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In some applications, the quality of a process is characterized by the functional relationship between a
response variable and one or more explanatory variables. Profile monitoring is for checking the stability
of this relationship over time. Control charts for monitoring nonparametric profiles are useful when the
relationship is too complicated to be described parametrically. Most existing control charts in the literature
are for monitoring parametric profiles. They require the assumption that within-profile measurements
are independent of each other, which is often invalid in practice. This article focuses on nonparametric
profile monitoring when within-profile data are correlated. A novel control chart is suggested, which
incorporates local linear kernel smoothing into the exponentially weighted moving average (EWMA)
control scheme. In this method, within-profile correlation is described by a nonparametric mixed-effects
model. Our proposed control chart is fast to compute and convenient to use. Numerical examples show
that it works well in various cases. Some technical details are provided in an Appendix available online
as supplemental materials.
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1. INTRODUCTION

In certain applications, the quality of a process is character-
ized by the functional relationship between a response variable
and one or more explanatory variables. At each sampling stage
one observes a set of data points of these variables that can be
represented by a curve (or profile). Profile monitoring is mainly
for checking the stability of this relationship over time based
on observed profile data. In some applications (e.g., certain cal-
ibration applications), profiles can be described reasonably well
by a linear regression model. But in some others, more flexible
models are necessary for properly describing profiles. This ar-
ticle focuses on nonparametric profile monitoring when within-
profile data are correlated.

As described by Woodall (2000), statistical process control
(SPC) can generally be divided into two phases. In Phase I a set
of process data are gathered and analyzed. Any unusual “pat-
terns” in the data lead to adjustments and fine tuning of the
process. Once all such assignable causes are accounted for, we
are left with a clean set of data, gathered under stable operating
conditions and illustrative of the actual process performance.
This dataset, which is referred to as the in-control (IC) dataset
hereafter, is then used for estimating certain IC parameters of
the process. In Phase II SPC, the estimated IC process parame-
ters are used, and the major goal of this phase is to detect any
change in the profiles. Performance of a Phase II SPC proce-
dure is often measured by the average run length (ARL), which
is the average number of time points needed for the procedure
to signal a change in profiles. The IC ARL value of the pro-
cedure is often controlled at a given level. Then the procedure
performs better if its out-of-control (OC) ARL is shorter when
detecting a specific profile change. In the literature, most SPC

control charts are for Phase II process monitoring, which is also
the focus of the current article.

In recent years, Phase II profile monitoring has drawn much
attention from statisticians. Early research on this topic fo-
cused on linear profile monitoring (see, e.g., Kang and Al-
bin 2000; Kim, Mahmoud, and Woodall 2003; Mahmoud and
Woodall 2004; Zou, Zhang, and Wang 2006; Mahmoud et al.
2007; among several others). Zou, Tsung, and Wang (2007) and
Kazemzadeh, Noorossana, and Amiri (2008) considered cases
when profiles can be described well by multiple and/or poly-
nomial regression models. Some recent research concerns non-
linear profile monitoring. For instance, Williams et al. (2007)
and Williams, Woodall, and Birch (2007) suggested three gen-
eral approaches to nonlinear profile monitoring and used these
approaches for monitoring nonlinear dose-response profiles.
Colosimo and Pacella (2007) proposed methods for monitor-
ing roundness profiles of some manufactured items. Lada, Lu,
and Wilson (2002) and Ding, Zeng, and Zhou (2006) inves-
tigated a general class of nonlinear profiles, using techniques
such as dimension-reduction, wavelet transformations, and in-
dependent component analysis. Zou, Tsung, and Wang (2008)
discussed profile monitoring using nonparametric regression
methods. A nice overview on profile monitoring can be found
in Woodall et al. (2004).

In the literature, most existing profile monitoring control
charts (e.g., Zou, Tsung, and Wang 2008) require a fundamental
assumption that observations within a profile are independent
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of each other, which is often invalid in applications. In prac-
tice, within-profile data are usually spatially or serially corre-
lated. For instance, within-profile data of the vertical-density
profiles (VDP’s) considered by Walker and Wright (2002) and
Williams, Woodall, and Birch (2007) are spatially correlated
since the density measurements are taken in intervals that are
close to each other along the vertical depth of a particle board.

As another example, within-profile data in the deep reac-
tive ion etching (DRIE) example considered by Zou, Tsung,
and Wang (2007) exhibit obvious serial correlation over time.
As demonstrated in the following sections, when within-profile
correlation is present, proper setup of the profile model be-
comes challenging, and estimation of certain IC process para-
meters becomes difficult as well. If it is ignored in profile mon-
itoring, then the IC and OC properties of the related control
charts will be adversely affected.

There is no existing research on Phase II nonparametric pro-
file monitoring in cases when within-profile data are corre-
lated. Recent articles by Jensen, Birch, and Woodall (2008)
and Jensen and Birch (2009) discussed linear and nonlinear
profile monitoring in Phase I analysis, using linear and non-
linear mixed-effects modeling (cf., e.g., Laird and Ware 1982).
Their methods can accommodate certain within-profile correla-
tion. However, besides the fundamental difference between the
Phase I linear/nonlinear profile monitoringconsidered in their
articles and the Phase II nonparametric profile monitoring con-
sidered here, their approaches assume that both the fixed and
random effects terms in their models follow certain paramet-
ric models, and that the covariance matrix of the random errors
also follows a parametric form, such as the autoregressive or
compound symmetry form. While parametric methods are use-
ful in certain applications, questions will always arise about the
adequacy of these parametric model assumptions and about the
potential impact of model misspecifications on profile monitor-
ing performance (see Hart 1997 for related discussion). In ad-
dition, design points are assumed to be deterministic (i.e., non-
random) in Jensen, Birch, and Woodall (2008) and Jensen and
Birch (2009), and unchanged from profile to profile in Jensen,
Birch, and Woodall (2008). In practice, however, different pro-
files often have different design points (i.e., the so-called unbal-
anced design cases). In some cases they might even be random
(i.e., the random design cases). Phase II profile monitoring in
such cases is particularly challenging, which is also discussed
in this article.

To properly describe within-profile correlation, we propose
to use a nonparametric mixed-effects model (cf., e.g., Shi,
Weiss, and Taylor 1996; Rice and Wu 2001; Wu and Zhang
2002), which allows a flexible variance–covariance structure.
Based on estimated variance structure from an IC dataset, we
propose a novel Phase II control chart for monitoring nonpara-
metric profiles, which can accommodate within-profile correla-
tion and arbitrary design. Our proposed control chart is based
on local linear kernel smoothing of profile data and on the
EWMA weighting scheme as well. It incorporates properly
both the exponential weights used in the EWMA scheme at
different time points and the heteroscedasticity of observations
within each profile into the local linear kernel smoother. Nu-
merical results show that this approach performs well in various
cases.

Our proposed control chart is described in detail in Section 2.
Its numerical performance is investigated in Section 3. In Sec-
tion 4, we apply this method to a dataset from a manufacturing
process of aluminium electrolytic capacitors. Several remarks
conclude the article in Section 5. Some technical details are
provided in an Appendix, which is available online as supple-
mentary materials.

2. METHODOLOGY

This section is organized in five parts. In Section 2.1, non-
parametric mixed-effects modeling of an IC dataset is intro-
duced. Its model estimation is discussed in Section 2.2. In Sec-
tion 2.3, a new Phase II nonparametric profile control chart
is proposed, which can accommodate within-profile correla-
tion and arbitrary design. Certain computational issues are ad-
dressed in Section 2.4. Some practical guidelines regarding the
design and implementation of the proposed control chart are
given in Section 2.5.

2.1 Nonparametric Mixed-Effects Modeling

The Phase II nonparametric profile control chart proposed in
this article does not require IC process parameters to be known.
Instead, we estimate the related IC process parameters from an
IC dataset using nonparametric mixed-effects modeling. In the
literature, mixed-effects modeling is often used in longitudinal
data analysis (cf., e.g., Laird and Ware 1982; Diggle, Liang,
and Zeger 1994). It has become a major tool for accommodat-
ing the possible correlation among observed data. Nonparamet-
ric mixed-effects (NME) modeling for analyzing longitudinal
data was discussed by several authors, including Shi, Weiss,
and Taylor (1996) and Rice and Wu (2001). Here we follow this
framework for modeling the within-profile correlation of an IC
dataset. In what follows, we use the term “profile” throughout;
but it should be noted that, in the literature on mixed-effects
modeling, it is often referred to as a “cluster” or “subject.”

To simplify the presentation, we choose to discuss cases with
a single covariate here; this discussion can be easily generalized
to cases with multiple covariates. In the IC dataset, assume that
there are m profiles and the ith profile has ni observations, for
i = 1,2, . . . ,m. Then, the NME model can be written as

yij = g(xij) + fi(xij) + εij for j = 1,2, . . . ,ni, i = 1,2, . . . ,m,

(1)

where g is the population profile function (i.e., the fixed-effects
term), fi is the random-effects term describing the variation of
the ith individual profile from g, {xij, yij}ni

j=1 is the sample col-
lected for the ith profile, and εij’s are iid random errors with
mean 0 and variance σ 2. In Equation (1), it is routinely assumed
that the random-effects term fi and the errors εij are independent
of each other, and fi is a realization of a mean 0 process with a
common covariance function

γ (x1, x2) = E[fi(x1)fi(x2)].
Without loss of generality, we further assume that xij ∈ [0,1],
for all i and j.

Equation (1) is fairly flexible. It includes many common cor-
relation structures as special cases. For instance, if fi(xij) = αi
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and αi is a mean 0 random variable, then within-profile corre-
lation will have the compound symmetry form. If Corr(fi(x1),

fi(x2)) = ρ(|x1 − x2|;α) for some correlation function ρ and a
coefficient α, then the correlation structure includes the nonho-
mogeneous Ornstein–Uhlenbeck process and the Gaussian cor-
relation model (cf. Zhang et al. 1998). When the design points
are equally spaced and unchanged among different profiles, this
model can also be used for describing the autoregressive corre-
lation structure. Because of its flexibility, Equation (1) requires
a relatively large set of IC profiles for model estimation and
calibration compared to its parametric counterparts. Thanks to
fast progress in sensor and information technology, automatic
data acquisition has become increasingly common in the indus-
try. Consequently, a large amount of IC data are often available,
and Equation (1) allows us to make use of such data without
imposing a parametric model form.

2.2 Estimation of the NME Model

In this section we discuss estimation of the IC g, γ , and σ 2

[cf. Equation (1)] from an IC dataset. These quantities will be
used in constructing a Phase II nonparametric profile control
chart when within-profile correlation is present and can be de-
scribed by the NME Equation (1) (see related discussion in Sec-
tion 2.3). In the literature there are some existing discussions
about statistical analysis of correlated data under various set-
tings and assumptions, including those in Altman (1990), Hart
(1991), Hoover et al. (1998), Wang (1998), Zhang et al. (1998),
Fan and Zhang (2000), Lin and Carroll (2000), and many oth-
ers. Wu and Zhang (2002) proposed a method for estimating
Equation (1) by combining linear mixed-effects (LME) mod-
eling and local linear kernel smoothing (cf. Fan and Gijbels
1996). They demonstrate that their estimator of g, which is re-
ferred to as LLME, is often more efficient than certain alter-
native estimators in terms of the mean squared errors. Further-
more, by their approach, it is fairly easy to obtain consistent
estimators of γ and σ 2, which is important for constructing a
Phase II control chart in the current study. For these reasons, we
adopt Wu and Zhang’s method here, which is briefly described
in the following.

For a given point s ∈ [0,1], LLME’s of g(s) and fi(s) are
obtained by minimizing the following penalized, negative log,
local linear kernel likelihood function

m∑
i=1

{
1

σ 2

ni∑
j=1

[yij − zT
ij(β + αi)]2Kh(xij − s)

+ αT
i D−1αi + ln |D| + ni ln(σ 2)

}
, (2)

where Kh(·) = K(·/h)/h, K is a symmetric density kernel func-
tion, h is a bandwidth, zT

ij = (1, xij − s), β is a determinis-
tic two-dimensional coefficient vector, and αi ∼ (0,D) is a
two-dimensional vector of the random effects. Minimization
of Equation (2) can be accomplished by the following iterative
procedure:

Step 1. Set the initial values for D and σ 2, denoted as D(0)

and σ 2
(0).

Step 2. At the kth iteration, for k ≥ 0, compute estimates of β

and αi by solving the so-called mixed-model equation (cf. Da-
vidian and Giltinan 1995; Wu and Zhang 2002), and the result-
ing estimates are

β̂
(k) =
{

m∑
i=1

ZT
i �iZi

}−1{ m∑
i=1

ZT
i �iyi

}
, (3)

α̂
(k)
i = {ZT

i KiZi + σ 2
(k)

[
D(k)
]−1}−1ZT

i Ki
(
yi − Ziβ̂

(k))
, (4)

where Zi = (zi1, . . . , zini)
T , yi = (yi1, . . . , yini)

T , �i =
(ZiD(k)ZT

i + σ 2
(k)K

−1
i )−1, and Ki = diag{Kh(xi1 − s), . . . ,

Kh(xini − s)}.
Step 3. Based on β̂

(k)
and α̂

(k)
i , update the estimates of D

and σ 2 by

D(k+1) = 1

m

m∑
i=1

α̂
(k)
i

[̂
α

(k)
i

]T
, (5)

σ 2
(k+1) = 1

m

m∑
i=1

1

ni

[
yi − Zi

(
β̂

(k) + α̂
(k)
i

)]TKi

× [yi − Zi
(
β̂

(k) + α̂
(k)
i

)]
. (6)

Step 4. Repeat Steps 2 and 3 until the following condition is
satisfied: ∥∥D(l) − D(l−1)

∥∥
1/
∥∥D(l−1)

∥∥
1 ≤ ε,

where ε is a prespecified small positive number (e.g., ε =
10−4), and ‖A‖1 denotes the sum of absolute values of all ele-
ments of A. Then the algorithm stops at the lth iteration.

Note that in Step 4 we use the relative error of the successive
estimates of D in the convergence criterion. In fact, other esti-
mates can also be used for this purpose. We use D here because
our simulation shows that it gives good results in various cases.
As a side note, similar to the estimation of LME models, non-
convergence of the above iterative procedure can occasionally
happen, although we found that the frequency of nonconver-
gence is negligible in all our simulation studies, except certain
extreme cases such as the ones when m or ni’s are too small. To
reduce the frequency of nonconvergence, it is suggested in the
literature to use good initial values for D and σ 2. A simple but
effective method is to set D(0) to be the identity matrix and

σ 2
(0) = 1

m

m∑
i=1

1

ni

ni∑
j=1

[
yij − ĝ(P)(xij)

]2
,

where ĝ(P)(xij) is the standard local linear kernel estimator con-
structed from the pooled data (cf. Hoover et al. 1998).

After obtaining estimates of β and αi using the above algo-
rithm, we can define

ĝ(s) = eT
1 β̂(s), f̂i(s) = eT

1 α̂i(s),
(7)

γ̂ (s1, s2) = 1

m

m∑
i=1

f̂i(s1)̂fi(s2) for any s1, s2 ∈ [0,1],
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where e1 = (1,0)T . Note that the variance estimator from the
previous iterative procedure depends on s. Since σ 2 is a popula-
tion parameter that does not depend on s, we suggest estimating
it by

σ̂ 2 = 1

m

m∑
i=1

1

ni

ni∑
j=1

[yij − ĝ(xij) − f̂i(xij)]2, (8)

which is similar to the nonparametric estimator proposed by
Hall and Marron (1990).

The following proposition investigates the asymptotic prop-
erties of the one-step estimators of g, γ , and σ 2. For given ini-
tial values D(0) and σ 2

(0), the one-step estimators are those cal-
culated by Equations (3), (7), and (8) when k = 1.

Proposition 1. Under the conditions in Equations (C1)–(C6),
(C8)-I, and (C9) given in Appendix A, for any points s1, s2 ∈
[0,1], we have (i) ĝ(s1) = g(s1){1 + Op[m−1/2 + O(h2)]};
(ii) γ̂ (s1, s2) = γ (s1, s2){1 + Op[h2 + (nh)−1/2 + m−1/2 +
(mnh3)−1/2]}; and (iii) σ̂ 2 = σ 2{1 + Op[h2 + (nh)−1/2 +
m−1/2 + (mnh3)−1/2]}, where Equation (C6) assumes that
ni ∼ n, for all i.

Result (i) of Proposition 1 is a direct conclusion of theorem 1
in Wu and Zhang (2002), except that certain conditions were
modified. The other two results establish the consistency of the
estimators of γ and σ 2, which is important for the Phase II
profile monitoring problem discussed in the following sections.

2.3 Phase II Nonparametric Profile Monitoring

In this section we present a Phase II nonparametric profile
monitoring scheme in the general case when within-profile data
might be correlated and the design points within and between
profiles are arbitrary. This is a challenging task due to the fol-
lowing two major reasons. First, because the within-profile data
might be correlated, estimation of the profile function g in-
volves a considerable amount of computation if the NME mod-
eling is also used in Phase II SPC, as described in Section 2.2.
However, a good online control chart should maintain a reason-
able efficiency while being effective in detecting profile shifts.
Second, in cases when the design points Xi = {xi1, xi2, . . . , xini}
are unchanged from profile to profile, one method that comes
to mind is to first average observed responses yij’s across in-
dividual profiles and then detect potential profile shifts using a
generalized likelihood ratio test statistic (cf. Fan et al. 2001).
This idea cannot be applied to the current problem directly be-
cause the response is observed at different design points in dif-
ferent profiles. One immediate alternative is to estimate g from
individual profile data at a given set of points in [0,1]. But the
resulting estimates will be inefficient since they are constructed
from individual profile data instead of from all observed data.

To overcome the above difficulties, at any point s ∈ [0,1], we
consider the following local weighted negative log likelihood:

WL(a,b; s, λ, t) =
t∑

i=1

ni∑
j=1

[yij − a − b(xij − s)]2

× Kh(xij − s)(1 − λ)t−i/ν2(xij),

where λ is a weighting parameter and ν2(x) = γ (x, x) + σ 2 is
the variance function of the response. Note that WL(a,b; s, λ, t)
combines the exponential weighting scheme used in EWMA at
different time points through the term (1 − λ)t−i and the local
linear kernel smoothing procedure (cf. Fan and Gijbels 1996).
At the same time, it takes into account the heteroscedasticity of
observations by using ν2(xij). Then the local linear kernel esti-
mator of g(s), defined as the solution to a of the minimization
problem mina,b WL(a,b; s, λ, t), has the expression

ĝt,h,λ(s) =
t∑

i=1

ni∑
j=1

U(t,h,λ)
ij (s)yij

/ t∑
i=1

ni∑
j=1

U(t,h,λ)
ij (s), (9)

where

U(t,h,λ)
ij (s) = (1 − λ)t−iKh(xij − s)

ν2(xij)

× [m(t,h,λ)
2 (s) − (xij − s)m(t,h,λ)

1 (s)
]
,

(10)

m(t,h,λ)
l (s) =

t∑
i=1

(1 − λ)t−i
ni∑

j=1

(xij − s)l

× Kh(xij − s)/ν2(xij), l = 0,1,2.

Note that m(t,h,λ)
0 (s) is not used in Equation (9), but it will be

used in Section 2.4.
From Equations (9) and (10) we can see that ĝt,h,λ(s) makes

use of all the available observations up to the current time
point t, and different profiles are weighted as in a conventional
EWMA chart (i.e., more recent profiles get more weight and the
weight changes exponentially over time). When λ = 0 (i.e., all
profiles receive equal weight), the resulting estimator is similar
to the local linear generalized estimating equations (GEE) esti-
mator considered in Lin and Carroll (2000). The GEE estima-
tor can accommodate within-profile correlation without speci-
fying the correlation structure (it uses the so-called independent
working correlation matrix). Under certain mild conditions, Lin
and Carroll showed that it is asymptotically the best estima-
tor. Although Wu and Zhang (2002) demonstrated that their
LLME estimator performs better in certain cases, especially
when within-profile correlation is strong, this latter estimator
involves a considerable amount of computation, and may not
be feasible for Phase II profile monitoring, which is an online
sequential procedure. As a comparison, the estimator in Equa-
tion (9) has an explicit formula, and the related computation is
relatively fast.

Following the convention in Phase II analysis, we assume
that the IC regression function, denoted as g0, and the vari-
ance function ν2(·) are both known. In practice, they need to be
estimated from an IC dataset, as described in Section 2.2. Let
ξij = [yij − g0(xij)], for all i and j, and ξ̂t,h,λ(s) be the estimator
defined in Equation (9) after yij are replaced by ξij. Then the
IC distribution of ξ̂t,h,λ(s) does not depend on g0, and the orig-
inal testing problem with H0 : g = g0 versus H1 : g �= g0, which
is associated with the profile monitoring problem, is changed
to the one with H0 : g = 0 versus H1 : g �= 0. Consequently, the
IC distribution of the proposed control chart defined in the fol-
lowing and all quantities related to this distribution (e.g., the
control limit L) do not depend on g0 either, which will simplify
the design and implementation of our proposed control chart.
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When the process is IC, |̂ξt,h,λ(s)| should be small. So, a nat-
ural statistic that can be used for SPC will be

Tt,h,λ = c0,t,λ

∫ [̂ξt,h,λ(s)]2

ν2(s)
�1(s)ds,

where

ct0,t1,λ = a2
t0,t1,λ/bt0,t1,λ,

at0,t1,λ =
t1∑

i=t0+1

(1 − λ)t1−ini,

bt0,t1,λ =
t1∑

i=t0+1

(1 − λ)2(t1−i)ni,

and �1 is some prespecified density function. In the expres-
sion of Tt,h,λ, quantities c0,t,λ and ν(·) are used for unifying its
asymptotic variance. See Theorem 1 and its proof in the Ap-
pendix for details. In practice, we suggest using the following
discretized version:

Tt,h,λ ≈ c0,t,λ

n0

n0∑
k=1

[̂ξt,h,λ(sk)]2

ν2(sk)
, (11)

where {sk, k = 1, . . . ,n0} are some iid random numbers gener-
ated from �1. Then, the chart triggers a signal if

Tt,h,λ > L,

where L > 0 is a control limit chosen to achieve a specific IC
ARL, denoted as ARL0. Hereafter, this chart is referred to as the
mixed-effects nonparametric profile control (MENPC) chart.

In Phase II SPC, it is a convention that the IC distribution
of the process measurements yij’s is assumed known. Then the
control limit L can be searched for by simulation based on this
distribution. In practice, the IC distribution is often unknown.
Instead, we usually have a quite large IC dataset. In such cases,
L can be searched for by a resampling algorithm, briefly de-
scribed in the following. In each simulation run, we resample
the IC dataset by randomly choosing a sequence of profiles with
replacement. The sequence of profiles is sequentially chosen
until a signal of shift is triggered by chart MENPC. Then an
estimated ARL0 value is computed based on B simulation runs,
and L is searched for by matching the estimated ARL0 value
to the nominal value. In our numerical examples in Section 3,
B = 10,000.

It should be pointed out that it is computationally faster to
use points sk rather than the original design points xij in Equa-
tion (11). As shown in Section 2.4, Tt,h,λ can be calculated in
a recursive manner when sk are used in Equation (11), and this
recursive feature will be lost if xij are used. Further, from the
theoretical properties of Tt,h,λ given in Theorem 2 and from our
numerical results, the selection of {sk, k = 1,2, . . . ,n0} has lit-
tle effect on the performance of the MENPC chart, as long as
n0 is not too small. (See the related discussion in Section 2.5
about practical guidelines on the selection of certain procedure
parameters.) In the special case when design points Xi are un-
changed for different profiles, we can use Xi directly (instead
of {sk, k = 1,2, . . . ,n0}) when computing the charting statistic.
Next, we give some asymptotic properties of the charting sta-
tistic Tt,h,λ, which can justify the performance of the MENPC

chart to a certain degree and shed some light on practical design
of the chart as well. Theorem 1 gives the asymptotic null distri-
bution of Tt,h,λ, where design points xij’s in each IC profile are
assumed to be iid with a density �2.

Theorem 1. Assume that the process is IC and that Equations
(C1)–(C7) given in Appendix A all hold. Then we have the fol-
lowing results

(i) If nih is bounded for each i and Equation (C8)-II in Ap-
pendix A holds, then

(Tt,h,λ − μ̃h)/σ̃h
L−→ N(0,1),

where

μ̃h =
∫ [K(u)]2 du

h

∫
�1(x)

�2(x)
dx,

σ̃ 2
h = 2

∫ [K ∗ K(u)]2 du

h

∫
�2

1(x)

�2
2(x)

dx.

(ii) If nih → ∞ for each i and Equations (C8)-III and (C10)
in Appendix A hold, then

1

d0,t,λ
Tt,h,λ

D∼ 1

n0
ζ Tζ ,

where
D∼ denotes asymptotic equivalence in the distribu-

tion dt0,t,λ =∑t1
i=t0+1(1 − λ)2(t1−i)n2

i /bt0,t,λ, and ζ is an
n0-dimensional multivariate normal random vector with
mean 0 and covariance matrix

� =

⎛⎜⎜⎝
γ (s1,s1)

ν2(s1)
· · · γ (s1,sn0 )

ν(s1)ν(sn0 )

...
. . .

...
γ (sn0 ,s1)

ν(sn0 )ν(s1)
· · · γ (sn0 ,sn0 )

ν2(sn0 )

⎞⎟⎟⎠ .

From Theorem 1(i), we can see that Tt,h,λ is asymptotically
independent of the nuisance parameters γ (·, ·) and σ 2. The con-
dition that nih is bounded for each i is satisfied when ni is fi-
nite and bounded for each i, which is often the case in practice.
When nih → ∞ for each i, the within-profile correlation will
play an important role in the expansion of the variance of Tt,h,λ,
which leads to a different asymptotic distribution, as described
in Theorem 1(ii). In such situations it seems desirable to incor-
porate the covariance matrix � into the test statistic. However,
� may not be positive-definite in certain cases (e.g., the case of
compound symmetry correlation). Therefore, it is not obvious
how to do so, which is left to our future research.

The next theorem investigates the asymptotic behavior of
Tt,h,λ under the OC model

yij =
{g0(xij) + fi(xij) + εij, if 1 ≤ i ≤ τ

g1(xij) + fi(xij) + εij, if i > τ,
(12)

where τ is an unknown change point, and g1(x) = g0(x) + δ(x)
is the unknown OC profile function. In the theorem we use the
following notations:

ζδ =
∫ [

δ(u) + h2η1

2
δ′′(u)

]2
�1(u)

ν2(u)
du, η1 =

∫
K(t)t2 dt,

ζ1 =
∫

δ2(u)
�1(u)γ (u,u)

ν2(u)
du, ζ2 =

∫
[δ′′(u)]2�1(u)du.
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Theorem 2. Under Equations (C1)–(C7) given in Appen-
dix A and the extra condition that ζ2 < M for some constant
M > 0, we have

(i) If nih is bounded for each i, c0,t,λnhζ1 → 0, and Equa-
tion (C8)-IV in Appendix A holds, then (Tt,h,λ − μ̃h −
c0,t,λζδ)/σ̃h

L−→ N(0,1).

(ii) If nih is bounded for each i, ζ2 → 0, and Equation (C8)-
IV in Appendix A holds, then Tt,h,λ has nontrivial power
(i.e., greater than the nominal level) when δ ∝ c−4/9

0,t,λ and
h = O(c−2/9

0,t,λ ).
(iii) If nih → ∞ for each i, and Equations (C8)-III and (C10)

in Appendix A hold, then 1
d0,t,λ

Tt,h,λ
D∼ 1

n0
ζ Tζ , where ζ

is an n0-dimensional multivariate normal random vec-
tor with mean δ = [δ(s1), . . . , δ(sn0)]T and covariance
matrix �.

2.4 Some Computational Issues

Although computing power has improved dramatically and
it is computationally trivial to do nonparametric function esti-
mation for individual profiles, for online process monitoring,
which generally handles a large number of profiles, fast im-
plementation is still important and some computational issues
deserve our careful examination. For the proposed chart, com-
puting the test statistic Tt,h,λ by Equations (9) through (11)
requires a considerable amount of computing time and a sub-
stantial amount of storage space as well to save all past profile
observations. In this section we provide updating formulas for
computing Tt,h,λ, which can greatly simplify the computation
and reduce the storage requirement. Let

m̃(t,h)
l (s) =

nk∑
j=1

(xtj − s)lKh(xtj − s)/ν2(xtj), l = 0,1,2,

q̃(t,h)
l (s) =

nk∑
j=1

(xtj − s)lKh(xtj − s)ytj/ν
2(xtj), l = 0,1.

Then, m(t,h,λ)
l (s) in Equation (10) can be recursively updated by

m(t,h,λ)
l (s) = (1 − λ)m(t−1,h,λ)

l (s) + m̃(t,h)
l (s), l = 0,1,2,

where m(0,h,λ)
l (s) = 0, for l = 0,1,2. Let q(t,h,λ)

l (s), for l = 0,1,
be two working functions defined by the recursive formula

q(t,h,λ)
l (s) = (1 − λ)q(t−1,h,λ)

l (s) + q̃(t,h)
l (s), l = 0,1,

where q(0,h,λ)
l (s) = 0, for l = 0,1. Then, we have

ĝt,h,λ(s) = [M(t,h,λ)
]−1{

(1 − λ)2M(t−1,h,λ)ĝt−1,h,λ

+ [q̃(t,h)
0 m(t,h,λ)

2 − q̃(t,h)
1 m(t,h,λ)

1

]
+ (1 − λ)

[
q(t−1,h,λ)

0 m̃(t,h)
2 − q(t−1,h,λ)

1 m̃(t,h)
1

]}
,

(13)

where M(t,h,λ)(s) = m(t,h,λ)
2 (s)m(t,h,λ)

0 (s)−[m(t,h,λ)
0 (s)]2. On the

right-hand side of the above equation the dependence on s in
each function is not made explicit in the notation for simplicity,
which should not cause any confusion.

Using the previous updating formulas, implementation of the
MENPC chart can be briefly described as follows. At time
point t, we first compute quantities m̃(t,h)

l (s), for l = 0,1,2,

and q̃(t,h)
l (s), for l = 0,1, at n0 predetermined s locations (see

related discussion in Sections 2.3 and 2.5 about the selection
of {sk, k = 1, . . . ,n0}). Then, m(0,h,λ)

l (sk), for l = 0,1,2, and

q(0,h,λ)
l (sk), for l = 0,1, are updated by the previous formulas.

Finally, ĝt,h,λ(s) is computed from Equation (13), and the test
statistic Tt,h,λ is computed by ĝt,h,λ(s) after yij is replaced by ξij.
This algorithm only requires O(n0nih) operations for monitor-
ing the ith profile, which is the same order as the computation
involved in conventional local linear kernel smoothing. If ni and
n0 are both large, we can further decrease the computation to
the order of O(nih) by using the updating algorithm proposed
by Seifert et al. (1994) (see Fan and Marron 1994 for a similar
algorithm). Obviously, using the proposed updating formulas,
computer storage does not grow sequentially with time t.

2.5 Certain Practical Guidelines

On the Sizes of m and ni. The number of IC profiles should
be large enough to generate accurate estimates of IC g, γ ,
and σ 2. This has become a less significant issue nowadays be-
cause a large amount of IC data are often available due to ad-
vances in data acquisition techniques. Empirically speaking, to
attain desirable IC distributional properties, we recommend us-
ing IC data with ni ≥ 20 and m ≥ 500, although more system-
atic future research is required to determine the size of a neces-
sary IC dataset.

On Choosing the Bandwidth. In estimation of the NME
model in Equation (1) by the iterative procedure described in
Section 2.2 for Phase I analysis, people often use data-driven
bandwidth selection techniques, such as the least-squares cross-
validation (CV) and the generalized cross-validation (GCV)
procedures. Wu and Zhang (2002) proposed a CV method by
combining leave-one-subject-out and leave-one-point-out CV
schemes. Their study showed that this method can effectively
track estimates of both g and fi. We adopt it in our numerical
analysis of the IC data. With respect to Phase II online profile
monitoring, like many other smoothing-based tests, the perfor-
mance of the MENPC chart depends on the selection of the
bandwidth parameter h used in Equation (9). The optimal se-
lection of h remains an open problem in this area, and it is
widely recognized that optimal h for nonparametric curve esti-
mation is generally not optimal for testing (cf., e.g., Hart 1997).
A uniformly most powerful test usually does not exist due to
the fact that nonparametric regression functions have infinite di-
mensions. We suggest using the following empirical bandwidth
formula

hE =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1n−1/5

(
n∑

i=1

(xi − x̄)2/n

)1/2

for balanced design

c2[ñ(2 − λ)/λ]−1/5√Var(x)

for random design,

(14)

where x̄ =∑n
i=1 xi is the mean of the n design points in the

balanced design case, ñ and Var(x) are the average number of

TECHNOMETRICS, AUGUST 2010, VOL. 52, NO. 3



NONPARAMETRIC PROFILE MONITORING 271

design points, and the variance of design points within a profile,
respectively, in the random design case, which can be estimated
from the IC data, and c1 and c2 are two constants. Empirically,
c1 and c2 can be any values in the interval [1.0, 2.0]. By Equa-
tion (14), a smaller bandwidth is suggested for the random de-
sign case because the actual number of observations used in the
MENPC chart at each time point is about c0,t,λ in such cases
which is roughly ñ(2 − λ)/λ.

On Choosing λ. Traditionally, a larger λ leads to a quicker
detection of larger shifts (cf., e.g., Lucas and Saccucci 1990).
However, in the mixed-effects modeling, efficient estimation of
the common profile function g requires the use of observations
across a number of different profiles, due mainly to the exis-
tence of random effects. From Theorems 1 and 2, we can see
that the effective number of profiles used in the MENPC chart
at each time point is asymptotically (2−λ)/λ. So, to estimate g
properly, (2−λ)h/λ should be large enough [cf. Equation (C8)-
II in Appendix A]. Consequently, λ cannot be chosen to be too
large. Otherwise, even for a shift of large magnitude, Tt,h,λ may
not be able to detect it quickly, due to a large bias in estimat-
ing g. Empirically, we suggest choosing λ ∈ [0.02,0.1] if hE in
Equation (14) is used.

On Choosing {sk, k = 1,2, . . . ,n0}. Based on our numeri-
cal experience, the selection of {sk, k = 1,2, . . . ,n0} does not
much affect the performance of the MENPC chart, as long as
n0 is not too small and sk’s cover all the key parts of g0 (e.g.,
peaks/valleys or oscillating regions) well. In our numerical ex-
amples presented in Section 3, we find that results will hardly
change when n0 ≥ 40.

3. A SIMULATION STUDY

We present some simulation results in this section regard-
ing the numerical performance of the proposed Phase II non-
parametric profile monitoring chart MENPC. Throughout this
section, the kernel function is chosen to be the Epanechnikov
kernel function K(x) = 0.75(1 − x2)I(−1 ≤ x ≤ 1), which is
commonly used in the local smoothing literature due to some of
its optimality properties (see chapter 2 of Fan and Gijbels 1996
for a related discussion). The IC ARL is fixed at 200. The error
distribution is assumed to be standard Normal. For simplicity,
we assume that ni = n = 20 for all i, xij ∼ Uniform(0,1), for
j = 1, . . . ,n, sk = (k − 0.5)/n0, for k = 1, . . . ,n0, and n0 = 40.
All ARL values reported in this section are averages of 10,000
replicated simulations. In addition, as suggested by Hawkins
and Olwell (1998), here we focus on the steady-state OC ARL
behavior of the chart, and assume that shifts can only occur after
time τ = 30. When computing the OC ARL values, any simu-
lation run in which a signal occurs before the (τ + 1)th profile
will be ignored.

It is challenging to compare the proposed method with alter-
native methods since there is no obvious comparable method in
the literature. Here, we first consider the control chart based on
fixed-effects modeling for monitoring nonparametric profiles as
an alternative method, denoted as FENPC. In this approach,
fi in Equation (1) is assumed to be zero, and consequently,
ν2(x) = σ 2 is used in the construction of Tt,h,λ [cf. Equations
(9)–(11)]. Note that the FENPC chart can be regarded as a gen-
eralization of the NEWMA chart by Zou, Tsung, and Wang

(2008); the latter assumes that design points in different profiles
are deterministic and unchanged from one profile to another
while the former can handle arbitrary designs. By comparing
the MENPC chart with the FENPC chart, we can see what will
happen if within-profile correlation exists but is ignored. Fol-
lowing the recommendations in Section 2.5, for both charts, we
use h = 1.5[n(2 − λ)/λ]−1/5√Var(x) in Phase II SPC, and use
the CV method by Wu and Zhang (2002) for choosing band-
widths in modeling the IC data.

First, we study the possible effect of within-profile correla-
tion on the IC run-length distributions of the two charts in the
following four cases:

(I) fi(xij) = 0;
(II) fi(xij) = bαixij;

(III) fi(xij) = bαi cos(2πxij);
(IV) [fi(xi1), . . . , fi(xin)]T ∼ b · MNn(0,�),

where αi, i = 1,2, . . . , are independent standard normal ran-
dom variables, MNn(0,�) denotes the n-dimensional multi-
variate normal distribution with mean 0 and covariance ma-
trix �, and b is a constant. In all cases we assume that g0(·) = 0.
Obviously, in case (I), there is no within-profile correlation.
In case (II), the random component fi(x) is a linear function
of the covariate x. In case (III), it is a cosine function of the
covariate x. In case (IV), the random component vector has a
joint Normal distribution. In this case, we further assume that
� = (ρjk) and ρjk = 0.2|xij−xik|, for j, k = 1, . . . ,n. In each case,
a large IC sample with m = 500 and n = 200 is generated. By
using estimated γ (·, ·) and σ 2 from this IC data, the control
limits of the two control charts are computed, as described in
Section 2.3. Then their IC ARL’s and the corresponding stan-
dard deviations of the run length, denoted as ARL0 and SDRL0,
respectively, are summarized in Table 1.

From the table it can be seen that, in case (I) when the as-
sumption of within-profile independence is valid, the ARL’s
and SDRL’s of both charts are close to their nominal values 200,
as expected. However, in cases (II)–(IV) when within-profile
correlation is substantial, the FENPC chart has large biases in
both ARL0 and SDRL0, especially when b is large. As a com-
parison, our proposed MENPC chart still performs well in these
cases.

Next, we investigate the OC performance of the two control
charts. The following two representative OC models are con-
sidered here:

(i) g1(x) = 2θ(x − 0.5);
(ii) g1(x) = θ sin(2π(x − 0.5)).

In case (i), δ(x) = g1(x) − g0(x) is a straight line; it oscillates
greatly in case (ii). The parameter θ controls the shift magni-
tude. For each control chart, two λ values 0.1 and 0.2 are used.
With each λ value, the bandwidth in Equation (14) is used. In
this comparison, we pretend that the IC model is known exactly,
and the control limit of the FENPC chart is adjusted to attain the
desired IC ARL value 200. Therefore, the difference between
the MENPC and FENPC charts in this comparison is mainly in
whether or not the within-profile correlation is taken into ac-
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Table 1. IC ARL and SDRL values of the MENPC and FENPC charts

Model (I) Model (II) Model (III) Model (IV)

b ARL0 SDRL0 ARL0 SDRL0 ARL0 SDRL0 ARL0 SDRL0

MENPC 0.25 205 203 196 197 198 199 206 208
0.50 205 203 201 200 195 194 208 204
1.00 205 203 193 190 194 194 206 205

FENPC 0.25 199 197 110 109 170 172 38.3 34.0
0.50 199 197 29.8 29.2 105 104 21.5 20.0
1.00 199 197 8.48 8.29 35.5 34.6 15.1 14.2

count in Phase II SPC. Obviously, for IC models (I) and (IV),
ν2(x) is independent of x; thus, the two charts will be equiva-
lent in such cases. For this reason, Table 2 presents the OC ARL
values of the two charts for IC models (II) and (III) only.

From Table 2, we can have the following results. First, the
MENPC chart outperforms the FENPC chart in all cases, which
demonstrates the fact that the former chart is more effective be-
cause it explicitly incorporates within-profile heteroscedastic-

Table 2. OC ARL comparison of the MENPC and FENPC charts when ARL0 = 200, n = 20, n0 = 40, and λ = 0.1 or 0.2

OC model (i) OC model (ii)

IC model θ MENPC FENPC MENPC FENPC

λ = 0.1
(II) 0.20 130 (1.36) 139 (1.48) 85.3 (0.83) 100 (0.98)

0.30 80.5 (0.78) 98.0 (0.99) 40.5 (0.32) 52.2 (0.46)

0.40 48.6 (0.42) 62.6 (0.59) 22.3 (0.15) 29.0 (0.21)

0.60 20.7 (0.13) 28.4 (0.20) 10.6 (0.05) 13.1 (0.06)

0.80 12.1 (0.06) 16.0 (0.09) 6.81 (0.03) 8.57 (0.03)

1.20 6.64 (0.02) 8.43 (0.03) 4.06 (0.02) 5.14 (0.02)

1.60 4.60 (0.02) 5.82 (0.02) 2.93 (0.01) 3.71 (0.01)

2.00 3.51 (0.01) 4.49 (0.01) 2.33 (0.01) 2.96 (0.01)

2.40 2.88 (0.01) 3.68 (0.01) 1.95 (0.01) 2.50 (0.01)

(III) 0.20 131 (1.38) 162 (1.73) 68.3 (0.64) 121 (1.25)
0.30 81.0 (0.79) 121 (1.26) 31.2 (0.24) 65.7 (0.60)

0.40 48.1 (0.42) 81.2 (0.76) 17.6 (0.11) 34.2 (0.25)

0.60 21.4 (0.14) 33.3 (0.24) 9.05 (0.04) 14.4 (0.06)

0.80 12.4 (0.06) 17.7 (0.09) 6.02 (0.02) 9.14 (0.03)

1.20 6.59 (0.03) 9.04 (0.03) 3.70 (0.01) 5.39 (0.02)

1.60 4.51 (0.02) 6.10 (0.02) 2.68 (0.01) 3.92 (0.01)

2.00 3.43 (0.01) 4.71 (0.01) 2.20 (0.01) 3.15 (0.01)

2.40 2.81 (0.01) 3.85 (0.01) 1.85 (0.01) 2.65 (0.01)

λ = 0.2
(II) 0.20 162 (1.70) 167 (1.83) 137 (1.51) 136 (1.43)

0.30 128 (1.36) 131 (1.38) 85.3 (0.89) 87.2 (0.92)

0.40 93.8 (0.97) 97.1 (1.02) 47.4 (0.46) 52.5 (0.51)

0.60 43.6 (0.40) 48.1 (0.47) 15.7 (0.11) 19.6 (0.15)

0.80 19.5 (0.15) 24.4 (0.20) 7.94 (0.04) 9.81 (0.05)

1.20 7.48 (0.03) 9.23 (0.05) 4.06 (0.01) 4.82 (0.02)

1.60 4.59 (0.02) 5.49 (0.02) 2.79 (0.01) 3.28 (0.01)

2.00 3.39 (0.01) 3.97 (0.01) 2.16 (0.01) 2.55 (0.01)

2.40 2.70 (0.01) 3.15 (0.01) 1.84 (0.01) 2.11 (0.01)

(III) 0.20 164 (1.77) 181 (1.94) 124 (1.32) 156 (1.66)
0.30 133 (1.41) 156 (1.66) 69.2 (0.70) 113 (1.17)
0.40 93.7 (0.98) 125 (1.33) 35.2 (0.32) 71.5 (0.71)

0.60 41.6 (0.38) 70.1 (0.72) 12.0 (0.07) 24.3 (0.19)

0.80 18.8 (0.14) 32.0 (0.27) 6.69 (0.03) 10.7 (0.05)

1.20 7.25 (0.03) 9.94 (0.05) 3.60 (0.01) 5.04 (0.02)

1.60 4.39 (0.02) 5.73 (0.02) 2.53 (0.01) 3.42 (0.01)

2.00 3.23 (0.01) 4.13 (0.01) 2.03 (0.01) 2.70 (0.01)

2.40 2.60 (0.01) 3.27 (0.01) 1.73 (0.01) 2.21 (0.01)

NOTE: Standard errors are in parentheses.
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ity of observations into its charting statistic. Second, the con-
trol charts with λ = 0.2 do not have satisfactory performance
in most cases, compared to the charts with λ = 0.1. That is be-
cause the charts use about [(2 − λ)h/λ]n observations at each
given point and the factor (2 − λ)h/λ = 1.37 is fairly small in
the case when λ = 0.2. Consequently, the charts estimate the
regression function g with large bias and its ability to detect
profile shifts is thus greatly reduced. This result confirms our
recommendation in Section 2.5 that λ should be chosen smaller
for monitoring profiles with within-profile correlation than for
monitoring profiles with independent observations. In addition,
further simulations (not reported here) also show that, when n0

is chosen larger than 40, the performance of either chart will
not change much.

Next, we compare our proposed MENPC control chart,
which is based on nonparametric mixed-effects modeling, with
the control charts by Jensen, Birch, and Woodall (2008) and
Jensen and Birch (2009) that are based on linear and nonlin-
ear mixed-effects modeling. It should be pointed out that both
charts by Jensen and co-authors focus on Phase I SPC only.
To compare with the proposed Phase II MENPC chart, they
need to be modified for online sequential profile monitoring.
With the nonlinear profile monitoring chart by Jensen and Birch
(2009), this modification turns out to be difficult for the follow-
ing reason. As pointed out by Zou, Tsung, and Wang (2008) and
Williams, Woodall, and Birch (2007), when nonlinear regres-
sion methods are used for constructing a control chart, non-
convergence or slow convergence of numerical algorithms is
often an issue because Newton–Raphson iterative algorithms
are routinely used in such cases to obtain parameter estimates.
For Phase I analysis, this issue may not be serious as long as
the initial values of the iterative algorithm are properly chosen.
However, for Phase II online process monitoring where a large
number of tests are performed, it is usually difficult to find the
proper initial values to guarantee the convergence of the iter-
ative algorithm, especially when the profile model (instead of
just the model parameters) changes after the process goes OC.
For this reason, only the linear mixed-effects (LME) modeling
approach by Jensen, Birch, and Woodall (2008) is considered
here, and it is modified for Phase II profile monitoring as fol-
lows. Assume that the ith profile data follow the LME model

yi = Xiβ + Xibi + εi, i = 1,2, . . . ,

where Xi is the design matrix, yi = (yi1, . . . , yini)
T , β is the

coefficient vector of the fixed-effects term, bi ∼ Np(0,D)

the coefficient vector of the random-effects term, and εi =
(εi1, . . . , εini)

T . Then, β can be estimated by the following
weighted least-squares estimator constructed from the ith pro-
file data:

β̂ i = (XT
i V−1

i Xi)
−1XT

i V−1
i yi,

where Vi = XiDXi
T + σ 2I. Following the framework of the

MEWMA chart by Zou, Tsung, and Wang (2007), which is for
online monitoring of general linear profiles using multivariate
EWMA schemes, let us consider a sequence of EWMA work-
ing vectors

wi = (1 − λ)wi−1 + λ(β̂ i − β0),

Table 3. Six sets of parameters of the two OC models for comparing
the MENPC and LMEP control charts

Model (1) Model (2)

β0 β1 β2 β4 β5

(i) 1.3 2.0 3.0 0.1 1.5
(ii) 1.5 2.0 3.0 0.3 1.5
(iii) 1.0 2.3 3.0 0.5 1.5
(iv) 1.0 2.5 3.0 0.1 2.5
(v) 1.0 2.0 3.3 0.3 2.5
(vi) 1.0 2.0 3.5 0.5 2.5

where β0 denotes the IC value of β . Then, the control chart
triggers a signal if

Qi = 2 − λ

λ
wT

i (XT
i V−1

i Xi)wi > L,

where L > 0 is a control limit chosen to achieve a specific
IC ARL. This chart is called the linear mixed-effect profile
(LMEP) monitoring chart hereafter.

In the next example, we compare the LMEP and MENPC
charts under the IC model

yij = 1 + 2xij + 3x2
ij + αixij + εij,

where αi, for i = 1,2, . . . , are iid standard normal random
variables. This model assumes that the fixed-effects part is a
quadratic function of the predictor, and the random-effects part
is a linear function. So it is a LME model. In the simulation, ni,
λ, xij, and εij are chosen or generated in the same way as that in
the example of Tables 1 and 2. The following two OC models
are considered here:

(1) yij = β0 + β1xi + β2x2
i + εij;

(2) yij = 1 + 2xi + 3x2
i + β4 sin(2πβ5xi) + εij,

where β’s are deterministic coefficients. Obviously, OC Equa-
tion (1) is an LME model, and OC Equation (2) is not an LME
model. Six sets of values of β’s are listed in Table 3, which cor-
respond to OC models that differ from the IC model with dif-
ferent degrees. The OC ARL values of the LMEP and MENPC
charts are presented in Table 4. From the table, we can see that,
even for OC Equation (1) which is an LME model, the results
of MENPC are compatible with the results of LMEP. For OC
Equation (2), MENPC outperforms LMEP uniformly.

4. A REAL–DATA APPLICATION

In this section we demonstrate the proposed methodology
by applying it to a dateset from a manufacturing process of
aluminium electrolytic capacitors (AEC’s). This process trans-
forms raw materials, such as anode aluminum foil, cathode alu-
minum foil, guiding pin, electrolyte sheet, plastic cover, alu-
minum shell, and plastic tube into AEC’s that are appropriate
for use in low-leakage circuits and are well adapted to a wide
range of environmental temperatures. The whole manufacturing
process consists of a sequence of operations, including clench-
ing, rolling, soaking, assembly, cleaning, aging, and classifying.
Before packing, a careful quality monitoring step is required by
sampling from a batch of products.
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Table 4. OC ARL comparison of the MENPC and LMEP charts when ARL0 = 200, n = 20, λ = 0.1 or 0.2

OC model (1) OC model (2)

MENPC LMEP MENPC LMEP

λ = 0.1 (i) 18.9 (0.13) 18.3 (0.12) 73.1 (0.69) 154 (1.61)
(ii) 8.93 (0.04) 8.67 (0.04) 24.4 (0.15) 109 (1.15)
(iii) 63.3 (0.60) 91.7 (0.91) 12.5 (0.05) 75.1 (0.77)
(iv) 29.0 (0.25) 44.1 (0.38) 107 (1.10) 166 (1.75)
(v) 108 (1.08) 102 (1.03) 44.6 (0.35) 130 (1.38)
(vi) 59.4 (0.54) 50.9 (0.46) 20.5 (0.10) 94.2 (0.98)

λ = 0.2 (i) 25.0 (0.21) 22.0 (0.19) 127 (1.20) 149 (1.57)
(ii) 9.90 (0.06) 8.54 (0.05) 59.4 (0.57) 102 (1.07)
(iii) 76.0 (0.73) 113 (1.17) 23.3 (0.18) 64.5 (0.68)
(iv) 35.4 (0.35) 56.9 (0.57) 163 (1.74) 165 (1.75)
(v) 121 (1.27) 123 (1.29) 114 (1.13) 124 (1.33)
(vi) 69.6 (0.71) 67.5 (0.70) 68.8 (0.64) 87.9 (0.92)

NOTE: Standard errors are in parentheses.

Regarding the quality of AEC’s, the most important charac-
teristic is the dissipation factor (DF), which can be automati-
cally measured by an electronic device. However, it is known
that DF measurements will change significantly with environ-
mental temperature, and there is a specific requirement about
the adaptability of AEC’s to the temperature. To monitor the
adaptability, engineers put a sampled AEC in a container. Then
the container’s temperature is controlled, and the temperature
is supposed to stably increase from −26◦F to 78◦F. In this
process, measurements of DF and the actual temperature inside
the container are taken at 53 equally spaced time points. The
actual temperature inside the container is reported by a temper-
ature sensor. So, for each sampled AEC, a set of 53 observa-
tions of the pair (temperature, DF), which corresponds to (x, y)
in Equation (1), are obtained for monitoring the adaptability of
the AEC to the temperature. Figure 1 shows three AEC profiles
along with an NME estimate of the IC profile function (see re-
lated discussion in the following). It should be noted that the

actual temperature inside a container will fluctuate around its
nominal level at each observation time.

Therefore, the actual temperature readings of different con-
tainers at a given observation time are all different, although the
differences are usually small. For this dataset, profile monitor-
ing charts requiring deterministic and fixed design points in dif-
ferent profiles [e.g., the one by Zou, Tsung, and Wang (2008)]
will be difficult to use.

The entire AEC dataset contains 144 profiles and each pro-
file has n = 53 observations. We use the first 96 profiles to cal-
ibrate the proposed model and the remaining ones to test the
model. A calibration sample of this size might be smaller than
one would like to fully determine the IC distribution, but suf-
fices to illustrate the use of the method in a real-world setting.
Since the DF measurements are taken in consecutive time in-
tervals, the AEC data exhibit a considerable amount of positive
serial autocorrelation, which is confirmed by our analysis de-
scribed in the following.

Figure 1. Three AEC profiles (lines connecting points with three different symbols) and the NME estimate (solid curve) of the IC profile
function.
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We first fit Equation (1) to the calibration sample of the
first 96 profiles of the data by the iterative procedure in Equa-
tions (3) through (6) using the suggested initial values of D and
σ 2 given in Section 2.2 and the CV bandwidth selection pro-
cedure suggested by Wu and Zhang (2002). The resulting IC
profile estimate ĝ is displayed in Figure 1 by the solid curve.
From Equations (7) and (8), we can also compute the estimated
correlation of two observations of the response variable y at any
two points s1 and s2 in the design interval

ρ̂(s1, s2) = γ̂ (s1, s2)/[̂ν(s1)̂ν(s2)],
where γ̂ (s1, s2) is defined in Equation (7), ν̂2(s) = γ̂ (s, s) +
σ̂ 2 is the estimated variance of y at s, and σ̂ 2 is defined in
Equation (8). Let x∗

j = 2(j − 1) − 26, for j = 1,2, . . . ,53,
be 53 equally spaced points in the design interval [−26,78],
which denote the nominal temperature levels used in taking
DF measurements of the sampled AEC’s. The estimated cor-
relations ρ̂(x∗

j , x∗
j+1), ρ̂(x∗

j , x∗
j+3), ρ̂(x∗

1, x∗
j ), and ρ̂(x∗

j , x∗
53), for

j = 1,2, . . . ,53, are shown in Figure 2(a). From the plot, we
can see that correlation within AEC profiles is substantial;
thus, it should not be ignored. Figure 2(b) shows the estimated
standard deviation ν̂(x∗

j ) of the response variable y at x∗
j , for

j = 1,2, . . . ,53, from which heteroscedasticity of the response
variable y at different positions of x is clearly seen. Therefore,
the proposed MENPC chart will be more appropriate to use in
this case, compared to the FENPC chart discussed in the pre-
vious section which ignores the heteroscedasticity. In addition,
we can obtain an estimate of the error standard deviation σ to
be 0.016, by the formula in Equation (8), which is much smaller
than ν̂(x∗

j ), especially when j ∈ [12,50]. This result implies that
the random-effects term in Equation (1) describes a substantial
amount of random variation in the data.

Next, we construct the proposed MENPC chart for Phase II
profile monitoring using the estimated IC parameters computed
from the IC data. As in the simulation study discussed in the
previous section, the IC ARL is fixed at 200, and λ is cho-
sen to be 0.1. For simplicity, we choose n0 = n = 53 and

{sk, k = 1,2, . . . ,n0} to be equally spaced in the design inter-
val [−26,78] of the explanatory variable. All other parameters
are chosen to be the same as those used in the example of Ta-
ble 1. The control limit is computed to be 18.24 by simulation.
The charting statistics Tt,h,λ, for t = 97, . . . ,144 are shown in
Figure 3 along with the control limit by the solid curve and solid
horizontal line, respectively. The corresponding FENPC chart,
using the same λ and h as those in the MENPC chart, is also
presented in the figure along with its control limit 34.52, by the
dashed curve and the dashed horizontal lines. From the plot, it
can be seen that the MENPC chart gives a signal of profile shift
around the 112th time point, and remains above the control limit
for several profiles until the 120th profile. This result confirms
a marked step-change which seems to have occurred around the
108th profile. The process seems to have been adjusted around
the 119th profile; thus, the MENPC charting statistic goes back
below its control limit afterward. As a comparison, the FENPC
chart does not give a signal until the 118th profile.

5. SUMMARY AND CONCLUDING REMARKS

In this article we propose a Phase II control chart for monitor-
ing nonparametric profiles. This chart is based on nonparamet-
ric mixed-effects modeling, local linear kernel smoothing, and
EWMA process monitoring. It can accommodate within-profile
correlation and arbitrary design. Numerical studies show that it
is effective in detecting step profile shifts in various cases. Some
numerical studies not reported in the article show that it is also
effective in detecting certain drifts in profiles. The AEC exam-
ple demonstrates that our method can be implemented conve-
niently in industrial applications.

As pointed out in Section 1, this article focuses on Phase II
profile monitoring only. It requires much future research to ex-
tend our method to Phase I analysis, in which detection of out-
liers and spikes will also be of interest, besides detection of
step shifts in profiles. For Phase II profile monitoring, we only
consider possible step shifts in the fixed-effects term g of Equa-
tion (1). In some cases, the variance–covariance structure of the

Figure 2. (a) Solid, dashed, dotted, and dash-dotted curves represent estimated within-profile correlations ρ̂(x∗
j , x∗

j+1), ρ̂(x∗
j , x∗

j+3), ρ̂(x∗
1, x∗

j ),

and ρ̂(x∗
j , x∗

53), for j = 1,2, . . . ,53, where {x∗
j , j = 1,2, . . . ,53} are 53 equally spaced points in the design interval [−26,78]. (b) Estimated

standard deviation ν̂(x∗
j ) of the response variable y at x∗

j , for j = 1,2, . . . ,53.
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Figure 3. MENPC and FENPC control charts for monitoring the AEC process. The solid and dashed horizontal lines indicate their control
limits, respectively.

profiles may also change over time. Such a change may or may
not occur simultaneously with the shift in g. Online detection
of possible changes in the variance–covariance structure of the
profiles is not trivial, and we leave it for our future research. In
addition, in some applications, we might be interested in mon-
itoring a multivariate relationship between a response variable
and several predictors over time. At this moment, we are not
aware of any existing research on this topic, and we leave it
to our future research to generalize the proposed control chart
discussed in this article to multivariate cases.

SUPPLEMENTAL MATERIALS

Proofs: This pdf file provides certain technical details, includ-
ing proofs of Proposition 1 and Theorems 1 and 2 in Sec-
tion 2. (supplement.pdf)
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Comment
Daniel W. APLEY

Department of Industrial Engineering
and Management Sciences

Northwestern University
Evanston, IL 60208-3119

(apley@northwestern.edu)

I congratulate the authors on a welcome addition to the
profile monitoring literature, particularly regarding how to ac-
count for within-profile correlation. I cannot imagine a set of
real profile data that does not have within-profile correlation,
at least not for {xij : j = 1,2, . . . ,ni} that are densely enough
spaced to be consistent with the spirit of profile data. Although
within-profile correlation may have little adverse effect when
fitting linear or simple parametric nonlinear models, as noted by
Jensen, Birch, and Woodall (2008), it is inherently more insid-
ious when fitting nonparametric models that are based on local
smoothing. Profile variation due to a random component that
is correlated within-profile looks deceptively like local, non-
random changes in the mean if the model assumes no within-
profile correlation. It is, therefore, likely to cause excessive
false alarms. Although many authors noted the pervasiveness
of within-profile correlation, surprisingly few developed algo-
rithms that take this into account. Notable exceptions are the
mixed model approach of Jensen, Birch, and Woodall (2008)
and Jensen and Birch (2009) and the spatial autoregressive ap-
proach of Colosimo, Semeraro, and Pacella (2008). In light of
this, I think the present work will be a welcome addition for
practitioners who wish to monitor nonlinear profiles that are
too irregularly shaped to be modeled parametrically.

I can find very little to criticize, but I would like to direct
further scrutiny to three issues. The first two regard choosing
the control limits to avoid excessive false alarms. These are
hardly criticisms because I believe the authors’ resampling pro-
cedure (with suitable modification) presents a nice solution to

this dilemma. The third is a broader issue that regards the na-
ture of the assignable causes that are typically assumed in the
profile monitoring literature.

BEWARE OF ASYMPTOTIC RESULTS

In general, asymptotic results are often very useful in statis-
tics. Take the central limit theorem, for example. One reason it
is so useful is that the conditions under which we can approxi-
mate nonasymptotic reality using the asymptotic results of the
central limit theorem are often met in practice: Usually only
moderate sample sizes are needed to approximate the distribu-
tion of the average of a random sample as normal, at least for
the level of accuracy required in many applications.

Regarding the asymptotic results of Theorem 1, on the other
hand, I have doubts that the conditions required for their ap-
proximate validity are satisfied for typical profile monitoring
applications. One conclusion that the authors draw following
Theorem 1 is that the asymptotic distribution of Tt,h,λ is inde-
pendent of the “nuisance” parameter γ (x, x′) when the condi-
tion of bounded nih is met (which is always the case in prac-
tice). The implication seems to be that one may choose the
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the American Society for Quality
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control limits independent of γ (x, x′) and achieve a false alarm
probability that is insensitive to uncertainty in this nuisance pa-
rameter (just prior to Theorem 1, the authors state that it can
“shed some light on practical design of the chart”). But γ (x, x′)
is the covariance function of fi(x), which represents the compo-
nent of profile variation that accounts for within-profile correla-
tion. It seems almost obvious that within-profile correlation can
strongly affect the false alarm probability, for the simple rea-
son that I state in the first paragraph of this discussion. Tighter
arguments follow by noting that Equation (9) implies that the
estimated profile mean ĝt,h,λ(s) is a locally weighted average
of the observed profile values yij within some kernel neighbor-
hood of s. Certainly, the variance of a weighted average depends
strongly on the correlation between the variables that are being
averaged. Because the weights are likely to be mostly positive,
the variance of ĝt,h,λ(s) will be much larger if γ (x, x′) repre-
sents high positive correlation between f (x) and f (x′) for x and
x′ both within the neighborhood of s than if γ (x, x′) represents
no within-profile correlation. A larger variance of ĝt,h,λ(s) will,
in turn, increase the mean of Tt,h,λ, perhaps substantially. In-
deed, if the distribution of Tt,h,λ truly were approximately inde-
pendent of γ (x, x′), then the primary motivation for this work
(handling within-profile correlation) will disappear.

So what explains this seeming contradiction that the in-
control distribution of Tt,h,λ depends strongly on within-profile
correlation in most practical scenarios but has no dependence
whatsoever asymptotically? The explanation is that, generally
speaking, it can be very difficult to take asymptotic results
for complex models involving a long list of convoluted con-
ditions and render them down to their practical implications.
In the present case, a careful inspection of the list of regular-
ity conditions in Appendix A reveals some unrealistic ones that
explain the contradiction at hand and account for other ques-
tionable conclusions that one might be tempted to draw from
Theorem 1. For example, part of Condition C8 is that the ker-
nel bandwidth h → 0. In other words, the neighborhoods over
which the kernel-weighted smoothing for ĝt,h,λ(s) takes place
must shrink down to infinitesimally small neighborhoods. This
condition is clearly at the heart of the invariance of the asymp-
totic distribution of Tt,h,λ to γ (x, x′). For infinitesimally small
neighborhoods, more of the yij in Equation (9) come from dif-
ferent i [i.e., more averaging across different profiles—see the
next paragraph for why the exponentially weighted moving av-
erage (EWMA) time window is infinitely long in Theorem 1]
and fewer from different j (i.e., less averaging within profiles).
Hence, the asymptotic conditions of Theorem 1 do not even
correspond to using local smoothing. They correspond to sim-
ply averaging yij over the time index i at a fixed spatial index j
when estimating g(·). This is why the asymptotic results of The-
orem 1 have the distribution of Tt,h,λ independent of γ (x, x′).

Of course, this has little practical relevance because one will
never choose infinitesimally small spatial neighborhoods and
infinitely large time windows. It will be interesting to see how
γ (x, x′) affects the distribution of Tt,h,λ for typical values of h
and λ commensurate with those recommended in Section 2.5.

A related concern is that Condition C8-II implies that both
λ → 0 and t → ∞, if ni is bounded (which is always the case
in practice, no matter how large it is). This is entirely unreal-
istic because it implies that the EWMA is using an infinitely

long time window. In practice, to remain responsive to sudden
large shifts, moderate length time windows (e.g., correspond-
ing to 0.05 ≤ λ ≤ 0.2) are usually chosen. As I discuss in the
preceding paragraphs, the infinitely long time window (coupled
with the infinitesimally small spatial neighborhood) explains
why the asymptotic distribution of Tt,h,λ in Theorem 1 is in-
variant to within-profile correlation. It also explains the asymp-
totic normality of Tt,h,λ in Theorem 1. I suspect that for typical
choice of λ, the distribution of Tt,h,λ is quite positively skewed
(as are distributions of many quadratic forms).

My main point here is that readers will be well advised not
to assign too much significance to Theorem 1 and certainly not
to select control limits based on the asymptotic distribution of
Tt,h,λ that Theorem 1 implies. Fortunately, readers do not have
to because the authors included a very attractive resampling ap-
proach for calculating appropriate control limits. My next com-
ment is related to this.

TEMPORAL AUTOCORRELATION
AND FALSE ALARMS

The availability of spatially dense (i.e., large ni) profile data
is often the result of sophisticated, automated measurement
technology. But this also often results in temporally dense pro-
file data, for which a large number of profiles are collected over
a relatively short period of time. Temporally dense profile data
are likely to have temporal autocorrelation, in addition to the
spatial autocorrelation represented by γ (x, x′).

It is well known that (positive) temporal autocorrelation
causes a dramatic increase in the false alarm rate of many uni-
variate control charts for detecting mean shifts. This is espe-
cially true for charts that have longer memory, such as a cumu-
lative sum (CUSUM) with a small reference value or an EWMA
with small λ (Apley and Lee 2003, 2008). Because of the man-
ner in which the EWMA is involved in Equation (9), positive
temporal autocorrelation will tend to increase the variance of
ĝt,h,λ(s), thereby increasing the mean of Tt,h,λ. This follows
from reasoning similar to that discussed in the preceding sec-
tion in the context of spatial autocorrelation. An increase in the
mean of Tt,h,λ will, in turn, increase the false alarm rate, per-
haps substantially.

Consequently, for many practical profile monitoring applica-
tions, I suspect that the control limits will have to be altered
(widened) to account for the autocorrelation. We have simple
time-series models for effectively representing temporal auto-
correlation in the univariate control charting case, and these
models offer means of appropriately altering the control lim-
its. However, it seems doubtful that the model in Equation (1)
can be augmented in a tractable yet realistic manner to represent
temporal autocorrelation in the profile monitoring case. The au-
thors’ resampling approach in its present form would not re-
sult in properly widened control limits when autocorrelation is
present, because the completely randomized profile resampling
destroys any temporal structure in the data.

Fortunately, bootstrap resampling procedures can be modi-
fied to take into account temporal autocorrelation. Two main ap-
proaches for accomplishing this are the Markov bootstrap pro-
cedure of Paparoditis and Politis (2002) and the block bootsrap
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procedure of Künsch (1989). In the Markov bootstrap proce-
dure, one assumes the autocorrelation can be described in terms
of a vector of random variables that follows a vector Markov
process with unknown transition probability function. Essen-
tially, one uses a form of kernel density estimation to fit the
transition probability function, which one then uses to govern
the sequential resampling in a manner that attempts to preserve
the autocorrelation. In the block bootstrap procedure, which en-
tirely avoids the need to model the autocorrelation, one will
resample the profiles in blocks, instead of one-at-a-time. Each
block will consist of a temporally contiguous set of profiles, the
first of which is chosen randomly. Shan and Apley (2008) pro-
vided a more detailed description of the two procedures for a
related problem.

The main drawback of the Markov bootstrapping procedure
is that one must identify a Markov vector of variables that
can represent the autocorrelation. The vector must have a di-
mension low enough to allow kernel density estimation of the
transition probability function (e.g., one- or two-dimensional),
and the transition probability function must be reasonably
close to Markov. It is doubtful that the nonparametric struc-
ture of Equation (1) will yield a suitable low-dimensional
Markov vector that can realistically account for the tempo-
ral autocorrelation in typical profile data. The main draw-
back of the block bootstrap procedure is that the total num-
ber of profiles [m in Equation (1)] must be relatively large.
The length of each individual block should be only a fraction
of m (e.g., less than 10%), while each individual block should
be long enough to allow the dynamics due to the autocorre-
lation within each block to dominate the discontinuities be-
tween blocks. The value m ≥ 500 recommended in Section 2.5
might be sufficient for the block bootstrap procedure in most
cases.

In light of this, the block bootstrap procedure will most
likely be more appropriate than the Markov bootstrap pro-
cedure for setting the control limits when monitoring tem-
porally autocorrelated profiles. For the authors’ real-data ap-
plication, it will be interesting to see if temporal autocor-
relation were present. This can be easily assessed graphi-
cally by choosing a few values of s, and then constructing
time series charts of ĝ(s) + f̂i(s) versus i for i = 1,2, . . . ,m.
If temporal autocorrelation appears substantial, it will also
be interesting to see if the block bootstrap procedure results
in wider control limits than the regular bootstrapping proce-
dure.

FOR WHAT SHOULD WE BE LOOKING?

The objective in this article, as well as in most of the profile
monitoring literature, is to detect a change in the profile mean
function g(·). To borrow statistical process control (SPC) termi-
nology, in the model yij = g(xij) + fi(xij) + εij, the authors view
changes in g(·) as assignable causes of variation and fi(xij)+ εij

as common causes of variation. For many applications, I imag-
ine changes in g(·) are important (perhaps the most important)
indicators of assignable causes, and more generally, of prob-
lems with the process that should be detected and corrected. On
the other hand, there are many applications in which assignable

causes are manifested as something other than a change in the
mean.

Within the realm of the model in Equation (1), the next ob-
vious characteristic to monitor is a change in the covariance
γ (x, x′). Jin and Shi (1999) considered stamping tonnage pro-
file monitoring (each profile is the press tonnage signature for
one cycle, corresponding to one stamped part) and provide an il-
luminating discussion of a number of typical assignable causes
and the effects they have on the profiles. Although some are
manifested as changes in the profile mean, many others will
be more reasonably represented as increased variation in fi(x)
at one or more x, which corresponds to an increase in γ (x, x).
The authors of the present article mention detecting changes
in γ (x, x′) in their conclusions, but leave it as future work due
to its nontrivial nature. However, detecting certain changes in
γ (x, x′) may, in fact, require only a trivial modification of their
algorithm. Because of the quadratic nature of Tt,h,λ, I suspect
that their algorithm will be reasonably effective at detecting
variance changes [i.e., changes in γ (x, x)] if we forego the
EWMA by using λ = 1 when estimating ĝt,h,λ(s). In addition to
using λ = 1 when estimating ĝt,h,λ(s), we might impart mem-
ory in a different way by incorporating exponential weighting
directly into the equation for Tt,h,λ. Specifically, using the au-
thors’ notation, we might consider

t−1∑
i=0

(1 − ρ)iTt−i,h,1,

as a control chart statistic, where 0 < ρ ≤ 1 denotes another
EWMA parameter, and the third subscript on Tt,h,1 indicates
that we use λ = 1 when estimating ĝt,h,λ(s). We can view this
as analogous to an exponentially weighted moving variance.

I doubt that monitoring for generic changes in the covariance
structure γ (x, x′) beyond the variance γ (x, x) will be fruitful.
In analogy with T2 control charts for high-dimensional multi-
variate data (viewing each profile as a vector), for real datasets
I envision such a chart plagued by alarms caused by innocu-
ous changes in the correlation between fi(x) and fi(x′) with no
appreciable change in their variances. Even though these rep-
resent legitimate changes in the within-profile covariance, I be-
lieve most practitioners will prefer to view them as nuisance
alarms.

Regarding looking outside the realm of Equation (1) for
assignable causes, from one perspective it is unnecessary, be-
cause the nonparametric nature of Equation (1) makes it al-
most completely generic. Indeed, any set of profiles can be rep-
resented as a mean function plus a deviation from the mean
that is zero-mean (by definition) with some covariance func-
tion. Likewise, almost any change in the profiles that we might
care about will result in a change in the mean and/or covari-
ance. However, using an algorithm based on the generic model
in Equation (1) may be far from the most effective way of de-
tecting such changes. Referring again to the stamping example
of Jin and Shi (1999), some of their identified assignable causes
did result in changes in the profile mean, but they were very
specific changes of known form (e.g., a reduction in the peak
tonnage) that can be premodeled. This is analogous to know-
ing in advance the direction of a change in the mean vector in
multivariate control charting. Taking such information into ac-
count will greatly enhance the power to detect such changes.

TECHNOMETRICS, AUGUST 2010, VOL. 52, NO. 3



280 HUGH A. CHIPMAN, R. JOCK MACKAY, AND STEFAN H. STEINER

Other assignable causes in Jin and Shi (1999) resulted in oscil-
lation of the tonnage signature that amounted to highly struc-
tured changes in γ (x, x′). Again, an algorithm that incorpo-
rates knowledge of the specific structure of the change can re-
sult in much more powerful detection. With limited, incomplete
knowledge of the structure of the change, monitoring coeffi-
cients of a Fourier or wavelet representation of the profiles can
sometimes be useful (see Chicken, Pignatiello, and Simpson
2009, and the references therein).

In general, premodeling potential assignable causes and their
effects on the profiles may be quite difficult for many ap-
plications, requiring advanced engineering knowledge and re-
sources. It will be useful to have better “Phase I” exploratory
data analysis tools for discovering and empirically modeling
the effects of typical assignable causes based on large historical
sets of profiles, over which various assignable causes occurred.
It will also be useful to have an approach that looks specifi-
cally for a small set of patterns that might be easily premod-
eled, while simultaneously monitoring for more general profile
changes via a Tt,h,λ-like statistic. Apley and Lee (2010) devel-
oped a related approach for multivariate process data, but this
will be difficult to extend to profile data.

I will close by thanking the authors for a thought-provoking
article and a useful approach that I hope will find its way into
SPC practitioners’ toolboxes. I would also like to thank the ed-
itor, David Steinberg, for recognizing the merit of their work
and inviting these discussions.
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Profile monitoring is an area of growing interest and impor-
tance. The authors develop a methodology that meets many of
the needs of practitioners. They propose a flexible model based
on a solid statistical foundation. Nonparametric local regression
methods and random effects form the core of their approach.
The random effects provide a convenient way of modeling co-
variance between responses observed at different points along
the curve, a common feature of functional data. The procedure
is quick in Phase II and appears to readily adapt to a variety of
profile shapes.

To organize our discussion, we attempt to outline a list of
desirable attributes and questions we can ask of a profile mon-
itoring methodology. After describing each, we examine Qiu,
Zou, and Wang in the context of that attribute or those ques-

tions. Before presenting our list, we briefly discuss a motivating
example.

Example. To help fix ideas and provide a broader basis for
discussing desirable attributes, we briefly describe a profile
monitoring problem familiar to us. Mosesova (2007) provides
additional details. The data arise from a manufacturing process
in which a ram force-fits a steel valve seat into an aluminum
cylinder head. Every insertion yields a force–time profile, three
of which are displayed in Figure 1. In this particular process, a
feedback controller adjusts the force in an attempt to maintain
constant ram velocity during insertion. After an initial rise in
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Figure 1. Three force–time profiles.

force corresponding to contact of the ram and the valve seat,
the insertion force remains roughly constant as the seat is in-
serted. Once fully inserted, the force is increased in an attempt
to maintain constant velocity. Every head has four cylinders,
each with an intake and exhaust valve. The insertions displayed
in Figure 1 correspond to three consecutive insertions of the in-
take valve in the same cylinder. Data are available on all eight
valves for thousands of heads, ordered by time and date of man-
ufacture.

1. FLEXIBILITY OF PURPOSE

The general goal of any process monitoring methodology is
to detect changes that stand out above the common cause varia-
tion. Profiles can change in many ways, and ideally, the method-
ology can be adapted to be sensitive to prescribed changes. We
may want to:

(a) Detect changes in particular features of the profile such
as the maximum value, the location of the maximum, or the
time point at which a specified event occurs (e.g., force begins
increasing from 0 in Figure 1).

(b) Detect changes away from the “normal” profile toward
one of several prespecified “bad” profiles. This might be ac-
complished via measures of closeness to representative profiles,
or specification of a model in which some parameters identify
departures toward the bad profiles.

(c) Detect unspecified changes in the mean profile.
(d) Detect changes in the variation (or covariance) of the

residual profiles. This variation can be either functional (“wig-
gle”) or noise (background randomness).

(e) Detect both persistent changes and single outlying pro-
files.

Purposes (c), (d), and (e) arise in conventional monitoring
applied to a single response variate. Purposes (a), (b), and the

idea of functional variation in (d) are unique to profile mon-
itoring and arise from the functional nature of the data. Qiu,
Zou, and Wang focus on purpose (c). Their methodology is
designed to detect persistent changes of the mean profile. In
Phase I, the authors obtain an estimate of the in control (IC)
mean profile. In Phase II, at each observation point, they obtain
an estimate of the current mean profile using an exponentially
weighted moving average (EWMA) scheme combined with a
local linear kernel estimate that allows for nonconstant vari-
ance at each point along the profile as estimated in Phase I.
The monitoring statistic in Equation (11) is based on the dif-
ferences between the estimates of the current and the IC mean
profiles.

Although all the ingredients of process monitoring are
present in the proposed chart, they are assembled in a non-
standard way. A more conventional approach is to calculate
a discrepancy measure for each profile, and then use EWMA
(or another charting method) to combine the discrepancies. For
example, if we have a new profile yi then we can define the dis-
crepancy (yi − g0(xi))

T�−1
i (yi − g0(xi)), where �i is the co-

variance matrix for yi calculated using the results from Phase I.
The embedding of the EWMA in the estimation process will
make it more difficult to swap EWMA for other kinds of chart-
ing, such as cumulative sum (CUSUM) or Shewart charts. We
feel it will be difficult to adapt the Qiu, Zou, and Wang approach
to detecting single outlying profiles. In addition, practitioners
may be more willing to use a new monitoring method if the
elements of that method resemble existing strategies.

The need for multiple charts for different purposes is com-
mon in process monitoring where we are looking to detect
changes other than persistent shifts in the mean, e.g., X̄ and s
charts for a single characteristic. Shewhart charts have greater
power to detect a single outlying observation, while EWMA
or CUSUM’s are good for quickly detecting relatively small
persistent changes or drifts. Ideally, in any methodology, there
should be flexibility to detect a variety of possible process
changes. The statistic being charted can be designed for spec-
ified departures from the IC condition and simultaneous chart-
ing used for combinations of departures. An important question
(beyond the scope of this discussion) is to determine when the
unconventional method proposed by the authors is better than
the more conventional approach we describe.

Although the proposed method focuses on purpose (c), one
may ask whether it can be modified to detect changes in (a) spe-
cific features, (b) departures in specified directions, or (d) un-
specified changes in variation. Note, as suggested by the au-
thors, inclusion of the weight function �1(s) in the monitoring
statistic Tt,h,λ in Equation (11) allows for increased sensitiv-
ity to detect changes in specified sections of the mean profile
that correspond to features of interest. To detect specified de-
partures, the mean Phase I curve g0 can be replaced by “bad”
curves in the calculation of Equation (11), although this will re-
quire a change in control limits. An out-of-control process will
be flagged by profiles close to the “bad” baseline. It is not clear
how to adapt the proposed methodology to detect changes in
the covariance structure (d).
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2. FLEXIBILITY OF APPLICATION

Process monitoring is an inherently applied discipline. A suc-
cessful profile monitoring method will see widest application if
it can be adapted to a wide variety of contexts:

(a) Does the method require retooling for different profile
shapes?

(b) What happens if the data are collected in subgroups?
(c) Within each profile, must observations be made at

equally spaced time points? Must different profiles be observed
at the same time points?

(d) Do the profiles need registration? For instance, the
curves in Figure 1 cannot be easily monitored until they are
aligned by an affine transformation of the “time” axis. Sim-
ilar registration of the vertical (e.g., force) axis may also be
required. In some circumstances, nonlinear time warping func-
tions (Ramsay and Silverman 2005) may be required to align
multiple points of interest along curves.

(e) How much of the procedure can be automated? Is com-
putation in Phase II quick? In some applications, the data
stream might be huge and fast, and even setting up the chart
might require automation.

(f) Are there automatic or semiautomatic choices of tuning
constants (e.g., EWMA weight λ or kernel bandwidth h)?

(g) Are covariates observed that will affect each curve? For
instance, in our application, there can be cylinder and valve
effects. While eight separate analyses (four cylinders by two
valve types) can be carried out, a combined model with covari-
ate effects (e.g., additive shifts for cylinder number and valve
type) may increase power by borrowing strength across multi-
ple data streams. In general, covariates can be fixed for each
curve (as in our valve seat insertion example), or vary over time
as the curve is observed.

The methodology of Qiu, Zou, and Wang does well at (a)
and (c). The nonparametric curve estimation is very flexible,
does not require equally spaced data, and should be applicable
to any shape of curves. Registration (d) is not discussed in the
article, although we suspect the authors are implicitly assuming
curves are registered. The authors pay special attention to the
design of Phase II modeling, gaining computation speed (e) by
dropping random effects from the model and employing quick
updating formulae. The choice of tuning parameters (f) is dis-
cussed, though fine tuning may still be somewhat of an art form.
Tuning constants are difficult to set automatically since they
will depend on the nature of the out-of-control condition one
wishes to detect. For instance, in Figure 1, the out-of-control
condition might be the shape of “wiggle” near time = 1.5 (re-
quiring a small smoothing bandwidth) or the height of the flat
section around time = 1.6 (requiring a large smoothing band-
width). Practitioners may have little information about such a
condition.

Subgrouping (b) is a common technique employed in uni-
variate control charting. It also may be an issue in the AEC
example in Qiu, Zou, and Wang where there was sampling of
profiles from batches of AEC’s. In the Phase I modeling or the
Phase II charting, there is no explicit recognition that within
batch variation may be different than between batch variation.

Qiu, Zou, and Wang did not consider adjustment for co-
variates (f). Such adjustments are not common in conventional

monitoring. Extensions to this case will require that the locally
linear model be augmented to include regression terms for the
covariates with either fixed or random effects.

3. MODELING ASSUMPTIONS

All modeling requires assumptions, often to simplify compu-
tation or theoretical derivations, or to focus attention on aspects
of the problem that are particularly relevant. In profile monitor-
ing, three key questions are:

(a) Is there heteroscedasticity at different time points within
a curve?

(b) Do correlations exist between measurements made at dif-
ferent time points on the same curve?

(c) Do dependencies exist between different curves?

Qiu, Zou, and Wang model heteroscedasticity (a) in both
Phases I and II. In Phase I, they allow for within-profile corre-
lation (b) via a random effects term. However, the correlations
are not used explicitly for monitoring, as random effects are
dropped from the Phase II model. Also, the weighted local like-
lihood before Equation (9) uses only variances (i.e., diagonals
of the covariance matrix). Will it be straightforward to replace
the sum in Equation (11) by a quadratic form that includes an
inverted covariance matrix? We believe detection power might
be enhanced by explicitly accounting for such covariances in
Phase II.

The authors make the standard assumption that profiles are
independent over time (c). However, autocorrelation is com-
mon, especially if 100% inspection is employed. Profiles sam-
pled within the same batch or close together in time are apt to
be more alike than profiles sampled from different batches or
far apart in time.

4. PHASE I ISSUES

The availability of in-control data for Phase I modeling is
a key component of any monitoring methodology since it en-
ables calibration of statistics that are to be used for detection of
process changes in Phase II. Considerations in Phase I include:

(a) Phase I calculations are done off-line providing plenty of
modeling and computation time.

(b) The data used Phase I must be sampled from an IC
process to enable accurate calibration. Methods are needed to
check the Phase I data for outliers or other anomalies that
should be removed before calculating the control limits.

(c) A combination of theory and analysis of Phase I data
must provide control limits for use in Phase II.

Qiu, Zou, and Wang effectively exploit the availability of off-
line IC data (a) for estimating the IC mean profile and for de-
veloping Phase II control limits. They assume that IC data are
available, but as noted in their discussion, provide no methodol-
ogy to identify anomalies (b). Without such tools, it is difficult
to imagine implementing the proposed chart in Phase II.

Calculation of control limits (c) with specified IC average
run lengths (ARL’s) is a key component of any monitoring pro-
cedure. Qiu, Zou, and Wang adopt an empirical approach that
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requires a large IC Phase I dataset. In determining the IC ARL’s,
the authors need to remove the effect of the initial conditions for
the EWMA. As the EWMA weight for τ profiles in the past is
(1−λ)τ using τ = 30 is unlikely to be sufficient. With λ = 0.02
(the smallest recommended value), (1 − λ)30 = 0.55, which is
the weight of the initial value in the EWMA statistic.

In Table 1, the authors compare random and fixed effect mod-
eling. The fixed effect model does not have the desired in-
control ARL. To make the comparison fair, we see no reason
why the control limits for the fixed effects approach cannot be
set to achieve the desired IC ARL.

5. PROPERTIES OF THE PHASE II ALGORITHM

In Phase II, we see the fruits of our labor with a method that
will signal when the process goes out-of-control. We require:

(a) Simple and quick calculations as new profiles arrive.
(b) Good detection properties for relevant departures (as de-

scribed previously under flexibility of purpose).
(c) Interpretability.

The authors demonstrate promising indications on all these
criteria. The absence of random effect terms in Phase II of the
model (as noted earlier) means that the Phase I and II models
are different. We wonder whether such a difference will have

any impact on detection properties (b). The proposed method is
interpretable, in that the EWMA-smoothed curve that signalled
the departure can be directly compared to the IC mean profile.
However, the complex form of the model will make it difficult
to pinpoint the cause of a signal if it is not evident in the dis-
played curve.

6. CLOSING THOUGHTS

The need for profile monitoring is increasing due to the
availability of high-resolution data from many processes. This
stimulating article shows how flexible nonparametric statistical
methods can be used in a specific profile monitoring frame-
work. The approach of Qiu, Zou, and Wang has many es-
sential attributes that we feel a profile monitoring method-
ology should have and promises extensions in many direc-
tions.
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I would like to congratulate Qiu, Zou, and Wang on an in-
teresting and innovative article that addresses a fundamental
profile monitoring problem in statistical process control (SPC).
I think this is a timely discussion because there is an urgent need
for SPC techniques in various industries (not only in manufac-
turing, but also in service) that can handle complex functional
monitoring and surveillance on a real-time basis. The proposed
methodology focuses on the single covariate case, but it should
be possible to extend it to a more practical case with multiple
covariates. In my discussion I will focus on the profile monitor-
ing cases with high-dimensional multiple covariates.

Due to the technological progress in hardware and software,
most companies and organizations record and process huge
amounts of data about production, business transactions, and
service operations. These data streams contain very useful in-
formation that can be extracted through data modeling, charac-
terization, monitoring, and forecasting. To remain competitive,

it is important for organizations to develop enterprise systems
that allow managers to characterize relationships among perfor-
mance and variables and to detect and prevent abnormal activi-
ties in operation.

Statistical monitoring and surveillance was widely recog-
nized as an important and critical tool for detecting and identi-
fying abnormal behavior (Tsung, Zhou, and Jiang 2007). Con-
ventional approaches such as using statistical process control
(SPC) techniques for system monitoring and surveillance of-
ten assume that the state of a system can be represented by a
single random variable or a random vector of low dimension-
ality. However, many systems are far more complicated and
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their states may be characterized by high-dimensional profiles
over time or by multiple predictor variables instead of by a sin-
gle random variable (Wang and Tsung 2005). For example, in
a telecommunications case provided by Wei Jiang, customer
profiles usually consist of different types of information—
geographical, contractual, products/services purchased, trans-
actions, and so on—which are recorded either off-line or on-
line. To manage various market risks, from customer churn to
product migration, it is important to monitor customer profiles
continuously to identify critical customer behaviors promptly
so that marketing and managerial decisions can be made to mit-
igate emerging risks. Since customer profiles often have dozens
of attributes, monitoring such profiles usually relies on domain
knowledge to keep track of only a few key performance in-
dexes (KPI’s) or on other dimension-reduction techniques to
capture the simple relationships of the attributes. While such
relationships are difficult to capture due to human variability
and critical information may be lost when reducing dimensions
of the profiles, industries are interested in applying statistical
monitoring and surveillance tools with full access to all profile
information simultaneously. Similar examples can be found in
credit card and insurance fraud detection in which a collection
of thousands of variables and transactions is closely monitored
daily, and also in public health surveillance where statistical
tools were developed for timely detection and prevention of var-
ious types of adverse health events so that health care policies
and tactics can be initiated promptly.

In most of these examples, conventional SPC monitoring
techniques are not directly applicable for the following rea-
sons: The high-dimensionality and the large scale of the data
being monitored make theories based on conventional estima-
tion and testing methods inapplicable or of limited use for real-
time, high-dimension statistical computing. Second, the basic
hypothesis testing theory in SPC methods is to detect simple
shifts in a process mean or variance under normality assump-
tions, which is reasonable in many manufacturing applications.
However, in monitoring complex, high-dimensional data, the
challenge is to detect complicated systematic changes from a
huge number of data streams that may include many discrete or
nonnormal variables. Moreover, many monitoring methods are
developed based on the assumption that historical data are able
to fit a statistical model that captures the relationships among
variables. Due to the high dimensionality, it is often prohibitive
to fit a reasonably good model to characterize the relationships
among variables. And the relationships may shift and drift over
time. Thus, it is essential yet challenging in practice to have an
effective monitoring and surveillance system that can make use
of dynamic incoming data streams to update anticipated drifts
of the system and at the same time detect unanticipated shifts
for corrective action.

To address such a challenge, we may consider extending
modern variable selection techniques such as the least absolute
shrinkage and selection operator (LASSO; Tibshirani 1996)
and least angle regression (LARS; Efron et al. 2004) to deal
with high-dimensional profile monitoring. These variable se-
lection methods were applied extensively and successfully to
various high-dimensional regression problems in genomics re-
search such as gene expression and proteomics studies, biomed-
ical imaging, functional MRI, tomography, tumor classification,

signal processing, and image analysis. They can improve es-
timation accuracy by effectively identifying the subset of im-
portant predictors and also enhance model interpretability with
parsimonious representation. Recently, Wang and Jiang (2009)
and Zou and Qiu (2009) independently proposed two variable-
selection-based control charts. The authors developed the charts
based on the following assumption: in a high-dimensional
process, the probability that all variables shift simultaneously
is rather low. Instead, an alarm is more likely to be caused
by a hidden source, which affects one or a small set of ob-
servable variables. Both of them consider the penalized like-
lihood functions based on the conventional multinormality as-
sumption. Their fundamental difference is that Wang and Jiang
(2009) used an L0 penalty term, but Zou and Qiu (2009) con-
sidered a type of L1 penalty function.

To further elaborate the idea, we propose a variable-selection-
based nonparametric process monitoring approach based on
an ongoing joint project with Wei Jiang and Changliang Zou.
While parametric methods are useful in certain applications,
questions will always arise about the adequacy of the distribu-
tional assumptions and about the potential impact of misspec-
ification of distributions on charting performance. This prob-
lem is particularly severe in telecommunications and financial
customer profile applications. To deal with this problem, we
develop a nonparametric SPC methodology based on empiri-
cal likelihood (Owen 1988, 2001) and incorporate the variable
selection feature into it. Here we only focus on monitoring the
multiple covariates,

xj
iid∼
{

F0(x − μ0) for j = 1, . . . , τ

F1(x − μ1) for j = τ + 1, . . . ,
(1)

where F0 �= F1 are the unknown in-control and out-of-control
distribution functions that have unequal location parameters
μ0 �= μ1. Denoting δj ≡ E(xj) − μ0, the monitoring problem
is essentially equivalent to

δj =
{

0 for j = 1, . . . , τ

δ for j = τ + 1, . . . ,
(2)

where δ is an unknown shift vector. Without loss of generality,
assume that μ0 = 0.

We aim to introduce the weighted version of empirical like-
lihood (EL) and then use it to formulate the charting statistic
by incorporating the exponentially weighted moving average
(EWMA) scheme. At any time point t, consider the follow-
ing weighted empirical likelihood (WEL) for δ in Equation (2),
evaluated at δ0 = 0, which combines some prespecified weights
with the EL framework

Lt(0) = sup

{
t∏

i=1

pwi
i

∣∣∣∣ t∑
i=1

pi = 1,

t∑
i=1

pixj = 0,pi ≥ 0

}
,

where wi’s are prechosen positive weights. Specifically, an ideal
choice for wi can be the exponential weighting scheme used in
EWMA at different time points, i.e., (1−λ)t−i where 0 ≤ λ ≤ 1
is a smoothing parameter. Then, the following weighted empir-
ical log-likelihood ratio (WELR) can be used as the charting
statistic

lt(0) = −2bt log[Lt(0)/Lt (̂δ)], (3)
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where

Lt (̂δ) = sup

{
t∏

i=1

qwi
i

∣∣∣∣ t∑
i=1

qi = 1,qi ≥ 0

}
, (4)

and bt =∑t
i=1 wi/

∑t
i=1 w2

i is a scaling constant to normalize
the variation of lt(0). The Lagrange multiplier method leads to

lt(0) = 2bt

t∑
i=1

wi log(1 + θTxi),

where θ satisfies the score equation
∑t

i=1 wixi/(1 + θTxi) = 0.
Since it is a data-driven scheme, we can expect it to be more
robust to various multivariate nonnormal data than the conven-
tional multivariate exponentially weighted average (MEWMA;
Lowry et al. 1992) chart in the in-control situation. Moreover, it
avoids the estimation of the covariance matrix from the histori-
cal data by studentizing internally, and hence its in-control per-
formance deteriorates less when the number of reference sam-
ples is relatively small, and its ability to detect location shifts is
robust to changes in the variance–covariance matrix.

In cases with high dimensionality where it is reasonable to
assume that only a few components in the shift vector δ = μ1
will be nonzero when a shift occurs, there is potential for im-
proving the foregoing WELR chart by integrating the empirical
likelihood with some additional constraints. This amounts to re-
defining the WEL under H1 by imposing an adaptive-LASSO
(ALASSO) penalty in Equation (4),

Lt (̂δ) = sup

{
t∏

i=1

qwi
i

∣∣∣∣ t∑
i=1

qi = 1,

t∑
i=1

qi(xi − δ) = 0,

p∑
k=1

1

|U(k)
t |
∣∣δ(k)
∣∣≤ s,qi ≥ 0

}
. (5)

The corresponding WELR statistic can be defined in a simi-
lar fashion to Equation (3). Although the computation involved

in Equation (3) is trivial partly due to the fact that the mod-
ified Newton–Raphson algorithm used in the computation is
efficient, this does not appear to be the case for Equation (5).
Hence, that may require efforts to solve the optimization prob-
lem [Equation (5)] efficiently for on-line uses.

In summary, given the fact that billions of dollars are lost
every year due to telecommunications fraud and credit card
forgery, monitoring of complex profiles and quick detection of
fraudulent events and abnormal activities have become critical
in a variety of industries. The proposed nonparametric profile
monitoring methodology is timely, and more research efforts
are needed for monitoring business processes with large num-
bers of high-dimensional transactions and detecting fraudulent
records among them. Finally, I would like to thank Qiu, Zou,
and Wang, and the editor of Technometrics, David Steinberg,
for the opportunity to comment.
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(bwoodall@vt.edu)

1. GENERAL COMMENTS

The authors are to be congratulated on their valuable con-
tribution to the rapidly growing profile monitoring field. They
offer the most general modeling approach in the area and ad-
dress a number of Phase I and Phase II issues. Woodall (2007)
provided a review of the profile monitoring area, but a number
of articles have appeared since. In particular, Shiau et al. (2009)

also incorporated the use of nonparametric regression methods
when there are random effects in Phase I and Phase II, but used
an approach quite different from the one presented here.
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2. PHASE I/PHASE II ISSUES

The authors focus on Phase II methods, although some es-
timation issues are addressed using Phase I data. We believe,
however, that it is often much more difficult than the authors
imply to obtain a “clean” set of profiles in Phase I to use as
the in-control data. This difficulty will be compounded by the
fact that a very large Phase I dataset of at least 500 profiles is
recommended for use with their approach. We note that there
was no Phase I analysis reported in their example with the
dataset from the aluminum electrolytic capacitor manufacturing
process. The first 96 of 144 profiles were used as the in-control
sample, but without reporting the results of any screening for
outlying profiles. It will be very informative for the authors to
provide more information on the Phase I data, and if at all pos-
sible, make the entire dataset available online.

Woodall et al. (2004) pointed out that a fundamental issue
in profile monitoring is to decide how much of the profile-
to-profile variation is to be considered common cause varia-
tion. Use of the nonparametric mixed-effects model in Equa-
tion (1) incorporates profile-to-profile variation as common
cause variation automatically. This becomes relevant in the re-
sults of the simulation study reported in Table 1 in Section 3.
The mixed-effects nonparametric profile control (MENPC)
approach incorporates the profile-to-profile variation into the
model whereas the fixed-effects nonparametric profile control
(FENPC) method does not. If one ignores any sources of vari-
ation in setting up the control chart, then there will be an in-
creased number of signals. This is true even in the univariate
case in which one monitors the mean of a process as shown, for
example, by Woodall and Thomas (1995). This phenomenon
was illustrated in a profile monitoring situation by Jensen and
Birch (2009).

In general, when the in-control parameters are estimated in
Phase I the performance of the chart in Phase II is not the same
as it would be if the in-control parameters were known. The
literature on this topic was reviewed by Jensen et al. (2006).
The authors recommend a large Phase I dataset and determine
the control limits using a large number of simulations, however,
so the effect of estimation error may be negligible in their case.

In discussing their algorithm for Phase I estimation, the au-
thors correctly point out that the frequency of nonconvergence
can be reduced with good initial estimates of D and σ 2. Yet
their initial estimator σ 2

(0) of σ 2 given in their Step 1 (Sec-
tion 2.2) utilizes the residuals resulting from using an initial fit
of the reference profile based on local linear kernel regression
(LLR). This clearly yields inflated estimates of σ 2 as the given
expression is actually estimating the combined within-profile
and between-profile variability and not just the within-profile
variability. An improved estimator of σ 2 can be obtained by re-
placing ĝ(P)(xij) in the formula for σ 2

(0) with the nonparametric
estimator of the ith profile, sometimes referred to as the esti-
mated ith cluster specific (ĈSi) curve, where each ĈSi is esti-
mated using LLR.

3. EXPONENTIAL WEIGHTING IN PHASE II

The authors use exponential weighting of the profiles in
their weighted negative log likelihood expression WL(a,b;

s, λ, t). The monitoring statistic itself, Tt,h,λ, is of the Shewhart
type without any weighting of past monitoring statistics. In
WL(a,b; s, λ, t), the weighting can be seen more easily to be
the same as usually given in an exponentially weighted mov-
ing average (EWMA) chart if one simply multiplies the entire
expression by λ. The authors recommend the use of λ values
in the range [0.02, 0.1]. With the standard EWMA chart, how-
ever, use of low values of the weighting constant can lead to
potential delays in detecting shifts in the process due to iner-
tial effects. See, for example, Woodall and Mahmoud (2005). It
seems that this can also be an issue with the proposed profile
method if undetected profile shifts in one direction were to be
followed by shifts in the opposite direction, where “direction”
is used loosely here.

An alternative Phase II method can involve obtaining esti-
mates of the t profiles by some appropriate mixed nonparamet-
ric method. Then one can combine these t estimated profiles via
a typical EWMA weighting scheme with weight λ given to the
most recent profile, λ(1 − λ) to the previous profile, λ(1 − λ)2

to the profile before that, and so on. This combined profile, say
ĝ, can then be compared with g0 using a metric similar to the
one in Equation (11) with the current ξ̂ij values replaced by
ξ̂ (s) = [̂g(s) − g0(s)]. As a second alternative, metrics reflect-
ing the difference between fitted curves and g0 at each sampling
stage can be monitored using an EWMA scheme.

4. TWO NONPARAMETRIC PHASE I APPROACHES

Some of our research showed that if ĝ is the nonparamet-
ric estimator of the reference profile, sometimes referred to as
the estimated population average (P̂A) profile, at n0 locations of
the regressors, and if ĝ + f̂i is the estimated ith cluster specific
(ĈSi) curve, at the same n0 locations of the regressors, then the

Hotelling’s T2 statistics of the form T2
i = f̂T

i �̂
−1̂fi are quite ad-

equate for use in a screening test for even relatively small values
of ni, m, and n0 (see Abdel-Salam and Birch 2009). The matrix
�̂, the n0 by n0 estimated variance matrix of f̂i, may be obtained
in a variety of ways, including use of the standard moment esti-
mator or the successive difference estimator (recommended for
detecting sustained step shifts in profiles) as discussed in Jensen
and Birch (2009), for example.

The Phase I approach taken by the authors is to adopt the lo-
cal linear mixed effects (LLME) technique of Wu and Zhang
(2002). The model is based on the assumption that the within-
profile random errors are iid with constant variance. They as-
sume the random effects have a more general covariance struc-
ture.

Two other approaches for nonparametric regression model-
ing of cluster-correlated data across m subjects (or profiles)
were proposed and studied at Virginia Tech. One method, called
the conditional mixed linear model, allows for local estima-
tion of the Laird–Ware model by kernel weights for each pro-
file (Waterman 2002 and Waterman, Birch, and Schabenberger
2007). The method is more general than the one considered
by the authors in that it allows for different model matrices
for the fixed and random effects while also allowing for fully
correlated random errors and random effects for which local
restricted maximum liklihood (REML) estimates can be ob-
tained. This method was only applied to the estimation aspects
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during Phase I, but our work shows excellent integrated mean
square error properties for n and m as small as 10 and 20, re-
spectively. Computational inefficiency results, however, for this
method are due to choosing the bandwidth using an adjusted
cross-validation procedure.

A second, more computationally efficient approach was stud-
ied extensively for Phase I profile monitoring. This procedure
results by replacing the local linear mixed model using kernel
weights as the nonparametric regression method for estimating
the Laird–Ware model with the use of penalized splines (Abdel-
Salam and Birch 2009). As with the Waterman (2002) method,
this penalized spline approach is completely general and results
in local REML estimates for all variance–covariance compo-
nents. Profile screening for Phase I monitoring is accomplished
through the Hotelling’s T2

i statistic computed using the esti-
mated random effects (the eblups) for the ith profile that re-
sult from the penalized spline fit. Our simulation for Phase I
screening shows excellent probability-of-signal results for this
method when detecting sustained step shifts, especially when
compared to the misspecified linear mixed model parametric
approach of Jensen, Birch, and Woodall (2008). This method is
directly comparable to the estimation method presented by the
authors for Phase I analysis.

5. SOME FINAL COMMENTS

There are a few aspects of the proposed method for which
we would like some additional explanation. In Phase I, the au-
thors estimated the profile curve using the method developed in
Wu and Zhang (2002) with bandwidth selected by their cross-
validation procedure. In Phase II, due to the concern of com-
putational cost, the authors used a different method similar to
Lin and Carroll (2000) with an empirical bandwidth selection
procedure based on Equation (14). It is not clear to us how to
make sure that the estimates from these two different methods
are consistent with each other. In other words, if Phase II also
deals with IC data, do we expect the same convergence rate for
the estimates under the same regularity and smoothness condi-
tions?

In Proposition 1, the authors derive the point-wise conver-
gence, or local convergence, for their Phase I estimator, which
is a nice result. In general, however, a more interesting type
of convergence in curve estimation is global convergence such
as the convergence in mean integrated square error (MISE) in
theorem 1 of Wu and Zhang (2002). Given the similarity of the
Phase I estimation to Wu and Zhang (2002), we wonder why the
authors chose not to derive a similar global convergence result.
Particularly, the conditions, such as conditions (A.3) and (A.4)
in Wu and Zhang (2002), required for such a result may help
the authors to justify their choice of ni ≥ 20 and m ≥ 500 for
information criterion (IC) data in Section 2.5.

The authors stated that their local polynomial approach can
be extended to cases with multiple predictors. Our limited expe-
rience seems to suggest that the extension of local polynomial
estimation to the multivariate case, particularly when interac-
tions are included, can be rather computationally involved. On
the other hand, other smoothing techniques such as the smooth-
ing spline analysis of variance (ANOVA) models in Gu (2002)

can handle multivariate estimation more conveniently. Can the
authors shed some light on this issue?

Our final comment is directed toward the second simulation
presented in the article. Here, the authors’ method is compared
to the linear mixed-effect (LME) modeling approach of Jensen,
Birch, and Woodall (2008) after modification by the authors
for Phase II profile monitoring and referred to as the LMEP
method. From Table 4, it is seen that for operating characteristic
(OC) model (1), that the linear mixed-effect profile (LMEP) is
very competitive with the authors’ method but uniformly worse
for OC model (2). The comparison of average run length (ARL)
values for OC model (2) is very misleading, however, in that
the estimation procedure used by LMEP is a procedure that
requires correct specification of the parametric model. That is
clearly not true for this case as the OC model (2) is nonlinear.
Consequently, the ARL values for LMEP reflect the adverse ef-
fect of model misspecification and strongly reflect the need to
use a nonparametric regression method if the model used by
the parametric procedure is in doubt. If the authors wished to
compare their method to a parametric procedure, they should
consider modifying the method suggested by Jensen and Birch
(2009) to Phase II profile monitoring and use OC model (2) as
their parametric model. In this case, the confounding effect of
model misspecification will be removed and a better compari-
son with the authors’ procedure can be made.
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Profile monitoring is a relatively new research area, but it has
a profound application background (cf., Woodall et al. 2004;
Wang and Tsung 2005). Due to the fact that the data structure in
profile monitoring is much more complicated than that in con-
ventional process monitoring problems, it is also a challenging
task. In our method (called QZW hereafter), we try to apply
some recent statistical tools developed in some other research
areas, including longitudinal data and functional data analysis
(e.g., Liang and Zeger 2002; Fitzmaurice et al. 2008), to the
area of profile monitoring. As pointed out by the discussants,
there are still some issues in our proposed method that need to
be addressed in future research. In the next several sections, we
provide our thoughts about some of the main issues raised by
the discussants.

1. PHASE I AND PHASE II PROFILE MONITORING

Our article focuses on Phase II profile monitoring. Instead
of assuming the in-control (IC) profile mean function and other
parameters and functions (i.e., g, γ , and σ 2) to be known, we
assume that there is an IC dataset from which g, γ , and σ 2 can
be estimated. In practice, however, it is still a challenging task
to obtain the IC dataset. In that regard, we agree with Woodall,
Birch, and Du completely, and think that much future research
is required on Phase I analysis of profile data.

In the limited literature on Phase I analysis of profile data,
Jensen, Birch, and Woodall (2008) and Jensen and Birch (2009)
developed procedures for monitoring linear and nonlinear pro-
files. Their nonlinear profile monitoring procedure in Jensen
and Birch (2009) can be easily generalized to the nonparamet-
ric setup by using the nonparametric mixed-effects modeling
described in Section 2.2 of QZW. Let

T2
i = f̂T

i �̂−1 f̂i, (1)

where f̂i = (̂fi(s1), . . . , f̂i(sn0))
T , {s1, s2, . . . , sn0} are n0 given

points in the design interval of x [cf., Equation (1) in QZW],

and �̂ is an estimated covariance matrix of f̂i. Then, the ith
profile is an outlier if T2

i is larger than a threshold value. In the
aluminium electrolytic capacitor (AEC) data example discussed
in Section 4 of QZW, the first 96 profiles are treated as an IC
dataset. We agree with Woodall, Birch, and Du that, in practice,
it still needs to be checked whether there are any outliers in this
data. To this end, we apply the above Phase I outlier detection
procedure to this IC dataset, with �̂ chosen to be the succes-
sive difference estimator, as recommended by Jensen and Birch

(2009) for detecting sustained step shifts in profiles. Namely,

�̂ = 1

2(m − 1)

m−1∑
i=1

(̂fi+1 − f̂i)(̂fi+1 − f̂i)
T .

Figure 1 presents T2
i , for 1 ≤ i ≤ 96, along with a control limit

corresponding to the significance level of 0.05 that is computed
by a bootstrap procedure as follows. Each time we draw 96 f̂i’s
with replacement from {̂fi,1 ≤ i ≤ 96} that are computed be-
forehand by the procedure described in Section 2.2 of QZW.
Then, a bootstrap version of �̂ is computed from the resampled
f̂i’s, and 96 bootstrap observations of T2

i are computed from the
resampled f̂i’s and the corresponding bootstrap version of �̂.
This process is repeated 10,000 times, and the control limit is
defined to be the 95th percentile of all bootstrap observations of
T2

i computed. From the plot, it can be seen that no outliers are
detected by this procedure.

It should be pointed out that, for detecting outliers in Phase I
profile monitoring, the T2 control chart defined in Equation (1)
may not be the most powerful one. In the context of longitudi-
nal data analysis, a similar issue was investigated by Fung et al.
(2002) who proposed certain influence diagnostics and outlier
detection procedures using semiparametric mixed-effects mod-
eling. For Phase I monitoring of nonparametric profiles, discus-
sion about nonparametric covariance analysis and comparison
of multiple curves in the context of nonparametric regression
testing (cf., Young and Bowman 1995; Dette and Neumeyer
2001; Neumeyer and Dette 2003) might also be relevant.

We appreciate the comment made by Chipman, MacKay, and
Steiner that the absence of random-effects terms in our Phase II
modeling [cf., the expression of WL(a,b; s, λ, t) in the second
paragraph of Section 2.3 in QZW] may affect the efficiency of
our proposed Phase II profile monitoring chart. Woodall, Birch,
and Du raised a similar issue and they asked why we use the
method by Wu and Zhang (2002) in Phase I modeling and the
different method by Lin and Carroll (2000) in Phase II profile
monitoring. As explained in Section 2.3 of QZW, the major rea-
son for us to use two different methods in Phase I and Phase II
analysis is that the computation involved in the iterative algo-
rithm of the method by Wu and Zhang (2002) is quite substan-
tial. For Phase I analysis in which the sample size is fixed that
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Figure 1. Phase I T2 control chart defined in Equation (1) for monitoring the first 96 profiles of the AEC dataset.

algorithm is still feasible. But, for online Phase II monitoring,
this method is cumbersome and may not be feasible. It is true
that by using the method of Lin and Carroll (2000) in Phase
II analysis [cf., Equations (9) and (10) in QZW], it appears
that only the heteroscedasticity of the within-profile observa-
tions is taken care of and the within-profile correlation was not
fully accommodated. However, according to Lin and Carroll
(2000), under some regularity conditions, it will not have much
of an effect on the estimated profile mean function to only ac-
commodate the heteroscedasticity properly without specifying
the complete correlation structure of the within-profile obser-
vations. To further investigate this issue, we run a simulation in
cases when the IC model (II), the out-of-control (OC) models (i)
and (ii), and λ = 0.1 are considered (cf., Section 3 of QZW for
their definitions). In this example, besides our proposed chart
mixed-effects nonparametric profile control (MENPC), we also
consider the chart constructed as follows. Let ĝ∗

t,h,λ(s) be the
estimator of g(s), obtained by the algorithm described in Sec-
tion 2.2 of QZW, except that the expression in Equation (2) in
QZW is replaced by

t∑
i=1

{
1

σ 2

ni∑
j=1

[yij − zT
ij(β + αi)]2Kh(xij − s)

+ αT
i D−1αi + ln |D| + ni ln(σ 2)

}
(1 − λ)t−i,

where λ ∈ [0,1] is a weighting parameter. Obviously, the above
expression combines different profiles for Phase II monitor-
ing using the exponentially weighted moving average (EWMA)
weighting scheme. Then, a charting statistic can be constructed
in a similar way to Equation (11) in QZW, after {yij} are re-
placed by {ξij = yij −g0(xij)} in the above expression. This con-
trol chart is denoted as MENPC1, and it is based on the method
by Wu and Zhang (2002) in both the Phase I and Phase II analy-
sis. With all the procedure parameters chosen in the same way
as those in Table 2 of QZW, the OC average run length (ARL)
values of the charts MENPC and MENPC1 are presented in

Table 1. From the table, it can be seen that the two charts per-
form similarly in all cases considered, and the chart MENPC1
is slightly better in cases with OC model (ii).

Regarding the initial estimator σ 2
(0) used in the iterative algo-

rithm in Section 2.2 of QZW, Woodall, Birch, and Du suggested
replacing ĝ(P)(xij) in the formula for σ 2

(0) given in the paragraph
immediately before the expression in Equation (7) of QZW by
ĝi(xij) where ĝi is the local linear kernel estimator of g that is
constructed from the ith profile data alone. We tried this idea
in some numerical examples and find that the modified initial
estimator is indeed better.

2. TEMPORAL AUTOCORRELATION

In QZW, we only consider the possible correlation among
within-profile observations, and assume that observations be-
tween profiles are independent of each other. We appreciate the
comment made by Apley that temporal autocorrelation among
profiles collected at consecutive time points might also be com-
mon in practice. We agree with Apley completely on this issue,
and believe that it is an important future research problem to
propose profile monitoring charts that can accommodate both

Table 1. OC ARL comparison of the charts MENPC and MENPC1
when ARL0 = 200, n = 20, n0 = 40, λ = 0.1 and

IC model (II) is used

OC model (i) OC model (ii)

θ MENPC MENPC1 MENPC MENPC1

0.20 130 (1.36) 134 (1.22) 85.3 (0.83) 84.8 (0.86)

0.30 80.5 (0.78) 77.2 (0.80) 40.5 (0.32) 37.4 (0.33)

0.40 48.6 (0.42) 46.5 (0.44) 22.3 (0.15) 20.6 (0.16)

0.60 20.7 (0.13) 19.8 (0.11) 10.6 (0.05) 10.1 (0.05)

0.80 12.1 (0.06) 11.8 (0.07) 6.81 (0.03) 6.62 (0.03)

1.20 6.64 (0.02) 6.60 (0.03) 4.06 (0.02) 3.95 (0.02)

1.60 4.60 (0.02) 4.64 (0.02) 2.93 (0.01) 2.88 (0.01)

2.00 3.51 (0.01) 3.54 (0.01) 2.33 (0.01) 2.33 (0.01)

2.40 2.88 (0.01) 2.85 (0.01) 1.95 (0.01) 1.96 (0.01)
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Figure 2. Plots of the estimated profiles ĝ(s) + f̂i(s) over i, for 1 ≤ i ≤ 96, at two specific positions s = x∗
10 [plot (a)] and s = x∗

30 [plot (b)].

within-profile and between-profile correlation. A number of
useful references on handling temporal autocorrelation in some
conventional process monitoring problems have been cited in
Apley’s discussion. Another relevant article by Noorossana,
Amiri, and Soleimani (2008), tried to handle autocorrelated lin-
ear profiles using certain time series models. The method pro-
posed in that article has the potential to be generalized for han-
dling autocorrelated nonparametric profiles, which needs to be
further studied.

By the suggestion of Apley, in the AEC data example, we
present the estimated profiles ĝ(s) + f̂i(s) over i, for 1 ≤ i ≤ 96,
at two specific positions s = x∗

10 and s = x∗
30 in the two panels

of Figure 2. We also compute the lag-1 and lag-2 autocorrela-
tions of the time series shown in each panel. They are 0.104 and
0.058 in the case of panel (a) and 0.154 and 0.074 in the case
of panel (b). From the plots and the computed autocorrelation
values, we can see that temporal autocorrelation is not evident
in this data, which can be explained by the fact that all the pro-
files in this example are actually collected over a relatively long
time period.

In his discussion, Apley proposed two possible approaches
for accommodating between-profile correlation. One is the
Markov bootstrap procedure and the other one is the block
bootstrap procedure. He thought that the block bootstrap proce-
dure might be more appropriate to use for monitoring profiles
because of the relatively complicated structure of the profile
data. In the AEC example, we compute the control limit using
the block bootstrap procedure with the bootstrap sample size
10,000 and the block size 9 which is about 10% of the IC data.
The computed control limit is 19.37. Compared to the control
limit 18.24 reported in QZW, this control limit is marginally
larger and it does not change the signal time at the 112th time
point (cf., Figure 3 in QZW).

3. ALTERNATIVE CHARTING STATISTICS

Besides our proposed charting statistic Tt,h,λ defined by
Equation (11) in QZW, the discussants propose two alternative
charting statistics. For the purpose of detecting a shift in the co-
variance function γ (x1, x2) (cf., its definition in Section 2.1 of
QZW), Apley suggested using the charting statistic

T̃(1)
t =

t−1∑
i=0

(1 − ρ)iTt−i,h,1,

where ρ ∈ [0,1] denotes an EWMA weighting parameter. From
the definition of Tt,h,λ, we can see that Tt−i,h,1 is a quadratic
measure of the difference between the estimated profile mean
function from the (t − i)th profile data alone and the IC profile
mean function g0. Therefore, T̃(1)

t which is an EWMA statistic
constructed from {Tt−i,h,1} tries to combine information from
different profiles about the difference between individual pro-
files and g0. In their discussion, Woodall, Birch, and Du pro-
posed this charting statistic as well.

The statistic T̃(1)
t is natural to use. As a matter of fact, we

also thought of it at the beginning of this research project. It
was finally given up and replaced by Tt,h,λ for the following
reason. The estimator of g from a single profile is relatively
noisy, especially when the profile contains only a small number
of observations. The relatively large variability of such estima-
tors of g will be inherited by T̃(1)

t and make it less sensitive to
shifts in the profile mean function. As a comparison, ĝt,h,λ(s)
defined in Equation (9) of QZW is obtained from multiple pro-
files through the EWMA weighting scheme. Its variability is
therefore smaller than the variability of ĝt,h,1(s) which is con-
structed from the tth profile alone. Consequently, the control
chart based on Tt,h,λ is expected to be more powerful for de-
tecting a shift in the profile mean function, compared to the
chart based on T̃(1)

t .
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Instead of Tt,h,λ, Chipman, MacKay, and Steiner thought that
it is more convenient to use the charting statistic

T̃(2)
t =

t−1∑
i=0

(1 − ρ)i(yi − g0,i)
T�−1

i (yi − g0,i),

where yi = (yi1, yi2, . . . , yini)
T and g0,i = (g0(xi1),g0(xi2), . . . ,

g0(xini))
T . Obviously, T̃(2)

t is an EWMA statistic constructed
from quadratic discrepancies between yi and g0,i. From its con-
struction, we think that T̃(2)

t would not be as sensitive to pos-
sible profile mean shifts as Tt,h,λ because of the large vari-
ability in yi − g0,i. However, this chart might be good for de-
tecting shifts in the covariance function of γ (x1, x2) because
yi − g0,i is just fi + εi when the process is IC, where fi =
(fi(xi1), fi(xi2), . . . , fi(xini))

T and εi = (εi1, εi2, . . . , εini)
T .

To investigate the performance of the alternative charts based
on T̃(1)

t and T̃(2)
t , which are denoted as ALT(1) and ALT(2), re-

spectively, we consider the following example, where the IC
models (II) and (III) and the OC model (i) used in QZW are
considered. In addition, we consider the following OC model
in which the shift is in variances:

yij = g(xij) + fi(xij) + (1 + θ∗)εij

for j = 1,2, . . . ,ni, i = 1,2, . . . , (2)

where θ∗ is a constant. In the charts MENPC, ALT(1), and
ALT(2), λ = ρ = 0.1 and all other parameters are chosen to be
the same as those used in the example of Table 2 of QZW. The
OC ARL values of the three charts are presented in Table 2.

From Table 2, we can see that chart ALT(1) does not work
well in all cases considered in this example in comparison with
the other two charts. As explained earlier, this chart will not be
efficient for detecting profile mean shifts, which is confirmed
here. From the table, it seems that this chart is not good for

detecting shifts in variances either. This latter result is not sur-
prising because the quantity Tt−i,h,1 that it uses does not con-
tain much information about the covariance function γ (x1, x2).
Chart ALT(2), on the other hand, does perform reasonably well
for detecting shifts in variances. But it is not powerful for de-
tecting small to moderate profile mean shifts, as expected. Our
proposed chart MENPC is designed for detecting profile mean
shifts. So, it performs reasonably well in cases with OC model
(i), especially when the mean shift is small or moderate (i.e., θ

value in the table is between 0.20 and 1.20). However, this chart
does not perform well for detecting shifts in variances. So, in
practice, if shifts in both mean and variances are our concern,
then we probably want to use the charts MENPC and ALT(2)

simultaneously.

4. ARE ASYMPTOTIC RESULTS RELEVANT?

We appreciate the comment made by Apley regarding the as-
ymptotic results included in QZW, and we agree with him com-
pletely that readers should not assign too much significance to
Theorem 1 and other asymptotic results in QZW when design-
ing the proposed control chart. Generally speaking, asymptotic
results are valid only when the sample size is large. In real-
ity, the related sample size is always finite. Therefore, asymp-
totic results are always a certain distance away from reality, and
that distance depends on the sample size and how all the con-
ditions and assumptions required by the asymptotic results are
satisfied in a practical situation. In statistical process control
(SPC), this is especially true because whenever we get a signal
of shift from a control chart, the process (e.g., a production line)
should be stopped immediately for people to find the root cause
of the shift and then make certain appropriate adjustments of
the process. Therefore, the sample size is hardly large in such
cases. This may be the reason why asymptotic results are not
often seen in the SPC literature.

Table 2. OC ARL values of the charts MENPC, ALT(1), and ALT(2) in cases when ARL0 = 200, n = 20, n0 = 40, and λ = ρ = 0.1

OC model (i) OC model defined in Equation (2)

θ MENPC ALT(1) ALT(2) θ∗ MENPC ALT(1) ALT(2)

IC model (II) 0.20 130 197 196 0.05 173 183 74.1
0.30 80.5 196 165 0.10 156 177 33.1
0.40 48.6 195 142 0.15 134 174 16.6
0.60 20.7 191 82.5 0.20 129 160 9.66
0.80 12.1 192 45.8 0.30 101 156 4.26
1.20 6.64 194 13.2 0.40 77.6 138 2.40
1.60 4.60 197 4.42 0.50 62.3 124 1.77
2.00 3.51 190 2.10 0.75 35.7 111 1.17
2.40 2.88 185 1.37 1.00 21.9 92.4 1.05

IC model (III) 0.20 131 199 186 0.05 179 187 75.9
0.30 81.0 197 153 0.10 157 182 34.7
0.40 48.1 197 119 0.15 142 162 16.5
0.60 21.4 196 68.4 0.20 138 168 9.83
0.80 12.4 195 34.9 0.30 106 146 4.31
1.20 6.59 193 8.77 0.40 82.7 140 2.45
1.60 4.51 193 3.02 0.50 65.4 127 1.80
2.00 3.43 192 1.60 0.75 34.5 111 1.17
2.40 2.81 190 1.17 1.00 21.4 97.5 1.04
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However, if we check the asymptotic results and their asso-
ciated conditions and assumptions carefully, then we can still
get some helpful information about the related SPC procedure.
For instance, Apley already provided a thorough explanation
why Theorem 1 in QZW concludes that Tt,h,λ is independent of
γ (x1, x2) and σ 2 when nih is bounded for each i and when other
conditions hold. We agree with Apley that this result should
not be used directly for choosing the control limit of our pro-
posed chart. One major reason is that this result describes the
IC behavior of the charting statistic Tt,h,λ only; it does not take
any profile mean shift into account. More specifically, the re-
sult holds when h tends to 0 and when other conditions are
valid. But, a too small h will not be appropriate to use for de-
tecting a profile mean shift effectively. On the other hand, this
result together with the result (ii) of Theorem 1 in QZW also
implies that h should be chosen small if it is desirable to have
a chart that is less affected by the correlation among within-
profile observations. In the case when nih are large, the result
(ii) reveals how the asymptotic distribution of Tt,h,λ depends on
γ (x1, x2), which might be helpful in future research to mod-
ify Tt,h,λ such that the modified version would incorporate the
correlation function γ (x1, x2) more effectively. As another ex-
ample, according to result (i) of Theorem 2 in QZW, after the
profile mean function changes from g0(x) to g1(x), the asymp-
totic distribution of the charting statistic Tt,h,λ will depend on
δ(x) = g1(x) − g0(x) and δ′′(x). Therefore, if the curvature of
δ(x) is bigger, then the corresponding shift is easier to detect,
which has been confirmed in the numerical examples presented
in Section 3 of QZW. See, for instance, Table 2 in QZW, where
the curvature of δ(x) is much larger with OC model (ii) than the
curvature of δ(x) with OC model (i).

5. GENERALIZATIONS TO MULTIVARIATE CASES

We appreciate Tsung’s comments on possible generalization
of our proposed method to multivariate cases. He provided a
nice description about several potential applications of multi-
variate profile monitoring and about some related research. We
believe that his discussion provides us a strong motivation to
study profile monitoring in multivariate cases in future research.
In their discussion, Woodall, Birch, and Du also provided some
comments on this topic, and they thought that other smoothing
techniques such as the smoothing spline analysis of variance
(ANOVA) might be more convenient to use, compared to the
local polynomial kernel smoothing used in QZW. Frankly, we
do not have much experience in multivariate cases, but would
still like to share with readers some of our initial impressions
described below.

Multivariate profile monitoring can be roughly classified into
the following three categories:

(i) each profile has one response and multiple covariates,
(ii) each profile has multiple responses and one covariate,

(iii) each profile has multiple responses and multiple covari-
ates.

For category (i), some semiparametric modeling methods might
be useful to describe the complicated high-dimensional profiles.
For instance, the single-index and partial linear models (cf.,

Ruppert, Wand, and Carroll 2003), which has a relatively sim-
ple interpretation of the effect of each covariate on the response,
might be appropriate in certain cases for describing multivariate
profiles. As an example, one type of multivariate profile mon-
itoring problem can be described using partial linear modeling
as follows:

yij =

⎧⎪⎪⎨⎪⎪⎩
g0(tij) + Xiβ + fi(tij) + εij

for j = 1,2, . . . ,ni, i = 1, . . . , τ

g1(tij) + Xiβ + fi(tij) + εij

for j = 1,2, . . . ,ni, i = τ + 1, . . . ,

where t denotes a univariate covariate that has a nonparametric
relationship with the response y, X denotes multiple covariates
that affect y linearly, τ is an unknown change-point, β is a co-
efficient vector, and other quantities are the same as those used
in QZW. This model describes cases when the nonparametric
relationship between y and t has a shift at τ . Obviously, similar
models can be formulated for cases when the linear relationship
between y and X has a shift. By combining existing semipara-
metric model estimation methods and process control schemes,
we believe that appropriate control charts can be constructed for
monitoring such multivariate profiles in a way that is similar to
the chart MENPC.

For category (ii), assume that we have p responses, and the
observed IC data are from the following multivariate nonpara-
metric mixed-effects model:

yij = g(xij) + fi(xij) + εij for j = 1,2, . . . ,ni, i = 1, . . . ,m,

where g(x) = (g1(x), . . . ,gp(x))T is the fixed-effects term,
fi(x) = (fi1(x), . . . , fip(x))T is the random-effects term, yij =
(yij1, . . . , yijp)

T , and Cov(εij) = �. For a given point s ∈ [0,1],
g(s) and fi(s) can be estimated by minimizing the following pe-
nalized local linear likelihood function which is similar to the
expression in Equation (2) in QZW

m∑
i=1

{
tr
{[Yi − Zi(β̃ + α̃i)]�−1[Yi − Zi(β̃ + α̃i)]T Ki

}
+ [vec(α̃i)]T D−1 vec(α̃i) + ln |D| + ni ln |�|},

where

Yi = (yi1, . . . ,yini)
T , β̃ = (β1, . . . ,βp),

α̃i = (αi1, . . . ,αip);
Zi = (zi1, . . . , zini)

T , zT
ij = (1, xij − s),

each β j is a deterministic two-dimensional coefficient vector,
each αij is a two-dimensional vector of the random effects with
mean 0 and covariance Dj, D = diag{D1, . . . ,Dp}, and Ki are
defined in Equation (4) of QZW. Then, a similar iterative algo-
rithm to the one described in Section 2.2 of QZW can be devel-
oped for Phase I model estimation. The local weighted negative
log-likelihood estimation and a corresponding Phase II control
chart can also be developed in a similar way to that described
in Section 2.3 of QZW.

Category (iii) is much more complicated than the previous
two categories. Probably certain appropriate combinations of
the models described previously can handle some special cases.
This is an important and challenging area and serious research
will be required to develop effective monitoring schemes.

TECHNOMETRICS, AUGUST 2010, VOL. 52, NO. 3



REJOINDER 293

ACKNOWLEDGMENTS

The authors thank the editor Professor David Steinberg for
organizing this stimulating discussion. We are also grateful to
all the discussants for their constructive comments about the
method proposed in our article. This research is supported in
part by the grant DMS-0721204 from NSF of U.S.A. and the
grants 10771107 and 10711120448 from NNSF of China.

ADDITIONAL REFERENCES

Dette, H., and Neumeyer, N. (2001), “Nonparametric Analysis of Covariance,”
The Annals of Statistics, 29, 1361–1400. [288]

Fung, W., Zhu, Z., Wei, B., and He, X. (2002), “Influence Diagnostics and Out-
lier Tests for Semiparametric Mixed Models,” Journal of Royal Statistical
Society, Ser. B, 64, 565–579. [288]

Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (2008), Lon-
gitudinal Data Analysis, London: Chapman & Hall/CRC. [288]

Liang, K. Y., and Zeger, S. (2002), Analysis of Longitudinal Data (2nd ed.),
New York: Oxford University Press. [288]

Neumeyer, N., and Dette, H. (2003), “Nonparametric Comparison of Regres-
sion Curves: An Empirical Process Approach,” The Annals of Statistics, 31,
880–920. [288]

Noorossana, R., Amiri, A., and Soleimani, P. (2008), “On the Monitoring of
Autocorrelated Linear Profiles,” Communications in Statistics—Theory and
Methods, 37, 425–442. [290]

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression,
Cambridge: Cambridge University Press. [292]

Wang, K., and Tsung, F. (2005), “Using Profile Monitoring Techniques for a
Data-Rich Environment With Huge Sample Sizes,” Quality and Reliability
Engineering International, 21, 677–688. [288]

Young, S. G., and Bowman, A. W. (1995), “Non-Parametric Analysis of Co-
variance,” Biometrics, 51, 920–931. [288]

TECHNOMETRICS, AUGUST 2010, VOL. 52, NO. 3


	Nonparametric Profile Monitoring by Mixed Effects Modeling
	Introduction
	Methodology
	Nonparametric Mixed-Effects Modeling
	Estimation of the NME Model
	Phase II Nonparametric Profile Monitoring
	Some Computational Issues
	Certain Practical Guidelines
	On the Sizes of m and ni
	On Choosing the Bandwidth
	On Choosing lambda
	On Choosing {sk, k=1,2,…,n0}


	A Simulation Study
	A Real-Data Application
	Summary and Concluding Remarks
	Supplemental Materials
	Acknowledgments
	References


	Cit p_7: 
	Cit p_3: 
	Cit p_11: 
	Cit p_4: 
	Cit p_8: 
	Cit p_10: 
	Cit p_18: 
	Cit p_13: 
	Cit p_17: 
	Cit p_9: 
	Cit p_6: 
	Cit p_1: 
	Cit p_5: 
	Cit p_2: 


