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Abstract

The presence of outliers has seriously adverse effects on the modeling and forecast-

ing of functional data. Therefore, outlier detection, aiming at identifying abnormal

functional curves from a dataset, is quite important. This paper proposes a new test-

ing procedure based on functional principal component analysis. Under mild condi-

tions, the null distribution of the test statistic is shown to be asymptotically pivotal

with a well-known asymptotic distribution. The simulation results demonstrate good

finite-sample performance of the asymptotic test and detection procedure. Finally,

by illustrating the connection between profile monitoring in statistical process control

and outlier detection in functional data, we apply the proposed approach to a real-

data example from a manufacturing processes and show that it performs quite well in

detecting outlying profiles.

Keywords: Asymptotic test; Functional data analysis; Functional principal compo-

nent analysis; Statistical process control

1 Introduction

In many data analysis tasks, outlier detection plays an important role in modeling, inference

and even data processing because outliers could adversely lead to model misspecification,
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biased parameter estimation and poor predictions. The original outlier detection methods

were arbitrary but now, principled and systematic techniques are used, developed from the

contexts of statistics and computer science. By the type of data, the popular methods can be

divided between univariate methods, proposed in earlier works in this field, and multivariate

methods that usually form most of the current body of research. Another fundamental

taxonomy of outlier detection methods is between parametric methods and nonparametric

methods that are model-free (see Barnett and Lewis 1994). Statistical parametric methods

either assume a known underlying distribution of the observations (e.g., Rousseeuw and Leory

1987) or, at least, they are based on statistical estimates of unknown distribution parameters

(Hadi 1992). These methods flag observations deviating from the model assumptions. Within

the class of nonparametric outlier detection methods, local distance measures are often used

and such methods are usually capable of handling large databases (e.g., Fawcett and Provost

1997).

The motivation of this work originates from the so-called profile monitoring problem in

the context of statistical process control (SPC). In some recent SPC applications, a manu-

facturing process or product is characterized by a profile, i.e., responses as a function of one

or more explanatory variables. In particular, the profile is often some function varying over

a covariate which is often time, but may also be spatial location, wavelength, etc. The aim

of profile monitoring is for checking the stability of this functional/ curve relationship over

time (see Woodall et al. 2004; Zou et al. 2007). In the SPC of profile problem, a critical

step is to identify any outlying profiles among a set of complex profiles and to remove them

from the the reference dataset. The presence of outliers has seriously adverse effects on the

modeling of functional curve and accordingly on the properties of control charts (Qiu et al.

2010). See Section 4 for the details of examples.

Naturally, this problem can be regarded as outlier detection in functional data analysis

(FDA). In recent years, FDA has been enjoying increased popularity due to its applicability

to problems which are difficult to cast into a framework of scalar or vector observations. It

deals with the case in which the data are repeated measurements of the same subject densely

taken over an ordered grid of points belonging to an interval of finite length (Ramsay and

Silverman 2005). Thus, for each subject, we observe a function and, though the recording

points are really discrete like the curve observations in the foregoing profile monitoring, we

may regard the entire function as being continuously observed.
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Although much research has been carried out into the important problem of outlier

detection in univariate/multivariate samples and regression problems, far less work has been

done in FDA. Among others, Hyndman and Ullah (2007) used a method based on robust

principal components analysis and the integrated squared error from a linear model; Febrero

et al. (2008) considered functional outlier detection using functional depth, the likelihood

ratio test and smoothed bootstrapping. In this paper, we propose a new method that

uses functional principal components analysis. Our method is fast to compute and efficient

in detecting the outliers in functional data. Specially, the asymptotic distribution of our

proposed test statistic is derived and the threshold value which divides anomalous and non-

anomalous data is based on this asymptotic distribution.

The remainder of this paper is organized as follows: our proposed methodology is de-

scribed in detail in Section 2. Its numerical performance is thoroughly investigated and

compared with several other approaches in Section 3. In Section 4, we demonstrate the

method using a real-data applications in profile monitoring from manufacturing industries.

Several remarks draw the paper to its conclusion in Section 5. Technical details are pro-

vided in the Appendix. Some other technical details, including proofs of some theorems, are

provided in another appendix, which is available online as supplementary materials.

2 Methodology

2.1 Problem and notation

Consider a functional observations set {Xi(t), i = 1, . . . , N}. Without loss of generality, we

assume that t ∈ T = [a, b],−∞ < a < b < ∞. Moreover, the observations Xi(t) are assumed

to be independent and we want to test whether there are outliers in the dataset. An exact

definition of an outlier often depends on hidden assumptions regarding the data structure

and the applied detection method. Yet, some definitions are regarded general enough to cope

with various types of data and methods. Hawkins (1980) defines an outlier as an observation

that deviates so much from other observations as to arouse suspicion that it was generated

by a different mechanism. Analogously, Barnett and Lewis (1994) indicate that an outlier, is

one that appears to deviate markedly from other members of the sample in which it occurs.

By a similar fashion, we define outliers in a functional dataset as the observations whose
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means are significantly different from the others’. Accordingly, we want to test the null

hypothesis

H0 : EX1(t) = EX2(t) = · · · = EXN(t), t ∈ T

against the alternative

H1 : There is a subset AN of {1, . . . , N} such that EXk(t) = EXl(t)

for each k, l /∈ AN while EXk(t) 6= EXl(t) for each k ∈ AN and l /∈ AN ,

where AN is the outlier set.

To be more specific, under the null hypothesis H0, the functional observations can be

modeled as independent realizations of an underlying stochastic process

Xi(t) = µ0(t) + Yi(t), i = 1, . . . , N, (1)

where µ0(t) is the mean function of the stochastic process and Yi(t) is the stochastic error

with EYi(t) = 0. We do not specify the value of the common mean µ0(t) in the hypothesis

H0 since this is the most common case in practice. By the preceding assumption, under H1,

the observations follow the model

Xi(t) =

{
µi(t) + Yi(t), i ∈ AN ,
µ0(t) + Yi(t), i /∈ AN .

A straightforward approach to identify outliers in functional data is to apply the paramet-

ric/nonparametric multivariate outlier detection procedures. However, the infinite-dimensional

nature of functional variation implies that in many situations, the number of grid points is

larger than the number of subjects. It is well known that the most usual multivariate sta-

tistical methods suffers from “the curse of dimensionality”, and thus these methods are not

applicable (or at least not effective) in which the number of variables is larger than the

number of individuals in the sample. Hence, it is usually important to perform dimension

reduction in FDA. Functional principal component analysis (PCA) is a fundamental tech-

nique to extract a few major and typical features from functional data. Since our proposed

test statistic will be constructed based on the functional PCA, we firstly briefly review it

and introduce some necessary notations.
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Let c(t, s) = E{Y (t)Y (s)} denote the covariance function of Y (·). Denote λk and υk(·)
as the eigenvalues and eigenfunctions of the covariance operator c(t, s) respectively, i.e., they

are defined by

∫ b

a

c(t, s)υk(s)ds = λkυk(t), t ∈ T , k = 1, 2, . . . (2)

In the classic FDA, c(t, s) is estimated by

ĉ(t, s) =
1

N

∑
1≤i≤N

{Xi(t)− X̄N(t)}{Xi(s)− X̄N(s)},

where X̄N(t) = 1
N

∑N
i=1 Xi(t). The corresponding estimators of λk and υk(·) are λ̂k and υ̂k(·),

defined by

∫ b

a

ĉ(t, s)υ̂k(s)ds = λ̂kυ̂k(t), t ∈ T , k = 1, 2, . . .

Under some mild conditions (given in the Appendix), ĉ(t, s), λ̂k and υ̂k(·) are consistent

estimators of c(t, s), λk and υk(·) respectively.

In the functional data setting, some related testing problems have recently been studied

by several authors. Hall and Van Keilegom (2007) proposed two-sample functional tests

from discrete data, and Cuevas et al. (2004) developed the functional analysis of variance.

Benko et al. (2009) developed a bootstrap test for checking whether the elements of the

two decompositions are the same by using functional PCA. Other recent contributions to

hypothesis testing in this field include Locantore et al. (1999) and Spitzner et al. (2003),

etc.

A more closely related work is Berkes et al. (2009) which developed a methodology for

the detection of change-point i? in the mean of functional observation µi(t). It is assumed

that there is possibly a change-point in the dataset and the goal is to test whether it occurs

or not. Also, it has been shown how to locate the change-points if the null hypothesis

is rejected. It is worth pointing out that both of Berkes et al. (2009) and Qiu et al.

(2010) considered a change-point problem for functional data but their assumptions and

techniques are totally different. The former is based on fixed sample change-point detection

and functional PCA whereas the latter considers the on-line monitoring problem (sequential

change-point detection) and employs nonparametric mixed-effect models. In this work, we
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consider to use a similar idea to Berkes et al. (2009), functional PCA representation and

reduction of data, but focus on the outlier scenario in which we do not have any partition of

the data and the data may contain several outlying functional curves with possibly different

means.

2.2 The outlier detection procedure

Denote ∆i(t) = Xi(t)− X̄N(t), i = 1, . . . , N . Suppose there are no outliers in the functional

observations, then the FDA model (1) holds and we can expect that the absolute value |∆i(t)|
is small for all 1 ≤ i ≤ N and all t ∈ T . Contrarily, if there are some outliers in the sample,

max1≤i≤N |∆i(t)| would become large due to the shift of the mean of the outliers. Therefore,

our test can be constructed based on the set of curves {|∆1(t)|, |∆2(t)|, . . . , |∆N(t)|}. We

must bear in mind that the observations considered in this paper are functional data which

is in an infinite dimensional space. The covariance function would be difficult to interpret

and does not give a fully comprehensible presentation of the structure of the variability in

the observed data directly.

To this end, we use functional PCA to reduce the dimension and to construct a test by

the projections of the functions ∆i(t) on the principal components of the functional obser-

vations. The projections are all linear combination of {υ̂k(t), k = 1, 2, . . .}. The coefficients

corresponding to the largest d eigenvalues are

η̂ik =

∫ b

a

{Xi(t)− X̄N(t)}υ̂k(t)dt, i = 1, . . . , N, k = 1, . . . , d.

These coefficients are ideal indicators which reflect the difference between the ith sample and

the sample mean. In particular, η̂ik shows the deviation degree of the ith sample on the kth

mode of variation. Therefore, we propose the following test statistics

SN,d = max
1≤i≤N

∑

1≤k≤d

η̂2
ik

λ̂k

. (3)

This test statistic is similar to the commonly used test statistic for outlier detections in

multivariate dataset {Zi}N
i=1 of dimension d (Rousseeuw and Leory 1987):

D2
max = max

1≤i≤N
(Zi − Z̄)T Σ̂−1(Zi − Z̄),
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where Z̄ and Σ̂ are the sample mean vector and covariance matrix respectively. Since the

matrix Σ̂ may be not invertible when the dimension d is large, the effectiveness and appli-

cability of D2
max would be doubtful for the high dimensional data. However, our proposed

statistic does not suffer from this problem since we can choose suitable d so that all the

estimated eigenvalues λ̂k are far away from zero.

With respect to the choice of the number of the principal components, there are several

approaches proposed in the literature. The data-based method to choose d is available

through the cross-validation score based on the one-curve-leave-out prediction error (Yao et

al. 2005a, Rice and Silverman 1991). Though the data-based cross-validation method is very

attractive, it requires expensive computation, especially when the number of observations

along each curve K is large. A less computationally intensive approach is to choose d based

on the traditional cumulative percentage variance method. In our simulation study, typically

two or three principal components were required in order to capture 85% of the variation.

The simulation results in Section 3 indicates that this method is not only convenient but

also effective.

When a set of N curves is measured on a fine grid of K equally spaced points, the

functional principal components problem can be solved by applying standard principal com-

ponents analysis to the N by K matrix of observed data. Often the grid is sparse or the

time-points are unequally spaced, although still common to all curves. In this case, we usu-

ally impose smoothness constraints on the principal components in several ways. One direct

approach is to represent them using a set of smooth basis functions (Ramsay and Silverman

2005). This amounts to projecting the individual rows of the data matrix on to the basis and

then performing principal component analysis on the basis coefficients. Alternatively, one

can use the basis coefficients to estimate the individual curves, sample the curves on a fine

grid and perform principal component analysis on the resulting “data”. The discrete trajec-

tories were converted to functional observations by the latter method and Fourier bases. In

addition, the observations could be irregularly spaced and the numbers of observations along

each curve are unequal. In such situations, James et al. (2000) presented a technique based

on reduced rank mixed effects framework. Yao et al. (2005b) proposed a nonparametric

method to perform functional principal components analysis. Both methods can be used

to estimate the eigenvalues λk and eigenfunctions υk, and then our proposed outlier test

procedure would be still applicable. This deserves some future study.
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Based on the foregoing discussion, to identify the true outliers set AN , we suggest the fol-

lowing Stepwise Functional Outliers Detection (SFOD) procedure by using the test statistic

SN,d in a retrospective fashion:

Step 0: Give a significance level α and set the estimated outliers set ON = ∅;

Step 1: Choose d so that the functional PCA explains 85% of the variance;

Step 2: Compute SN,d and choose some threshold value lN,d(α). If SN,d < lN,d(α), we stop

the procedure. Otherwise set

ON = ON ∪ {i :
∑

1≤k≤d

η̂2
ik

λ̂k

= max
j

∑

1≤k≤d

η̂2
jk

λ̂k

};

Step 3: Delete the sample in ON from the data and go back to Step 1.

The procedure will be illustrated in the real-data application in Section 4. When the

SFOD procedure stops, ON is the estimated outlier set. In Step 1, the PCA is recalculated

every time observations are deleted from the sample. In Step 2, the cut-off value or threshold

lN,d(α) usually plays an important role in dividing anomalous and non-anomalous data nu-

merically (cf., Hawkins 1980). Therefore, the basis for the decision on outlier identification

lies on finding a proper threshold value lN,d(α). The choice of lN,d(α) will be discussed in

the next subsection. Since
∑

1≤k≤d λ̂−1
k η̂2

ik represents the difference between the ith curve and

the mean curve, the curve with the largest
∑

1≤k≤d λ̂−1
k η̂2

ik is identified as an outlier when

H0 is rejected. We delete the estimated outliers before going back to Step 1 because those

“outlying profiles” may contaminate the estimation of the mean and covariance matrix in the

PCA. The contamination effect of the outliers will be further discussed in the next section.

2.3 Theoretical properties

Next, we give some asymptotic properties of SN,d, which could shed some light on practical

design of the testing procedure and justify the performance of the detection procedure to

a certain degree as well. We state our theorems here, but their proofs and the technical

conditions used are relegated to the Appendix. Theorem 1 below gives the asymptotic null

distribution of SN,d.
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To establish the asymptotic distribution of the test statistic under H0, the following

technical conditions are needed:

(C1) The mean µ(t) is square integrable, i.e. is in L2(T ). The errors Yi(t) are indepen-

dent and identically distributed (i.i.d.) mean zero Gaussian process. Their covariance

function c(t, s) is square integrable.

(C2) The eigenvalues λk defined in (2) satisfy, for some d > 0,

λ1 > λ2 > . . . > λd > λd+1.

Remark 2 Note that except for the Gaussian assumption on the error process Yi(t), Con-

ditions (C1) and (C2) are the same as the conditions in Berkes et al. (2009). These two

conditions are sufficient to guarantee that λ̂k and υ̂k(·) are reasonable estimators of λk and

υk(·). The results of Bosq (2000) imply that, for each k ≤ d,

lim sup
N→∞

[
N(E(‖ĉkυk(t)− υ̂k(t)‖2))

]
< ∞, (4)

lim sup
N→∞

[
N(E(|λk − λ̂k|2))

]
< ∞, (5)

where ĉk = sgn
{∫ b

a
υk(t)υ̂k(t)dt

}
. Furthermore, the Condition (C1) implies the following

expansions

c(t, s) =
∑

1≤k<∞
λkυk(t)υk(s), Yi(t) =

∑

1≤k<∞
λ

1/2
k ξik(t)υk(t), (6)

where the sequences {ξik, i = 1, . . . , N, k = 1, 2, . . .} are i.i.d. normal random variables with

mean 0 and unit variance. It’s easy to check that the infinite sum in Eq.(6) converges in

L2(T × T ) and L2(T ), all λk’s are non-negative and the eigenfunctions υk(t), k = 1, 2, . . . ,

form an orthonormal basis in L2(T ).

Theorem 1 Suppose that Conditions (C1)-(C2) hold. Then, under null hypothesis H0, for

each x ∈ R, we have

P

{
SN,d

2
− log N − (d/2− 1) log log N + log Γ(d/2) ≤ x

}
→ e−e−x

, as N →∞. (7)
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The asymptotic null distribution of SN,d is independent of the nuisance parameters µ(t)

and c(t, s) and thus SN,d is asymptotically pivotal. By this theorem, we can obtain the

approximate critical value of the test statistic SN,d. Define

uN,d(α) = 2cd(α) + 2 log N + (d− 2) log log N − 2 log Γ(d/2),

where cd(α) is the upper α quantile of the double exponential distribution. Then, we propose

the functional data outlier test (FDOT) with rejection region{SN,d ≥ uN,d(α)}. It is the basis

for our SFOD procedure. This test has asymptotic significance level α. However, the test

based on uN,d may perform poorly in the small-sample situations since the convergence

in Theorem 1 is relatively slow. Empirically speaking, when N is not large enough, the

approximation of (7) yields somewhat conservative results for small values of d. Alternatively,

when N is small, we suggest to simulate the distribution of the following random variable:

GN,d = max
1≤i≤N

d∑

k=1

(ξik − ξ̄k)
2,

where {ξik : i = 1, . . . , N ; k = 1, . . . , d} are i.i.d. N(0, 1) random variables and ξ̄k =
1
N

∑N
i=1 ξik, k = 1, . . . , d. The upper α quantile of the distribution of GN,d, denoted as gN,d(α),

is a good choice for the critical value of our proposed test with approximate significance level

α. The reason is that the above random variable GN,d is a reasonable approximation to the

SN,d as shown in the proof of the Theorem 1. Accordingly, UN,d and GN,d are two choices for

lN,d in Section 2.2. For some N , d and three significance levels 10%, 5% and 1%, these two

kinds of critical values are tabulated in Table 1. Based on our experience and simulation

results (partly reported in the next section), we recommend to use the distribution of GN,d

when N ≤ 100, and otherwise to use the asymptotic distribution given in (7).

Furthermore, regarding to the behavior of the test under H1, we have the following result:

Theorem 2 Suppose that Conditions (C1)-(C2) and additional conditions (C3)-(C5) given

in the Appendix hold. Then, for each α ∈ (0, 1), under alternative hypothesis H1, we have

PH1 {SN,d > uN,d(α)} → 1, as N →∞.

Theorem 2 says that our proposed test is consistent if the number of outliers mN grows

with the sample size N in the order specified in the Appendix. It guarantees that the
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Table 1: The critical values based on uN,d and gN,d for various N , d and α.

N α d = 1 d = 2 d = 3 d = 4
uN,d gN,d uN,d gN,d uN,d gN,d uN,d gN,d

0.10 9.81 9.26 12.32 12.07 13.93 14.39 15.05 16.46
50 0.05 11.25 10.58 13.76 13.46 15.37 15.91 16.49 18.03

0.01 14.51 13.65 17.02 16.57 18.63 19.14 19.75 21.61
0.10 11.03 10.65 13.71 13.61 15.47 15.98 16.76 18.18

100 0.05 12.47 11.96 15.15 15.04 16.91 17.51 18.21 19.75
0.01 15.73 15.05 18.41 18.23 20.17 20.87 21.46 23.26
0.10 12.28 11.92 15.09 15.04 17.01 17.55 18.43 19.81

200 0.05 13.72 13.23 16.53 16.48 18.44 19.03 19.87 21.38
0.01 16.98 16.37 19.79 19.67 21.71 22.42 23.13 24.91
0.10 13.54 13.28 16.48 16.45 18.51 19.01 20.06 21.35

400 0.05 14.98 14.66 17.92 17.88 19.95 20.48 21.51 22.89
0.01 18.24 17.65 21.18 21.21 23.21 23.88 24.76 26.32

functional outliers test is effective from certain theoretical points. In the following section,

through the simulation under a variety cases, we will show that our proposed test performs

well in a finite-sample setting.

3 Simulation studies

To see the performance of our proposed test and outlier detection procedure, we have con-

ducted many simulation studies. Some of the results are reported here. In Section 3.1, we

investigate the approximation of the level by two methods given in Section 2.3. A power

analysis is conducted in Section 3.2 to evaluate the effectiveness of the proposed test and

make comparisons with three related methods. In Section 3.3, we discuss how to alleviate

the masking effect. Finally, we study the performance of our proposed SFOD procedure in

Section 3.4.

3.1 Empirical size study

To study the empirical size, for simplicity and without loss of generality, the mean µ(t) was

chosen to be 0 and the following three different cases of Y (t) were considered:
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Scenario 1 : Standard Brownian Motion (BM);

Scenario 2 : Standard Brownian Bridge (BB);

Scenario 3 : sin(2πt)Z0 + 0.5Zt , where Z0 and Zt are independent standard normal

variables.

All the three processes were realized on a grid of 200 equispaced points in T = [0, 1].

To simulate a standard Brownian Motion, we repeatedly generated independent Gaussian

random variables with mean 0 and standard deviation 1/
√

200. The value of the Brownian

Motion at time i/200 is the first i increments. In order to simulate a standard Brownian

Bridge S(t), we firstly generate a standard Brownian Motion B(t). Then, through the trans-

formation S(t) = B(t) − tB(1) we acquire a standard Brownian Bridge sample. Following

the basis function method introduced in Ramsay and Silverman (2005), the discrete trajec-

tories were converted to functional observations by 15 Fourier bases. Our simulation study

found that our method is not affected much by the type of the basis or the number of basis

functions. For an estimation problem, one can use cross-validation (CV), generalized cross-

validation (GCV) or other model selection criteria to choose the number of Fourier bases.

However, our simulation results show that these criteria tailored for estimation often do not

produce an optimal test. This finding is not surprising because similar conclusions have been

made in the nonparametric regression testing problem and other related contexts (cf., Hart

1997). Similar observations in the context of profile monitoring have also been made in Zou

et al. (2008). The number of bases should be chosen to balance the size of the test and the

detection ability to various outlying profiles. We find that with 5 to 15 Fourier bases, the

level of the proposed test can be maintained within an acceptable range. To provide a better

protection against local/oscillating functional changes, we use a relatively larger number of

bases, say 15. In practice, the spline or local polynomial smoothing can be used as well. We

have studied many cases with different sample sizes, but only report here the results of the

above three models when the sample sizes N were chosen to be 50, 100, 200 and 400. In

each scenario, the empirical size is computed based on 2,000 replications. In each replication,

the number of the eigenfunctions d was chosen automatically by the cumulative percentage

variance approach which found a suitable d explaining 85% of the variance.

Figure 1 shows the empirical sizes based on two kinds of critical values computed from the

limiting distribution and simulated distribution of GN,d. The nominal significance level α is
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Figure 1: Empirical size of the test using uN,d (solid line) and gN,d (dashed line) along with the
nominal size α (%; dotted line). The empirical size (y-axis) is plotted against N/50 (x-axis).

chosen to be 0.1, 0.05 and 0.01. The results indicate that the empirical sizes approximate the

nominal significance levels as the sample size increases. Otherwise, the empirical sizes based

on the simulated critical values gN,d are closer to the nominal levels when the sample size

is relatively small, for example, N 6 100. In a majority of cases, both two approximations

of critical value seem to result in conservative tests. This partially stems from the fact

that the number d of the eigenfunctions was not specified in our simulations (determined by

cumulative percentage variance approach) whereas the asymptotic distribution of SN,d given

in Theorem 1 was derived assuming that d was specified.

3.2 Power study

In this subsection, we study the power of different tests in rejecting null hypothesis that the

means of all the function are the same. We consider the following three simulated data sets
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generated by:

Case (I):Xi(t) ∼ 2 sin(2πt) + BM, i ∈ AN ; Xi(t) ∼ BM, i /∈ AN ;

Case (II):Xi(t) ∼ 0.6et + BB, i ∈ AN ; Xi(t) ∼ BB, i /∈ AN ;

Case (III):Xi(t) ∼ −3.8t + sin(2πt)Z0 + 0.5Zt, i ∈ AN ;

Xi(t) ∼ sin(2πt)Z0 + 0.5Zt, i /∈ AN ;

where AN denotes the outlier set.

Denote |AN | = [ρN ], where ρ is the ratio of the outliers in the sample and [ρN ] denotes

the greatest integer less than or equal to ρN . In our simulation study, we chose N to be 50,

100, 200 and 400. The ratio of the outliers ρ was chosen to be 2%, 4% and 6% for all the

three cases. The locations of the outliers were chosen evenly. All the three processes were

realized on a grid of 30 or 200 equispaced points in T = [0, 1] and smoothed by 15 Fourier

bases.

In order to assess the performance of FDOT, we compare it with some existing methods.

A commonly used approach is the multivariate outlier test (MOT; Rousseeuw and Leory

1987) which uses the test statistic D2
max introduced in Section 2.2. When the number of

observations along each curve K is larger than the sample size N , we use the tapering

estimator (Cai et al. 2010) to estimate the inverse of the covariance matrix. The tapering

parameter was chosen to be seven as suggested by Cai et al. (2010). Another related

approach is the test based on h-modal functional depth (Febrero et al. 2008; FDET). Its test

statistic is:

RN = − min
16i6N

N∑
j=1

K

(‖ Xi(t)−Xj(t) ‖
h

)
,

where K(·) is the Gaussian kernel function, the bandwidth h is chosen to be the 15th per-

centile of the empirical distribution of {‖ Xi(t)−Xj(t) ‖, i, j = 1, ..., N} and

‖ Xi(t)−Xj(t) ‖= sup
k=1,...,K

|Xi(tk)−Xj(tk)|.

In addition, since our proposed FDOT uses the functional PCA, it is also of interest to

compare our method with some other tests based on functional PCA. A natural benchmark

is the functional data change-point test (FDCT) proposed by Berkes et al. (2009). FDCT
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uses the following test statistic:

QN,d =
1

N2

d∑

l=1

λ̂−1
l

N∑
j=1

(
∑

16i6j

η̂i,l − j

N

∑
16i6N

η̂i,l)
2.

Berkes et al. (2009) demonstrated that the test has excellent finite sample performance for

the functional data change-point problem.

For a fair comparison, all the critical values of the considered tests were computed by the

simulated distributions of the test statistics under the true model to control their significance

levels to be 0.05. Table 2 shows the power of different tests when K = 30 and 200 respectively

with 2,000 replications for each case. In this table, the entries with asterisk indicate that the

corresponding tests are not unbiased, say the power is less than 5%. The simulation results

indicate that our proposed FDOT method outperforms the other approaches in most cases.

The FDCT seems to be the worst one among all the tests. This can be well understood as

FDCT was designed for the change-point problem. In order to have satisfactory power, it

generally requires that the number of samples before and after the change-point are both

large enough. However, in our functional data outlier test problem, we cannot assume that

the outliers gather together in the sample. Moreover, the comparison between the simulation

results of K = 30 and 200 indicates that our proposed FDOT procedure turns to be quite

robust when the number of observations along each curve varies.

3.3 The masking effect

From Table 2, we note that for the fixed sample size, the powers of tests decrease to some

extent as the number of the outliers increases. This tendency is not surprising since all the

considered tests are suffering from the masking effect. When there are multiple outliers in

the sample, the estimators of the mean curve and the covariance function will be skewed.

Furthermore, with masking, removal of any single outlier might have little or no effect on

estimates since other outliers remain. In such situations, robust estimators of the mean curve

and covariance function are needed. Rousseeuw and van Zomeren (1990) proposed to use

the minimum volume ellipsoid estimator of mean and covariance matrix for the multivariate

outliers detection problem. However, our simulation study indicated that their robust esti-

mation procedure was not effective in the present problem. It is often unstable and requires

expensive computation. Some similar findings can be found in Yeh et al. (2009) in which
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Table 2: Power (%) comparisons of different tests when K = 30 and 200

K = 30 K = 200
Model ρ N FDOT FDCT MOT FDET FDOT FDCT MOT FDET

50 95.7 * 12.8 33.4 96.7 * 18.0 32.2
2% 100 99.3 8.20 65.4 32.2 99.6 7.60 15.7 30.2

200 100 18.8 85.9 30.9 99.9 18.6 13.8 26.6
400 100 48.6 94.1 27.4 100 47.7 7.45 29.4
50 99.7 * 8.30 31.2 99.5 * 13.5 31.7

Case I 4% 100 100 * 23.8 29.6 99.9 * 9.25 30.0
200 99.9 11.0 32.3 26.6 100 10.5 7.10 27.9
400 100 40.4 39.3 26.6 100 41.2 6.95 28.1
50 97.4 * 7.1 28.4 97.6 * 11.5 26.4

6% 100 96.7 * 14.2 25.0 96.2 * 6.90 27.1
200 95.1 * 16.4 23.2 95.8 * * 23.8
400 94.7 * 19.2 20.7 95.3 * 6.00 23.2
50 83.5 * 20.2 78.6 80.1 * * 66.3

2% 100 91.7 7.40 75.8 79.9 89.7 5.25 * 72.2
200 96.9 11.3 89.7 81.8 96.1 12.4 * 80.5
400 99.5 32.3 96.2 87.8 99.4 29.8 6.50 85.4
50 86.8 * 8.05 81.7 81.2 * 5.45 76.7

Case II 4% 100 91.6 * 25.9 85.7 88.5 * 6.85 81.4
200 96.0 5.90 35.6 85.4 94.7 7.60 8.55 85.3
400 97.8 25.2 42.4 86.9 97.7 24.0 8.85 89.2
50 62.6 * 7.55 77.3 56.2 * * 76.6

6% 100 62.5 * 15.1 77.9 59.1 * * 78.0
200 64.3 * 17.0 78.5 66.9 * * 82.7
400 67.9 * 19.4 79.2 71.9 * 15.8 86.2
50 100 * 100 97.3 60.3 8.30 29.5 99.7

2% 100 100 * 99.9 98.6 61.1 18.5 29.3 99.2
200 100 7.6 100 99.0 63.7 63.3 32.9 99.2
400 100 76.8 100 99.3 65.6 66.2 13.5 99.2
50 100 * 13.7 98.5 99.4 7.95 34.1 99.8

Case III 4% 100 100 * 29.8 98.7 100 12.9 30.3 99.6
200 100 * 41.0 98.9 100 48.0 30.6 99.6
400 100 7.65 47.1 98.2 100 100 7.10 99.6
50 100 * 8.0 96.6 99.9 9.25 33.1 99.3

6% 100 72.0 * 10.6 96.2 100 6.55 27.2 99.1
200 36.4 * 14.2 94.7 100 6.00 22.7 98.8
400 22.7 * 16.3 94.3 100 6.15 5.60 99.0

Note: * indicates that the test is not unbiased.
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the focus is the outlier detection for linear profiles. In practice, we recommend to use a

two-step FDOT procedure to alleviate the masking effect. At the first step, we choose d = 1

and a relativelt large significance level (such as α = 0.1 in our simulation). Through the

SFOD procedure, we exclude some “candidate outliers” from the sample and then use the

filtered sample to estimate the mean curve and the covariance function. At the second step,

we conduct the FDOT procedure using the estimators of the mean curve and covariance

function based on the “cleaner” sample obtained from the first step. Figure 2 shows the size

(ρ = 0) and power comparison between the two-step FDOT and one-step FDOT for Case

II when K = 30. The nominal significance level α was still chosen as 0.05. The simulated

results in Figure 2 show that the two-step FDOT procedure alleviates the masking effect to

certain degree. It is also worth noting that due to the extra variation introduced by the ad-

ditional steps, the two-step procedure tends to have larger size than the one-step procedure.

However, as shown by the simulation results in Section 3.1, the one-step FDOT procedure

is usually somewhat conservative. This results in the sizes of the two-step procedure are

generally not far away from the nominal size.

3.4 The performance of SFOD procedure

We compare the performance of our SFOD procedure with the depth-based functional out-

lier detection procedure introduced by Febrero et al. (2008) (denoted as DFOD). In this

comparison, we set K = 200 and the significance level α was chosen as 0.1. To evaluate

the statistical performance of the SFOD procedure, we consider two accuracy measures,

r1 = NTID
NID

and r2 = NTID
NT

, where NTID is the number of true outliers identified, NID is the

number of samples identified as outlier, and NT is the number of true outliers in the sample.

These two indexes provide certain indication of the precision of the detection results. Large

r1 and r2 indicate superior detection.

Table 3 shows the simulated values of these two indexes for Cases (I)-(III) when the

ratio of the true outliers is chosen to be 2%, 4% and 6%. The results show that the SFOD

procedure generally performs better than DFOD. From the measure r1, we find that the

SFOD procedure identifies true outliers more successfully as the sample size increases. As

shown in Table 3, when the sample size is 400, most of the curves in the set ON (identified

by the SFOD procedure) are true outliers. Moreover, from the results of the measure r2,
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Figure 2: The size and power comparison between the two-step FDOT (solid line) and one-step
FDOT (dashed line). The dotted line in the first plot represents the nominal significance level
α = 0.05.

we can see that the SFOD procedure could identify most of the true outliers except for a

handful of cases that the ratio of the outliers is large while the shift of them is small.

4 A Real-data application in industrial manufacturing:

profile monitoring

The proposed methodology is demonstrated in an aluminium electrolytic capacitor (AEC)

manufacturing process in this section. More detailed discussion about the AEC example may

be found in Qiu et al. (2010). Regarding quality of AECs, the most important characteristic

is dissipation factor (DF), which can be automatically measured by an electronic device.

However, it is known that DF measurements would change significantly with environmental

temperature, and there is a specific requirement about the adaptability of AECs to the
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Table 3: The Performance Comparison of SFOD and DFOD When K = 200

Case (I) Case (II) Case (III)

r1(%) r2(%) r1(%) r2(%) r1(%) r2(%)

ρ N SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD SFOD DFOD
50 92.1 44.1 97.4 46.8 78.0 76.0 83.5 81.5 93.5 87.3 99.5 92.5

2% 100 96.2 42.1 97.1 28.3 89.8 82.9 79.5 69.3 96.1 92.2 100 84.9

200 97.7 37.2 94.0 13.2 96.4 88.5 72.3 51.4 98.0 95.1 100 71.1

400 98.8 40.4 90.5 7.06 98.4 92.2 65.8 35.0 98.7 96.7 100 51.4

50 96.2 48.2 98.5 35.8 84.7 86.4 79.2 79.7 95.5 96.2 99.3 100

4% 100 98.0 43.9 96.7 17.2 93.4 89.9 75.5 64.3 97.4 97.6 99.8 99.9

200 99.0 39.7 94.7 7.17 97.4 92.5 68.5 42.1 98.7 98.6 100 98.0

400 99.4 41.9 91.5 3.65 99.0 94.6 60.6 25.5 99.3 99.1 100 77.9

50 97.2 41.8 97.3 23.7 71.2 88.1 61.7 76.0 96.7 96.2 99.9 100

6% 100 98.2 40.2 96.4 10.3 74.8 90.9 51.7 57.5 98.4 98.2 100 99.9

200 99.2 36.8 94.3 4.27 83.7 93.0 41.6 33.6 99.1 99.0 100 97.6

400 99.3 37.6 90.7 2.14 86.7 94.9 23.0 17.3 99.5 99.1 100 68.1

temperature. In order to monitor the adaptability, engineers put a sampled AEC in a

container. Then, the container’s temperature is controlled, and the temperature is supposed

to stably increase from −26oF to 78oF . In this process, measurements of dissipation factor

(DF) and the actual temperature inside the container are taken at 53 equally spaced time

points. The actual temperature inside the container is reported by a temperature sensor.

Figure 3 shows some AEC curves which represent the functional relationship between DF

and temperature.

Most existing profile monitoring methods (e.g., Zou et al. 2008; 2009) require a funda-

mental assumption that observations within a profile are independent of each other, which

is apparently invalid in applications. To properly describe within-profile correlation, Qiu et

al. (2010) proposed a nonparametric mixed-effects model (cf., Wu and Zhang 2002), which

allows a flexible variance-covariance structure. Alternatively, we may consider the AEC

profiles as functional observations with some random errors and thus can be adequately

described by the FDA model (1).

The entire AEC dataset contains 144 curves. As discussed in Section 2.2, the discrete

sampled curves were converted to functional observations by using 15 Fourier basis functions.
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Figure 3: The first six (thin lines), the 115th, 116th, 117th, and the 123th (thick lines) AEC func-
tional curves.

Then we used the cumulative percentage variance approach which finds d = 2 explaining 85%

of the variance. We then computed the statistic SN,d, the candidate outliers subset ON =

{i0 : arg max16i6N

∑
16k6d

η̂2
ik

λ̂k
} and the p-value by the asymptotic distribution in Theorem

1. Then, we removed the sample in the subset ON and repeated the same computation

steps several times. Table 4 gives the results of the first ten steps of the stepwise detection

procedure. The first p-value 0.0069 strongly indicates that there are outliers in the data.

If we specify the significance level to be 0.05, we can identify the indices of the outlying

observations to be 115, 116, 117 and 123.

Table 4: Detection results of the AEC example

Rank p-value Index(SFOD method) Depth Index(Depth method)
1 0.0069 115 14.836 117
2 0.0072 123 14.863 115
3 0.0265 117 15.579 121
4 0.0327 116 16.402 120
5 0.0881 121 16.886 118
6 0.0954 120 17.852 116
7 0.2295 118 18.107 118
8 0.3587 110 18.455 56
9 0.2066 23 18.813 123
10 0.2756 30 19.155 139
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For the purpose of comparison, we also detected the outlying AEC curves by the h-modal

functional depth introduced in Febrero et al. (2008). Outlying AEC curves are expected to

be far away from the center of the data and therefore correspond to curves of significantly

low depth. The depth values corresponding to the curves with the ten smallest h-model

functional depths are also shown in Table 4. We found that two methods acquire similar

results. The indices of the candidate outlying curves are both between 115 and 123. Figure

4 shows the first three non-outlying curves, the mean curve and the 115th, 116th, 117th and

123th curves after smoothing. The deviation of the outlying curves and the non-outlying

curves is quite clear.
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Figure 4: The first three non-outlying curves, the mean curve and the 115th, 116th, 117th and
123th curves after smoothing

By this detection result we have the following two findings: firstly, the first ninety-six

AEC curves in this example can be regarded as in-control functions. This justifies the use

of these curves as the training (reference) dataset to fit the model and design the control

chart in Qiu et al. (2010). Secondly, by the monitoring result in Qiu et al. (2010), the

outliers we found are contained in the set of OC curves (actually 112-120). Some other

OC curves are not identified by our approach, such as 112-114. This is not surprising to
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us because the control chart in Qiu et al. (2010) is designed to be efficient in detecting

the step-change. Their charts borrow strength across multiple curves while our approach is

individually testing each curve. The detection result for the AEC curves indicates that our

proposed procedure performs well in applications.

5 Concluding remarks

Data sets with multiple outliers or clusters of outliers are subject to masking and swamping

effects (Barnett and Lewis 1994; Pena and Prieto 2001). Similar to classical outlier detection

methods, our procedure assumes the data contain only one outlier in each retrospective

step and thus the power may decrease if the percentage of outlying function curves in the

data is high as shown in the simulation study. In some situations, our method does not

always succeed in detecting most of outliers, simply because it is affected by the functional

observations that it is supposed to identify. Although the proposed two-step procedure

seems to work well, a systematic method which is able to handle this issue to certain extent

is needed. Moreover, an ongoing effort of the authors is to develop a scheme integrating a

“data-driven” adaptive smoothing parameter selection method to improve the performance

of FDOT in situations involving masking and swamping.

In addition, our simulation results (not reported here) show that the considered approach

for choosing d, cumulative percentage variance, may not produce a most powerful test. This

finding is not surprising because such a criteria is tailored for estimation and similar conclu-

sions have been made in some other testing problems. For instance, in the nonparametric

regression testing problem, the power and size of a typical test would depend on the band-

width used in regression function estimation, and it is recognized that optimal bandwidth

for nonparametric curve estimation may not be optimal for testing (cf., Hart 1997). See also

Berkes et al. (2009) for a related discussion. An ongoing effort of the authors is to develop

a more proper adaptive selection of d to make the test nearly optimal.
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Appendix: The technical conditions used in Theorem 2

In order to establish the consistency of the proposed test under the alternative hypothesis,

we also need the following additional conditions:

(C3) Under H1, denote the number of outliers as mN , we assume that

∑
i∈AN

‖µi(t)‖2

mN

= O(1), as N →∞.

(C4) (The condition on the number of outliers) Under H1, the number of outliers satisfies

mN →∞,
mN

√
log(mN)

N
→ 0, as N →∞.

(C5) (The condition on the means of outlying curves) Define

δik =
1√
λk

∫ b

a

(µi(t)− µ0(t))υk(t)dt.

Under H1, we assume that

lim inf
N→∞

maxi∈AN

∑d
k=1 δ2

ik

log N
> 8 + 4

√
3.

Remark 3 Condition (C3) is fairly common technical assumption for the study of the

consistency of the test. Similar to the outlier test for the multivariate samples (Hadi 1992),

our proposed test is not consistent when assuming that there is only one outlier in the sample.

In order to construct the consistency of our proposed test, Conditions (C4) and (C5) are

required. Condition (C4) is reasonable because the number of outliers |AN | = mN always

grows with the number of sample N in many cases. Furthermore, the number of outliers

mN cannot be too large in order to help us distinguish the outliers from “normal” data.

Condition (C5) is a purely technical condition which guarantees that the mean of outlying

functions dominates the chance variability caused by the random error.
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Berkes, I., Gabrys, R., Horváth, L. and Kokoszka, P. (2009), “Detecting Changes in the Mean of Functional
Observations,” Journal of Royal Statistical Society: Series B, 71, 927–946.

Bosq, D. (2000), Linear Processes in Function Spaces, Springer, New York.

Cai, T., Zhang, C., and Zhou, H. (2010), “Optimal Rates of Convergence for Covariance Matrix Estima-
tion,”, The Annals of Statistics, 38, 2118–2144.

Cuevas, A., Febrero, M. and Fraiman, R. (2004), “An ANOVA Test for Functional Data,” Computational
Statistics & Data Analysis, 47, 111–122.

Fawcett T., and Provost F. (1997), “Adaptive fraud detection,” Data-mining and Knowledge Discovery, 1,
291–316.
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Supplemental file

In this supplemental file, we provide the proofs of Theorems 1 and 2 in the paper.

Proofs of theorems

In order to prove the theorems, we first state a necessary lemma. Denote

φik =

∫ b

a

{Xi(t)− X̄N(t)}υk(t)dt, i = 1, . . . N, k = 1, . . . d,

ȲN(t) =
1

N

∑
1≤i≤N

Yi(t), ξ̄k =
1

N

∑
1≤i≤N

ξik, k = 1, . . . d.

Lemma 1 Suppose that Z1, . . . , ZN are i.i.d. chi-square random variables with d degrees of

freedom, then for each x ∈ R, we have

P ( max
1≤i≤N

Zi ≤ 2x + 2 log N + (d− 2) log log N − 2 log Γ(d/2)) → e−e−x

as N →∞.

Proof. Denote UN = 2 log N +2x+(d−2) log log N−2 log Γ(d/2) and F (x) as the cumulative

distribution function of the χ2
d random variable. We have

N(1− F (UN)) = N

∫ ∞

UN

e−u/2ud/2−1

2d/2Γ(d/2)
du =

e−x

2d/2

∫ ∞

0

(
t + UN

log N

)d/2−1

e−t/2dt

N→∞−−−→ e−x

2d/2

∫ ∞

0

2d/2−1e−t/2dt = e−x.

Hence the assertion follows immediately from Theorem 1.5.1 of Leadbetter et al. (1983). ¤

Proof of Theorem 1

The main idea of the proof is similar to Berkes et al. (2009). Recall that Yi(t) =
∑

1≤k<∞ λ
1/2
k ξikυk(t) and {ξik, i = 1, . . . N, k = 1, 2, . . .} are i.i.d. standard normal random

variables. As an immediate corollary to Lemma 1, we obtain for each k

max
1≤i≤N

ξ2
ik = Op(log N).

By using the inequality
∣∣∣∣ max
1≤i≤N

|ai| − max
1≤i≤N

|bi|
∣∣∣∣ ≤ max

1≤i≤N
|ai − bi|,

1



we have
∣∣∣∣∣ max
1≤i≤N

d∑

k=1

η̂2
ik

λ̂k

− max
1≤i≤N

d∑

k=1

η̂2
ik

λk

∣∣∣∣∣ ≤ max
1≤i≤N

∣∣∣∣∣
d∑

k=1

η̂2
ik

(
1

λ̂k

− 1

λk

)∣∣∣∣∣

≤
d∑

k=1

∣∣∣∣
1

λ̂k

− 1

λk

∣∣∣∣ max
1≤i≤N

η̂2
ik. (A.1)

Also, observe that

max
1≤i≤N

η̂2
ik = max

1≤i≤N

(∫ b

a

(Yi(t)− ȲN(t))υ̂k(t)dt

)2

≤ max
1≤i≤N

‖Yi(t)− ȲN(t)‖2

≤ 2 max
1≤i≤N

‖Yi(t)‖2 + 2‖ȲN(t)‖2 ≤ 2
∞∑

k=1

λk max
1≤i≤N

ξ2
ik + 2‖ȲN(t)‖2. (A.2)

Since ‖ȲN(t)‖2 = op(1), max1≤i≤N ξ2
ik = Op(log N) and

∑∞
k=1 λk = E(‖Yi(t)‖2) < ∞, we

obtain that max1≤i≤N η̂2
ik = Op(log N). Combining expressions (A.1), (A.2) and the equation

(4), we have
∣∣∣∣∣ max
1≤i≤N

d∑

k=1

η̂2
ik

λ̂k

− max
1≤i≤N

d∑

k=1

η̂2
ik

λk

∣∣∣∣∣ = op(1). (A.3)

Next, we have
∣∣∣∣∣ max
1≤i≤N

d∑

k=1

η̂2
ik

λk

− max
1≤i≤N

d∑

k=1

φ2
ik

λk

∣∣∣∣∣ ≤ max
1≤i≤N

∣∣∣∣∣
d∑

k=1

η̂2
ik − φ2

ik

λk

∣∣∣∣∣

≤
d∑

k=1

max
1≤i≤N

|η̂ik − ĉkφik| · max1≤i≤N |η̂ik|+ max1≤i≤N |φik|
λk

≤
d∑

k=1

‖υ̂k(t)− ĉkυk(t)‖ · 2
(

max
1≤i≤N

‖Yi(t)− ȲN(t)‖
)2

.

Combining the results of Bosq (2000)

lim sup
N→∞

[
N(E(‖ĉkυk(t)− υ̂k(t)‖2))

]
< ∞,

lim sup
N→∞

[
N(E(|λk − λ̂k|2))

]
< ∞,

and the fact that max1≤i≤N ‖Yi(t)− ȲN(t)‖2 = Op(log N), we have
∣∣∣∣∣ max
1≤i≤N

d∑

k=1

η̂2
ik

λk

− max
1≤i≤N

d∑

k=1

φ2
ik

λk

∣∣∣∣∣ = op(1). (A.4)
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Finally, we have
∣∣∣∣∣ max
1≤i≤N

d∑

k=1

φ2
ik

λk

− max
1≤i≤N

d∑

k=1

ξ2
ik

∣∣∣∣∣ =

∣∣∣∣∣ max
1≤i≤N

d∑

k=1

(ξik − ξ̄k)
2 − max

1≤i≤N

d∑

k=1

ξ2
ik

∣∣∣∣∣

≤
d∑

k=1

ξ̄2
k + 2

d∑

k=1

max
1≤i≤N

|ξik| · |ξ̄k|

Since
√

Nξ̄k
d−→ N(0, 1) and max1≤i≤N |ξik| = Op(

√
log N), we obtain that

∣∣∣∣∣ max
1≤i≤N

d∑

k=1

φ2
ik

λk

− max
1≤i≤N

d∑

k=1

ξ2
ik

∣∣∣∣∣ = op(1). (A.5)

Equations (A.3), (A.4), (A.5) and Lemma 1 yield the result in Theorem 1. ¤

Proof of Theorem 2

Denote µ∗N(t) = 1
mN

∑
i∈AN

µi(t), ψ∗N(t) = µ∗N(t) − µ0(t) and ψi(t) = µi(t) − µ0(t) for

each i ∈ AN . Firstly, under H1, we have

ĉ(t, s) =
1

N

N∑
i=1

(Xi(t)− X̄N(t))(Xi(s)− X̄N(s))

=
1

N

∑
i∈AN

(Yi(t)− ȲN(t) + ψi(t)− mN

N
ψ∗N(t))(Yi(s)− ȲN(s) + ψi(s)− mN

N
ψ∗N(s))

+
1

N

∑

i/∈AN

(Yi(t)− ȲN(t)− mN

N
ψ∗N(t))(Yi(s)− ȲN(s)− mN

N
ψ∗N(s))

By the central limit theorem for the Banach space (e.g., Hall and Hosseini-Nasab 2006) and

Conditions (C3) and (C4), we obtain ĉ(t, s)
P−→ c(t, s). Therefore, under H1, we also have

lim sup
N→∞

[N{E(‖ĉkυk(t)− υ̂k(t)‖2)}] < ∞,

lim sup
N→∞

[N{E(|λk − λ̂k|2)}] < ∞.

Define

φ̃ik =

{ ∫ b

a
(Yi(t)− ȲN(t))υk(t)dt + λ

1/2
k δik, i ∈ AN , k = 1, . . . , d,∫ b

a
(Yi(t)− ȲN(t))υk(t)dt, i /∈ AN , k = 1, . . . , d.

Similar to the proof of Theorem 1, we can obtain that

max
1≤i≤N

∣∣∣∣∣
d∑

k=1

η̂2
ik

λ̂k

−
d∑

k=1

φ̃2
ik

λk

∣∣∣∣∣ = op(1). (A.6)
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Note that

d∑

k=1

φ̃2
ik

λk

=

{ ∑d
k=1(ξik − ξ̄k + δik)

2, i ∈ AN , k = 1, . . . , d,∑d
k=1(ξik − ξ̄k)

2, i /∈ AN , k = 1, . . . , d,

and

max
1≤i≤N

d∑

k=1

φ̃2
ik

λk

≥ max
i∈AN

d∑

k=1

(ξik − ξ̄k + δik)
2

≥ max
i∈AN

d∑

k=1

δ2
ik − max

1≤i≤N

d∑

k=1

(ξik − ξ̄k)
2 − 2

∣∣∣∣∣ max
1≤i≤N

d∑

k=1

δ2
ik · max

1≤i≤N

d∑

k=1

(ξik − ξ̄k)
2

∣∣∣∣∣

1/2

.

By the Condition (C5) and the fact that max1≤i≤N

∑d
k=1(ξik − ξ̄k)

2 = Op(2 log N), we con-

clude that for each α ∈ (0, 1),

PH1

{
max

1≤i≤N

d∑

k=1

φ̃2
ik

λk

> uN,d(α)

}
→ 1.

Theorem 2 now follows from (A.6). ¤
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Figure A.1: Critical values for various N , d and α. The label for the x-axis is d and the label for
the y-axis is critical value. The solid line is UN,d and the dashed line is GN,d.
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