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Abstract

In monitoring complex systems, apart from quick detection of abnormal changes of

system performance and key parameters, accurate fault diagnosis of responsible factors

has become increasingly critical in a variety of applications that involve rich process

data. Conventional statistical process control (SPC) methods, such as interpretation

and decomposition of Hotelling’s T 2-type statistic, suffer from such high-dimensional

problems because they are often computationally expensive. In this paper, we frame

fault isolation as a two-sample variable selection problem to provide a unified diagno-

sis framework based on Bayesian information criterion (BIC). We propose a practical

LASSO-based diagnostic procedure which combines BIC with the popular adaptive

LASSO variable selection method. Given the oracle property of LASSO and its al-

gorithm, the diagnostic result can be obtained easily and quickly with a similar com-

putational effort as least-squares regressions. More importantly, the proposed method

does not require making any extra tests that are necessary in existing diagnosis meth-

ods. Under some mild conditions, the diagnostic consistency of the proposed method

is established. Finally, we present several specific SPC examples, including multistage

process control and profile monitoring, to demonstrate the effectiveness of our method.

1



Keywords: BIC; Consistency; Fault Isolation; High-Dimensional; Least-Squares Ap-

proximation; Variable Selection

1 Introduction

In modern manufacturing and service industries, one frequently monitors several quality char-

acteristics of a process simultaneously. Recently a great deal of research interest has arisen in

multivariate statistical process control (MSPC) due to the availability of huge amount of data

in such processes. For instance, under the intensive competitions in business and industry,

besides the mean levels of process characteristics, monitoring and diagnosis of covariance

matrix and even higher-order moments for a multivariate process have received more and

more attention (see Huwang et al. 2007 and the references therein). Instead of monitoring

a set of quality characteristics, profile monitoring focuses on the relationship between the

response and explanatory variables assuming a univariate or multivariate multiple linear re-

gression model (Woodall et al. 2004). In multistage processes involving serial operations,

both downstream and upstream stages have to be monitored to detect departures from the

prescribed relationships among subsequent stages (Shi 2007). In these applications, the data

structure can often be represented by some parametric models which contain more than one

parameter and the above SPC problems can all be characterized as MSPC in a certain sense.

One of the major challenges in these applications is that the models are typically complex

in nature, and in some applications the parameter dimension may be very high and results

in the “curse of dimensionality” problem.

The fundamental tasks of MSPC include determining whether the process has changed,

identifying when a detected shift has occurred, and isolating the shifted components or

factors that are responsible for the change. The focus of this paper is the last one, which

is also called diagnosis or fault identification in the MSPC literature (Mason and Young

2002). In monitoring complex systems, apart from quick detection of abnormal changes

in system performance and key parameters, accurate fault diagnosis of responsible factors

has become increasingly critical in a variety of applications that involve rich process data

(Sullivan et al. 2007). A diagnostic aid to isolate the type of parameter changes will help
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business managers and engineers identify and eliminate root causes of a problem quickly

and accurately so that quality and productivity can be improved. Traditionally, statistical

methods for accomplishing this task are usually based on interpretation and decomposition

of Hotelling’s T 2-type statistic, which essentially captures the relationships among different

process parameters, e.g., Mason et al. (1995; 1997) and Li et al. (2008). Various step-

down test procedures are also discussed based on certain ad hoc rules or assumptions, e.g.,

Hawkins (1991), Mason et al. (2001), Maravelakis et al. (2002), Sullivan et al. (2007),

and Zhu and Jiang (2009). These conventional approaches are intuitively sound, but have

the following practical shortcomings: (1) The decomposition of the T 2 statistic considers p!

different decompositions of the T 2 statistic (assuming the data dimension is p). Even the

standard step-down testing procedures still require computing Cp
k test statistics of quadratic-

form in the k-th step (Sullivan et al. 2007), which may be very inefficient when p is large;

(2) More importantly, certain parameters in these approaches (e.g., the threshold values

or significance levels) have considerable effects on the diagnostic ability, but are generally

difficult to determine a priori in practice. See Sullivan et al. (2007) for a related discussion.

Recently, by applying variable selection methods in MSPC monitoring applications,

Wang and Jiang (2009) and Zou and Qiu (2009) independently proposed new multivari-

ate process monitoring and diagnosis schemes. Both of these schemes consider a penalized

likelihood function approach based on the conventional multi-normality assumption. By tak-

ing advantage of recent developments in the L1-penalized regression, the method in Zou and

Qiu (2009) enjoys more computational efficiency in implementation. While their method

primarily focuses on the monitoring task, our interest is to develop a unified framework for

the diagnosis problems in many MSPC applications. We follow the settings in Sullivan et al.

(2007) and focus on the diagnostic process under the assumption that other MSPC methods

have been used to detect and estimate a change point a priori. Assuming that the estimation

of change point is sufficiently accurate, our objective is to determine the parameters that are

responsible for the change. In such circumstances, we are faced with a two-sample problem

of change estimation, that is, the change-point partitions the observations into two subsets

with different values for (some of) the parameters. An implicit but important assumption

we make here is that, in a high-dimensional process, the probability that all parameters shift
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simultaneously is rather low. It is believed that a fault is more likely to be caused by a

hidden source, which is reflected in unknown changes of one or a small set of parameters

(see Wang and Jiang 2009, Zou and Qiu 2009).

We propose a unified treatment of parametric fault diagnosis based on two-sample

Bayesian information criterion (BIC) to assist in the isolation of variables responsible for

the signal. Although the proposed BIC framework is heuristic, it roots in the likelihood

paradigm and does not rely on any a priori domain knowledge of potential shift parameters

as Jiang and Tsui (2008) assumed or arbitrary sensitivity thresholds for testing the signif-

icance levels of parameter changes. Under the sparsity assumption of parameter changes,

we further combine BIC with a penalized technique to facilitate the fault tracking process

and suggest a practical LASSO-based (Tibshirani 1996) diagnostic procedure. Among other

good properties, Fan and Li (2001) have shown that, with the proper choice of the penalty

functions and regularization parameters, the estimator based on penalized techniques would

perform asymptotically as well as if the correct model was known, which is referred to as

the oracle property in the literature. Given the oracle property of the LASSO method (Zou

2006) and its connection with LARS algorithm (Efron et al. 2004), the diagnostic result

can be obtained easily and quickly with a similar computational effort to least-squares re-

gressions in implementation. The combination of BIC and the LASSO-based algorithm frees

our method from having to make any extra statistical tests that are necessary in existing

diagnostic methods. Under mild conditions, we establish the diagnostic consistency of the

proposed method. Further numerical examples also demonstrate the effectiveness of the

proposed method in various applications.

The proposed method can be applied to retrospective analysis of a historical data set

(Phase I) as Sullivan and Woodall (2000) discussed or to the post-signal diagnostic analysis

following prospective on-line monitoring (Phase II). However, it should be emphasized that

in the prospective analysis, including self-starting or change-point methods (Zamba and

Hawkins 2006) that lack a formal Phase I analysis, a major objective is the quick detection

of a change, and if that objective is met then there may be only a few observations from

the shifted models (the process is always stopped after a signal). So, the diagnostic results

would be not accurate. If the objective of diagnosis is as important as detection, one may
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consider to balance the performance of detection and diagnosis by either increase the in-

control ARL or allowing the process operate for a while after a signal and collect more data

from the shifted model. Of course, there should be a tradeoff between the cost of production

in presence of faults and the gain of fault diagnosis.

The rest of the paper is organized as follows. Section 2 provides a heuristic derivation of

BIC model selections in fault diagnosis and isolation. Section 3 develops the LASSO-based

diagnosis procedure and derives its consistency property. Section 4 presents several industrial

examples including monitoring mean and variance-covariance simultaneously, profile moni-

toring, and multistage process control. Statistical performance of the proposed diagnostic

procedure is discussed by comparing with other existing diagnosis methods. In Section 5, we

demonstrate the method using a real-data example from a white wine production process.

Section 6 concludes the paper by summarizing our contributions and suggesting some future

research issues. The necessary derivations and proofs of the theoretical results are detailed

in the Appendix.

2 BIC for MSPC Fault Diagnosis

Zou and Qiu (2009) propose the use of LASSO-based variable selection techniques for MSPC

monitoring when the data dimension is high. In this section, we first frame fault diagnosis

as a model selection and estimation problem using the likelihood criteria. Unlike Zou and

Qiu (2009), we do not assume that the baseline model is known a priori, but that it can be

estimated from a sample of observations as discussed below. This allows our method to be

applicable in a variety of SPC applications, including those discussed in Section 4.

2.1 Fault diagnosis and variable selection

Let Z1 = {z11, . . . , z1n1} and Z2 = {z21, . . . , z2n2} be two sets of independent random ob-

servations of size n1 and n2 respectively before and after a parameter change. Assume that

β1 = (β11, . . . , β1d)
T and β2 = (β21, . . . , β2d)

T are d-dimensional parameter vectors of interest

for the two sets of observations, z1j ∼ f(·|β1) and z2j ∼ f(·|β2). Let L1(β1) and L2(β2)
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be the plausible loss functions for Z1 and Z2 respectively, whose global minimizers β̃i are

natural estimates of βi for i = 1, 2.

For example, we are frequently concerned with a multivariate location problem in MSPC,

that is, zij = xij is multivariate normally distributed with xij ∼ Nd(µi,Σi) and βi = µi

(i = 1, 2) are the mean vectors of the in-control and out-of-control states. Then Li(βi)

can be chosen as the −2×log-likelihood function by ignoring some constants with respect to

(w.r.t.) µi,

ni(x̄i − µi)
TΣ−1

i (x̄i − µi),

and β̃i = x̄i =
∑ni

j=1 xij/ni. Consider another regression example. Assume we have ni

observations {(yij,xij)}ni
j=1 for each set i = 1, 2 collected from the model,

yij = xT
ijbi + εij,

where yij’s are the response observations, xij’s are the p-dimensional explanatory variables

and εij’s are the random errors. We are concerned about the difference between b1 and b2.

In this case, zij = (yij,xij), βi = bi and d = p. The Li(·) can be chosen as the conventional

least-squares loss function (equivalent to likelihood under normal error distributions) or

some other robust regression loss functions, such as least absolute deviation or rank-based

loss function (c.f., Hettmansperger and McKean 1998). We will discuss this type of problem

later in Section 4.3.

Suppose that β2 = β1 + δn. In many applications, it is rare that all variables shift at

the same time, and the number of simultaneously changed variables is usually rather small

as outlined by Wang and Jiang (2009). Hence, we also assume here that some components

of the vector δn = (δn1, . . . , δnd) are zero. Note that we use subscript “n” in δn to allow

the difference between β1 and β2 to approach zero with a certain rate as the sample sizes

become large. In other words, δn is not necessarily a fixed change magnitude in an asymp-

totic viewpoint (see Section 3 and Assumption 2 for details). The MSPC fault diagnosis is

interested in determining which components, δnk, are not zero. A natural way to accomplish

this task is to obtain an appropriate estimate of δ and to find out which components are

non-zero. A simple estimation can be achieved by minimizing the joint loss function

L(β1, δ) = L1(β1) + L2(β1 + δ), (1)
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in which β1 can be regarded as a nuisance parameter that needs to be profiled out in

the estimation procedure. However, this estimation suffers from inadequacy because its

components usually take non-zero values, although a large portion of the values are quite

close to zero.

In high-dimensional cases, we often assume that only a few components are non-zero, i.e.,

the so-called sparsity characteristic (Zou and Qiu 2009). Thus fault diagnosis is essentially

analogous to the variable or model selection problem, that is to say, one wishes to select

those parameters (δnk’s) that deviate significantly from zero. To be more specific, consider

{1, . . . , d} as the full set of the indices of the parameters. Let s be a candidate subset of

{1, . . . , d} which contains all the indices corresponding to the parameters that have changed

(we assumed). The true fault isolation model is indexed by sT which contains all the indices

corresponding to the parameters that have really changed. Our objective is to select an

optimal s under some specified criteria for fault isolation so that s could be as close to

sT as possible. In the literature, it is well demonstrated that Akaike information criterion

(AIC) tends to select the model with the optimal predication performance, while Schwarz’s

Bayesian information criterion (BIC; Schwarz 1978) tends to identify the true sparse model

well if the true model is included in the candidate set (Yang 2005). As we want to identify

the non-zero components in δ rather than obtaining an estimate, BIC is more relevant and

appealing here. We will provide a heuristic derivation of BIC in our two-sample diagnosis

problem. The following discussions are based on the assumptions presented in Appendix A.

2.2 The diagnostic aid with BIC

In the Bayesian framework, model comparison is based on posterior probabilities. Consider

a candidate model s ∈ S where S is the model space under consideration. Here we use the

generic notation “s” to denote a model or a subset for simplicity, which should not cause

any confusion. When used for a model, it implies a model with the joint loss function (1) in

which the indices of non-zero parameters in δ all belong to the candidate subset s as defined

above. Without any prior information, it is typically assumed that S is the full model space,

containing totally 2d− 1 candidate models and S =
⋃d

j=1 Sj, where Sj is the collection of all

models with j non-zero components in δ. If some prior knowledge is available, then we could
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conveniently incorporate it into the proposed framework by re-defining S as some collection

of the full model space.

Assume that model s has a priori probability π(s), and the prior density of its parameter

αs is π(α|s). Then the posterior probability of model s given data D satisfies

p(s|D) ∝ π(s)

∫
p(D|αs, s)π(αs|s)dαs.

Under the Bayes paradigm, a model s∗ that maximizes the posterior probability is selected,

say s∗ = arg maxs∈S π(s)
∫

p(D|αs, s)π(αs|s)dαs. In practice, if we do not have any prior

knowledge, an implicit underlying assumption is typically that the candidate models are

equally likely so that π(s) is constant over S. Consequently, model assessment mainly

depends on the integral term
∫

p(D|αs, s)π(αs|s)dαs which is usually referred to as the

marginal likelihood for model s.

The classical Schwarz’s BIC is an approximation to the logarithm of the marginal like-

lihood, and there is a similar heuristic derivation for the two-sample BIC in the present

diagnosis problem. We consider a pseudo-likelihood

L(D|δs, s) ∝ exp{−L(β1, δs)/2}, (2)

where all the functions and parameters with subscript “s” are the analogs corresponding

to model s. The main motivation for using Eq.(2) as a pseudo-likelihood is two-fold: on

one hand, minimizing L(β1, δs) gives the estimate of δ which works by maximizing a log-

likelihood function; on the other hand, L(β1, δs)/2 happens to be the log-likelihood as it

ignores some constants w.r.t. δs, under the multi-normality assumption, which is common

in many industrial applications.

However, it is not convenient to work with L(β1, δ) in many applications. Through a

quadratic approximation in (A.2) as illustrated in Appendix B, minimizing L(β1, δ) w.r.t.

δ is asymptotically equivalent to minimizing

g(δ) = (β̃2 − β̃1 − δ)T (L̈−1
1 + L̈−1

2 )−1(β̃2 − β̃1 − δ), (3)

where L̈i is the second-order derivative of the loss function Li(βi) w.r.t. βi. Very often the

quantity L̈−1
i (β̃i) is closely related to the asymptotic covariance of β̃i (denoted as n−1

i Ωi).
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This further motivates us to consider the least-squares function

g(δ) = (β̃2 − β̃1 − δ)T (n−1
1 Ω̂1 + n−1

2 Ω̂2)
−1(β̃2 − β̃1 − δ), (4)

as a simple approximation to the original loss function in Eq.(1). Here Ω̂i is an appropriate

estimate of Ωi. Naturally, we may use Ω̂i = niL̈
−1
i (β̃i) and Eq.(4) reduces to Eq.(3). Gen-

erally, Eq.(4) is a two-sample version of the least-squares approximation in Wang and Leng

(2007). From Eq.(4), the integral pseudo-likelihood can be written as

IL(D|δs, s) ∝
∫

exp{−g(δs)/2}π(δs|s)dδs. (5)

Next, we consider the approximation of IL(D|δs, s) using the Laplace method (Tierney

and Kadane 1986). As we know, the basic idea of Laplace approximation is that in large

samples, the integral is largely determined by the value of the integrand in a region close to

δ̂π, the value of δs that maximizes g̃(δs) = −g(δs) + log(π(δs|s)). As mentioned before, the

prior used for model s is typically the unit information prior (Raftery 1996). Hence, in such

cases, we have δ̂π ≈ δ̃s, the minimizer of (4) under model s. As a result, a second-order

Taylor expansion leads to

g(δs) ≈ g(δ̃s) + (δs − δ̃s)
T (n−1

1 Ω̂1s + n−1
2 Ω̂2s)

−1(δs − δ̃s). (6)

Now, by applying Laplace approximation, we obtain

∫
exp{−g(δs)/2}π(δs|s)dδs

≈ exp{−g(δ̃s)/2 + log(π(δs|s))}
∫

exp{−(δs − δ̃s)
T Λ̃s(δs − δ̃s)/2}dδs

= exp{−g(δ̃s)/2 + log(π(δs|s))}(2π)ds |Λ̃s|−1/2,

where Λ̃s = (n−1
1 Ω̂1s + n−1

2 Ω̂2s)
−1 and ds is the dimension of the model s (say, the num-

ber of elements in the subset s). By Assumption 3 in Appendix A, we have Λ̃s
p→Λs =

(n−1
1 Ω1s + n−1

2 Ω2s)
−1. Following from the well known Weyl-Theorem and Sturm-Theorem

(c.f., Theorems 4.4.5 and 4.4.14 on pages 118–120 in Marcus and Minc 1992), we have

[(n−1
1 + n−1

2 )−1 min{λ1d, λ2d}]ds ≤ |Λs| ≤ [(n−1
1 + n−1

2 )−1 max{λ11, λ21}]ds , (7)
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where λi1 ≥ . . . ≥ λid are the eigenvalues of Ωi for i = 1, 2. Hence, we can immediately

obtain

log
[ ∫

exp{−g(δs)/2}π(δs|s)dδs

]

≈ −g(δ̃s)/2 + log(π(δs|s)) + ds log(2π)− (1/2) log |Λ̃s|
= −g(δ̃s)/2− 1

2
ds · log

n1n2

n1 + n2

+ O(1).

If we ignore the terms of O(1), finding the model that gives the highest posterior probability

based on the pseudo-likelihood (2) leads to minimizing BIC, which is defined by

BICs = g(δ̃s) + ds · log
n1n2

n1 + n2

. (8)

In cases where n1 is sufficiently large, i.e., the baseline model can be estimated accurately as

assumed in most Phase II applications, the second term can be reduced to ds log n2, which

strongly depends on n2.

Since the ordinary BIC is somewhat liberal for model selection when the model space

is large with a moderate sample, it tends to select a model with many spurious parame-

ters (Broman and Speed 2002). This situation often occurs in MSPC diagnosis problems,

especially in today’s service industries where the datasets always contain many variables.

For instance, when diagnosing both mean vector and variance-covariance matrix of a p-

dimensional vector, we would face a situation with d = [p(p + 3)/2]. For p = 8, d will be 44

which is relatively large in the usual circumstances where the sample sizes (n1, n2) are several

hundreds at most. By re-examining the Bayesian paradigm for model selection, Chen and

Chen (2008) proposed an extended family of BIC (EBIC), which takes into account both the

number of unknown parameters and the complexity of the model space. It is demonstrated

that EBIC incurs a small loss in the positive selection rate but tightly controls the false dis-

covery rate. To be specific, in the present problem, BIC in Eq.(8) can be similarly extended

by the following EBIC,

EBICs = g(δ̃s) +

[
log

n1n2

n1 + n2

+ 2 log d

]
ds. (9)

That is, using an additional term “2 log d” gives a further “correction” to the ordinary BIC.

Due to its attractive properties (Chen and Chen 2008) and appealing numerical performance
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in our problems, we recommended using this EBIC which will be further combined with a

LASSO procedure in the next section. We will also show the asymptotic consistency of the

EBIC selection.

3 A LASSO-Based Diagnosis Procedure

BIC and EBIC are both consistent in the sense that they select the true model with prob-

ability approaching one when sample size increases if such a true model is in the class of

candidate models. In practice, when d is large, we cannot afford to calculate the EBIC

values (9) for all possible s. Instead, we prefer to combine this criterion with some penalized

techniques (see Zou and Qiu 2009 and the references therein). Motivated by Eq.(4), we will

consider the penalized loss function

PL(δ; θ) = g(δ) +
d∑

k=1

hθk
(|δk|), (10)

where θ = (θ1, . . . , θd)
T are the penalty parameters (also called the regularization param-

eters), and hθk
(·) are the penalty functions. If the adaptive LASSO (ALASSO) penalty

function (cf., Zou 2006) is used, then the loss function becomes

AL(δ; θ) = g(δ) +
d∑

k=1

θk|δk|. (11)

Given θ, the minimizer δ̂θ = arg min AL(δ; θ) naturally defines a candidate model sθ =

{i : δ̂θi 6= 0}. Now, substituting the estimator δ̂θ into (9) leads to

EBICθ = g(δ̂θ) +

[
log

n1n2

n1 + n2

+ 2 log d

]
· dθ, (12)

where dθ denotes the number of non-zero elements of δ̂θ.

The following result establishes the diagnostic consistency of LASSO-based EBIC in

Eq.(12) under some mild conditions. Although this result requires the sample size approaches

infinity, which can never be met in reality, we believe it is one of the basic requirements for

any diagnosis methods since a quality engineer may not trust and use a practical diagnosis
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method if it can’t guarantee to find the correct subset of shifted parameters even when sample

size is very large. The consistency result essentially warrants the users the confidence of using

the diagnosis method when more information are collected.

Theorem 1 Let θ̂n = arg minθ EBICθ. If Assumptions 1-3 in Appendix A hold, as min{n1, n2} →
∞, Pr(sθ̂n

= sT ) → 1.

The proof of this theorem is given in Appendix C. The main idea of the proof is similar

to Nishii (1984), i.e., comparing the values between the considered model and the true model

in two different cases according to whether the model is underfitted or overfitted. In the

post-signal diagnosis of Phase II monitoring, it seems that the requirement of large sample

sizes is not likely fulfilled. In asymptotic studies of average run length (ARL) in the literature

(e.g., Han and Tsung 2006), it is typically assumed that the control limit goes to infinity

and both of the asymptotic expressions of the IC and OC ARLs approach to infinity. The

consistency result given by Theorem 1 can therefore be regarded as a sequel to asymptotic

analysis of control charts and guarantees that our diagnosis result is correct following the fault

detection from a control chart in the asymptotic point of view. In addition, as indicated by

Assumption 2, the diagnostic consistency requires
√

n/ log n lim infn→∞(mini∈sT
|δnj|) →∞.

Roughly speaking, as long as the smallest non-zero element in δn is of lower order than

(n/ log n)−1/2, the procedure could give a correct identification in an asymptotic view. Such

an asymptotic result also sheds lights on the statistical property of the identified subset sθ̂n

in finite-sample cases. That is, it reflects the relative magnitude of δn to the sample size

with which we can obtain a reasonable diagnosis result in small-sample cases (although this

may not be easily quantified in practice).

Following Zou’s (2006) recommendation, we will set θk = θ|δ̃k|−r, where r > 0 is some

specified constant, such as 0.5 or 1, and δ̃ = β̃2 − β̃1 = (δ̃1, . . . , δ̃d)
T . By Assumption 2

in Appendix A, δ̃k is
√

n-consistent. Thus, it is easy to verify that such tuning parameter

definition satisfies the conditions on an and bn needed by Lemma 1 in the Appendix as long

as
√

nθ → 0 and n(1+r)/2θ →∞. Hence, Theorem 1 is still valid after applying this specific

penalty setting. Such a strategy not only effectively transforms the original d-dimensional

tuning parameter selection problem into a univariate one, but also greatly facilitates the
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search procedure based on the following generalization of Theorem 3 in Zou et al. (2007).

We rewrite the ALASSO-type penalized likelihood (11) with θk = θ|δ̃k|−r as

PL(α; θ) = (δ̃ −∆α)T Λ̃(δ̃ −∆α) + θ
d∑

i=1

|αi|, (13)

where αi = δi/|δ̃i|r and ∆ = diag(|δ̃1|r, . . . , |δ̃d|r). This is exactly a LASSO-type penalized

likelihood function. According to Zou et al. (2007), there is a finite sequence

θ̃0 > θ̃1 > . . . > θ̃K = 0, (14)

such that (i) for all θ > θ̃0, α̂θ = 0, and (ii) in the interval (θ̃m+1, θ̃m), the active set

B(θ) = {j : sgn[αθj] 6= 0} and the sign vector S(θ) = {sgn[αθ1], . . . , sgn[αθd]} are unchanged

with θ. These θ̃m’s are called transition points because the active set changes at each θ̃m.

Let θ̂n = arg minθ EBICθ. By generalizing the proof of Theorem 3 in Zou et al. (2007), we

can obtain results in the following proposition without much difficulty.

Proposition 1 δ̂θ̂n
is one of the LASSO solutions at transition points, i.e, δ̂θ̂n

∈ {δ̂θ̃1
, . . . , δ̂θ̃K

}.

It is worth noting that this proposition avoids the use of some numerical search algorithms

for finding the solution of the optimization problem, arg minθ EBICθ. With the help of this

proposition and the LARS algorithm (see Efron et al. 2004), we can obtain the diagnostic

result easily and quickly because the LARS algorithm produces these transition points with

similar computational cost to a least-squares regression with d covariates.

To end this section, we summarize the detailed steps for implementing the proposed

LASSO-based EBIC diagnosis method (called LEB procedure for abbreviation) as follows.

A Fortran package and R interface for implementing the proposed procedure are available

from the authors upon request.

LEB diagnosis procedure:

1. Specify the loss functions Li and obtain the corresponding estimators β̃i for i = 1, 2.

2. Find appropriate estimators of covariance matrices Ω̂i for i = 1, 2.
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3. Use the LARS algorithm to solve (13) and obtain the K solutions of ALASSO at all

the transition points.

4. Substitute these K solutions into (12) and find the one δ̂θ̂n
whose EBIC value is the

smallest. Then the corresponding diagnostic result is sθ̂n
= {i : δ̂θni

6= 0}.

4 Industrial Examples

In this section, we present three industrial examples in SPC practice to investigate the

performance of the proposed fault diagnosis framework and compare it with some existing

methods. Assume ŝ is a subset of {1, . . . , d} determined by a diagnosis method. To evaluate

the statistical performance of a specific diagnosis procedure, we consider three accuracy

measures. Correctness, which is represented as “C” in the following tables, present the

relative frequencies of the cases when the diagnostic procedure identifies faulty parameters

fully correctly (i.e., ŝ = sT ). In addition, to represent the overall quality of a diagnosis

procedure, we also consider an index - parameter selection score (PSS) - defined as,

E(
d∑

i=1

|I{i∈sT } − I{i∈ŝ}|),

where I{·} is the indicator function. This index provides certain indication of the precision of

the diagnostic results, and the expectation is of course approximated by the average of many

repetitions. So, for a given diagnostic procedure, it performs better in a given case if its

value in column “C” is comparatively larger and its value in column “PSS” is comparatively

smaller. The following simulation results are obtained from 10,000 replications.

4.1 Diagnosis in multivariate mean vector and covariance matrix

Fault diagnosis in multivariate location parameters may be one of the problems we are

most commonly faced with in SPC practice (Mason and Young 2002). In this situation,

zij = xij ∈ Rp (i = 1, 2) are assumed to come from some distribution with mean µi and

covariance matrix Σi. A standard choice is βi = µi. Naturally,

g(δ) = (x̄2 − x̄1 − δ)T (n−1
1 Σ̂1 + n−1

2 Σ̂2)
−1(x̄2 − x̄1 − δ),
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where x̄i and Σ̂i are the estimated mean vector and covariance matrix for the i-th dataset,

respectively. Furthermore, diagnosis in both the mean vector and the covariance matrix

(or equivalently the correlation matrix) is also of practical interest (e.g., Huwang et al.

2007; Sullivan et al. 2007). In this case, we are concerned with βi = [µT
i , SurT (Σi)]

T and

d = p(p + 3)/2, where Sur(Σ) denotes the vector formed by stacking the upper triangular

elements of Σ. Certainly, we could set β̃i = [x̄T
i , SurT (Σ̂i)]

T . The estimate of the asymptotic

covariance matrix of β̃i, Ω̂i, can be found in Neudecker and Wesselman (1990). It should

be worth noting that in this case the number of important parameter changes may differ

depending on how to parameterize the model, say using the covariance matrix or alternatively

using the correlations and standard deviations. If a shift involves only a single standard

deviation but none of correlations, it would change several components if the covariance

matrix is used. It is therefore advised that one should always choose the representation

which is more likely to result in some physical interpretation so that the engineers could use

the results directly. Of course, this requires the engineers to take the engineering knowledge

about the specific problem into consideration in practical applications.

We now compare the proposed LEB procedure with the step-down procedure discussed

before (Sullivan et al. 2007 and the references therein). The step-down procedure depends

heavily on a pre-specified type I error probability, which is chosen to be 0.05, 0.01, or

0.002 here for comparison use. The number and variety of covariance matrices and change

cases are too large to allow a comprehensive, all-encompassing comparison. Our goal is to

show the effectiveness, robustness and sensitivity of LEB, and thus we only choose certain

representative models for illustration. Specifically, the covariance matrix Σ1 = (σ1(ij)) is

chosen to be σ1(ii) = 1 and σ1(ij) = 0.5|i−j|, for i, j = 1, . . . , p. Three comparison scenarios

are chosen: (i) µ2k = µ1k +δ for k = 1, 2; (ii) µ2k = µ1k +δ for k = 1, 2, and σ2(11) = σ1(11)+δ;

(iii) µ2k = µ1k + δ for k = 1, 2, σ2(11) = σ1(11) + δ, and σ2(23) = σ1(23) − δ. We set δ = 1

in all the cases but vary ni to obtain results corresponding to various signal-to-noise ratios

in diagnosis. µ1 is set to zero vector without loss of generality. The simulation results are

summarized in Tables 1 and 2 where p = 4 and 6 are considered. In Table 1, we fixed the

sample sizes as n1 = 2n2, whereas in Table 2 n1 is fixed at 1,000 which may reflect the

performance of post-signal diagnosis in Phase II, say the IC dataset (n1) is fairly large.
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Table 1: Diagnostic performance comparisons between the proposed LEB and the step-down
procedures for MSPC in various change cases (n1 = 2n2).

scenarios sample sizes step-down procedure LEB

α = 0.05 α = 0.01 α = 0.002

(n1, n2) p = 4

C PSS C PSS C PSS C PSS

(50,25) 0.16 1.81 0.33 1.20 0.36 1.07 0.37 1.04

(i) (100,50) 0.20 1.54 0.44 0.83 0.58 0.57 0.58 0.61

(200,100) 0.21 1.48 0.48 0.73 0.66 0.43 0.69 0.43

(50,25) 0.17 1.80 0.25 1.44 0.20 1.52 0.24 1.42

(ii) (100,50) 0.24 1.39 0.46 0.79 0.55 0.63 0.49 0.76

(200,100) 0.27 1.27 0.52 0.64 0.69 0.38 0.67 0.46

(50,25) 0.13 2.07 0.11 1.95 0.06 2.24 0.12 1.95

(iii) (100,50) 0.24 1.40 0.39 0.96 0.36 0.97 0.37 0.98

(200,100) 0.30 1.13 0.58 0.57 0.70 0.37 0.63 0.50

(n1, n2) p = 6

C PSS C PSS C PSS C PSS

(100,50) 0.04 3.33 0.22 1.67 0.41 1.03 0.51 0.85

(i) (200,100) 0.05 3.05 0.25 1.43 0.50 0.75 0.66 0.51

(500,250) 0.06 2.90 0.29 1.27 0.52 0.67 0.80 0.28

(100,50) 0.04 3.08 0.23 1.57 0.39 1.09 0.38 1.07

(ii) (200,100) 0.07 2.78 0.30 1.27 0.53 0.68 0.60 0.62

(500.250) 0.07 2.68 0.32 1.18 0.57 0.58 0.77 0.31

(100,50) 0.05 3.17 0.19 1.83 0.27 1.43 0.23 1.52

(iii) (200,100) 0.06 2.80 0.31 1.28 0.51 0.76 0.52 0.78

(500,250) 0.08 2.61 0.35 1.12 0.59 0.56 0.75 0.35

Note: The standard error of the frequency (π) in each entry,
√

π̂(1− π̂)/10000, is typically
less than 0.01.
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Table 2: Diagnostic performance comparisons between the proposed LEB and the step-down
procedures for MSPC in various change cases (n1 is fixed at 1,000).

scenarios sample sizes step-down procedure LEB

α = 0.05 α = 0.01 α = 0.002

(n1, n2) p = 4

C PSS C PSS C PSS C PSS

(1000,25) 0.11 2.39 0.25 1.67 0.34 1.35 0.36 1.26

(i) (1000,50) 0.16 1.85 0.38 1.08 0.52 0.76 0.57 0.68

(1000,100) 0.19 1.59 0.44 0.83 0.62 0.50 0.69 0.43

(1000,25) 0.13 2.16 0.28 1.53 0.35 1.29 0.36 1.22

(ii) (1000,50) 0.21 1.57 0.44 0.90 0.58 0.63 0.59 0.63

(1000,100) 0.23 1.40 0.49 0.72 0.66 0.43 0.71 0.40

(1000,25) 0.14 2.14 0.23 1.71 0.22 1.64 0.25 1.47

(iii) (1000,50) 0.23 1.46 0.43 0.90 0.52 0.73 0.49 0.78

(1000,100) 0.28 1.22 0.53 0.62 0.68 0.39 0.67 0.45

(n1, n2) p = 6

C PSS C PSS C PSS C PSS

(1000,50) 0.03 3.87 0.16 2.24 0.32 1.54 0.50 0.94

(i) (1000,100) 0.04 3.23 0.23 1.58 0.46 0.87 0.70 0.47

(1000,250) 0.08 2.60 0.34 1.12 0.61 0.54 0.79 0.28

(1000,50) 0.03 3.67 0.18 2.07 0.36 1.38 0.48 0.96

(ii) (1000,100) 0.06 2.97 0.26 1.46 0.49 0.81 0.68 0.48

(1000,250) 0.06 2.73 0.31 1.21 0.55 0.61 0.81 0.26

(1000,50) 0.04 3.45 0.20 2.00 0.36 1.41 0.40 1.14

(iii) (1000,100) 0.05 2.86 0.29 1.36 0.53 0.75 0.63 0.60

(1000,250) 0.08 2.60 0.34 1.12 0.61 0.54 0.79 0.28
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As expected, the step-down procedure strongly depends on the choice of the type I

error probability. On the other hand, the proposed LASSO-based approach has comparable

diagnostic ability to that of the step-down procedure with the “optimal” choice of type I

error probability. In many situations, especially when the dimension p gets larger (p = 6),

the LASSO-based approach outperforms the step-down procedure by a considerably large

margin. In this case, the step-down procedure fails to perform exact identifications well

(in terms of “C”) when the sample size is relatively large, and even hardly improve as the

sample size becomes larger. For example, when α = 0.002, the correctness probability

remains close to 0.5 ∼ 0.6 even when sample size increases significantly from (100, 200) to

(250, 500). In comparison, the LEB procedure tends to identify all relevant and irrelevant

parameters correctly, especially when sample size gets larger. For example, for the fault

case (iii) when p = 6, its correctness improves from 0.52 to 0.75 when sample size increases

from (100, 200) to (250, 500). Of course, the performance of the step-down procedure can

be improved by choosing other more appropriate type I error probabilities in a given case.

However, such an ad hoc approach is not very convenient in practical applications because

there is a lack of standard recommendations on how to choose this parameter. Similarly,

when comparing the PSS values, the LASSO-based approach is comparable to the step-

down procedure when p = 4 but significantly better when p = 6, especially when sample

size is large. In addition, Tables 1 and 2 provide similar comparison information. As n1

increase, the performance of LEB generally gets better, although the improvements are not

very substantial. This is not surprising to us because from Section 2, we can see that the

“actual” (roughly speaking) sample size in such a two-sample problem is n1n2/(n1 + n2) and

thus the diagnostic performance of LEB depends mainly on the value of min(n1, n2) as long as

n1 or n2 is large enough. Overall, after taking into account its computational advantage, we

believe that the LEB approach provides a reasonable diagnosis tool for MSPC applications.

It is worth to point out that the LEWMA method proposed in Zou and Qiu (2009) is

different from the LEB method here. The LEWMA method integrates the LASSO algorithm

with a multivariate exponential weighted moving average charting scheme for Phase II mul-

tivariate process monitoring. While it mainly concerns with mean shift detection, the LEB

method is designed for fault diagnosis which includes both mean and variance-covariance
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changes. The above cases (ii) and (iii) show that the LEB method can not only identify

the mean changes, but also the variance and covariance changes. The diagnosis performance

not only depends on the sample sizes, but also the number of shifted parameters, especially

when the sample sizes are small.

4.2 Diagnosis in multistage process control

As modern technologies become increasingly sophisticated, most manufacturing operations,

such as semiconductor manufacturing and automotive body assembly, comprise multiple

stages. Shi and Zhou (2009) provide an extensive review of the multistage process control

problems with many industrial examples. In these systems, it is often desirable and necessary

to design an effective diagnosis approach for isolating and identifying the sources of a change

by linking the current stage signal to information about earlier stages in the serial process.

Zhou et al. (2003) and many others discuss sensor allocations and fault diagnosability in

multistage processes. Zou and Tsung (2008), Zou et al. (2008), and Li and Tsung (2009)

also investigate multistage process monitoring and diagnosis problems in various settings.

Consider a common manufacturing process comprised of p stages. For the j-th prod-

uct collected, a two-level linear state-space model generated from a practical application is

usually used to describe the quality measurement to the k-th stage (Zou et al. 2008): for

k = 1, . . . , p, j = 1, 2, . . . , n1 + n2,

ykj = Ckxkj + vkj

xkj = Akxk−1j + wkj + δkI{k∈sT ,j>n1},

where x0j ∼ N(a0, σ
2
ε). The vkj and wkj are assumed to be independent from each other and

vk ∼ (µk, σ
2
vk

), wk ∼ (0, σ2
wk

). The first level of the model involves the fitting of the quality

measurement to the quality characteristic, and Ck is used to relate the unobservable process

quality characteristic, xk, to the observable quality measurement, yk. The second level of

the model involves modeling the transfer of the quality characteristic from the previous

stage to the present stage, in which Ak denotes the transformation coefficient of the quality

characteristic from stage k − 1 to stage k. In multistage process applications, Ak and Ck

are known constants (or matrices) that are usually derived or estimated from engineering
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knowledge (see Jin and Shi 1999 for details). The unknown magnitudes, δk’s, reflect the

difference between two multistage samples. Typically most of δk’s are zero.

By the above model assumption, we have z1j = (yj1, . . . , yjp)
T for j ≤ n1 and z2j =

(yj1, . . . , yjp)
T for j > n1. Assume E(zij) = µi. It follows that µ2 = µ1 + Γδ, where

Γ =




C1 0 . . . 0
C2A2 C2 . . . 0

...
...

. . .
...

Cp

p∏
i=2

Ai . . . CpAp Cp




.

Hence we can set β1 = Γ−1µ1 and β2 = Γ−1µ2. As a consequence,

β̃i = Γ−1z̄i, and Ω̂i = Γ−1Σ̂i(Γ
−1)T ,

where z̄i and Σ̂i are the estimated mean vector and covariance matrix for the i-th dataset,

respectively.

We now compare the LEB procedure with some existing alternatives. Note that Zhou

et al. (2003) mainly studied the diagnosability of linear-mixed multistage models and Zou

and Tsung’s (2008) diagnosis method is only applicable for single-fault cases. Li and Tsung

(2009) proposed a fault isolation method which is able to identify multiple fault stages, and

thus we use it as a benchmark for comparison. Their method is to firstly obtain the one-step

forecast errors (OSFE) or residuals based on the process model and then apply the false

discovery rate (FDR) control approach to the residuals. Hereafter we refer to it as OSFE-

FDR. In this subsection, we set p = 20, (Ak, Ck) = (1.0, 1.0), (Ak, Ck) = (1.2, 0.8) and

(Ak, Ck) = (0.8, 1.2), which have been investigated and are consistent with the numerical

comparison settings in Zou and Tsung (2008). σ2
vk

, σ2
wk

and σ2
ε are all chosen as 0.5. Three

types of faults are chosen for comparison: (i) (δ1, δ2) = (1,−1); (ii) (δ1, δ2, δ5) = (1,−1, 2);

and (iii) (δ1, δ2, δ5, δ15) = (1,−1, 2,−2). Note that the OSFE-FDR approach also depends on

the pre-specification of type I error probability, which is fixed at 0.001 here for illustration.

The simulation results are summarized in Table 2.

The LEB appears to be much more accurate in estimating the changed stages in most

of the cases. The OSFE-FDR procedure performs reasonably well only in some cases of
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Table 3: Diagnostic performance comparisons between the LEB and OSFE-FDR procedures
for the multistage problem.

(Ak, Ck) scenarios C PSS C PSS C PSS C PSS

(n1, n2) = (60, 40) (n1, n2) = (50, 100)

OSFE-FDR LEB OSFE-FDR LEB

(i) 0.09 1.40 0.53 0.62 0.23 1.00 0.69 0.39

(1.0,1.0) (ii) 0.04 2.23 0.49 0.74 0.07 2.04 0.68 0.42

(iii) 0.02 2.89 0.53 0.69 0.02 2.95 0.69 0.41

(i) 0.29 0.95 0.66 0.43 0.54 0.54 0.78 0.27

(0.8,1.2) (ii) 0.11 1.86 0.65 0.47 0.17 1.66 0.77 0.28

(iii) 0.06 2.42 0.66 0.44 0.07 2.40 0.77 0.28

(i) 0.01 1.73 0.30 1.03 0.04 1.46 0.49 0.67

(1.2,0.8) (ii) 0.01 2.39 0.28 1.21 0.02 2.33 0.45 0.85

(iii) 0.00 3.20 0.30 1.15 0.01 3.30 0.48 0.79

scenario (i). Unlike our proposed method, OSFE-FDR has no theoretical result to assure

its effectiveness. This can be clearly seen from the case of (Ak, Ck) = (1.2, 0.8), in which

the accuracy of OSFE-FDR hardly improves as the sample sizes become larger. This is not

surprising because the effectiveness of OSFE-FDR relies on the implicit assumption that the

OSFE’s at the stages i ∈ sT significantly deviate away from zero but those at the stages

i /∈ sT are close to zero (Li and Tsung 2009). However, as shown in the theoretical and

numerical analysis in Zou and Tsung (2008), this assumption is not always satisfied. That’s

why the accuracy of OSFE-FDR would be extremely poor in certain cases, although the

type I error probability can be adjusted to alleviate the problem. On the other hand, the

LEB procedure always has a higher diagnostic power than OSFE-FDR. Moreover, its power

can be significantly improved when sample sizes become larger in all cases considered here.

When (Ak, Ck) = (1.2, 0.8), its diagnostic probability increases from around 0.30 to 0.50

when (n1, n2) changes from (60, 40) to (50, 100). Although this is a specific example and
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not representative of any multistage systems, it illustrates that the LEB procedure is more

accurate and also more robust than OSFE-FDR for diagnosing different types of faults in

multistage systems.

4.3 Diagnosis in profile problems

In many applications of manufacturing and service industries, the quality of a process is

often characterized by functional relationships between response variables and explanatory

variables. The problems in monitoring and diagnosing the stability of such relationships are

referred to as SPC for profile data. An extensive discussion of research problems on this

topic is presented by Woodall et al. (2004). As Woodall (2007) pointed out, a systematic

approach for profile diagnosis is most critical in many practical applications. However, it

is challenging to isolate the type of profile parameter changes in a high-dimensional pro-

file problem, especially for complicated general profiles. Among others, Zou et al. (2007)

proposed to use parametric tests to identify the shifted parameters for general linear profiles.

To demonstrate the diverse applicability of the proposed LASSO-based framework, we

will extend the linear profile model in Zou et al. (2007) to a more general case - multivariate

linear profile model in which multiple response variables may be involved simultaneously.

Assume we have n observations on q responses of y = (y1, . . . , yq)
T and p explanatory

variables x = (x1, . . . , xp)
T . The process observations are collected from the following general

multivariate linear profile model,

Y = XB + E, (15)

where Y = (y1, . . . ,yq) is an m × q matrix, X = (x1, . . . ,xm)T is an m × p matrix,

B = (b1, . . . ,bq) is a p × q coefficients matrix, E = (e1, . . . , em)T is the regression noise

with ek = (εk1, . . . , εkq)
T and e’s are independently sampled from (0,Σ) with the diagonal

components of Σ being s = (σ2
(11), . . . , σ

2
(qq))

T . Now assume there is a change point in the

profile relationship (15) and we collect zij = (Yij,Xij) from each side of the change point,

where (Yij,Xij) are random samples collected from the model (15) with model parameters

(Bi, si) for i = 1 or 2. The difference between the parameters βi = (VecT (Bi), s
T
i )T are of

interest here, where Vec(S) denotes the (p · q)-dimensional vector formed by stacking the
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columns of a (p× q)-dimensional matrix S. In this example, d = pq + q.

A direct way to obtain β̃i is

B̃i =
1

ni

ni∑
j=1

B̃ij, B̃ij = (XT
ijXij)

−1XT
ijỸij, s̃i =

1

ni

ni∑
j=1

s̃ij,

s̃ij = diag[Σ̃ij], Σ̃ij = (Yij −XijB̃ij)
T (Yij −XijB̃ij)/(m− p).

Thus, β̃i = (VecT (B̃i), s̃
T
i )T . Note that the asymptotic covariance matrix of β̃i can be

approximated by

Ω̂i =
1

ni

ni∑
j=1

diag{Σ̃ij ⊗ (XT
ijXij)

−1, Γ̃ij}.

The (k, l) elements in Γ̃ij, ρ̃kl, is given by (Anderson 2003; Chapter 7),

ρ̃k,l ≈
σ̃4

(kl)

σ̃(kk)σ̃(ll)

,

where Σ̃ij = (σ̃2
(kl)). It can be seen that when m > pq the assumptions in Appendix A hold.

This is not restrictive and can easily be satisfied in practical applications.

We now present some simulation results to assess the effectiveness of the proposed method

for diagnosing any parameter changes in the profile problem. Comparing the LEB procedure

with alternative methods turns out to be difficult, due to the lack of an obvious comparative

method because most of the approaches in the literature are designed for univariate linear

profiles. Thus, we only consider single profile case, say q = 1, and use the parametric testing

approach (called PT for abbreviation) provided in Section 7.2 of Zou et al. (2007). We

consider the linear profile model with covariates (x1, x
2
1, x2, x

2
2, x1x2, . . . , xl, x

2
l , x1l, . . . xl−1l),

where the design points xi are generated from a uniform distribution. We also center those

design points so that their means are zero. This example, containing both multiple and

polynomial regression terms, is quite common in practice. For illustration purpose, l = 4 is

used and there are p = 1 + 2l + l(l − 1)/2 = 15 covariates. Without loss of generality, the

variance of the error term is set to be one and the following three types of faults are considered

for comparison: (i) (δ1, δ2) = (1, 1); (ii) (δ1, δ2, δ5) = (1, 1, 1); and (iii) (δ1, δ2, δ5, δ16) =

(1, 1, 1, 1). Note that δ16 indicates a change in the variance of profile. The simulation results

with two choices of sample sizes are considered in Table 3. The type I error probability

23



in the PT approach is fixed at 0.002 in this table. It can be seen that the two methods

perform reasonably satisfactorily in most of the cases as shown by the correct identification

probability and PSS index. The LEB has a significant advantage over PT, especially for small

values of m and (n1, n2). Although the type I error probability can be adjusted to improve

the sensitivity of the PT approach, it should be emphasized that the PT approach contains

multiple tests, including a t-test, a χ2-test and a multivariate F -test, and thus requires more

statistical and sophisticated knowledge on the choice of false alarm rate for each test. In

contrast, the LEB procedure provides a unified diagnosis, which does not depend on the

pre-specified type I error probability, and is thus easier to implement in practice.

Table 4: Diagnostic comparisons between the LEB and parametric testing procedures for
the profile problem.

m scenarios C PSS C PSS C PSS C PSS

(n1, n2) = (20, 20) (n1, n2) = (40, 60)

PT LEB PT LEB

(i) 0.52 0.87 0.68 0.57 0.67 0.73 0.82 0.39

30 (ii) 0.38 1.81 0.56 1.16 0.55 1.34 0.72 0.71

(iii) 0.20 2.53 0.37 1.81 0.36 2.06 0.55 1.30

(i) 0.77 0.45 0.89 0.20 0.92 0.13 0.97 0.04

50 (ii) 0.69 0.72 0.80 0.42 0.91 0.18 0.95 0.08

(iii) 0.39 1.61 0.54 1.12 0.70 0.68 0.82 0.37

(i) 0.92 0.16 0.96 0.06 0.99 0.01 0.99 0.01

100 (ii) 0.89 0.21 0.94 0.10 0.99 0.01 0.99 0.01

(iii) 0.57 0.97 0.72 0.54 0.90 0.18 0.96 0.07
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5 A Real-Data Application

In this section, we demonstrate the proposed methodology by applying it to a real dateset

from a white wine production process. The data contains totally 4898 observations, and

is publicly available in the dataset “Wine Quality” of the UCI repository (can be down-

loaded from the web site http://archive.ics.uci.edu/ml/datasets/Wine+Quality). The data

were collected from May/2004 to February/2007 using only protected designation of origin

samples that were tested at the official certification entity, which is an inter-professional or-

ganization with the goal of improving the quality and marketing of Portuguese Vinho Verde

wine. The data were recorded by a computerized system, which automatically manages the

process of wine sample testing from producer requests to laboratory and sensory analysis.

For each observation, there are eleven continuous measurements (based on physicochemical

tests) including fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sul-

fur dioxide, total sulfur dioxide, density, PH, sulphates and alcohol. A categorical variable,

quality, indicating the wine quality between 0 (very bad) and 10 (very excellent), is also

provided based on sensory analysis. The goal of this data analysis is mainly to model and

monitor wine quality based on physicochemical tests. More detailed discussion about this

example and dataset can be found in Cortez et al. (2009) and the references therein.

As mentioned by Cortez et al. (2009), we are not sure if all input variables are relevant

to distinguish two categories (quality levels) of wine. So, it could be interesting to consider

some feature selection methods to determine which physicochemical factor(s) are responsible

for the change of quality. This is closely related to our diagnosis problem discussed above,

and hence we may consider the use of the LEB method.

Under the SPC context of sequential monitoring the wine production process, we suppose

that the standard quality level is the index “seven” (LV7; as also suggested by Cortez et al.

2009) and use all the observations belonging to this level (totally 880) as a training sample

except for the last ten observations. Some summary statistics of the LV7 white-wine data

are presented in Table 5. Then, we artificially assume that we firstly monitor those ten

observations from LV7 and then obtain the observations categorized as the level “six” (LV6)

sequentially. Similar to Cortez et al. (2009), the location parameter is of greatest interest and
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Table 5: Summary statistics of the white-wine quality data with quality index “seven”

Sample mean vector

6.735 0.263 0.326 5.186 0.038 34.10 125.1 0.992 3.214 0.503 11.37

Sample standard deviations

0.756 0.091 0.079 4.298 0.011 13.24 32.74 0.003 0.158 0.130 1.247

Sample correlation matrix

1.000 -0.090 0.265 0.234 0.139 -0.000 0.174 0.409 -0.492 -0.091 -0.274

-0.090 1.000 -0.260 -0.024 -0.282 -0.169 -0.081 -0.276 0.048 -0.018 0.502

0.265 -0.260 1.000 0.044 0.166 0.157 0.117 0.141 -0.125 -0.027 -0.155

0.234 -0.024 0.044 1.000 0.275 0.118 0.455 0.822 -0.335 -0.109 -0.480

0.139 -0.282 0.166 0.275 1.000 0.191 0.398 0.494 -0.088 0.049 -0.554

-0.000 -0.169 0.157 0.118 0.191 1.000 0.532 0.181 0.029 0.155 -0.200

0.174 -0.081 0.117 0.455 0.398 0.532 1.000 0.577 -0.030 0.009 -0.465

0.409 -0.276 0.141 0.822 0.494 0.181 0.577 1.000 -0.167 0.030 -0.837

-0.492 0.048 -0.125 -0.335 -0.088 0.029 -0.030 -0.167 1.000 0.178 0.106

-0.091 -0.018 -0.027 -0.109 0.049 0.155 0.009 0.030 0.178 1.000 -0.046

-0.274 0.502 -0.155 -0.480 -0.554 -0.200 -0.465 -0.837 0.106 -0.046 1.000

thus we construct the standard multivariate exponentially weighted moving average control

chart (Lowry et al. 1992) to monitor the wine quality. We choose λ = 0.1 and in-control

average run length as 1,000. Accordingly, the control limit is 1.56. As shown in Figure 1-(a),

the control chart triggers a signal after the eleventh LV6 observation is obtained. Then, by

adapting the multivariate change-point estimator (Zamba and Hawkins 2006), we find that

the estimator of change-point is 10, which accurately indicates the change-point location.

Now, we have n1 = 880 and n2 = 11. Then, we use the proposed LEB diagnostic

procedure to identify the influential variables. Table 6 tabulates the resulting eleven LASSO

estimates δ̂θ̃j
, for j = 1, . . . , 11, and the corresponding values of EBICθ̃j

. These values

indicates that the shift may have occurred in the three factors, chlorides, density and alcohol.

Figure 1 (b)-(d) show the time series plots of the raw data for these three factors, from which

we can also clearly observe significant changes before and after the change-point. Such a

feature selection result would be used to support the oenologist’s wine evaluations, potentially
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Figure 1: (a) The MEWMA control chart for monitoring the white-wine production process; (b)-
(d) represent the time series plots of the observations for the variables chlorides, density and alcohol,
respectively

improving the quality and speed of their decisions. Moreover, identifying the most important

impacts among all the physicochemical tests in the wine quality is useful for improving the

production process as suggested by Cortez et al. (2009) as well.

6 Concluding Remarks

Fault diagnosis in statistical process control remains a challenging problem for complex pro-

cesses due to the complex nature of various systems. In this research, we start from a generic

parametric model and frame the fault diagnosis as a variable (model) selection problem. A

two-sample BIC is derived based on the least-squares approximation of the loss function

in general for evaluating tentative models. A practical LASSO-based diagnostic procedure

which combines an extension of BIC with the adaptive LASSO algorithm is proposed and

its diagnostic consistency is shown under some mild conditions. The consistency theory
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Table 6: Diagnostic results of the LEB procedure about white-wine quality data.

j δ̂θ̃j
EBICθ̃j

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -2× 10−4 0.000 0.000 0.000 49.61

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.584 39.76

3 0.000 0.000 0.000 0.000 -0.007 0.000 0.000 -0.001 0.000 0.000 1.163 32.34

4 0.000 0.000 0.000 0.000 -0.007 0.000 0.000 -0.002 0.000 0.010 1.197 38.45

5 -0.027 0.000 0.000 0.000 -0.007 0.000 0.000 -0.002 0.000 0.015 1.220 44.90

6 -0.066 0.000 0.000 -0.233 -0.008 0.000 0.000 -0.002 0.000 0.021 1.275 50.70

7 -0.127 0.000 0.000 -0.763 -0.008 0.000 -3.910 -0.002 0.000 0.030 1.412 55.12

8 -0.281 -0.018 0.000 -2.127 -0.010 0.000 -14.01 -0.003 0.000 0.053 1.639 58.04

9 -0.284 -0.020 0.002 -2.205 -0.010 0.000 -14.54 -0.003 0.000 0.055 1.647 65.08

10 -0.293 -0.021 0.003 -2.266 -0.010 0.000 -14.80 -0.003 0.002 0.056 1.653 72.16

11 -0.338 -0.026 0.010 -2.540 -0.010 1.398 -14.33 -0.003 0.019 0.063 1.658 78.99

guarantees correct fault diagnosis without any prior knowledge of thresholds and sensitivity.

This property turns out to be a major advantage of the proposed method over other existing

fault diagnosis methods in different applications. Furthermore, due to the piecewise linear

property of LASSO solution path, the total computational effort is minimal, which makes

our method very attractive in practice. Through industrial examples shown in Section 4, we

demonstrate that the proposed procedure provides an efficient alternative for multivariate

process diagnosis.

In our framework of the two-sample diagnosis problem, we assume that the change

point time can be correctly identified from other SPC procedures. In practice, it may be

possible that the change point identification is not accurate, or it may be coupled with the

fault diagnosis task. In theory, this can be handled similarly by the Bayesian framework

with some a priori knowledge of the change point. We will discuss it in another paper.

In addition, considerable efforts have been devoted to construct post-signal change-point

estimators in various monitoring problem (e.g., see Pignatiello and Samuel 2001, Zamba and

Hawkins 2006, Zou et al. 2007 and Zou and Tsung 2008), but there lacks a systematic study
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of the whole post-signal diagnostic procedure (including both the change-point estimate and

fault isolation) for Phase II monitoring.

It is also worth noting again that we assume the observations in each partition come

from the same model. Thus, the proposed model does not include the drift or ramp changes.

Although our simulation results (available from the authors) reveal that the LEB procedure

does work reasonably well in certain cases, it is definitely not be optimal because our model

(1) is incorrect in such situations. This issue requires further investigation. Moreover, in

this method, we require that there exists full-rank estimators of the (asymptotic) covariance

matrix of β̃i, say, Ω̂i. However, in an ultra-high dimensional situation, i.e., when d is very

large and even larger than the sample sizes, this condition may not be easily satisfied. It is

of great interest to design an appropriate procedure in such cases and to verify whether the

diagnostic consistent property is still valid, which warrants further research.
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Appendices

Recall the penalized least-squares problem (13) and the associated notation. Throughout

this section, we will use the following notation for ease of exposition. Denote n = n1n2/(n1 +

n2), an = max{θj, j ∈ sT} and bn = min{θj, j /∈ sT}. Denote by δs the d-dimensional

parameter vector δ with those elements outside s being set to 0, that is, ∀i ∈ sc, δi = 0,

where sc is the complement of s in S. Given a d-dimensional vector δ, δ(s) indicates the

sub-vector which consists of all elements of δ whose indices are in s. Given a p×p matrix K,

K(s,s′) indicates the sub-matrix which consists of all rows and columns of K whose indices

are in s and s′, respectively, where s′ is another subset of {1, . . . , d}.
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Appendix A: Assumptions

Assumption 1 : β̃i are
√

ni-consistent estimators of βi for i = 1, 2.

Assumption 2 :
√

n/ log n lim infn→∞(mini∈sT
|δnj|) →∞.

Assumption 3 : Ω̂i are consistent estimators of Ωi and positive-definite for i = 1, 2.

These three assumptions imposed here are all used for obtaining the property of the

penalized estimator δ̂. They are quite mild and typically hold in many problems (see the

examples in Section 4).

Appendix B: A quadratic approximation to L(β1, δ)

Recall the notation δ̃ = β̃2 − β̃1. A standard Taylor series expansion of Li(βi) at β̃i is as

follows,

Li(βi) ≈ Li(β̃i) + L̇i(β̃i)(βi − β̃i) +
1

2
(βi − β̃i)

T L̈i(β̃i)(βi − β̃i), i = 1, 2,

where L̇i and L̈i are the first- and second-order derivatives of the loss function Li(·). Because

β̃i is the minimizer of Li(·), we know that L̇i(β̃i) = 0. Thus, by ignoring the constant

Li(β̃i) and the coefficient 1/2, the joint minimization function (1) can be simplified and

approximated as

L′(β1, δ) ≈ (β1 − β̃1)
T L̈1(β̃1)(β1 − β̃i) + (β1 + δ − β̃2)

T L̈2(β̃2)(β1 + δ − β̃2). (A.1)

Furthermore, assume that L̈i(·) for i = 1, 2 are full-rank. Given δ, the minimizer of L′(β1, δ)

for β1 is

β̂1(δ) = [L̈1(β̃1) + L̈2(β̃2)]
−1[L̈1(β̃1)β̃1 + L̈2(β̃2)β̃2 − L̈2(β̃2)δ]

Consequently, substituting β̂1(δ) into (A.1), we will have an objective function dependent

only on δ

L′′(δ) = (β̂1(δ)− β̃1)
T L̈1(β̃1)(β̂1(δ)− β̃1) + (β̂1(δ) + δ − β̃2)

T L̈2(β̃2)(β̂1(δ) + δ − β̃2).
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It is easily verified that the minimizer of L′′(δ) is given by arg minδ L′′(δ) = δ̃. A second-

order Taylor series expansion of L′′(δ) at δ̃ will give

L′′(δ) ≈ L′′(δ̃) + L̇′′(δ̃)(δ − δ̃) +
1

2
(δ − δ̃)T L̈′′(δ̃)(δ − δ̃)

= L′′(δ̃) +
1

2
(δ − δ̃)T L̈′′(δ̃)(δ − δ̃).

By ignoring the constant L′′(δ̃) and the coefficient 1/2, L′′(δ) will be simplified as

(β̃2 − β̃1 − δ)T L̈′′(δ̃)(β̃2 − β̃1 − δ)

= (β̃2 − β̃1 − δ)T (L̈−1
1 + L̈−1

2 )−1(β̃2 − β̃1 − δ), (A.2)

where we use the fact that

L̈2(L̈1 + L̈2)
−1L̈1(L̈1 + L̈2)

−1L̈2 + L̈1(L̈1 + L̈2)
−1L̈2(L̈1 + L̈2)

−1L̈1 = (L̈−1
1 + L̈−1

2 )−1,

and L̈i instead of L̈i(β̃i) for abbreviation which should not cause any confusion.

Appendix C: Proof of Theorem 1

In order to prove Theorem 1, we need establish the
√

n-consistency and selection consistency

of the penalized estimator δ̂θ which are summarized in the following lemma.

Lemma 1 If Assumptions 1-3 hold and the penalty parameter θ satisfies
√

nan
p→ 0 and

√
nbn

p→∞ then as min{n1, n2} → ∞, the minimizer of (11), δ̂θ, must satisfy:

(i) Pr(δ̂
(sc

T )

θ = 0) → 1;

(ii) δ̂
(sT )

θ = δ(sT )
n + Op(n

−1/2).

These results can be obtained in a similar way to Theorems 1-2 in Wang and Leng (2007),

or to Theorems 1-2 in Fan and Li (2001). The only difference is that δn may be of order

o(1) here. The technical arguments in the proof of Theorems 1-2 in Wang and Leng (2007)

continue to hold in the current setting, and we only need to use (7) to obtain the result that

||Λ̃√n(δ̃ − δn)|| = Op(1). For simplicity, details of these arguments are omitted here. ¤
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For penalized-type estimators, Wang et al. (2007) and Wang and Leng (2007) respec-

tively established the consistency of smoothly clipped absolute deviation method (SCAD)

and adaptive LASSO estimators with the tuning parameter chosen by a BIC-type criterion.

By using Lemma 1, we generalize the proof of Theorem 4 in Wang and Leng (2007) to the

two-sample case and also allow δn → 0.

Following a similar idea of Wang et al. (2007), according to whether the resulting model

sθ is underfitted, correctly fitted, or overfitted, we can partition Rd+ into the following three

mutually exclusive regions:

Rd+
U = {θ ∈ Rd+ : sθ + sT},
Rd+

T = {θ ∈ Rd+ : sθ = sT}, and

Rd+
O = {θ ∈ Rd+ : sθ ⊃ sT , sθ 6= sT}.

For the purpose of proof, we could readily define a reference tuning parameter sequence

θ∗ ∈ Rd+ which satisfies the conditions in Lemma 1. For instance, we could set θ∗k = θ∗|δ̃k|−1

with θ∗ = n−1(log n)1/2. By Lemma 1-(i), sθ∗ ∈ Rd+
T with probability tending to 1. Thus,

to prove the theorem, it suffices to show that Pr(infθ∈Rd+
U ∪Rd+

O
BICθ > BICθ∗) → 1. The

following proof consists of two steps.

Step 1. Let us firstly consider θ ∈ Rd+
O . We then have dθ − dθ∗ ≥ 1. We shall show that

with probability approaching one, the BIC favors sθ∗ . Before proceeding, to facilitate our

proof we need another definition, the unpenalized estimate of δn under the model identified

by δ̂θ, say

δ̃sθ
= arg min

δ∈Rd:δ(sθ)=0

g(δ).

By this definition, we must have g(δ̂θ) ≥ g(δ̃sθ
). Also, note that if δ(sθ) = 0,

g(δ) =(δ̃
(sθ) − δ(sθ))T Λ̃

(sθ ,sθ)
(δ̃

(sθ) − δ(sθ)) + 2(δ̃
(sθ) − δ(sθ))T Λ̃

(sθ ,sc
θ)

δ̃
(sc

θ)

+ (δ̃
(sc

θ)
)T Λ̃

(sc
θ ,sc

θ)
δ̃

(sc
θ)

.

Thus, the minimizer δ̃sθ
must satisfy the estimating equation

−Λ̃
(sθ ,sθ)

(δ̃
(sθ) − δ̃

(sθ)

sθ
)− Λ̃

(sθ ,sc
θ)

δ̃
(sc

θ)
= 0
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By Assumption 1, Lemma 1-(ii) and the arguments above, we know δ̃
(sc

θ)
= Op(n

−1/2). As a

result, δ̃
(sθ)

sθ
= δ̃

(sθ)
+ Op(n

−1/2). Hence, as min{n1, n2} → ∞,

BICθ − BICθ∗ ≥ g(δ̃sθ
)− g(δ̂θ∗) + log n + 2 log d

= Op(1) + log n →∞,

which implies Pr(BICθ − BICθ∗ > 0) → 1 for any θ ∈ Rd+
O .

Step 2. Now consider θ ∈ Rd+
U . In this case, similar to the Step 1, we have

BICθ − BICθ∗ ≥ g(δ̃sθ
)− g(δ̂θ∗) + (dθ − dθ∗) · (log n + 2 log d)

= g(δ̃sθ
) + (dθ − dθ∗) · log n + Op(1)

≥ (δ̃
(sc

θ)
)T

[
Λ̃

(sc
θ ,sc

θ) − (Λ̃
(sθ ,sc

θ)
)T (Λ̃

(sθ ,sθ)
)−1Λ̃

(sθ ,sc
θ)

]
δ̃

(sc
θ) − dθ∗ · log n (A.3)

≥ λd−dθ
(B)||δ̃(sc

θ)||2 − dθ∗ · log n + Op(1),

where we denote the matrix in the bracket in (A.3) by B and λd−dθ
(B) is its smallest

eigenvalue. Note that B−1 = (Λ̃
−1

)(sθ ,sθ) and thus n−1λd−dθ
(B) > 0 where we use (7) again.

By Assumption 2, (n/ log n)||δ̃(sc
θ)||2 → ∞ and it follows immediately that Pr(BICθ >

BICθ∗) → 1 for any θ ∈ Rd+
U .

Combining the two cases together implies that any θ failing to identify the true model

cannot be selected as the optimal parameter. That is to say, the model associated with the

optimal θ must be the true one. This completes the proof. ¤
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