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Abstract

Monitoring high-dimensional data streams has become increasingly important for

real-time detection of abnormal activities in many data-rich applications. We are

interested in detecting an occurring event as soon as possible, but we do not know

which subset of data streams is affected by the event. By connecting to the problem

of detecting heterogeneous mixtures, a new control chart is developed based on a

powerful goodness-of-fit test of the local cumulative sum statistics from each data

stream. Numerical results show that the proposed method is able to balance the

detection of various fractions of affected streams, and generally outperforms existing

methods.

Keywords: Change-point detection; CUSUM; Goodness-of-fit test; Higher criticism;

Multiple testing; Sequential detection; Statistical process control

1 Introduction

Statistical approaches to continual surveillance of multiple data streams are greatly needed

in today’s industrial, clinical, and epidemiological environments. Among them, the problem

of global on-line monitoring a large number of independent data streams through sequential
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observations has become increasingly important. For example, multi-sensor change-point

detection, where sensors are distributed to monitor emergence of an event signal, has at-

tracted considerable attentions recently. See Tartakovsky and Veeravalli (2008), Guerriero

et al. (2009), Woodall and Montgomery (2014) and the references therein. Another typical

example is the monitoring of multistage processes. Many manufacturing operations, such

as semiconductor manufacturing and automotive body assembly, comprise a large number

of stages. A commonly used method is to globally monitor the so-called one-step forecast

errors (residuals) obtained from all the stages. Those residuals are usually independent un-

der certain assumptions. See Li and Tsung (2009) for detailed illustration. Similar applica-

tions include monitoring business processes with high-dimensional transactions and detecting

fraudulent records among them (c.f., Tsung et al. 2007; Jiang et al. 2007), and the biological

problem of detecting recurrent DNA copy number variants in multiple samples (c.f., Zhang

et al. 2010). The main objective is to detect changes in the process, which occur at an

unknown time point as early as possible after the occurrence, and at the same time control

the global rate of false alarms.

Suppose we are monitoring p data streams, observing the kth data stream Xkt over time

t = 1, 2, . . .. We firstly assume that the data streams are mutually independent and then

discuss the dependent cases later. Under the null hypothesis (in-control; IC), the observations

Xkt’s are independently and identically distributed (i.i.d.) normal random variables with

mean µ0k and variance σ2
0k. Without loss of generality, we assume µ0k = 0 and σ2

0k = 1.

Otherwise, we can always use (Xkt − µ0k)/σ0k to standardize Xkt. Under the alternative

hypothesis (out-of-control; OC), certain data streams incur mean changes at some unknown

change-points. We denote the affected and unaffected subsets of data streams as Aa and Ac
a,

respectively. Let pa denote the cardinality of Aa, i.e., the number of affected streams. After

the change-point τk, for k ∈ Aa, the mean of Xkt changes from 0 to µk. For simplicity, here

we assume that all the affected data streams incur changes at the same time point τk = τ ;

however, the methods discussed below are also applicable when τk’s are different.
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The problem is to raise an alarm as quickly as possible after the change occurs. In the

change-point detection problem, a detection scheme is a stopping time T with respect to the

observed data sequences Xt = {X1t, . . . , Xpt}t≥1. We use an alarm system consisting of two

parts at stage s: an alarm statistic a({Xt}s
t=1) and an alarm limit g(s). The time of an alarm,

T , is defined as T = min{s; a({Xt}s
t=1) ≥ g(s)}. That is, the decision T = s depends only on

the first s observations of dimension p, and T = s means that an alarm is triggered at time

s to indicate that a change has occurred somewhere in the first s observations. Consistent

with the literature, we focus on using a series of one-sided charts to detect changes of mean

levels in some data streams, but the two-sided charts can be constructed without difficulty.

As a convention in the practice of monitoring methods, we first develop our procedure under

the assumption that the true values of µk, k ∈ Aa are all known. In a later section, we will

consider how to extend the proposed method to more general cases when µk’s cannot be

specified before monitoring.

Directly applying single-stream detection procedures for each sensor, such as cumulative

sum (CUSUM) or exponentially weighted moving average (EWMA) control scheme, suffers

from high false alarm rate and accordingly a global decision procedure that employs obser-

vations from all streams would usually be desired. Considerable research has been developed

on designing an efficient global monitoring procedure. If the affected streams were known,

we could use the likelihood ratio test to formulate a CUSUM and to only monitor those pa

streams. Such a scheme possesses certain optimal properties due to the use of likelihood pro-

cedure (Moustakides 1986; Veeravalli 2001), but it is generally not applicable because Aa is

unknown in practice. A practical procedure is the one proposed by Tartakovsky et al. (2006)

in which it is assumed that there is exactly pa = 1 out of p data streams being affected.

Specifically, the stopping time is defined as Tmax = inf{t : max
k=1,...,p

Sk(t) ≥ L}, where Sk(t) is

the individual CUSUM statistic for the kth data stream, taking the following recursive form

Sk(t) = max {0, Sk(t− 1) + µk(Xkt − µk/2)} . (1)

In other words, this procedure is based on the maximum of individual CUSUM statistics and
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it is in fact the likelihood procedure corresponding to the scenario when one knows exactly

pa = 1. For the general case, theoretically we can derive likelihood ratio detection procedures

incorporating observations from all sensors using standard statistical techniques. However,

a drawback of these procedures is that they incur high computational complexity when p is

large. See Section 3 in Mei (2010) for detailed formulations and discussion.

Alternatively, a robust scheme is proposed by Mei (2010) based on the sum of the local

CUSUM statistics from each individual data stream, taking the form of

Tsum = inf

{
t :

p∑

k=1

Sk(t) ≥ L

}
. (2)

However, as shown by Mei (2010) through simulations, Tmax is more effective than Tsum

when potential changes occur in only a few data streams. On the other hand, Tmax would

be outperformed by Tsum by a large margin when the change occurs in a moderate or large

number of streams. This is not surprising by noticing the “max” and “sum” operators are

employed in Tmax and Tsum respectively. See Section 4 for further numerical evidence. The

goal of this paper is to propose a reasonably simple scheme which is capable of efficiently

detecting changes no matter how many data streams are affected, i.e., a control chart which

could balance the detection ability between Tmax and Tsum.

As a side note, the problem of monitoring p-dimensional data streams is analogous

to using a multivariate control chart on p variables. The Tsum and Tmax procedures are

essentially similar to the Croisier’s (1988) multivariate CUSUM charting procedure and the

Hawkins’s (1991) regression-adjusted control chart, respectively, assuming the covariance

matrix of observation vectors is a p-dimensional identity matrix. In the related literature of

statistical process control (SPC), Wang and Jiang (2009), Zou and Qiu (2009), and Capizzi

and Masarotto (2011) proposed variable-selection-based multivariate control charts, which

are developed based on the sparsity assumption, i.e., in a high-dimensionality process the

probability that all variables shift simultaneously is rather low. Their methods focus on the

case that all the variables are correlated and generally require much more computational

effort than Tsum and Tmax. Another related direction to tackle the problem of global on-
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line monitoring is to apply false discovery rate (FDR) control to on-line detection, e.g., see

Benjamini and Kling (1999), Grigg and Spiegelhalter (2008), and Li and Tsung (2009). The

basic idea is to test multiple CUSUM statistics Sk(t) in the way of controlling the FDR.

As shown by Li and Tsung (2009), such a FDR-based method is usually favorable in the

fault-isolation (diagnosis) problem, but its change detection ability is similar to that of Tmax.

See Section 2 for more discussions.

In this paper, motivated by the connection between global monitoring and testing het-

erogenous mixtures, we suggest a computationally efficient detection scheme based on a

powerful goodness-of-fit (GOF) test proposed by Zhang (2002). Numerical results show that

the proposed method is able to balance the detection of various fractions of affected streams,

and generally preforms more robust than existing methods no matter how large p is. The

remainder of the paper is organized as follows. In Section 2, we describe the mathemati-

cal formulation of testing heterogenous mixtures and suggest a powerful test which lays the

groundwork for our proposal in the sequential detection problem. We then introduce the pro-

posed scalable procedure followed by its extension in Section 3. Finite-sample performance

comparison for detecting changes in multiple data streams is presented in Section 4. Section

5 contains a high-dimensional sensor detection example to illustrate the application of our

proposed chart. Finally several remarks in Section 6 conclude the paper. Some technical

details are provided in appendices, which are available online as supplementary materials.

2 Testing Heterogenous Mixtures

It should be pointed out that the global monitoring problem considered here is a natural

on-line generalization of multiple hypothesis testing problems. Specially, the procedure Tsum

and Tmax can be viewed as performing omnibus tests on {S1(t), . . . , Sp(t)} at each time

point t based on their sum and extreme values, respectively. In other words, S1(t), . . . , Sp(t)

are similarly distributed when the process is IC, while the distributions of those affected

streams would differ much from those of unaffected streams after the change occurs. A
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careful examination of the multiple hypothesis testing problem would shed light on how to

construct efficient on-line detection schemes.

2.1 Higher criticism statistic

A closely related off-line problem of multiple hypothesis testing is the so-called detection

of heterogenous mixtures considered by Donoho and Jin (2004). The problem is defined as

follows. Given n independent observations units X = (X1, . . . , Xn). For each 1 ≤ i ≤ n, we

suppose that Xi has probability εn of being a non-null effect and probability 1− εn of being

a null effect. We model the null effects as samples from N(0, 1) and non-null effects from

N(µn, 1) for µn > 0. The normality imposed here is consistent with literature and suffices

to illustrate the basic idea. In practice, numerous other settings for the deployment in what

follows have also been considered (c.f., Donoho and Jin 2004). Here, εn can be regarded as the

proportion of non-null effects. The goal is to test whether any signals are present, say if εn =

0, or equivalently to test the joint null hypotheses H0 : Xi
iid∼ N(0, 1), 1 ≤ i ≤ n versus H1 :

Xi
iid∼ (1−εn)N(0, 1)+εnN(µn, 1), 1 ≤ i ≤ n. Thus, our on-line testing problem is essentially

related to this detection of heterogenous mixtures problem by considering {S1(t), . . . , Sp(t)}
as {X1, . . . , Xn} at each time point t.

In this detection problem, a major task is to characterize the so-called detection bound-

ary, which is a curve that partitions the parameter space into two regions: the detectable

region and the undetectable region. The asymptotic framework adopted in the literature is

setting εn = n−β for 0 < β < 1 and letting µn grows to infinity or degenerates to zero at

an appropriate rate according to the value of β. In light of this, some papers focus on the

so-called sparse regime: β ∈ (1/2, 1) and µn =
√

2r log n with r ∈ (0, 1). The likelihood ratio

test (LRT) of H0 versus H1 has a “detection boundary” defined in terms of the parameters

β ∈ (1/2, 1) and r ∈ (0, 1) which is described as follows. Set

ρ∗(β) =

{
β − 1/2, if 1/2 < β ≤ 3/4,

(1−√1− β)2, if 3/4 < β < 1.
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Then for r > ρ∗(β), the LRT (which makes use of knowledge of β and r) is size and power

consistent against H1 as n →∞. Donoho and Jin (2004) considered several different statis-

tics, among which the principal contenders are Tukey’s “higher criticism” statistic HC∗
n

defined by

HC∗
n ≡ max

1≤i≤n
HCn,i, HCn,i =

√
n(i/n− p(i))√
p(i)(1− p(i))

,

where pi = 1 − Φ(Xi) ≡ Φ̄(Xi), Φ(·) is the cumulative distribution function (C.D.F.) of

standard normal distribution and p(1) < p(2) < · · · < p(n) are the order statistics of the

p-values. One rejects the null hypothesis when HC∗
n is large. Donoho and Jin (2004) showed

that the test of H0 versus H1 based on HC∗
n is also size and power consistent for r > ρ∗(β).

It dominates several other tests based on multiple comparison procedures such as the sample

maximum and false discovery rate (FDR). Cai et al. (2011) further considered the dense

regime which is calibrated as follows: µn = n−r, 0 < r < 1/2 for 0 < β ≤ 1/2. In this

case, Cai et al. (2011) found the detection boundary r = ρ∗(β) = 1/2 − β, 0 < β ≤ 1/2,

and the detectable region now corresponds to r < ρ∗(β). Cai et al. (2011) showed that

the adaptivity of the test based on HC∗
n still holds, i.e., HC∗

n is size and power consistent

if r < ρ∗(β) against H1 as n → ∞, similar to the LRT. However, HC∗
n does not need any

specific information of the parameter β and r.

2.2 GOF test statistic

By examining the closeness of HC∗
n to the well-known GOF test statistic in Anderson and

Darling (1952), we may expect that some efficient GOF statistics would be also effective

in testing heterogenous mixtures. Zhang (2002) introduced a parameterization approach to

establish powerful GOF tests based on the following log-likelihood ratio statistic

gu = 2n

{
Fn(u) ln

(
Fn(u)

Φ(u)

)
+ [1− Fn(u)] ln

(
1− Fn(u)

1− Φ(u)

)}
, (3)

where Fn(u) is the empirical C.D.F. of the sample {X1, . . . , Xn}, i.e., Fn(u) = n−1
∑n

j=1 I{Xj≤u}

with the indicator function I{·}. Then, some powerful test statistics can be constructed in

the form supu guw(u) or
∫

g(u)dw(u).
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One of the most powerful tests introduced by Zhang (2002) is to use dw(u) = [Φ(u)(1−
Φ(u))]−1dΦ(u) with the integral form, which leads to

ZC =

∫
[Φ(u)(1− Φ(u))]−1gudΦ(u), (4)

and large values of ZC reject the null hypothesis. Note that the function [Φ(u)(1−Φ(u))]−1

attains its minimum at Φ(u) = 1/2, that is when u is the median of the sample. Intuitively,

the more extreme observations (far way from the median) corresponding to large values of

weight, the more informative to indicate the violation of H0 and the weights may be chosen

accordingly larger. As shown by Zhang (2002), it is much more powerful than the classical

GOF tests, such as the Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling

tests. In what follows, we will focus on this type of test for testing heterogenous mixtures.

2.3 Comparing HC and GOF statistics

We now develop a one-sided version of the statistic ZC which has the same detection bound-

ary as the statistic HC∗
n for testing H0 versus H1. Note that ZC in (4) is equal to

n∑
i=1

{
log

[
[Φ(X(i))]

−1 − 1

(n− 1/2)/(i− 3/4)− 1

]}2

+ Cn, (5)

where X(1) ≤ · · · ≤ X(n) are the order statistics and Cn is a constant (see Appendix A.3 in

the supplemental file). We suggest the following one-sided statistic

DGOF =
n∑

i=1

{
log

[
[Φ(X(i))]

−1 − 1

(n− 1/2)/(i− 3/4)− 1

]}2

I{Φ(X(i))>(i−3/4)/n}, (6)

which will be shown to work reasonably well through numerical studies. Note that only

those observations with p-values smaller than their expected levels have contributions in the

test statistic (considering µn > 0 under our assumption). Here (i − 3/4)/n is a common

“continuity correction” to Fn(X(i)).

It can be shown that the test using DGOF has the same detection boundary as the statistic

HC∗
n for β ∈ (0, 1). Please refer to Theorem 1 and its proof given in the supplemental file..
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Similar to HC∗
n, the test statistic DGOF, which does not require specific information on model

parameters, can adapt to the unknown degrees of heterogeneity in both sparse and dense

cases. In comparison, the conventional tests based on max1≤i≤n Xi and
∑n

i=1 Xi (denoted

by Dmax and Dsum) work only well for the sparse case 1/2 < β ≤ 3/4 and the dense case

0 < β ≤ 1/2, respectively. See Theorem 1.4 in Donoho and Jin (2004) and Theorem 8 in Cai

et al. (2011) for detailed discussions. In addition, as revealed by Donoho and Jin (2004),

the FDR-controlling procedure is not different from that of Dmax.

To illustrate the statistical performance of the HC and GOF statistics, some simulation

results are presented in Figures 1 and 2. In these simulations, we fix n = 10, 000 and use 2,500

replications for each scenario. Other simulation results which are not reported here indicate

similar conclusions as long as n is not too small (n ≥ 100). For the null hypothesis, we

drew n samples from N(0, 1); for the alternative hypothesis, we first drew na ≡ nεn samples

from N(δi, 1), i = 1, . . . , na and then drew n − na samples from N(0, 1). For comparison,

four tests are considered: DGOF, Dmax, Dsum, and the test based on HC∗
n (denoted as DHC).

To make a fair comparison, we perform a size-corrected power comparison in the sense that

the actual critical values are found through simulations so that all of the four tests have the

exact size of 0.01 in each case.

In Figure 1, we focus on the effect of the signal strength, plotting the empirical power

against the signal strength δi = δ with various values of εn. For the sparse case εn = 5×10−4,

DGOF has comparable performance to that of Dmax and DHC but Dsum does not work in this

case. In contrast, for the very dense cases with εn = 0.05 or εn = 0.5, Dsum performs the best

but Dmax and DHC do not work well in all those three cases. DGOF is inferior to Dsum but

still has reasonably good detection ability. In the moderately sparse cases such as εn = 0.001

or 0.01, DGOF seems the best. It outperforms the others by a quite significant margin when

εn = 0.01.

The effect of the level of sparsity (calibrated by εn) is further investigated in Figure 2.

Here the empirical power is plotted against εn. Two patterns of allocation are considered for
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Figure 1: Size-corrected power comparison between DGOF, Dmax, Dsum and DHC under various
εn. In each plot, the empirical power is plotted against µn (note the different scales). The legend
in the first plot is applicable for all the others.

the nonzero expectation: the equal allocation where all the expectations of signal are equal to

δ as in Figure 1; linearly increasing allocation δi = iδ for i = 1, . . . , na. Note that the linearly

increasing allocation does not satisfy our original alternative hypothesis H1 and is used for

checking the robustness of tests against mis-specification. To make the power comparable

among the configurations of H1, we set η =
∑

i δ
2
i for each value of εn. Three values of η, 50,

100 and 200 are chosen. From this figure, we can observe that DGOF offers a good balance

protection against εn. This can be seen from the cases when Dsum works well but Dmax does

not or vice versa. In such cases, DGOF may not be the best, but it is always close to the best.
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In the cases when 0.003 ≤ εn ≤ 0.02, DGOF generally performs the best, and the margins are

significant when η is large. In addition, the equal and increasing allocation scenarios present

similar performance patterns. The above simulation study provides us a clear evidence that

DGOF is indeed powerful for testing heterogenous mixtures, and thus motivates us to develop

corresponding scalable monitoring scheme in the next section.
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Figure 2: Size-corrected power comparison between DGOF, Dmax, Dsum and DHC under various
signal strengths (η) for equal and linearly increasing scenarios. In each plot, the empirical power
is plotted against εn.
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3 Monitoring a Large Number of Data Streams

3.1 A new detection scheme

In light of the discussions in Section 2, the main idea of our proposal would be quite

straightforward. Since DGOF is powerful for testing heterogenous mixtures compared to

Dsum and Dmax, it is natural to apply DGOF to the local (individual) CUSUM statistics

Sk(t), k = 1, . . . , p, analogous to the construction of Tsum and Tmax. Replacing Xi by Sk(t)

in (6) yields

Wt =

p∑
i=1

{
log

[
U−1

(i) (t)− 1

(p− 1/2)/(i− 3/4)− 1

]}2

I{U(i)(t)>(i−3/4)/p}, (7)

where U(1)(t) ≤ · · · ≤ U(p)(t) are the order statistics of {U1(t), . . . , Up(t)}, Ui(t) = Ht(Si(t); µi),

and Ht(·; µ) denotes the C.D.F. of Si(t) with specified parameter µ under in-control state.

Here again we (i− 3/4)/p as a continuity correction to the empirical C.D.F. value at S(i)(t).

Accordingly, our proposed procedure is given by

Tnew = inf {t : Wt ≥ L} ,

where L > 0 is a control limit chosen to achieve a specific value of IC average run length

(ARL).

To apply the above monitoring scheme, Ht(·; µ) must be obtained first. In practice, it is

usually convenient to use the null steady-state distribution of the CUSUM statistic H(·; µ),

defined as the distribution of values obtained by running a CUSUM without threshold under

the null state for an indefinite period of time. Based on some theoretical and empirical

justifications, Grigg and Spiegelhalter (2008) developed an accurate approximation to the

null steady-state distribution of the CUSUM statistic which is valid for CUSUMs applied to

normal data. Their result leads to a closed-form formula summarized in Appendix A.2 of the

supplemental file. The approximation greatly facilities the computation and implementation

of Tnew.
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Note that Tnew requires O(p log p) computations and O(p) memory allocations at every

time point t. Despite the requirement of more computational efforts than Tmax and Tsum,

Tnew is still scalable and can be easily implemented for large p over long time periods. Our

unreported simulation results show that Tnew has comparable performances with the LASSO-

based EWMA chart (LEWMA) proposed by Zou and Qiu (2009) when the between-streams

correlations are weak, but the LEWMA is generally more efficient when the stream observa-

tions are strongly correlated. The major benefit of using Tnew is its computation. Although

the LEWMA chart can well handle the high-dimensional monitoring with sparsity features

by efficiently utilizing the correlation information, it requires about O(p3) computations

which are not trivial when p is very large. Moreover, when p = 1, Tnew can be viewed as a

monotonously increasing transformation of the classical local CUSUM procedure provided

that S1(t) is sufficiently large, i.e., H(S1(t); µ1) > 1/2. In other words, Tnew would have

similar detection ability to the single CUSUM for monitoring a single data stream.

Similar to DGOF, Tnew is robust and omnibus in the sense that it is not only sensitive

to different combinations of affected data streams but can also detect changes in variance.

The detection of variance changes is not the focus of this paper but deserves some further

study in the future. Moreover, Tnew is also applicable to the cases that different data streams

incur changes at different change-points, i.e., τk’s are different. To see this clearly, assume

that p′a streams have changed after the change-point τ1 and the other pa − p′a streams occur

changes after τ2 (τ2 > τ1). In such a situation, Tnew would perform well for testing p′a affected

streams out of all p data streams within the period [τ1+1, τ2]. If a signal is not trigged before

τ2, Tnew would issue an alarm with a larger probability after τ2 since signal-to-noise ratio

increases. Some simulation results (available from authors upon request) under scenarios

when a common event triggers different onset time of changes at different data streams show

that Tnew still works well.

Another noteworthy aspect of Tnew is that when different CUSUM sequences take dif-

ferent reference values (i.e., µi’s are not the same), it is able to integrate all the individual
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CUSUM statistics in a relatively “fair” way in the sense that Si(t)’s are transformed to

identically uniform distribution by Ht(Si(t); µi) under in-control. In contrast, Tmax and Tsum

do not share this feature. The CUSUM statistics with different reference values would have

different expectations and variances under null hypothesis and thus directly applying Tmax or

Tsum to the CUSUM sequences (especially when µi’s differ considerably) would yield rather

unbalanced detection ability in individual CUSUMs. Certainly, this issue could be overcome

by employing the transformation Ht(Si(t); µi) before Tmax or Tsum is used.

3.2 Extensions and practical implementation

In this section, we discuss extensions of the proposed Tnew to more general settings, such

as, when the post-changes µk are unknown, and when data streams may be correlated or

non-Gaussian.

When the post-changes cannot be completely specified

A major limitation with the procedure Tnew as well as other existing multi-streams de-

tection procedures, is that they assume the post-change distributions (or equivalently µk’s

under normality assumption) are completely prescribed, which is often not realistic in prac-

tice. When the assumed post-change µk deviates from the true one, those procedures suffer

from performance degradation. Despite the observation we will see in Section 4 that Tnew

still has better overall performance in the linearly increasing scenario where the post-change

distribution is mis-specified, more robust schemes to different change magnitudes would be

desired.

This issue seems to be partially resolved by using Han and Tsung’s (2006) reference-free-

cumulative-score (RFC-Cuscore) method. Their main idea is to replace µk by the absolute

value of the observations |Xkt| at each point t, because |Xkt| contains the real information

on the magnitude and the pattern of mean change. To be more specific, the RFC-Cuscore
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chart is defined as

Rk(t) = max {0, Rk(t− 1) + |Xkt|(Xkt − |Xkt|/2)} . (8)

This control scheme aims at tracing and detecting nonconstant, time-varying mean changes,

which is different from ours. However, inspired by its good robustness and sensitivity features

as shown by Han and Tsung (2006), it is natural to consider developing Tnew with Sk(t)

replaced by Rk(t) for the case where the post-changes µk cannot be specified accurately.

When between-streams correlations exist

Consider a model Xt = µ + Zt, where the mean vector µ is non-random and possibly

sparse, and Zt
iid∼ N(0,Σ) for some covariance matrix Σ (Zou and Qiu 2009). As revealed

by Hall and Jin (2010), for testing in heterogenous mixture, the correlation structure in

the noise is not necessarily a curse and could be a blessing. Suppose Σ can be specified

before monitoring. A straightforward way is to transform the data Xt by L−1Xt, where

LLT is a Cholesky decomposition of Σ. Then this becomes our problem with L−1Xt instead

of Xt and thus Tnew is still applicable. Note that after this transformation the sparsity

property (pa << p) in the original sequence Xt may not hold any more. Thus, another

alternative is to apply Tnew directly without any transformation. Of course, the dependence

between streams would affect the performances of control schemes. We will use simulation

to study the performance of different control schemes with or without transformations when

the observations are weakly correlated. We found that the comparison conclusion made for

independent cases generally holds for dependent cases and our proposed method is still able

to balance the detection ability between the sparse and dense scenarios.

When the data streams are non-Gaussian

For each k = 1, . . . , p, the probability density functions of the observations in the kth

data stream before and after the change are fk and gk, respectively, where fk and gk are
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given. Then, Sk(t) in (1) is naturally replaced by

S ′k(t) = max

{
0, S ′k(t− 1) + log

gk(Xkt)

fk(Xkt)

}
. (9)

In this case, how to calculate the value of individual H ′
t(S

′
k(t); f, g) poses challenges, where

H ′
t(·; f, g) denotes the C.D.F. of S ′k(t). For exponential family data, appropriate approxima-

tions can be developed by mimicking Grigg and Spiegelhalter’s (2008) procedure. Alterna-

tively, it has been widely accepted that the ARL of the CUSUM chart can be calculated by

the Markov chain method as shown in Brook and Evans (1972). Likewise, the Markov chain

method can also be used to approximate the steady-state distribution of the CUSUM statis-

tics under general distribution assumptions. We refer to Li and Tsung (2009) for a recent

development. It should be stressed that although the Markov-chain based approximation

requires more computational effort than the analytical one such as Grigg and Spiegelhalter’s

(2008), the total on-line computational task is trivial because it is still of order O(p log p).

The only challenge is to store N different m×m transition matrices, where m is the number

of transition states (usually about 50 to 100) and N is the number of different steady-state

distributions needed to evaluate.

When two-sided changes are of interest

In practice, we are often concerned with both positive and negative shifts. As a conven-

tion, the following two one-sided CUSUM sequences can be used (e.g., see Chapter 4.2 of

Qiu 2014)

SU
k (t) = max

{
0, SU

k (t− 1) + µU
k (Xkt − µU

k /2)
}

,

SL
k (t) = min

{
0, SL

k (t− 1) + µL
k (Xkt + µL

k /2)
}

,

where µU
k and µL

k are the prescribed change magnitudes for the upper- and lower-sided

CUSUMs, respectively. Accordingly, SUL
k (t) = max{SU

k (t),−SL
k (t)} can be employed to

replace Sk(t) in the definition of Tnew. The distribution of SUL
k (t) can be numerically obtained

by the Markov-chain based approximation (Woodall 1984).
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Another easier and more direct way is to apply the EWMA-type control chart, i.e.,

Zk(t) = (1− λ)Zk(t− 1) + λXkt,

which is naturally a two-sided detection scheme (Lucas and Saccucci 1990). Here λ is a

pre-chosen smoothing parameter. Clearly, the marginal distribution of Zk(t) is easy to be

determined in many cases (e.g., in the considered Gaussian case it is just normally dis-

tributed). Replacing Sk(t) with Zk(t) in Wt enables us to monitor two-sided changes in a

simple and effective fashion.

When the IC parameters cannot be completely specified

The proposed procedure as well as other existing multi-streams detection procedures,

assume the IC distributions (or equivalently µ0k’s and σ0k’s under normality assumption)

are completely prescribed. A sufficiently large reference sample (say {X−m+1, . . . ,X0}) is

required to obtain reliable estimates of those parameters to alleviate the parameter estima-

tion effect (Jensen et al. 2006). However, this may be costly in practice; it may not be

feasible to wait for the accumulation of sufficiently large calibration samples because users

usually want to monitor the process at the start-up stages. Generally, there are two ways

to address this issue to certain degree. One method is to adjust the control limit of a chart

to make its IC ARL equal to the nominal one given the historical sample size (e.g., see

Jones 2002). Another one is the self-starting methods that handle sequential monitoring by

simultaneously updating parameter estimates and checking for OC conditions. Specially, we

may use the following transformations Qkt to replace Xkt (Quesenberry 1991)

Qkt = Φ−1

(
Gm+t−2

{(
m + t− 1

m + t

)1/2 (
Xkt − X̄k,t−1

σ̂k,t−1

)})
, (10)

where X̄kt = (m + t)−1
∑t

i=−m+1 Xki, σ̂2
kt = (m + t − 1)−1

∑t
i=−m+1(Xki − X̄kt)

2, and Gν(·)
denotes the student t distribution function with ν degrees of freedom. It can be easily

seen that under IC, Qkt’s are i.i.d. standard normal variables as if the IC parameters were

known. We will see in Section 4 that these two methods have comparable performances and

our proposed method still performs reasonably well compared to the existing works.
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On the use of nonparametric statistics

In a high-dimensional environment, the distributions of some data streams are likely to be

nonnormal, so that the statistical properties of commonly used charts, which were designed

to perform best under the normal distribution, could potentially be affected. Nonparametric

or robust charts may be useful in such situations (c.f., Chapters 8 and 9 of Qiu 2014). For

example, we may transform the observation Xkt to its nonparametric counterpart

R∗
kt =

Rkt − (m + t + 1)/2√
(m + t + 1)(m + t− 1)/12

, t = 1, 2, . . . ,

where Rkt =
∑t

i=−m+1 I(Xki ≤ Xkt). Note that R∗
kt, R

∗
k,t+1, . . . are independent and dis-

cretely uniform variables. Again, the Markov chain method can be used to approximate the

distribution of CUSUM or EWMA charting statistics with R∗
kt.

4 Simulation Study

We present some simulation results in this section regarding the performance of the proposed

Tnew and compare it with other procedures in the literature. All results in this section

are obtained from 10,000 replications. The Fortran codes for implementing the proposed

procedure are available in the supplemental material. Because a similar conclusion holds

for other cases, throughout this section, we only present the results when IC ARL (ARL0)

is 1, 000 or 10, 000 for illustration purposes. Since the zero-state (τ = 0) and steady-state

ARL (SSARL) comparison results are similar, only the SSARLs are provided. To evaluate

the SSARL behavior of each chart, any series in which a signal occurs before the (τ + 1)-

th observation is discarded (c.f., Hawkins and Olwell 1998). Here we consider τ = 25 for

illustration. For comparison, besides Tmax and Tsum, the method based on the higher criticism

test HC∗
n, denoted as Thc, is included as well. The construction of Thc is similar to Tnew by

replacing the DGOF statistic with HC∗
n at each time point t.
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4.1 I.I.D. cases with known IC parameters

For the in-control state, we drew samples from N(0, 1); for the out-of-control state, at each

time point, we first drew pa samples from N(δi, 1), i = 1, . . . , na and then drew p − pa

samples from N(0, 1). As an illustration, two scenarios are considered: (I) equal allocation,

i.e., δi = µ where µ is the target value specified before monitoring; (II) linearly increasing

allocation δi = iδ for i = 1, . . . , pa. Note that the linearly increasing scenario corresponds

to the situation that the post-change distributions are mis-specified. To make the ARL

performance comparable among the configurations of various pa, we set
∑pa

i=1 δ2
i = paµ

2 for

each value of pa.

The simulation results with p = 100 and µ = 0.5 are summarized in Table 1. Besides the

SSARLs, the corresponding standard deviations of the run lengths (SDRL) are also included

in this table to give a broader picture of the run-length distribution. Table 1 shows that

in both scenarios, our proposed scheme performs slightly worse than Tmax when pa is very

small (less than 3) but outperforms Tsum by quite a large margin in these situations. For

moderately sparse case 5 ≤ pa ≤ 10, Tnew is almost uniformly superior to the other three

schemes. For pa ≥ 20, Tnew and Tsum have comparable performance and their advantage

over Tmax and Thc are remarkable. This is consistent with our intuition from the results

given in Section 2. As a side note, Thc seems more preferable to Tmax since they have similar

performance when pa is small but Thc works better when pa is large.

Next a higher dimension, p = 1000, is considered. In this case, we choose a smaller µ,

i.e., µ = 0.2. The simulation results are summarized in Figure 3, which shows the SSARL

curves (in the log scale) of all the four schemes in the top two and bottom two panels for

equal and increasing scenarios, respectively, when ARL0 = 1000 (the left panels) or 10, 000

(the right panels). These figures show similar evidence to that of Table 1. The advantage of

Tnew is clear: it is either the best or close to the best in all the cases. These findings confirm

our earlier statement that Tsum is effective no matter what the sparsity is in the data streams

and it offers a balanced protection against various OC conditions.

19



Table 1: ARL comparison between four schemes when p = 100 and µ = 0.5. Standard deviations
of run lengths are in parentheses. The standard error of ARL can be approximated by SDRL/100.

ARL0 pa Scenario (I) Scenario (II)

Tnew Tmax Tsum Thc Tnew Tmax Tsum Thc

1 71.4 (31.4) 62.2 (28.8) 122 (55.8) 62.9 (29.2) 71.6 (31.5) 62.5 (29.5) 121 (55.8) 62.7 (29.1)

3 40.5 (13.5) 40.7 (14.2) 55.5 (21.3) 40.0 (13.5) 37.5 (12.1) 34.9 (11.9) 57.9 (22.4) 34.8 (11.6)

5 30.5 (9.53) 34.9 (10.8) 37.3 (13.3) 33.4 (9.84) 28.7 (8.35) 29.2 (8.83) 39.3 (13.9) 28.5 (8.34)

8 23.1 (6.75) 30.8 (8.82) 25.2 (8.73) 28.5 (7.47) 22.2 (6.03) 25.3 (6.85) 26.8 (8.97) 24.3 (6.30)

1000 10 19.9 (5.74) 29.0 (7.93) 20.8 (7.04) 26.2 (6.39) 19.6 (5.23) 23.9 (6.18) 22.4 (7.28) 22.5 (5.41)

20 11.6 (3.40) 24.6 (6.14) 11.2 (3.42) 20.2 (4.12) 12.3 (3.28) 20.2 (4.75) 12.3 (3.74) 17.8 (3.59)

50 4.65 (1.40) 20.2 (4.79) 4.71 (1.31) 12.4 (2.02) 5.40 (1.56) 16.7 (3.58) 5.23 (1.44) 12.3 (1.96)

80 2.74 (0.78) 18.4 (4.31) 3.04 (0.79) 8.49 (1.29) 3.22 (0.91) 15.3 (3.26) 3.39 (0.89) 9.07 (1.34)

100 2.16 (0.59) 17.7 (4.11) 2.51 (0.65) 6.93 (1.03) 2.53 (0.71) 14.7 (3.09) 2.79 (0.71) 7.55 (1.10)

1 89.0 (35.7) 82.4 (34.5) 189 (68.2) 82.2 (34.3) 89.1 (36.2) 82.8 (34.0) 189 (69.2) 82.9 (34.7)

3 50.6 (15.2) 56.4 (17.5) 78.2 (24.9) 55.2 (16.7) 45.9 (13.3) 46.2 (14.1) 82.1 (26.2) 46.1 (13.8)

5 38.3 (10.1) 48.9 (13.0) 50.5 (15.5) 47.2 (12.3) 35.1 (8.67) 38.9 (10.2) 53.7 (16.1) 38.0 (9.84)

8 29.2 (7.06) 43.7 (10.8) 33.5 (9.70) 41.5 (9.55) 27.4 (6.17) 34.1 (8.17) 36.0 (10.1) 33.3 (7.57)

10000 10 25.3 (5.97) 41.7 (9.84) 27.5 (7.75) 39.0 (8.45) 24.2 (5.28) 32.2 (7.41) 29.6 (8.20) 31.1 (6.71)

20 15.3 (3.53) 36.2 (7.63) 14.4 (3.83) 32.2 (5.70) 15.6 (3.30) 27.8 (5.58) 15.7 (3.98) 25.9 (4.60)

50 6.28 (1.53) 30.6 (5.81) 5.92 (1.41) 24.4 (3.11) 7.18 (1.65) 23.8 (4.19) 6.60 (1.55) 20.5 (2.75)

80 3.66 (0.87) 28.4 (5.23) 3.78 (0.85) 20.2 (2.12) 4.29 (1.02) 22.1 (3.74) 4.24 (0.95) 17.8 (1.99)

100 2.80 (0.66) 27.2 (4.97) 3.09 (0.68) 18.1 (1.68) 3.33 (0.79) 21.3 (3.55) 3.43 (0.76) 16.5 (1.70)

We also conduct a simulation study in a low-dimension case, p = 30, to check whether

Tnew is still effective. The SSARL curves (in the log scale) of all the four schemes with

µ = 0.5 are plotted in Figure 4. It is a little surprising to see that Tnew works reasonably well

in most cases when p = 30. We conducted some other simulations with different values of

p, ARL0, and µ to check whether the above conclusions would change in other cases. These

simulation results, not reported here but available from the authors, show that the proposed

scheme works well for other cases as well in terms of its OC ARL. Its relatively superior

performance comparing to Tsum and Tmax still holds for other settings.
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Figure 3: SSARL curves (in the log scale) of Tnew, Tsum, Tmax and Thc for p = 1000 and µ = 0.2
when ARL0 = 1, 000 (the left two panels) or 10, 000 (the right two panels). The legend in the first
plot is applicable for all the others.

4.2 Cases when between-streams correlations exist

In this subsection, we study the performance of Tnew when data streams are correlated. To

this end, we generate multivariate normal distributions with the covariance matrix Σ =

(σij)p×p is chosen to be σii = 1 and σij = ρ|i−j| with ρ = 0.5, for i, j = 1, . . . , p. The

marginal distributions of streams and the other settings are identical to those in Table 1.

We considered the schemes Tnew, Tsum and Tmax with or without Cholesky transformation.

Since the performances depend on the shift positions, two shift cases are considered: (i) The
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Figure 4: SSARL curves (in the log scale) of Tnew, Tsum, Tmax and Thc for p = 30 and µ = 0.5
when ARL0 = 1, 000 (the left two panels) or 10, 000 (the right two panels). The legend in the first
plot is applicable for all the others.

first pa streams occur changes; (ii) the shifted pa stream indices are randomly drawn from

{1, . . . , p} without replacement. Table 2 presents ARL comparison of of Tnew, Tsum and Tmax

when ARL0 = 1, 000. In this table, TC
new, TC

sum, and TC
max denote the schemes with Cholesky

transformation.

The results for both Scenarios (I) and (II) are similar: under the case (i), the charts ap-

plied to original observations perform better than those with transformations. Tnew provides

a compromise between Tmax and Tsum; Although it is not always the best of the three charts

we note that it is always either the best or come close to the best, including in cases where
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Table 2: ARL comparison of of Tnew, Tsum and Tmax when the streams are correlated when p = 100,
µ = 0.5 and ARL0 = 1, 000. TC

new, TC
sum, and TC

max denote the schemes with Cholesky transformation

Shift case pa Scenario (I) Scenario (II)

Tmax Tsum Tnew TC
max TC

sum TC
new Tmax Tsum Tnew TC

max TC
sum TC

new

1 62.7 163 88.5 61.6 124 71.8 61.9 159 88.4 62.0 125 72.4

3 45.5 78.6 53.2 57.1 87.6 59.8 36.6 80.6 48.2 49.4 74.8 52.6

5 38.8 54.0 41.4 53.0 67.0 51.1 30.6 55.6 37.4 46.6 59.0 45.4

8 33.8 37.1 31.0 49.8 47.5 42.3 27.4 39.4 28.9 43.0 45.3 38.0

(i) 10 32.0 30.2 27.2 47.4 40.1 37.1 25.3 32.9 25.9 41.2 38.5 34.4

20 26.3 16.5 16.5 41.8 22.3 22.7 21.3 18.1 16.7 35.9 22.8 23.0

50 21.3 7.01 7.07 33.6 8.99 9.30 17.5 7.80 8.00 28.8 9.95 10.3

80 18.9 4.50 4.16 30.5 5.63 5.35 16.0 4.98 4.90 26.3 6.27 6.20

100 18.1 3.61 3.18 29.3 4.44 4.02 15.2 4.07 3.77 25.0 4.94 4.75

1 62.7 162 88.4 48.7 104 57.4 62.1 163 90.0 48.7 105 58.1

3 41.1 76.8 51.8 34.1 49.8 34.2 35.2 81.4 46.9 28.8 52.5 31.6

5 34.8 52.4 40.1 29.8 34.6 26.5 29.0 56.3 36.7 24.4 36.6 24.5

8 31.1 36.7 30.6 26.5 24.3 20.6 25.3 38.3 28.7 21.5 25.8 19.5

(ii) 10 29.4 29.9 26.5 25.2 20.9 18.4 23.9 32.3 25.3 20.6 21.9 17.6

20 24.8 16.4 16.4 22.1 12.5 12.5 20.1 17.7 16.6 17.8 13.1 12.2

50 20.8 7.02 7.10 20.0 6.64 7.05 16.9 7.69 7.92 15.8 6.82 7.21

80 19.1 4.44 4.21 21.2 4.98 4.95 15.4 4.92 4.91 15.6 5.07 5.25

100 18.0 3.63 3.19 28.8 4.41 4.05 14.9 4.09 3.76 16.2 4.39 4.47

there is a significant difference in performance between the best and the worse. By com-

paring the results with those in Table 1 with no correlations between streams, the positive

dependence has adversely effects on detection abilities of all the three charts. Under the case

(ii), it appears that the control charts with transformations are more efficient than the charts

without transformations when pa is not too large. This can be understood that the sparsity

properties generally remain to hold after the transformation in this case. From this table,

we can confirm our earlier statement that Tnew is still effective when the correlations exist

because it offers protection against various OC conditions compared to the competitors. We
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can also conclude that the performances of the control charts with and without transfor-

mations would depend on the covariance structure and shift directions. In this paper, we

make no attempt to further analyze this problem, but rather think that this issue certainly

warrants future research.

4.3 Cases when the number of historical samples is not large

In all the foregoing examples, it is assumed that the IC parameters are known or, equivalently,

that they are estimated from a sufficiently large reference dataset. Finally, we study the

performance of Tnew when this assumption is violated. Only the case ARL0 = 1, 000 is

considered and all the other settings are the same as those in Table 1. Table 3 shows the

IC ARLs and SDRLs of Tnew, Tsum, and Tmax when the IC parameters µ0k’s and σ0k’s are

computed from an IC dataset with various historical sample sizes, m. In each replication, a

sample of size m is firstly generated and the IC parameters are estimated from this sample.

Then, an independent sequence of multivariate observations is generated and all the three

charts are used to obtain the corresponding run lengths. From this table, it can be seen

that (i) when the sample size of the IC dataset is relatively small, the actual IC ARLs and

SDRLs of the three charts are both quite far away from the nominal level of 1,000, (ii) when

the sample size of the IC dataset increases, such biases decrease, and (iii) the biases in ARL0

of the three charts are similar. For p = 100, it seems that at least more than 4,000 historical

observations are required to make the IC performances of all the detection schemes close to

the nominal value. Therefore, we next study the performances of Tnew if one applies the two

modifications suggested in Section 3.2 for small m.

For simplicity, only Scenario (I) is considered. Table 4 shows OC ARL comparison of of

Tnew, Tsum and Tmax with various values of m when p = 100, µ = 0.5 and ARL0 = 1, 000.

Both the two modifications for small m, i.e., using adjusted control limits and self-starting

statistics (10), are considered for each detection scheme. We observe that Tnew still has the

ability to offer a good balance protection against pa regardless of whatever m is and which
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Table 3: IC ARL and SDRL values of Tnew, Tsum and Tmax for p = 100 and µ = 0.5 with various
Phase I sample sizes m and nominal ARL0 = 1, 000. Numbers in parentheses are SDRLs.

m Tmax Tsum Tnew

250 268 (225) 279 (287) 235 (208)

500 455 (415) 494 (521) 448 (439)

1000 643 (595) 707 (724) 664 (648)

2000 784 (742) 850 (843) 825 (804)

4000 869 (807) 937 (924) 935 (918)

8000 912 (862) 995 (969) 980 (963)

modification is used. When m is small, such as 250, the charts using (10) perform better for

the cases that the overall signal is strong (say pa is large), while the charts with adjusted

control limits have a certain advantage for the weak signals. When m is as large as 1,000, the

performances of two modifications are similar. Considering its convenience and robustness

in various circumstances, our empirical results indicate that Tnew should be a reasonable

alternative for monitoring high-dimensional data streams.

5 An Example of Quality Control in Semiconductor

Manufacturing

In this section, we demonstrate the proposed methodology by applying it to a real dateset

from a semiconductor manufacturing process which is under consistent surveillance via the

monitoring of signals/variables collected from sensors at many measurement points. For

each observation, there are originally p = 591 continuous measurements (from sensors). The

goal of the data analysis is mainly to model and monitor production quality based on those

sensor measurements.

The data set contains a total of n = 1, 567 vector observations, and is publicly available in

the UC Irvine Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/SECOM).

The data were collected from July 2008 to October 2008 by a computerized system which
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Table 4: ARL comparison of of Tnew, Tsum and Tmax with various values of Phase I sample size m
for Scenario (I) when p = 100, µ = 0.5 and ARL0 = 1, 000.

m pa Adjusted control limits Self-starting schemes using (10)

Tmax Tsum Tnew Tmax Tsum Tnew

1 84.8 (45.9) 136 (70.7) 90.7 (46.8) 117 ( 234) 254 ( 411) 141 ( 267)

3 54.4 (18.9) 62.7 (25.1) 49.2 (16.8) 48.1 (23.4) 66.9 (35.1) 47.8 (21.4)

5 46.5 (13.9) 42.1 (15.2) 37.1 (10.9) 39.8 (14.6) 42.1 (17.8) 33.8 (12.3)

8 41.0 (11.0) 29.1 (9.56) 28.2 (7.46) 33.8 (10.9) 27.3 (10.4) 24.8 (8.01)

250 10 38.9 (10.0) 24.0 (7.66) 24.5 (6.26) 31.7 (9.66) 22.2 (7.95) 21.2 (6.60)

20 33.2 (7.74) 13.0 (3.79) 15.1 (3.59) 26.5 (7.17) 11.5 (3.74) 12.1 (3.62)

50 27.6 (5.92) 5.46 (1.43) 6.48 (1.57) 21.3 (5.34) 4.76 (1.34) 4.70 (1.43)

80 25.4 (5.27) 3.51 (0.85) 3.84 (0.92) 19.3 (4.70) 3.07 (0.81) 2.76 (0.80)

100 24.3 (5.09) 2.87 (0.69) 2.98 (0.70) 18.5 (4.49) 2.52 (0.66) 2.17 (0.60)

1 72.7 (38.6) 126 (62.9) 78.6 (37.8) 75.0 (63.8) 155 (148 ) 89.1 (74.6)

3 46.9 (16.1) 58.1 (23.1) 43.6 (14.8) 44.5 (17.6) 60.9 (26.3) 43.9 (16.8)

5 40.3 (12.1) 39.2 (14.3) 33.1 (10.1) 37.2 (12.5) 39.1 (15.3) 32.4 (10.7)

8 35.6 (9.79) 26.5 (9.09) 25.0 (6.91) 32.4 (9.98) 26.1 (9.31) 23.8 (7.38)

500 10 33.7 (9.02) 22.2 (7.23) 21.6 (5.89) 30.4 (8.88) 21.5 (7.44) 20.5 (6.11)

20 28.6 (6.99) 11.9 (3.58) 13.0 (3.49) 25.7 (6.77) 11.4 (3.59) 11.8 (3.55)

50 23.7 (5.32) 5.00 (1.35) 5.38 (1.48) 20.9 (5.09) 4.75 (1.31) 4.70 (1.44)

80 21.6 (4.75) 3.23 (0.83) 3.15 (0.84) 18.9 (4.53) 3.05 (0.81) 2.77 (0.80)

100 20.8 (4.53) 2.66 (0.67) 2.46 (0.64) 18.1 (4.34) 2.52 (0.65) 2.17 (0.59)

1 67.3 (33.2) 124 (59.3) 74.4 (34.7) 67.4 (36.7) 134 (71.4) 78.3 (40.2)

3 43.7 (15.1) 56.5 (22.3) 42.0 (14.4) 42.5 (15.8) 57.8 (23.7) 42.2 (15.0)

5 37.5 (11.3) 38.0 (13.7) 31.6 (9.63) 36.2 (11.7) 38.2 (14.2) 31.5 (10.1)

8 33.2 (9.33) 25.9 (8.93) 23.9 (6.76) 31.6 (9.30) 25.7 (9.00) 23.4 (7.08)

1, 000 10 31.3 (8.44) 21.4 (7.11) 20.6 (5.86) 29.8 (8.57) 21.2 (7.20) 20.1 (5.96)

20 26.6 (6.59) 11.5 (3.54) 12.2 (3.43) 25.3 (6.41) 11.2 (3.50) 11.8 (3.45)

50 22.0 (5.03) 4.84 (1.34) 4.96 (1.44) 20.5 (4.95) 4.71 (1.31) 4.66 (1.40)

80 20.0 (4.54) 3.14 (0.82) 2.94 (0.82) 18.6 (4.42) 3.07 (0.81) 2.75 (0.80)

100 19.2 (4.31) 2.58 (0.66) 2.30 (0.61) 17.9 (4.23) 2.52 (0.65) 2.16 (0.60)
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automatically manages the process. Among them, 104 observations are classified as inferior

(non-conforming) based on physical testing and experience of the engineers and the remain-

ing observations (1,463) are conforming. When the process incurs a change, we are not sure

if all sensor variables are relevant to the change. It is often the case that the measured

signals contain a combination of useful information, irrelevant information as well as noise,

and is often the case that useful information is buried in the latter two. It is interesting to

consider some scalable monitoring methods which are computationally efficient without the

knowledge about the number of affected sensors. Thus, we apply the proposed Tnew to this

dataset.

Similar to any real life situation, this dataset contains null values varying in intensity

depending on the individuals features. Since the fraction of missing values is trivial in this

dataset, we simply use mean imputation (to replace each missing value with the mean of the

observed values for that variable). In addition, 117 constant features (streams) are removed

from the analysis and totally p = 474 data streams are monitored simultaneously.

For illustration, we use all the observations belonging to the conforming group (totally

1463 observations) as the historical sample and the others for testing. First of all, we

conduct Shapiro-Wilk goodness-of-fit tests for normality and conclude that at least 164

streams are not normally distributed (the p-values are smaller than 0.01). In order to make

our assumption approximately valid, we perform an inverse transformation to the 104 “on-

line” observations, say Φ−1(F̂nk(Xkt)), t = 1, . . . , 104, where F̂nk is the empirical distribution

function based on the 1463 historical observations of the kth streams. It should be noticed

that this transformation does not imply the joint normality. When the joint normality

assumption is invalid, the nominal IC ARL may not be achieved. Some nonparametric

procedures (e.g., Qiu and Hawkins 2001; 2003) would be more appealing when the joint

distribution is far away from normal.

Furthermore, a calibration sample of size 1463 may be smaller than ideal to determine

fully the in-control parameters by considering the dimension is as high as 474. Hence, to
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alleviate the estimated parameters problem, we also employ the transformation in (10) for

each sensor observation. In addition, we calculated the sample correlation matrix based

on the historical sample and found there were totally 4710 off-diagonal entries (among all

the 224,202 entries) whose absolute values are larger than 0.3. This number is very similar

to that in an autoregressive correlation matrix Σ = (ρ|i−j|)p×p with ρ = 0.8. Thus, we

may conclude that the between-streams correlations exist in this example but certain weak

dependence structure may hold. Accordingly the detection schemes discussed in Section 4

may still be effective.

We artificially assume that we monitor the observations categorized as the nonconforming

level sequentially. We suppose the positive location shift is of greatest interest and construct

Tnew, Tmax and Tsum to monitor production quality deterioration. We choose µk = 0.5 for all

the data streams and in-control average run length as 2,000. Accordingly, the control limits

for Tnew, Tmax and Tsum are 36.58, 22.19 and 415.16, respectively.

Figure 5 shows the resulting chart Tnew (solid curve connecting the dots) along with a

solid horizontal line. The charting statistics are divided by the control limits so that we can

plot all the three charts in one figure. The corresponding Tsum (dashed curve connecting

diamonds) and Tmax (dotted curve connecting circles) are also presented in the figure. We

considered all 104 nonconforming observations, but only plot the first 20 of them in Figure

5 as all the methods signal by that point. From the plot, it can be seen that the Tnew chart

exceeds its control limit around the 14th observation and it remains above the control limit.

This excursion suggests that a marked change has occurred which concurs with our setting

that the nonconforming observations are sequentially monitored. In comparison, the Tmax

chart does not give a signal until the 16th observation and the Tsum statistics remain below

the control limit until the 19th observation. This result may reflect that only a small number

of data streams are affected since Tsum is outperformed by Tmax.

In monitoring complex systems, apart from quick detection of abnormal changes of sys-

tem performance and key parameters, accurate fault diagnosis of responsible factors has
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become increasingly critical in a variety of applications. This will increase process through-

put, decrease time to learning, and reduce per unit production costs. Some post-signal fault

isolation schemes can be used, e.g., see Zou et al. (2011) and the references therein.
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Figure 5: The Tnew, Tmax and Tsum control charts for monitoring the semiconductor manufacturing
process. The values on the Y-axis are the ratios of the charting statistics to the control limits.

6 Concluding Remarks

In this paper, we propose a new detection scheme, Tnew, for monitoring high-dimensional

data streams. This procedure is derived based on a powerful GOF test and naturally inte-
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grates the information from multiple data streams with the CUSUM scheme. With updating

formulations, the proposed scheme is fast to compute with a similar computational effort to

existing schemes. Compared with existing methods, it is more robust in the sense that it

is able to balance the detection of various fractions of affected streams. In many cases, the

improvement is quite remarkable.

This paper focuses on Phase II monitoring only and assumes that all historical observa-

tions used for estimating the IC parameters are i.i.d. following a given distribution. However,

there is no such assurance in many applications. Hence, it requires more research to extend

our method to Phase I analysis, in which detection of outliers or change-points in a histor-

ical dataset and estimation of the baseline parameters would be of great interest. In the

last several years, univariate and multivariate nonparametric control charts have attracted

much attention from researchers. The need for robust multivariate SPC has been noted in

a number of articles and some effort has been devoted to this problem, see, e.g., Qiu and

Hawkins (2001; 2003), Qiu (2008), Zou and Tsung (2011), Qiu and Li (2011), Woodall and

Montgomery (2014) and references therein. Extension of the proposed method to nonpara-

metric settings also warrants future study. In this work, we assume that the observations

{Xk1, . . . , Xkt} are independent. In practice, they are often correlated. It is necessary to

investigate the performance of Tnew under some time series models (Qiu and Xiang 2014).

Moreover, Mei (2010) and Tartakovsky et al. (2006) established some asymptotical property

of Tsum and Tmax, respectively. It is of interest to make some asymptotic analysis of the

proposed method and to asymptotically compare the three methods.

Supplementary material It contains the technical details and codes for implementing the

proposed method.
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