1≤i≤d
2[hi(δ̂i;Y(k), ν̂i)− h0(Y (k), ν̂0)], (9)
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is larger than a pre-specified critical value, where h0(Y(k), ν̂0) is the h-likelihood under H0 condi-

tions and hi(δ̂i;Y(k), ν̂i) denotes the h-likelihood function under H1 with Ψi. Here, δ̂i and ν̂i are

the maximum h-likelihood estimators (MHLE) for hi, and ν̂0 is the MHLE for h0. Note that since

the in-control parameters µ0 and Σ are both known under the Phase II setting, the fixed-effect

parameter involved in maximizing hi is just δ and there are only random-effect parameters, ν, that

need to be estimated for the h0. This will greatly alleviate the computational effort and on-line

implementation is feasible by using some appropriate algorithms. See Section 4.3 for details. Based

on the GHLR (9), an estimator for ζ is immediately given by

ζ̂
(k)
L = arg max

1≤i≤d
2[hi(δ̂i;Y(k), ν̂i)− h0(Y (k), ν̂0)]. (10)

By using T
(k)
L , we can directly construct a Shewhart-type control chart that triggers a signal if

T
(k)
L > C,

where C > 0 is a control limit chosen to achieve a specific in-control average run length (ARL),

denoted as ARL0. After the chart signals, ζ̂
(k)
L provides a direct diagnosis result at which stage a

shift has occurred. It should be emphasized that using similar arguments to Appendix B in Lee

and Nelder (1996), the expansion of T
(k)
L leads to asymptotically equivalent Wald-type charting

statistics:

T
(k)
W = max

1≤i≤d
δ̂

T

i Var−1(δ̂i)δ̂i, k = 1, 2, . . . , (11)

and the corresponding diagnostic procedure will be

ζ̂
(k)
W = arg max

1≤i≤d
δ̂

T

i Var−1(δ̂i)δ̂i. (12)

Since the explicit form of Var(δ̂i) is not available, a simple but consistent estimator given in

Appendix C is used instead. Note that when the multistage process with LSSM is considered,

T
(k)
L and T k

W are exactly the same (c.f., Zou and Tsung 2008). However, for the BSSM, the small-

sample properties of these two statistics are slightly different and we will examine the difference in

Section 5. Our simulation results show that the T
(k)
L and T k

W have similar performance in detecting

multistage shifts and the latter one performs slightly better in most of cases. It is also worth noting

that using T
(k)
W does not require computing the h-likelihood value under in-control conditions, say

h0(Y (k), ν̂0), and thus it has a little advantage over using T
(k)
L in computation effort. Therefore,

we recommend T
(k)
W in practical applications.

Note that Zou et al. (2008) establish some good asymptotic properties of the directional GLRT

and corresponding estimators in the case that LSSM is considered. Although no theoretical result
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will be presented here on the superiority of the directional GHLR chart under one of the special shift

patterns (8), its efficiency can be expected to be superior to the testing approaches directly based

on the observed vector, Y (k), due to its exploration of more accurate information. Its superiority

will be examined by simulation in Section 5.

4.3 Implementation of the Proposed Scheme

Although computing power constantly increases, for on-line process monitoring, which generally

handles a large number of observations, fast implementation is important and some computational

issues need our careful examination. We will detail the numerical algorithm to calculate the test

statistic, T
(k)
W , and the implementation of the algorithm. Note that Lee et al. (2006) provide a

general IWLS to obtain the MHLE, although some special characteristics in our problem would

result in considerable reduction of computation effort and are hence worth pointing out more clearly

here.

To obtain the δ̂i in (12), the score equations in (6) can be solved through the IWLS procedure

with the augmented response variables (Lee and Nelder, 1996). To be specific, write ξ = (δT ,νT )T

as parameters vectors, where νT = (νT
1 , . . . ,νT

m) and we suppress the subscript “i” in δ and Ψ for

notation convenience. We will show in Appendix A that δ̂i and ν̂i can be obtained by solving the

following IWLS equation:

ΓTΩ−1Γξ = ΓTΩ−1z, (13)

where

Γ =




Ψ∗
md×q Imd

0md×q Imd


 , Ω = diag{Ω0,Ω1},

Imd denotes the (md)-dimensional identity matrix, 0md×q is the (md× q)-dimensional matrix with

all the elements zero, Ψ∗ = (ΨT ,ΨT , . . . ,ΨT )T , z = (zT
0 ,zT

1 )T is the so-called GLM augmented

response variables, and

zl = (zT
l1, . . . ,z

T
lm)T , Ωl = diag

{
Ωl1, . . . ,Ωlm

}
,

zlj = (zl1j , . . . , zldj)T , Ω0j = diag{Ω01j , . . . ,Ω0dj},

z0ij = logit(pij)− µ0i +
yij − nipij

nipij(1− pij)
, Ω0ij = [nipij(1− pij)]−1,

z1ij = 0, Ω1j = Σ, for l = 0, 1, i = 1, . . . , d, j = 1, . . . , m.
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The IWLS for estimating ξ are described as follows:

1. Start with the given initial estimation values for ξ, denoted as ξ̂(0) = (δ̂(0), ν̂
T
(0))

T .

2. At the l-th iteration, for l ≥ 0, calculate z(l), ΓT
(l) and Ω(l) based on ξ̂(l).

3. Update the estimation of ξ via the following equation,

ξ̂(l+1) = (ΓT
(l)Ω

−1
(l) Γ(l))

−1ΓT
(l)Ω

−1
(l) z(l). (14)

4. Repeat Steps 2-3 until the following condition is satisfied:

‖ξ̂(l) − ξ̂(l−1))‖1

/
‖ξ̂(l−1)‖1 ≤ ε,

where ε is a pre-specified and small positive number (e.g., ε = 10−4) and ||ξ||1 denotes the

sum of absolute values of all elements of ξ. Then, the algorithm stops at the l-th iteration.

Note that, in the last step, we use the relative error of the successive estimates of ξ in the

convergence criterion. In fact, a part of estimates ξ, such as δ, or ν can also be used for this

purpose. We use ξ here because our simulation shows that it gives good results in various cases.

With respect to the choice of the initial values of ξ̂(0), a simple but effective method is to set it to be

the 0 for which we found the frequency of nonconvergence is negligible in all our simulation studies

and the convergence is quite fast (usually only requiring 3-4 iterations). In addition, it seems that in

each iteration, the IWLS equation(13) requires computing the inverse of a high-dimensional matrix,

say (ΓT
(l)Ω

−1
(l) Γ(l))−1. However, due to the special forms of Γ(l) and Ω(l), we could accomplish the

computation in the order of O(d3+m2) rather than O(m3d3). The details are provided in Appendix

B.

Based on the foregoing algorithm, it is easy to obtain the upper α percentile of T
(k)
L or T

(k)
W

by simulation, say C, the control limit of the proposed Shewhart chart for ARL0 = 1/α. For

instance, when d = 10, about 15 minutes is required to obtain C based on 10,000 simulations, using

a Pentium 3.0MHz CPU. The Fortran code for implementing the proposed procedure is available

from the authors upon request.

5 Performance Assessment

In this section, the monitoring performance and the diagnosis performance of our proposed schemes

for a multistage process with binary data are investigated via Monte Carlo simulations. For ease

14



of exposition, only the univariate model is considered here,

logit(pij) = αi + cixij ,

xij = βi + aixi−1j + ωij ,

for i = 1, 2, . . . , d,

where the initial value x0j ∼ N(α0, σ
2
0), and the error ωij ∼ N(0, σ2

ωi
).

Table 1: Charting performance comparison with parameters (ai, ci)=(1.0,1.0) for d = 3.

ζ =1 ζ = 2 ζ = 3

δ T
(k)
L T

(k)
W χ2 T

(k)
L T

(k)
W χ2 T

(k)
L T

(k)
W χ2

0.15 0.021 0.022 0.022 0.019 0.021 0.017 0.015 0.015 0.012

(0.0014) (0.0015) (0.0015) (0.0014) (0.0014) (0.0013) (0.0012) (0.0012) (0.0011)

0.30 0.106 0.113 0.101 0.085 0.091 0.072 0.054 0.059 0.0451

(0.0031) (0.0032) (0.0030) (0.0028) (0.0029) (0.0026) (0.0023) (0.0024) (0.0021)

0.45 0.330 0.341 0.304 0.265 0.275 0.220 0.160 0.174 0.1405

(0.0047) (0.0047) (0.0046) (0.0044) (0.0045) (0.0041) (0.0037) (0.0038) (0.0035)

0.60 0.643 0.655 0.601 0.554 0.566 0.497 0.386 0.406 0.342

(0.0048) (0.0047) (0.0049) (0.0050) (0.0050) (0.0050) (0.0049) (0.0049) (0.0047)

0.75 0.881 0.885 0.851 0.805 0.813 0.760 0.650 0.668 0.6048

(0.0032) (0.0032) (0.0036) (0.0040) (0.0039) (0.0043) (0.0048) (0.0047) (0.0049)

Note: values in parentheses are the standard errors

5.1 Monitoring Performance Analysis

The monitoring performance of the proposed schemes based on GHLR T
(k)
L and Wald-type T

(k)
W are

evaluated in this subsection in terms of the probability of correctly rejecting the null hypothesis,

say the power. Since Shewhart-type control schemes are considered here, these power comparisons

results are exactly consistent with the comparison in terms of ARL. Throughout this subsection,

the in-control type I error, α, is fixed at 0.005 and the number of stages, d = 3 or 5, is considered.
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Without loss of generality, we assume that the parameters α0 = 0, βi = 0, σ2
0 = σ2

ωi = 0.1 and

αi = −2.2 make the expectation of the defective rate pij approximately equal to 0.1. For the

parameter ni in binomial distribution, the value 30 is used for all i, and the parameter m is assumed

to be 20. We consider a benchmark available in the literature, the χ2 control scheme proposed by

Patel (1973), which is one of the most representative approaches for monitoring multivariate binary

data. Its charting statistic is described as follows:

G = m(ȳ − µY )TΣ−1
Y (ȳ − µY ),

where ȳ = m−1
∑m

j=1 y
(k)
j , and µY and ΣY are the mean vector and covariance matrix of multi-

variate binary data, which are determined from the historical data.

As we know, charting performance is related to the shifting stage, ζ, where the shift initially

occurs, and the mean shift magnitude δ. Here, we first consider ai = ci = 1 and the simulation

results for d = 3 and d = 5 over 10,000 replications are shown in Tables 1 and 2, respectively.

Similar parameter values are used by Xiang and Tsung (2008) and Zou and Tsung (2008). The

shift magnitudes considered are 0.15, 0.30, 0.45, 0.60, 0.75, and 0.90. From these two tables, we can

see that both of our proposed schemes (GHLR and Wald-type) are almost uniformly better than

the χ2 scheme in detecting any magnitude of shift δ and improvement is quite significant in most

of cases. It is worth noting that the superiority of the proposed schemes to the χ2 chart is more

prominent in d = 5 cases and we can also expect that it will become more remarkable in higher

dimensional problems because recognizing the directional information correctly allows focusing the

detection power on a limited subspace with improved sensitivity. This finding is consistent with

that of Zou and Tsung (2008) where the LSSM is considered. In some cases the difference between

our proposed schemes and the χ2 scheme is not significant. Certainly, it is not surprising to us

that the χ2 method is effective in certain cases because it utilizes the information of marginal

distribution from each stage. However, as shown in this table, in some other cases, the proposed

methods outperform the χ2 method by a considerable margin. This can be understood that the

proposed methods more efficiently exploit the information between stages by using BSSM. Besides,

the Wald-type scheme performs slightly better than the GHLR scheme. A possible explanation

for this phenomenon is that, in T
(k)
W , the δ̂i is explicitly standardized by dividing its standard

deviation, while the GHLR does this “internally”, which may show that the first two moments

of [hi(δ̂i;Y(k), ν̂i) − h0(Y (k), ν̂0)] for different i are considerably different. As a consequence, the

operator “max” loses its power to some extent. A similar finding for GLRT in a different context

can be found in Zou et al. (2006).

Next, we demonstrate that the superiority of the proposed schemes to their counterparts still

holds when the values of the parameters, ai and ci, vary. For illustration purposes, we consider the

combinations of different values of ai and ci, each varying from 0.5 and 1.0. The performance of
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Figure 3: Power comparision with varying parameters for ζ = 3 in a 5-stage process. The solid and

dash-dotted lines represent the T
(k)
W and χ2 charts, respectively.

T
(k)
L and T

(k)
W are quite similar as shown in Tables 1 and 2. Thus, in what follows, we only consider

the latter one. For the sake of brevity, only d = 5 results are shown here. The power curves for

the given shifted stage ζ = 3 against shift magnitude δ and the curves against ζ under the given

magnitudes of mean shift δ are summarized in Figures 3 and 4, respectively. As shown in Figure

3, when the shift occurs in stage 3, for different shifts δ, the Wald-type scheme has larger power in

signifying the shift than the χ2 chart especially for middle shifts. Also as shown in Figure 4, when

the shift δ is set as a value 0.4 or 0.6, the power of the Wald-type scheme is better than that of

the χ2 chart. In general, we can see that no matter how the values of (ai, ci) vary, the Wald-type

scheme still performs uniformly better than the χ2 chart does. In some situations, especially for

c = 0.5 cases, the χ2 chart is outperformed by a quite large margin. Based on the results in Tables
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1 and 2, Figures 3 and 4 and other simulations for various multistage models (available from the

authors), we conclude that the T
(k)
W chart, by taking advantage of incorporating shift direction

information from the BSSM, turns out to be almost always better than the χ2 chart in detecting

any process shift. In the following subsection, we assess the effectiveness of the corresponding

diagnosis methods as well.
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Figure 4: Power Comparision with varying parameters under given magnitudes of mean shift δ. The lines

connecting the circles and dots represent the curves for δ = 0.45 and δ = 0.6 respectively. The solid and

dash-dotted lines represent the T
(k)
W and χ2 charts, respectively.
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5.2 Diagnosis Performance Analysis

In this subsection, we investigate the diagnosis performance of the proposed schemes for multistage

process with binary data in diagnosing the shifting stage where the mean shift initially occurs.

Although the diagnosis of the χ2 scheme may be achieved by decomposing the statistic into several

independent parts as Mason, Young and Tracy (1995) did for continuous data, it seems that the

diagnosis based on decomposition would be misleading because it cannot correctly indicate the

stage where the shift initially occurs. A comparable method that comes to mind is

ζ̂I = arg max
1≤i≤d

m(ȳ(i) − µ(i))2

σ2
(i)

,

where ȳ(i) denotes the i-th component of ȳ, µ(i) denotes the i-th component of µY and σ2
(i) denotes

the (i, i)-th element of ΣY . We will use this estimator as a benchmark to assess the diagnosis

performance of ζ̂W . The results of ζ̂L are not provided here because it has similar performance to

ζ̂L in the monitoring performance comparison.

The estimated probabilities, Pr(ζ̂ = ζ) (denoted by P0), for d = 3 and 5 are respectively

presented in Tables 3 and 4. For d = 5, the probabilities, Pr(|ζ̂ − ζ| ≤ 1) (denoted by P1), are

also provided, which provide certain indication of the precision of the two estimators. It can be

clearly observed that ζ̂W is much more accurate than ζ̂I in most of cases except for ζ = d. In

the cases of ζ = d, i.e., the last stage in the example, there is no shift propagation and thus ζ̂I

should be a consistent estimator. This is not the case in real situations and hence ζ̂I is significantly

outperformed by ζ̂W . Figure 5 shows the comparison results with varying parameters (ai, ci) in a

five-stage process and we can see the foregoing conclusion still holds.

6 An Illustration of the Implementation Steps: The AEC Moni-

toring Case Revisited

In this section, we revisit one of the motivating examples, the AEC manufacturing process, to

demonstrate the implementation of the proposed schemes based on multistage process with binary

data. As we mentioned, this process involves five stages: clenching & rolling, soaking, assembly,

cleaning & bushing and aging & classifying. The quality of unfinished AEC products that are called

capacitor elements are inspected by sampling after each stage. Therefore, we use the multivariate

BSSM in (2) to model this process.
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Figure 5: Diagnosis comparison with varying parameters for 5-stage process. The solid and dash-dotted

lines represent the probabilities Pr(ζ̂W = ζ) and Pr(ζ̂I = ζ), respectively.

In this example, pij is the defect rate of the capacitor elements sample j at stage i. yij is

the measurement of the number of defective capacitor elements in one sample with sample size

ni. xij is the quality characteristics in the jth sample at stage i, which is the sample mean of the

measurements of capacitor elements. Due to the data availability in this factory, only one quality

characteristic “compound thickness” is obtained in the clenching & rolling stage, and another

quality characteristic “dissipation factor” is available in the soaking and aging stages. Although

“compound thickness” is only measured in the first stage, the defects in “compound thickness” also

affects the quality of capacitor elements in the next stages.

Therefore, without loss of generality, a three-stage multivariate model is used here to illustrate

the estimation of the in-control model and monitoring and diagnosis of this process. The BSSM in
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(2) for this process is described as follows:

logit(pij) = αi + xT
ijci,

xij = βi + Aixi−1j + ωij , i = 1, 2, 3,

(15)

where xij is the vector including xij1 the sample mean of compound thickness and xij2 the sample

mean of dissipation factor of the capacitors, which are observable in the process design. Because

the compound thickness is only measured in the first stage and the dissipation factor is appearing

and measured in the next two stages, x1j2 = 0 and x2j1 = x3j1 = x1j1. In addition, before the first

stage, the above two quality characteristics do not exist, so we assume x0 = 0. Therefore, based on

the historical observations x in each stage, the parameters in the second level equation of model

(15), βi, Ai and Σωi , can be estimated except the arbitrarily given value “1.0” for the entries in

the main diagonal of A1 and the entry in the bottom-right corner of A2. Similarly, based on the

sample size ni = 100, the measurements y and observed quality characteristics, x, the parameters

αi and ci can be estimated except the arbitrarily given value “1.0” for the second entry of c1, say

c12,

α = (−4.428,−4.403,−3.803)T ,

c1 =



−0.509

1.0


 , c2 =



−1.023

1.073


 , c3 =



−0.927

0.964


 ,

β1 =




0.3229

0.0


 , β2 =




0

0.08574


 , β3 =




0

0.004


 ,

A1 =




1.0 0.0

0.0 1.0


 , A2 =




1.0 0.0

0.0 1.0


 , A3 =




1.0 0.0

0.0 0.9


 ,

Σω1 =




2.05× 10−6 0.0

0.0 0.0


 , Σω2 =




0.0 0.0

0.0 1.39× 10−3


 , Σω3 =




0.0 0.0

0.0 8.20× 10−5


 .

Based on this process model, we simulate new observation matrix, Y (k). In each matrix, we

have 20 observation vectors y
(k)
j , j = 1, 2, . . . , 20. The first 10 observation matrix are from normal

conditions and the latter are from the out-of-control condition with a mean shift of δ = 0.1 at

“dissipation factor” (about 3σ) in stage 2.
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Figure 6: Wald-type chart (a) and GHLR chart (b) for the AEC example

Here, we illustrate how to implement our proposed schemes (GHLR and Wald-type) to monitor

the AEC manufacturing process and diagnose the stage in which the mean shift initially occurs:

1. Obtain shift direction information vectors, ψ1 and ψ2:

Ψ1 =




−0.509 1.000

−1.023 1.073

−0.927 0.868




, Ψ2 =




0.0 0.0

−1.023 1.073

−0.927 0.868




, Ψ3 =




0.0 0.0

0.0 0.0

−0.927 0.964




2. Obtain the control limits, CL and CW , for GHLR and Wald-type control schemes, respectively,

by simulation given the desired in-control ARL. Here, we obtain CL = 11.90 and CW = 11.56

for ARL0=200 (α = 0.005), and then construct a control chart as in Figure 6.

3. Start the monitoring process and obtain new observations, yij . After obtaining the new

observations, we calculate the control statistics by equations (9) and (11), and then plot

these control statistics in control charts and compare them with control limits. In Figure 6,

we can see that both the GHLR and Wald-type charts signal at the 11th time point.

4. Identify the shifting stage, ζ, by equations (10) and (12). Here, we easily estimate ζ̂ = 2.

5. Identify and remove root causes after diagnosing the shifting stages, and then go back to step

1. Monitor the process continuously based on the revised control limits.
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7 Conclusion and Considerations

In this paper, a binary state space model is proposed for modeling the multistage process with

binary outputs. Statistical process control including monitoring and diagnosing is very important

and challenging for multistage processes with categorical data. Therefore, based on BSSM for

multistage processes with binary data, we develop two new control schemes, the GHLR scheme and

the Wald-type scheme, by utilizing h-likelihood estimation and directional information. These two

new schemes not only monitor the mean shift in multistage processes, but also diagnose where the

mean shift initially occurs. According to simulation results in Section 5, our proposed schemes, the

GHLR scheme and the Wald-type scheme, demonstrate higher power in detecting mean shifts in

processes than does the existing χ2 scheme that is often used for multivariate categorical data. In

addition to the monitoring performance, the GHLR scheme and the Wald-type scheme can easily

identify the shifting stage where the mean shift initially occurs. As shown in Section 5, under

different process parameters, ai and ci, our proposed schemes consistently outperform the existing

approach, the χ2 scheme. The simulation results show that the GHLR scheme and the Wald-type

scheme perform almost the same in monitoring and diagnosing. However, the Wald-type scheme

seems to be a little superior to the GHLR scheme when detecting the mean shift in processes.

Therefore, the Wald-type scheme is recommended in practice.

In future research, different types of control schemes from these Shewhart-type schemes can be

investigated to sensitively detect the small mean shifts, such as the EWMA-type control scheme.

Moreover, the multistage process with mixed types of data commonly exists in real industrial

practice, in which some stages have numerical outputs and some stages have categorical outputs.

One of the limitations is our proposed methods cannot be directly applied in such processes with

mixed types of outputs. In addition, in some 100% inspection applications, a product is found to be

defective in an early stage, it is desired to be removed from the process rather than going through

the rest of the stages. Clearly, the proposed methods would not be efficient for such cases. One of

our ongoing research aims to develop the model and control schemes for multistage processes with

mixed types of data and for 100% inspection cases.
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Appendix

Appendix A: Derivation of Eq. (14)

Denote η = (ηT
0 ,ηT

1 )T , u = (uT
0 ,uT

1 )T and for l = 0, 1,

ηT
l = (ηT

l1, . . . ,η
T
lm), ηT

lj = (ηT
l1j , . . . , η

T
ldj),

η0ij = logit(pij), η1ij = νij , uT
0 = (µT

0 , . . . ,µT
0 ), u1 = 0.

By a similar arguments in Section 6.2.3 of Lee et al. (2006), it is straightforward to see that the

MHLE for ξ can be viewed as that for an augmented GLM with the response variables (yT ,φT )T

and the linear predictor

η − u = Γξ,

where y = (yT
1 , . . . ,yT

m)T and φT = (φT
1 , . . . ,φT

m) is quasi data satisfying E(φj) = νj and

Var(φj) = Σ. According to the standard procedure for the GLM estimation (McCullagh and

Nelder 1989), we immediately have the IWLS equation (14), where we use the fact that

z0ij = η0ij − µ0i − (yij − nipij)
∂η0ij

∂(nipij)
,

Ω = ΣaW−1, Σa = diag{Imd, Im ⊗Σ},

W = diag{W0,W1}, Wl = diag
{
Wl1, . . . ,Wlm

}
,

Wlj = diag{wl1j , . . . , wldj}, for l = 0, 1,

w0ij =
(

∂(nipij)
∂η0ij

)2

[Var(yij |pij)]−1, w1ij = 1.
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Appendix B: Computational Simplification of (15)

Let A = ΓTΩ−1Γ, which can be written as follows,

A =



A11 A12

A21 A22




(q+md)×(q+md)

=




(ψ∗TW0ψ
∗)q×q (ψ∗TW0)q×md

(W0ψ
∗)md×q (W0 + Im ⊗Σ−1)md×md




where A22 can be further expressed as

diag
{
Σ−1 + W01, . . . ,Σ−1 + W0m

}
.

Then, using the classical formula for the inverse of block matrix, we have

A−1 =




A−1
11·2 −A−1

11·2A12A−1
22

−A−1
22 A21A−1

11·2 A−1
22 A21A−1

11·2A12A−1
22 + A−1

22


 ,

where A11·2 = A11−A12A−1
22 A21. Hence, A−1 could be easily calculated as long as we obtain A−1

22

and A−1
11·2. Note that

A−1
22 = diag

{
[Σ−1 + W01]−1, . . . , [Σ−1 + W0m]−1

}
,

and considering that the matrix Σ−1 is fixed and can be determined before monitoring, the com-

putation task here is trivial by virtue of the massive computing and data storage capabilities of

modern computers.

Appendix C: The Estimator of Var(δ̂i)

By using the results in Section 3.3 of Lee and Nelder (1996) and the preceding matrix expressions

in Appendices A and B, we have the following consistent estimate for Var(δ̂i):

V̂ar(δ̂) = A−1
11·2.
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Table 2: Charting performance comparison with parameters (ai, ci)=(1.0,1.0) for d = 5.

δ T
(k)
L T

(k)
W χ2 T

(k)
L T

(k)
W χ2

shift in 1st stage shift in 2nd stage

0.15 0.042 0.042 0.039 0.036 0.037 0.035

(0.0020) (0.0020) (0.0019) (0.0019) (0.0019) (0.0018)

0.30 0.248 0.251 0.224 0.215 0.215 0.182

(0.0043) (0.0043) (0.0042) (0.0041) (0.0041) (0.0039)

0.45 0.677 0.684 0.622 0.608 0.609 0.537

(0.0047) (0.0047) (0.0048) (0.0049) (0.0049) (0.0050)

0.60 0.940 0.947 0.924 0.909 0.913 0.870

(0.0024) (0.0022) (0.0026) (0.0029) (0.0028) (0.0034)

0.75 0.967 0.969 0.994 0.984 0.987 0.984

(0.0018) (0.0017) (0.0008) (0.0013) (0.0011) (0.0013)

shift in 3rd stage shift in 5th stage

0.15 0.023 0.024 0.022 0.019 0.019 0.016

(0.0015) (0.0015) (0.0015) (0.0013) (0.0014) (0.0013)

0.30 0.155 0.157 0.117 0.096 0.103 0.070

(0.0036) (0.0036) (0.0032) (0.0029) (0.0030) (0.0025)

0.45 0.512 0.514 0.428 0.342 0.355 0.272

(0.0050) (0.0050) (0.0049) (0.0047) (0.0048) (0.0044)

0.60 0.856 0.857 0.779 0.698 0.710 0.598

(0.0035) (0.0035) (0.0042) (0.0046) (0.0045) (0.0049)

0.75 0.983 0.983 0.962 0.929 0.934 0.872

(0.0013) (0.0013) (0.0019) (0.0026) (0.0025) (0.0033)

Note: values in parentheses are the standard errors
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Table 3: Diagnosis performance comparison for d = 3 with various parameter combinations.

ζ = 1 ζ = 2 ζ = 3 ζ = 1 ζ = 2 ζ = 3

δ ζ̂W ζ̂I ζ̂W ζ̂I ζ̂W ζ̂I ζ̂W ζ̂I ζ̂W ζ̂I ζ̂W ζ̂I

(ai, ci) = (1.0,1.0) (ai, ci) = (1.0,0.5)

0.15 0.623 0.351 0.574 0.549 0.619 0.753 0.485 0.318 0.446 0.428 0.477 0.538

0.30 0.846 0.421 0.756 0.509 0.833 0.929 0.643 0.308 0.563 0.540 0.614 0.727

0.45 0.921 0.434 0.841 0.547 0.901 0.959 0.731 0.327 0.650 0.546 0.731 0.835

0.60 0.962 0.443 0.925 0.568 0.951 0.982 0.808 0.350 0.726 0.546 0.777 0.918

0.75 0.983 0.459 0.963 0.574 0.969 0.988 0.861 0.360 0.779 0.555 0.831 0.955

(ai, ci) = (0.5,1.0) (ai, ci) = (0.5,0.5)

0.15 0.727 0.562 0.672 0.684 0.692 0.692 0.573 0.410 0.433 0.507 0.472 0.456

0.30 0.900 0.744 0.872 0.785 0.888 0.919 0.726 0.525 0.675 0.679 0.694 0.675

0.45 0.964 0.835 0.939 0.865 0.958 0.966 0.847 0.664 0.794 0.736 0.820 0.840

0.60 0.983 0.890 0.971 0.918 0.980 0.988 0.908 0.740 0.865 0.800 0.892 0.911

0.75 0.991 0.934 0.987 0.948 0.991 0.996 0.935 0.791 0.908 0.850 0.936 0.948
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Table 4: Diagnosis performance comparison with parameters (ai, ci)=(1.0,1.0) for d = 5.

ζ =1 ζ = 3 ζ = 5

P0 P1 P0 P1 P0 P1

δ ζ̂W ζ̂χ2 ζ̂W ζ̂χ2 ζ̂W ζ̂χ2 ζ̂W ζ̂χ2 ζ̂W ζ̂χ2 ζ̂W ζ̂χ2

0.15 0.724 0.217 0.893 0.391 0.505 0.403 0.787 0.727 0.655 0.653 0.758 0.744

0.30 0.891 0.230 0.968 0.436 0.807 0.404 0.944 0.777 0.884 0.885 0.938 0.928

0.45 0.960 0.267 0.992 0.477 0.917 0.422 0.981 0.790 0.957 0.960 0.984 0.975

0.60 0.985 0.284 0.997 0.499 0.966 0.423 0.992 0.804 0.980 0.972 0.993 0.986

0.75 0.990 0.298 0.997 0.525 0.985 0.451 0.995 0.838 0.992 0.984 0.998 0.992
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