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Abstract

This paper proposes a distribution-free multivariate statistical process control scheme

to detect general distributional changes in the multivariate process variables. The MSPC

chart is deployed based on a multivariate goodness-of-fit test, which is extensible to high

dimensional observations. The chart also employs data-dependent control limits, which are

computed on-line along with charting statistics, to ensure satisfactory and robust charting

performance of the proposed method. Through theoretical and numerical analysis, we

have shown that the proposed chart is exactly distribution-free, and can operate with

unknown in control distribution or small reference samples. The chart also has robust IC

performance as well as satisfactory OC detection power for general process changes without

any assumption of process distribution. A real-data example in semiconductor production

process is presented to demonstrate the application and effectiveness of our method.
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1 Introduction

Modern manufacturing processes usually involve several related quality variables, and demand ef-

fective multivariate statistical process control (MSPC) to improve their competitive advantages.

MSPC originates from Hotelling’s T 2 chart, which monitors the mean vector of multiple quality

variables following a multivariate normal distribution. Since then, MSPC has been shown more

effective in monitoring correlated quality characteristics than multiple univariate SPC charts,

hence it has attracted significant attention. Subsequent developments include the multivariate

cumulative sum (CUSUM) charts (Crosier 1988; Healy 1987; Pignatiello and Runger 1990), and

multivariate EWMA charts (Lowry, Woodall, Champ, and Rigdon 1992; Runger and Prabhu

1996) to improve performance of detecting small mean shifts.

While many MSPC charts are designed or perform best to detect mean shifts of quality vari-

ables in a process, it has been well acknowledged that “changes in a process mean are occasion-

ally accompanied with or might be masked by an unsuspected change in the process variability”

(Zamba and Hawkins 2009). As a consequence, several charts have been proposed to monitor

the process variability or its covariance matrix, including generalized variance method (Mont-

gomery and Wadsworth 1972), generalized likelihood ratio (GLR) method (Alt 1985; Hawkins

and Maboudou-Tchao 2008), and penalized likelihood method (Yeh, Huwang, and Wu 2004).

Recently, charts that can monitor both mean vector and covariance matrix simultaneously

have received increasing attention in the literature. They can be classified into two categories.

The first category uses two separate monitoring statistics to detect shifts in process mean and

covariance matrix respectively, and combines them into a single charting statistic by appropriate

transformation. Examples in this category include (Chen, Cheng, and Xie 2005; Yeh, Huwang,

and Wu 2005; Yeh and Lin 2002; Khoo 2004; Reynolds and Cho 2006; Maboudou-Tchao and

Hawkins 2011). The second category constructs a single monitoring statistic directly that can

respond to both mean shifts and covariance matrix shifts effectively. For instance, Hawkins

(1991) proposed a CUSUM chart based on regression-adjusted variables; Zamba and Hawkins

(2009) formulated a change-point detection model based on GLR test; and Zhang, Li, and Wang

(2010) employed the EWMA strategy on the GLR statistic to achieve fast responses to different

types of shifts.

Despite their significance in MSPC, the aforementioned methods often need to assume the

quality variables follow multivariate normal distribution or some other known distributions, at

least when the process is in control. Unfortunately, the distributional assumptions are frequently

violated in practice, especially when the dimension p is large, because many data exhibit features

(e.g., heavy tails or skewness) that are distinct from conveniently assumed distributions. More

importantly, many charts fail to perform well when the distributional assumptions are not satis-

fied (Qiu 2008; Woodall 2000). To address this problem, control charts based on nonparametric

statistics can be useful. These nonparametric charts have robust performance in different distri-
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butions, and are resistent to outliers. Qiu and Hawkins (2001) developed a CUSUM chart based

on anti-ranks among components within each sample. Qiu (2008) proposed a CUSUM chart

based on log-linear modelling. Zou and Tsung (2011) introduced the concept of spatial signs

to MSPC, and obtained distributionally robust multivariate sign EWMA chart. Holland and

Hawkins (2014) proposed a quarantined change point model based on directional rank test statis-

tic. Liu (1995); Liu, Singh, and Teng (2004) proposed several charts based on the data-depth.

Recently, there are also several developments which formulate the MSPC as a classification prob-

lem to determine whether observed samples belong to the in-control “class” or out-of-control

“class”. They use different classification methods, which do not rely on any distributional as-

sumptions as well (see Sun and Tsung 2003; He and Wang 2007; Sukchotrat, Kim, and Tsung

2009; Hwang, Runger, and Tuv 2007; Deng, Runger, and Tuv 2012, for examples).

Even though these nonparametric charts perform robustly in detecting changes across dif-

ferent types of data distributions, they are not distribution-free. By distribution-free, we mean

without knowing the exact in-control (IC) distribution or requiring a sufficiently large size of

IC samples, a chart can attain the specified IC run length distribution or at least IC average

run length (ARL0). Unfortunately, unlike many univariate nonparametric charts (see Zou and

Tsung 2010; Chakraborti, Van Der Laan, and Bakir 2001, for example and reviews), which are

both robust and distribution-free, it is challenging to design a distribution-free MSPC scheme

based on conventional construction. For example, multivariate sign EWMA chart (Zou and

Tsung 2011) requires at least 4,000 IC samples to attain a specified ARL0 when monitoring 5

dimensional data with unknown distribution. Not surprisingly, it requires increasingly more IC

samples as the dimension increases. Similar problem arises in other multivariate nonparametric

charts (Zou, Wang, and Tsung 2012). However, in many industrial applications, knowledge on

the IC distribution or a large group of IC samples are infeasible or challenging to obtain. In this

case, inaccurate estimation of the IC distribution (or its parameters) from limited samples can

significantly compromise the charting performance (Jones, Champ, and Rigdon 2001).

To (partially) mitigate the effects of limited IC samples, especially at the start-up stage,

various self-starting control charts have been proposed. In essence, self-starting charts sequen-

tially monitor the process, and update the IC distribution parameters using the newly observed

samples if they are deemed to be in-control. They also adjust the control limits such that the

conditional false alarm rate meets the specification even at the early stage with limited samples.

For instance, Hawkins and Maboudou-Tchao (2007); Maboudou-Tchao and Hawkins (2011) pro-

posed EWMA type of charts with self-starting features to monitor mean and covariance changes.

Zamba and Hawkins (2009) used the change-point model for MSPC. However, these three meth-

ods perform satisfactorily only when the data follow multivariate normal distribution. Later,

Zou et al. (2012) proposed a self-starting nonparametric approach based on spatial ranks. It

has robust IC performance and satisfactory out-of-control (OC) performance. It even enjoys the

distribution-free property when the data come from the elliptical distribution family. However,
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its performance for other distributions are not guaranteed. See also Holland and Hawkins (2014)

for a related approach based on change-point models. To the best of our knowledge, there lacks

a MSPC chart that has satisfactory performance regardless of the data distribution type and

dimension, even with limited IC sample size.

To fill in the research gap, this paper aims to develop a nonparamemtric MSPC chart with

two objectives in mind. First, the chart should be able to detect general changes in the multi-

variate distribution effectively, including changes in mean, covariance, and distribution shapes.

Second, the chart should be distribution-free with robust performance even with small IC (refer-

ence) samples. There are several challenges associated with both objectives. To detect general

distribution changes, it is insufficient to monitor each marginal distribution separately and com-

bine the information together. Monitoring marginal distributions only fails to detect the changes

in correlation structure. On the other hand, when the dimension p is large, it is prohibiting to

estimate the distribution or even its covariance well due to the curse of dimensionality and con-

tamination noise (Feng, Zou, Wang, and Chen 2013). Moreover, existing charting schemes are

not able to ensure distribution-free property under the general MSPC settings.

In this paper, we proposed a new MSPC charting scheme based on a goodness-of-fit (GoF)

test. Instead of monitoring marginal distributions separately or monitoring the entire joint

distribution directly, we construct the charting statistic through a series of bivariate GoF tests.

Each test is designed to detect general distributional changes for a selected pair of quality

variables. Integrating change information of a collection of bivariate distributions, the proposed

chart is able to detect a much broader category of changes, and is computationally efficient.

For different distributional changes, the optimal pair selection mechanism is different. We also

provide some guidelines on how to choose the pairs for different purposes. The bottomline is that

through standard pair selection, the chart is omnipotent for general distributional changes. In

addition, to achieve robust IC performance with unknown distributional information or limited

IC reference samples, we develop a novel data-dependent control limit scheme. This scheme,

along with each monitoring statistic, determines the limit at each step on-line. Leveraging on

the permutation principle, the scheme can deliver distribution-free IC performance, i.e., the IC

run length distribution meets specification regardless of the data distribution. We also design

many numerical studies to demonstrate the satisfactory performance of our proposed charts.

The remainder of this paper is organized as follows: Section 2 introduces the goodness-of-fit

test for MSPC. Section 3 presents charting scheme to construct a distribution-free chart based

on GoF tests; Section 4 evaluates its performance and compares it with alternative approaches;

Section 5 provides some practical guidelines on the optimal pair selection mechanism for different

distributional changes. Section 6 demonstrates the proposal using a real-data example from a

semiconductor production process; Finally Section 7 concludes this paper with remarks. Some

technical details are provided in the Appendix.
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2 Goodness-of-fit test

In this section, we first review the univariate GoF test. Subsequently, we propose a new GoF

test for multivariate distributions.

2.1 A powerful univariate goodness-of-fit test

Let Sn = {X1, . . . , Xn} be independent and identically distributed (i.i.d) samples from a dis-

tribution with cumulative distribution function (CDF) F (t). It is of interest to test whether X

follows a specific distribution F0(t). Equivalently, it is to test the following hypothesis

H0 :F (t) = F0(t), ∀t ∈ (−∞,∞)

H1 :F (t) 6= F0(t), for some t ∈ (−∞,∞). (1)

Without strong assumptions on F0(t) or F (t), many nonparametric tests have been proposed,

including Kolmogorov-Smirnov test, Anderson-Darling test, and Cramér-von Mises test (see

Conover 1999, for an overview and references). Despite the differences in the original accounts

of these tests, Zhang (2002) proposed a new testing framework to include them as special cases.

Moreover, based on the framework, he also proposed a new class of powerful goodness-of-fit tests

based on nonparametric likelihood ratio (NLR).

In more details, the original null hypothesis can be transformed to the null hypothesis

Hτ
0 : F (τ) = F0(τ) for each τ . The later can be formulated as testing the success rate of a

Binomial distribution, i.e., H ′τ0 : p ≡ P (X ≤ τ) = F0(τ). This problem is well studied, and can

be readily solved by likelihood ratio test given the samples Sn

L(τ) = n

{
F̂n(τ) ln

F̂n(τ)

F0(τ)
+ (1− F̂n(τ)) ln

1− F̂n(τ)

1− F0(τ)

}
, (2)

where F̂n(τ) = n−1
∑n

i=1 I(Xi ≤ τ) is the empirical distribution function (ECDF) based on Sn.

I(·) is the indicator function which equals one when the condition is true and zero otherwise.

According to the construction, L(τ) is always non-negative. Moreover, when Hτ
0 is false,

L(τ) is expected to be large. As a consequence, we can test H0 in (1) by aggregating all the

information at different τ ∈ (−∞,∞). Zhang (2002) recommended Z =
∫∞
−∞ L(τ)dw(τ), where

w(τ) is a pre-specified weight function. With properly chosen w(τ), Z could be a very powerful

test statistic compared with many existing methods. One w(τ) proposed by Zhang (2002) is

dw(τ) =
[
F̂n(τ)(1− F̂n(τ))

]−1
dF̂n(τ). More importantly, Z has the same null distribution not

depending on F0(t), making it a useful nonparametric and robust test statistic.

5



2.2 Multivariate goodness-of-fit test

Although the univariate GoF test has been proved to be effective and powerful, its direct ex-

tension to multivariate distribution is challenging. This is because estimating the multivariate

ECDF function, especially when the dimension p is large, is prohibiting with limited sample size.

In this part, we propose an alternative construction of GoF test based on NLR statistics.

Let Sn = {X1, . . . ,Xn}, X ∈ Rp be i.i.d samples from a p dimensional multivariate dis-

tribution with CDF F (t), t ∈ Rp. The jth dimension Xi,j has marginal CDF Fj(t), t ∈ R. A

natural and simple idea is to construct p univariate GoF tests for each dimension separately,

and combine the test statistics together in a meaningful way. However, this construction ignores

the relationships between variables. While it might be useful in detecting changes in marginal

distributions, it is ineffective in detecting changes in the correlation structure. As a result, we

need to strike a balance between detection capability and distribution dimensionality. Our idea

is to construct the testing statistic for p dimensional distribution based on a series of bivariate

GoF tests. Each bivariate test is designed to detect changes in both marginal distributions and

their correlation structure between the pair. Therefore, collectively, the proposed test is able

to detect a much larger class of deviations from the null distribution. In the following, we first

elaborate on how to construct the bivariate GoF test, and later discuss how to combine bivariate

test results together.

To begin with, we consider the joint distribution of [Xi,j, Xi,k], with CDF Fjk(τ ) to illustrate

the idea, where τ = [τ1, τ2] ∈ R2 is a bivariate point on the real plane. Similar to the univarate

NLR construction, for any given τ , the set of samples Sn are partitioned into four disjoint regions

according to whether Xi,j (Xi,k) is smaller than τ1 (τ2) or not (illustrated in Figure 1). Under Hτ
0 ,

the numbers of samples [Xi,j, Xi,k] in each of the four regions follow a multinomial distribution,

with probability P j
0,jk(τ ) shown in Figure 1, where P 1

0,jk(τ ) = P (Xi,j ≤ τ1, Xi,k ≤ τ2), P
2
0,jk(τ ) =

P (Xi,j > τ1, Xi,k ≤ τ2), P
3
0,jk(τ ) = P (Xi,j ≤ τ1, Xi,k > τ2), and P 4

0,jk(τ ) = P (Xi,j > τ1, Xi,k >

τ2) under F0. As a consequence, testing the hypothesis H0 : Fjk(τ ) = F0,jk(τ ) ∀τ ∈ R2, is

equivalent to testing the probabilities in each region of a multinomial distribution. In more

details, we use P̂ r
jk(τ ) to denote the counterpart of P r

0,jk(τ ) for r = 1, 2, 3, 4 based on the ECDF

F̂jk(τ ) = n−1
∑n

i=1 I(Xi,j ≤ τ1, Xi,k ≤ τ2). Following the likelihood ratio principle, the bivariate

NLR can be expressed as

Tjk(τ ) = n

4∑
r=1

P̂ r
jk(τ ) ln

P̂ r
jk(τ )

P r
0,jk(τ )

. (3)

Again Tjk(τ ) is non-negative, and when Hτ
0 is false Tjk(τ ) is expected to be large. The NLR

statistic Tjk(τ ) at different τ can be aggregated by maximization or integration, e.g., Zjk =∫
τ
Tjk(τ )dwjk(τ ). Analogue to the choice of w(t) in the univariate case (Zhang 2002; Zou

and Tsung 2010), we use dwjk(τ ) =
[∏4

r=1 P̂
r
jk(τ )

]−1/4
dF̂jk(τ ) in this paper. In fact, the

determinant of the Fisher information matrix in estimating (P 1
0,jk, P

2
0,jk, P

3
0,jk, P

4
0,jk) is simply
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Figure 1: Illustration of bivariate nonparamemtric likelihood ratio test

∏4
r=1 P̂

r
0,jk(τ ), to have higher off-center weights, which leads to

Zjk =
n∑
i=1

[
4∏
r=1

P̂ r
jk(Xi,jk)

]−1/4 4∑
r=1

P̂ r
jk(Xi,jk) ln

P̂ r
jk(Xi,jk)

P r
0,jk(Xi,jk)

, (4)

where Xi,jk = [Xi,j, Xi,k] is the subvector of the ith sample. We want to stress that different

weight functions are also possible. Our choice can balance the detection of different types of

shifts. Other weights and their corresponding performance are discussed more in the supple-

mentary material.

From the bivariate GoF test for the j, kth component of X, we can construct a GoF

test for the entire p dimensional distribution. In particular, we select a set of pairs P =

{(j1, k1), · · · , (jq, kq)} where 1 ≤ ji, ki ≤ p, ji 6= ki, i = 1, · · · , q. Note that Zjk ≥ 0 and is

large when H0 is false, we can aggregate the bivariate test results together by Z =
∑

(j,k)∈P Zjk.

As a result, Z becomes large when the joint distribution of any pair belonging to P shifts from

that specified by F0(t). As a result, Z is able to detect changes not only in marginal distri-

butions, but also in certain correlation structures. Even though Z might not cover all possible

correlation changes of the p dimensional distribution, the undercoverage can be mitigated by

appropriately designed P . Some guidelines are provided in Section 5 on how to construct P for

different purposes.

Unlike the univariate GOF test, the null distribution of Z depends on F0(t) and P . In

fact, without estimating and utilizing the covariance matrix of X, the test statistic is not affine

invariant. In this sense, the proposed multivariate GOF test statistic Z is not distribution-free.

In other words, we cannot find a constant c such that under H0, P (Z > c) ≤ α for all p-variate

distributions F0(t). Nevertheless, in this one-sample test problem, we can always find a cut-

off value c(α, F0, n) such that P (Z > c(α, F0, n)) ≤ α under F0(t). Clear from the notation,

7



the cut-off depends on F0 and sample size n. c(α, F0, n) can always be approximated through

sampling from F0.

3 A distribution free multivariate control chart

Based on the multivariate GoF test developed in Section 2.2, we can construct the MSPC chart

to sequentially monitor the distributional changes of X. We follow the conventional change-point

formulation of the MSPC problem. In particular, we assume that there are m0 i.i.d reference

observations (or IC samples interchangeably) when the process is in control, X−m0+1, . . . ,X0 ∈
Rp. In the monitor stage, subsequent ith observation, Xi = (X1i, . . . , Xpi)

T , is collected over

time following the change-point model

Xi
i.i.d.∼

{
F0(t) for i = −m0 + 1, . . . , 0, 1, . . . , ξ,

F1(t), for i = ξ + 1, . . . ,
, (5)

where ξ is the unknown change point. The F0 and F1 are the IC and OC distribution functions,

respectively, and are assumed to be continuous. Our aim is to construct a robust charting

procedure based on multivariate GoF test to detect the change point ξ as early and accurate

as possible, without strong assumptions on either F0 or F1. When F0 is unknown, and m0 is

relatively small, test statistic based on (4) is not directly applicable for two main reasons. First,

the probabilities P r
0,jk(τ ), r = 1, · · · , 4 are unknown. Second, the distribution of the test statistic

Z and corresponding cut-off value c(α, F0, n) cannot be accurately obtained through sampling.

Both challenges need to be addressed to deploy the charting scheme based on multivariate GOF

test.

3.1 Construction of charting statistics

We first sequentialize the test procedure in Section 2.2 when m0 is limited. In such cases,

we can estimate P r
0,jk(τ ), r = 1, · · · , 4 based on IC samples, and update them sequentially in

a self-starting way. Particularly, when the chart has not signalled an OC alarm up to the

nth sample, the previous n − 1 samples can be considered as in control. Together with the

m0 reference samples, they can be used to estimate the IC distribution by the ECDF function

F̂ n
0,jk(τ ) = (m0+n−1)−1

∑n−1
i=−m0+1 I(Xi,j ≤ τ1, Xi,k ≤ τ2), and the correspondingly probabilities

in each region (see Figure 1) by frequencies, denoted as P̂ n,r
0,jk(τ ), r = 1, · · · , 4.

In addition, to improve the detection performance on small shifts and to reduce the compu-

tational load, we adopt the window limited exponential weighting strategy (see Zou and Tsung

2010; Stoumbos and Sullivan 2002, for examples). Essentially, we consider the w most recent

samples as potential OC samples and weight them exponentially in computing the counterparts

of P̂ r
jk(τ ) in (3). Equivalently, they can be estimated from the weighted ECDF F̂ n

jk(τ |λ,w) =
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X−m0+1
· · · X−1 X0

m0 Reference Sample

X1 X2
· · ·Xn−w+1

· · · Xn−1 Xn

Window-limited test ECDF

F̂njk(τ |λ,w)

“IC” ECDF F̂n0,jk(τ )

Figure 2: Illustration of EWMA based on-line GoF test

a−1λ,w
∑n

i=n−w+1(1− λ)n−iI(Xi,j ≤ τ1, Xi,k ≤ τ2), where aλ,w =
∑n

n−w+1(1− λ)n−i = λ−1[1− (1−
λ)w]. For notation simplicity, we denote them at nth sample as P̂ n,r

jk (τ ;λ,w) to highlight their

dependence on λ,w. The revision of the testing procedure is schematically illustrated in Figure

2, and the key elements in the test are summarized below:

P̂n,1
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j ≤ τ1, Xi,k ≤ τ2)

m0 + n− 1
, P̂n,1

jk (τ ;λ,w) =

n∑
i=n−w+1

(1− λ)n−iI(Xi,j ≤ τ1, Xi,k ≤ τ2)

λ−1[1− (1− λ)w]

P̂n,2
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j > τ1, Xi,k ≤ τ2)

m0 + n− 1
, P̂n,2

jk (τ ;λ,w) =

n∑
i=n−w+1

(1− λ)n−iI(Xi,j > τ1, Xi,k ≤ τ2)

λ−1[1− (1− λ)w]

P̂n,3
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j ≤ τ1, Xi,k > τ2)

m0 + n− 1
, P̂n,3

jk (τ ;λ,w) =

n∑
i=n−w+1

(1− λ)n−iI(Xi,j ≤ τ1, Xi,k > τ2)

λ−1[1− (1− λ)w]

P̂n,4
0,jk(τ ) =

n−1∑
i=−m0+1

I(Xi,j > τ1, Xi,k > τ2)

m0 + n− 1
, P̂n,4

jk (τ ;λ,w) =

n∑
i=n−w+1

(1− λ)n−iI(Xi,j > τ1, Xi,k > τ2)

λ−1[1− (1− λ)w]
.

In practice, λ = 0.1, 0.05 are common choices in EWMA type charts, and w is chosen such

that (1 − λ)w is small, say 0.05. This window-limited statistic barely influences the detection

performance, but can significantly reduce the computation effort (see discussion and analysis

later). After accommodating these changes, the test statistic (4) at nth sample becomes

Zn
jk(λ,w) =

n∑
i=n−w+1

(1− λ)n−i[∏4
r=1 P̂

n,r
jk (Xi,jk;λ,w)

]1/4 4∑
r=1

P̂ n,r
jk (Xi,jk;λ,w) ln

P̂ n,r
jk (Xi,jk;λ,w)

P̂ n,r
0,jk(Xi,jk)

.

By aggregating the statistic for all the pairs in P , the charting statistic becomes

Zn(λ,w) =
∑

(j,k)∈P

Zn
jk(λ,w). (6)

Even though (6) appears to the more complicated than (4) in Section 2.2, they have similar

computational complexity (see discussion in Appendix). For notation simplicity, we drop the

dependence on λ,w and simply use Zn when there is no confusion.
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3.2 Data-dependent control limits

The charting statistic (6) indicates that when there are distributional changes from IC distribu-

tion F0, Zn is expected to be large. To make the chart operational, we need to determine the

control limits such that the chart has satisfactory IC and OC performance.

Unfortunately, without knowing F0, it is difficult to find the limit c(α, F0, n) such that

P (Zn > c(α, F0, n)) ≤ α when all Xi ∼ F0. On the other hand, we observe that the charting

statistic (6) depends on the samples X−m0+1, . . . ,X0, . . . ,Xn only through their ECDF, denoted

by Fm0+n. Equivalently speaking, the conditional distribution of Zn|Fm0+n is free from F0. This

conditional distribution-free property provides an alternative avenue to determine the control

limits. In fact, because the distribution of Zn|Fm0+n is free from F0, we can always find a quantity

Hn(α,Fm0+n) such that P (Zn > Hn(α,Fm0+n)|Fm0+n) ≤ α. Note that Hn(α,Fm0+n) depends on

Fm0+n only, and hence is a random variable but has a fixed realization given Fm0+n. This implies

that in each independent run of the control chart, we have different Fm0+n and correspondingly

different realizations ofHn(α,Fm0+n). That is, the value ofHn(α,Fm0+n) depends on the samples

{X−m0+1, . . . ,X0, . . . ,Xn}, giving its name data-dependent limits.

In practice, we can design Hn(α,Fm0+n) such that the chart has a pre-specified IC average

run length (ARL0). However, as recognized in the literature, it is often insufficient to summarize

run length behaviour by ARL, especially for self-starting control charts (Hawkins and Maboudou-

Tchao 2007; Zou and Tsung 2010). It is more desired that the conditional false alarm rate is

controlled at each step such that the IC run length is geometrically distributed (Hawkins and

Olwell 1998). To achieve this ideal run length distribution, we can adjust the control limits so

that the conditional probability that the charting statistic exceeds the control limit at present

given that there is no alarm before is a pre-specified constant α. Equivalently, Hi(α,Fm0+i), i =

1, 2, · · · , need to satisfy

P (Z1 > H1(α,Fm0+1) | Fm0+1) = α,

P (Zn > Hn(α,Fm0+n) | Zi ≤ Hi(α,Fm0+i), 1 ≤ i < n,Fm0+n) = α for n > 1. (7)

Subsequently, we can formally define the following charting procedure, termed as distribution-

free multivariate goodness-of-fit chart (abbreviated as DFMGoF), with the run length

RL = min{n; Zn ≥ Hn(α,Fm0+1), n ≥ 1}. (8)

An example of the chart operation is shown in Figure 3 for illustration. Because of the conditional

distribution free property of Zn|Fm0+n, the conditional false alarm rate α in (7) hold regardless

the IC distribution F0 or its dimension. As a result, our construction ensures that P (RL = n) =

(1− α)n−1α exactly, and correspondingly ARL0 = 1/α. This result is remarkable as it does not

require the distributional type or parameters of F0, and it can always ensure the IC run length
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Figure 3: An example of DFMGoF chart. The black dots represent the charting statistic Zn,
and the red dots represent the control limit Hn(α,Fm0+1). The chart triggered an OC alarm at
n = 87.

distribution (see results in Section 4.1). It can also operate with small IC sample size m0, which

is crucial in the short-run processes and mass-customerization applications.

Despite the existence of Hn(α,Fm0+n) theoretically, it is often analytically infeasible to find

them to satisfy (7). To make the charting procedure practical and generally applicable, we

propose a computational algorithm to find Hn(α,Fm0+n),∀n ≥ 1. The algorithm is based on

the fundamental permutation principle. In more details, if the process has being in control until

the nth sample, Sn = {X−m0+1, · · · ,X0,X1, · · · ,Xn} constitutes an i.i.d sample from IC dis-

tribution F0. As a result, any permuted sample Sνn = {Xv−m0+1 , · · · ,Xv0 ,Xv1 , · · · ,Xvn}, where

{v−m0+1, · · · , v0, v1, · · · , vn} is simply a random permutation of index set {−m0+1, · · · , 0, 1, · · · , n},
has the same distribution as Sn. As a result, the charting statistic Zn computed from the sample

Sn has identical distribution as that of Zν
n based on the permuted sample Sνn. By generating a

large number of permuted samples Sνn and computing corresponding charting statistics Zν
n, for

ν = 1, · · · , b, we are able to approximate the conditional distribution of Zn|Fm0+n through sam-

ple approximation. In particular, the desired control limit can be approximated by the sample

quantiles. Since this computational procedure is valid regardless of the IC distribution F0, the

algorithm can always ensure the validity of (7). The idea can be formalized into the following

procedure.

(i) For n = 1, generate b permutation samples Sν1 based on S1 = {X−m0+1, . . . ,X0,X1}, and

compute corresponding charting statistic Zν
1 from Sν1 , for ν = 1, 2, · · · , b. Find the (1−α)

sample quantile of Zν
1 as the control limit H1(α,Fm0+1).

(ii) For n > 1 and each permutation sample Sνn from Sn, compute Zν
i for max{1, n−w+ 1} ≤

i ≤ n. If Zν
i ≤ Hi(α,Fm0+i) for all max{1, n − w + 1} ≤ i < n, accept Zν

n as a valid

permutation statistic. Otherwise, Sνn is discarded and a new permutation sample is drawn.

Repeat this procedure until b valid Zν
n are obtained, and find the (1− α) sample quantile

of Zν
n, ν = 1, · · · , b as Hn(α,Fm0+n).

11



In (ii) we only need to estimate the quantile of P (Zn|Zi ≤ Hi(α,Fm0+i), max{1, n− w + 1} ≤
i < n,Fm0+n) instead of the one in (7) to reduce the computation complexity especially when

n is large because only the most w recent Zν
i need to be computed. A detailed analysis of the

algorithm complexity is discussed in the Appendix A-I.

The proposed procedure of finding Hn(α,Fm0+n) is based on the permutation principle,

which is different from the usual bootstrap method. Similar to other permutation tests, the

charting procedure does not need any distributional assumption to have exact IC run length

distribution. This property makes the proposed chart significantly different from existing meth-

ods. In practice, complete enumeration of all permutation samples is infeasible. A random

permutation samples with b = 10q/α should be sufficient for reliable approximations, which in

turn roughly requires b/(1 − α)w permutation trials when n ≥ w. As long as m0, n is not too

small and b is sufficiently large, (7) holds well using the estimated limits Hn(α,Fm0+n) from the

algorithm.

The satisfactory performance is possible because of the data-dependent nature of the chart-

ing procedure. In other words, after observing sample Xn, along with Zn we need to determine

the corresponding limit Hn(α,Fm0+n) online. This is fundamentally different from the approach

of dynamic control limits originally proposed by Margavio, Conerly, Woodall, and Drake (1995);

Lai (1995), which still use fixed sequence of limits for a given F0. However, these data-dependent

limits come at a cost of heavy computational load required in the permutation procedure. How-

ever, the proposed charting procedure becomes feasible as the high performance computing

advances. For example, for a chart with dimension p = 10, w = 58, at n = 100 it takes 5 seconds

to run on a computational node with 64-bit 32 core Xeon CPUs. For time critical applications,

more computational resources can be invested to speed up the charting operation.

4 Simulation Studies

In this section, we present simulation results to demonstrate the performance of DFMGoF.

Unfortunately, fair comparisons between DFMGoF and alternative charts are difficult because

DFMGoF is designed to detect general distributional changes, and is self-starting only requiring a

small size of reference samples. To this end, we consider two self-starting charts that can monitor

mean vector and covariance matrix simultaneously, the self-starting EWMAC (SSEWMAC)

chart (Maboudou-Tchao and Hawkins 2011) and the chart based on change-point and generalized

likelihood ratio test (short for ChangePt, Zamba and Hawkins 2009). Both charts are designed

to detect both mean and covariance shifts, and they are parametric because they are designed

assuming the IC distribution is multivariate normal. In addition, we also consider the RTC chart

(Deng et al. 2012), which is nonparametric but requires sufficient reference samples to attain the

specified IC performance. Most recently, Holland and Hawkins (2014) proposed a nonparametric

multivariate change-point model for MSPC. It is robust and work well in ellipitical distribution
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families. However, the chart is designed to detect mean shifts only, hence is not included for

comparison here.

To test the robustness of these charts, we consider the following distributions in our nu-

merical studies: (i) multi-normal; (ii) multivariate t with ζ degrees of freedom, denoted as tp,ζ ;

(iii) multivariate gamma with shape parameter ζ and scale parameter 1, denoted as Gamp,ζ .

These distributions are commonly used in the literature to study the robustness of charting

performance. For easy reference, random number generation and useful moments of these distri-

butions are included in Appendix A-II. In the simulation, we consider p = 10, 30, representing

low-dimensional and high-dimensional cases respectively. The ARL0 is set to 200 and m0 = 100.

Clearly, such small reference samples are not able to provide any meaningful estimate of the

distributional parameters when p = 10 or 30.

Without loss of generality, for each distribution, the mean vector µ0 is set to be 0, the

covariance matrix Σ0 = σ2I is chosen to be diagonal. For DFMGoF, we simply choose dp/2e
most correlated pairs of X based on m0 reference samples to form the P . In addition, we set

w = 28 when the smoothing parameter λ = 0.1 and w = 58 when λ = 0.05. For RTC, following

the guidelines in (Deng et al. 2012), the random forest algorithm is used to classify the IC samples

and monitoring samples. A group of 10 samples from each class are used to train the classifier to

get the charting statistics. In subsequent simulation results, the quantities are obtained based

on 10,000 replications without other notes. Additional simulation results, including cases with

non-diagonal covariance matrix, are summarized in the supplementary materials.

4.1 In-control performance comparison

We first compare their IC performance in terms of ARL0, standard deviation of the run-length

(SDRL) and the false-alarm rate during the first 30 observations, i.e., FAR = P (RL ≤ 30).

According to (Hawkins and Olwell 1998), the IC run length distribution of a chart is satisfac-

tory if it is close to the geometric distribution. Correspondingly, if the run-length distribution

is geometric, we expect ARL0 = 200, SDRL=200, and FAR=0.140. Table 1 summarizes IC

performance of these charts for different distributions and dimensions. The control limits of

SSEWMAC and ChangePt are set assuming the data follow multi-normal distribution based on

the methods in Maboudou-Tchao and Hawkins (2011) and Zamba and Hawkins (2009). On the

other hand, the control limits of RTC are determined through resampling from m0 reference

samples when evaluating the IC ARL.

Table 1 shows that DFMGoF has satisfactory IC performance for all the three distributions.

Its ARL0 attains the designed value 200 closely, and the run length distribution is close to

the geometric distribution based on the comparisons of ARL0, SDRL, and FAR with the ideal

ones. On the other hand, both ChangePt and SSEWMAC have satisfactory ARL0 when X is

multivariate normal. This is not surprising because their control limits are obtained under the
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Table 1: IC performance of the DFMGoF, RTC, ChangePt and SSEWMAC charts with multivariate
norm, tp,5 and Gamp,3 observations when p = 10 and m0 = 100

λ = 0.1 λ = 0.05

Method ARL0 SDRL FAR ARL0 SDRL FAR

Geometric 200 200 0.140 200 200 0.140

Norm DFMGoF 199 199 0.142 192 192 0.147

SSEWMAC 202 189 0.077 198 171 0.032

RTC 25.7 8.22 0.705 - - -

ChangePt 199 191 0.128 - - -

tp,5 DFMGoF 198 195 0.141 194 190 0.142

SSEWMAC 24.2 14.3 0.721 30.8 16.8 0.531

RTC 29 10.4 0.665 - - -

ChangePt 24.3 23.5 0.711 - - -

Gamp,3 DFMGoF 194 192 0.146 197 195 0.146

SSEWMAC 42.2 29.4 0.415 53.8 33.6 0.239

RTC 25.7 6.66 0.704 - - -

ChangePt 56.0 51.1 0.379 - - -

normality assumption. However, when X follows tp,5 or Gamp,3 distributions, their ARL0’s are far

smaller than 200, indicating that excessive false alarms are expected on non-normal distributions.

Table 1 also reveals that RTC has unsatisfactory IC performance for all the three distributions.

This is because to set the control limits correctly RTC requires the exact distribution type and

parameters. If either is unknown, a large number of reference samples are required to obtain the

limits through resampling. The simulations with m0 = 100 is clearly insufficient to get accurate

limits, and hence leads to unsatisfactory IC performance. In fact, many other nonparametric

MSPC charts share the same problem: if the reference sample is too small, the IC performance

is not guaranteed without knowing the exact IC distribution F0.

To further validate our conclusion, Figure 4 plots the hazard rates of IC run length distri-

bution. Ideally, if the run length distribution is geometric, the hazard rate is a constant. In

contrast, elevated hazard rates at the beginning often lead to excessive early false alarms. Figure

4 clearly demonstrates that regardless of the IC distribution F0, DFMGoF always has geometri-

cally distributed run length distribution. While SSEWMAC and ChangePt have satisfactory run

length distribution when X is normal, their distribution is heavily distorted when X is different

from normal. This demonstrates that DFMGoF is exactly distribution-free, and has satisfactory

IC run-length distribution as indicated in Section 3. Its robust performance makes it especially

useful when m0 is small and F0 is unknown.
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Figure 4: Comparisons of log-hazard rate of IC run length distribution with p = 10, m0 = 100 and
λ = 0.05. The red dashed line indicates the ideal hazard rate implied by geometric distribution.

15



4.2 Out-of-control performance comparison

In this section, we compare the out-of-control performance of the four competing charts. Here

we only consider the steady-state ARL (SSARL), meaning that any series where a signal occurs

before the true change point τ is discarded. We fix τ = 25 in all cases. Furthermore, to have a

fair comparison, we adjust the control limits of all charts such that their ARL0 = 200 for each

of the three distributions considered. It should be noted that this adjustment could only be

used for simulation comparison, but not applicable in practice because the true IC distribution

is usually unknown.

Similar to other MSPC studies, it is impossible to enumerate all the change patterns to allow

a full-scale study of the charts’ performance. Following similar studies in the literature (Zou and

Tsung 2011; Zou et al. 2012; Maboudou-Tchao and Hawkins 2011; Zamba and Hawkins 2009),

here we consider three scenarios as examples: (1) shifts in the process mean vector in the first

bp/5c components of size δ, i.e., µ1 = µ0 + δe with e = (1, . . . , 1︸ ︷︷ ︸
1,...,bp/5c

, 0, . . . , 0)T ; (2) shifts in process

variance in all p components with magnitude of δ, i.e., Σ1 = δΣ0; (3) shifts in the process

correlation of size ρ in the first bp/5c pairs, i.e., σi,i+1 = σi+1,i = ρ, for i = 1, 3, . . . , bp/5− 1c.

4.2.1 Comparisons in detecting mean shifts

We compare their performance in detecting mean shifts of magnitude δ = 0.25, 0.5, 1, 2, 4 re-

spectively. Table 2 illustrates that DFMGoF outperforms the other three charts when the shift

magnitude is small (δ = 0.25, 0.5), and has comparable detection performance as RTC and

SSEWMAC when the shift is moderate to large. On the other hand, ChangePt does not per-

form satisfactorily compared with the other three charts, especially when p = 30. From the

comparison, DFMGoF is particularly good at detecting small shifts. Similar observations have

been made in univariate GoF chart (Zou and Tsung 2010).

We also note in our simulation settings, the charts generally have a smaller ARL when

p = 30 than that when p = 10 given the same δ. This is because the OC performance is largely

determined by the Mahalanobis distance of the shifted mean vector from the IC mean vector,

∆ = (µ1−µ0)Σ
−1
0 (µ1−µ0) (see Maboudou-Tchao and Hawkins 2011, for a related discussion).

Given the Σ0 and the change pattern in our study, we have ∆p=30 > ∆p=10 given the same δ.

This can partially explain the better performance when p = 30. Moreover, this also assures us

that even if we only consider a specific change pattern, it is representative as long as the µ1

has the same Mahalanobis distance from µ0. As a result, it might not be necessary to compare

exhaustive change patterns, especially for the elliptical distribution class.
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Table 2: OC ARL comparison in detecting location shifts when m0 = 100 and λ = 0.05; numbers in
parentheses are SDRL values.

p δ DFMGoF RTC ChangePt SSEWMAC

Norm 10 0.25 93.9(144) 132(144) 186(187) 122(139)

0.5 36.1(36.2) 51.8(55.0) 134(138) 70.3(86.9)

1.0 12.4(5.62) 12.1(6.93) 36.4(20.3) 11.6(5.88)

2.0 5.83(1.93) 6.23(1.62) 12.4(4.40) 4.04(1.75)

4.0 3.93(1.12) 4.72(1.10) 4.81(1.59) 1.59(0.59)

30 0.25 83.1(114) 100(112) 186(183) 87.8(95.7)

0.5 20.6(11.4) 24.7(22.0) 148(151) 22.9(15.6)

1.0 8.40(3.01) 7.62(3.00) 52.9(32.0) 9.09(3.03)

2.0 4.08(1.17) 4.82(1.22) 23.9(9.82) 4.60(1.27)

4.0 2.74(0.69) 3.90(0.98) 12.2(5.53) 2.37(0.62)

tp,5 10 0.25 140(161) 151.6(191) 188(183) 162(166)

0.5 58.5(79.5) 68.3(80.9) 155(158) 88.9(109)

1.0 16.4(8.50) 15.1(11.6) 59.9(46.0) 21.4(15.4)

2.0 7.37(2.64) 6.74(1.80) 19.9(8.23) 8.10(2.94)

4.0 4.42(1.26) 5.21(1.35) 8.21(3.16) 4.11(1.24)

30 0.25 127(155) 136(164) 184(181) 140(133)

0.5 37.7(45.7) 45.6(50.9) 154(166) 55.3(63.6)

1.0 11.5(4.52) 9.38(3.93) 64.4(46.3) 14.2(5.36)

2.0 5.46(1.64) 5.77(1.52) 31.5(15.0) 6.43(1.87)

4.0 3.31(0.84) 4.58(1.17) 15.8(8.53) 3.60(0.97)

Gamp,3 10 0.25 88.3(115) 147(169) 188(184) 137(144)

0.5 26.8(15.3) 59.3(76.9) 152(163) 67.2(87.8)

1.0 13.2(4.99) 10.5(5.32) 52.9(38.9) 17.4(9.30)

2.0 7.27(2.29) 6.43(1.64) 17.2(6.91) 7.39(2.68)

4.0 4.57(1.31) 5.05(1.25) 6.87(2.56) 3.40(1.20)

30 0.25 43.4(37.2) 126(140) 183(177) 109(110)

0.5 17.2(6.88) 28.4(26.6) 159(154) 35.7(36.9)

1.0 9.20(2.89) 7.43(1.82) 62.5(43.1) 11.9(4.63)

2.0 5.16(1.46) 5.25(1.27) 27.8(11.5) 5.72(1.67)

4.0 3.30(0.48) 4.13(1.00) 14.7(6.50) 2.85(0.91)
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4.2.2 Comparisons in detecting variance shifts

We first compare their performance in detecting the increases in variance. This is often of

more interest because increasing variance generally leads to a larger number of non-conforming

parts and indicates presence of some assignable causes. (see Montgomery 1991, for a detailed

discussion). Table 3 summarizes the performance in detecting variance increase of magnitude

δ = 1.25, 1.5, 2, 4. It shows that when the distribution is multi-normal, DFMGoF does not have

advantage in the detection speed. The SSEWMAC, which is designed under normal assumption,

has consistently better results. However, when X follows tp.5 distribution, SSEWMAC performs

worse than DFMGoF chart. When X follows Gamp,3 distribution, the comparison is intriguing.

As noted in the Appendix A-II, the change in Σ not only inflates the variance of X but also

increases its mean. As a result, all charts have very good performance in detecting such changes.

Table 3 also shows that RTC has superior performance across different types of distributions,

especially in detecting small to moderate shifts. However, it is mainly because RTC is ARL-

biased in monitoring variance shifts. In other words, when the variance decreases, RTC has a

larger ARL than ARL0.

To demonstrate this point, we compare the performance in detecting shifts in variance de-

creases from the nominal values, as shown in Figure 5 for 10 dimensional multi-normal distri-

butions. Simulations for other distributions and other dimensions reveal similar results. Figure

5 clearly shows that the charts perform quite differently in detecting variance decreases. In

particular, RTC is not able to detect the variance decreases efficiently. In addition, DFMGoF

performs better than SSEWMAC when the variance is decreasing, which is contrary to the cases

when the variance increases. As a result, it is important to recognize the shifts that are of

most importance. Without clear preference, SSEWMAC and DFMGoF provide more balanced

protection against unknown variance shifts.

4.2.3 Comparisons in detecting correlation shifts

We also compare the performance in detecting correlation changes. Among the various change

patterns, here we focus on a type that are commonly used in the literature (Zamba and Hawkins

2009): the correlation between two neighbour variables creeps into the process with coefficient

ρ from 0 to 1. In addition, only the correlations among the first [p/5] variables are changed to

make the detection even harder. Table 4 summarizes the ARL under different shift magnitudes

and different distributions. It shows that DFMGoF consistently performs best in almost all the

scenarios. In contrast, while SSEWMAC performs satisfactorily when the data is normal, its

performance deteriorates significantly when the distribution is different from normal. ChangePt

performs slightly better and more robustly than SSEWMAC, though still not as well as DFM-

GoF. Unlike its good performance in variance detection, RTC almost has no detection power for

correlation changes.
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Table 3: OC ARL comparison in detecting variance shifts when m0 = 100 and λ = 0.05; numbers in
parentheses are SDRL values.

p σ2 DFMGoF RTC ChangePt SSEWMAC

Norm 10 1.25 114.6(130) 58.9(60.9) 176(178) 77.2(95.6)

1.5 52.3(63.9) 25.6(22.7) 91.9(87.4) 24.8(32.0)

2.0 15.9(10.2) 10.3(5.59) 25.1(13.2) 7.61(4.90)

4.0 5.80(2.51) 5.69(1.78) 6.55(2.98) 2.23(1.11)

30 1.25 84.4(109) 31.4(39.5) 178(183) 71.1(92.9)

1.5 21.9(20.6) 12.3(7.81) 100(88.6) 17.8(20.6)

2.0 8.61(4.40) 6.92(2.48) 30.8(14.9) 6.85(2.28)

4.0 3.70(1.37) 4.35(1.39) 9.29(3.28) 2.62(0.49)

tp,5 10 1.25 119(142) 71.4(83.5) 153(194) 125(136)

1.5 67.9(82.6) 37.4(40.4) 86.5(96.1) 80.9(92.3)

2.0 24.7(26.8) 15.6(12.3) 34.2(27.0) 37.5(50.2)

4.0 7.97(4.14) 6.98(2.39) 9.17(5.59) 7.75(5.68)

30 1.25 91.9(112) 51.5(58.5) 147(154) 125(136)

1.5 41.5(50.6) 24.8(25.0) 82.2(83.5) 80.8(92.3)

2.0 15.1(11.2) 10.7(7.22) 36.7(24.2) 37.5(50.2)

4.0 5.54(2.62) 5.77(2.01) 11.3(6.30) 7.75(5.68)

Gamp,3 10 1.25 24.8(19.0) 23.8(20.7) 38.2(31.7) 16.4(12.9)

1.5 10.3(4.57) 9.04(3.81) 12.9(7.11) 6.36(3.77)

2.0 5.48(2.05) 5.68(1.81) 4.79(2.59) 2.57(1.41)

4.0 2.71(0.76) 3.89(1.20) 1.30(0.50) 1.06(0.24)

30 1.25 14.7(7.04) 12.6(7.34) 41.2(23.3) 11.4(5.71)

1.5 6.80(2.56) 6.29(1.97) 17.3(7.43) 5.10(2.04)

2.0 3.74(1.18) 4.35(1.25) 7.12(2.68) 2.11(0.85)

4.0 1.99(0.52) 2.94(0.86) 1.90(0.65) 1.02(0.18)
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Table 4: OC ARL comparison in detecting correlation shifts when m0 = 100 and λ = 0.05; numbers
in parentheses are SDRL values.

p δ DFMGoF RTC ChangePt SSEWMAC

Norm 10 0.3 174(188) 203(215) 189(176) 163(171)

0.5 123(138) 193(220) 161(158) 120(125)

0.7 67.4(77.9) 178(195) 82.2(64.0) 62.9(56.3)

0.9 28.9(13.6) 162(174) 32.4(14.6) 32.1(14.0)

30 0.3 148(158) 195(207) 189(185) 163(147)

0.5 84.9(96.8) 191(209) 165(168) 129(128)

0.7 35.8(24.9) 174(187) 82.7(55.9) 67.7(44.3)

0.9 19.8(7.51) 163(178) 37.8(14.2) 40.7(12.8)

tp,5 10 0.3 168(180) 192(225) 189(186) 184(172)

0.5 133(150) 197(224) 149(49.3) 183(175)

0.7 77.0(95.0) 188(220) 83.2(74.5) 177(174)

0.9 31.2(16.1) 171(200) 36.7(16.8) 138(134)

30 0.3 158(168) 204(243) 184(185) 179(149)

0.5 107(137) 189(227) 139(143) 174(145)

0.7 48.7(54.5) 181(218) 75.9(56.8) 172(144)

0.9 22.8(9.38) 188(233) 41.4(15.4) 132(105)

Gamp,3 10 0.3 194(197) 203(231) 196(185) 181(173)

0.5 187(183) 200(212) 186(186) 169(166)

0.7 140(142) 193(212) 144(147) 159(162)

0.9 45.1(38.5) 174(201) 49.9(30.3) 84.2(82.5)

30 0.3 176(179) 197(211) 192(190) 172(150)

0.5 159(159) 197(208) 185(178) 171(147)

0.7 93.9(106) 187(205) 149(152) 147(132)

0.9 26.2(12.6) 169(180) 51.7(31.2) 68.5(44.1)
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Figure 5: OC ARL curses in detecting variance changes for multi-normal distribution with p = 10,
m0 = 100 and λ = 0.05

We have also conducted many other simulations with different pair selections for DFMGoF

and process change scenarios, along with other target ARL0 (370 and 500). Their results suggest

that the general observations and conclusions made above still hold. These additional simulation

results are available from the authors upon request.

5 Guidelines on Pair Selection

In this section, we investigate how the choices of pairs influence the charting performance. As

we know, in MSPC there are innumerable patterns of shifts. Just as indicated in the literature,

even for location shifts only, it is difficult to find a single method that is better than the rest

approaches in detecting shifts in all directions in the p dimensional space. We can demonstrate

that the most appropriate pair selection in fact goes long with the shift pattern of most interests.

Of course, in practice we might not be able to have sufficient domain knowledge in prioritizing

the importance of different shift patterns. However, the bottomline is that through standard

pair selection, our chart can detect all mean shifts, all marginal variance shifts as well as certain

correlation shifts. We illustrate this point using some additional numerical results as follows.

We consider a small-scale problem for illustration purpose, which detects changes in p = 4 di-

mensional multivariate normal distribution. We enumerate all possible pair combinations, which

correspond to the non-empty subsets of P0 = {(x1, x2), (x1, x3), (x1, x4), (x2, x3), (x2, x4), (x3, x4)}.
Altogether, there are 26−1 = 63 non-empty subsets (pair selections). We set the IC mean vector

µ0 = 0, the covariance matrix Σ0 = (σij,0) with σii,0 = 1 and σij,0 = 0.3|i−j| for i, j = 1, 2, · · · , p.
The OC scenarios considered include (1) mean shift of x1 with size δ, i.e., µ1 = µ0 + δe with

e = (1, 0, 0, 0)T ; (2) variance shift of x1 with magnitude of δ, i.e., σ11,1 = δσ11,0; (3) correlation
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shift between x1 and x2, i.e., σ12,1 = σ21,1 = ρ, with ρ changing from IC 0.3 to other values. We

use the charting parameters as m0 = 100, λ = 0.05 and the ARL0 = 200.

We first consider the detection performance of different Ps for mean and variance shifts of x1.

Figure 6 shows the performance of all 63 possible Ps. Among them if the P does not have any

pair of x1, such like P = {(x2, x3)}, we denote it by black dot curve with cross mark. Otherwise

we denote Ps by 8 different line styles and marks with respect to their different proportions of

pairs of x1, i.e., 1
4
, 1
3
, 1
2
, 2
5
, 3
5
, 2
3
, 3
4
, 1. We can see that the charts with no pairs of x1 cannot detect

the shift of x1 at all, while the other charts can detect the shift to some degree. As a result, we

can conclude that as long as the chart includes at least one pair of the shifted component, the

chart has the detection power for its mean or variance shift.

Furthermore, as Figure 6 shows, the proportion of pairs of x1 in P has influence on the

charting performance. Generally, the higher the proportion, the better the detection power is.

This is because that the lower proportion of pairs of x1 means more irrelevant pairs involved

in the chart. These irrelevant pairs will introduce extra noise to the chart and consequently

deteriorate the detection power.
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Figure 6: OC ARL curves of all possible 63 charts with different Ps for x1 shift. “ ”, “ ”,
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The chart detection power for x1 shift is not only influenced by the proportion of pairs of

x1 involved in the P , but also by the number of pairs of x1. We demonstrate this point in

Figure 7, we compare the performance of charts with P = {(x1, x2)},P = {(x1, x2), (x1, x3)}
and P = {(x1, x2), (x1, x3), (x1, x4)} separately. The proportions of pairs of x1 in these three

charts are all 100%. However, we can see the chart including most pairs of x1, i.e., P =
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{(x1, x2), (x1, x3), (x1, x4)} performs best, followed by P = {(x1, x2), (x1, x3)}, with P = {(x1, x2)}
the last of choice. As a result, we can conclude that given the same proportion, the more number

of pairs of shifted component, the better the charting performance is.
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Figure 7: OC ARL curves of charts P = {(x1, x2)}, P = {(x1, x2), (x1, x3)} and P =
{(x1, x2), (x1, x3), (x1, x4)} for x1 shift.

Generally, for the Ps including different pairs of x1, the correlation structure of the included

pair of x1 has little influence on the detection power. We demonstrate this point by comparing

the following charts with unique pair, i.e., P = {(x1, x2)}, P = {(x1, x3)} and P = {(x1, x4)}
separately, with their corresponding pair correlation as 0.3, 0.09, and 0.0027. From Figure 8 we

can see that they have similar detection ability and their curves are not distinguishable. Hence

we can conclude that for Ps including multiple pairs of x1, they can detect the change of x1 with

equal efficiency. Say for example, for P = {(x1, x2), (x1, x3)}, these two pairs will contribute

equally to the OC signal of x1 shift. This brings a lot of convenience for us when choosing the

pairs.
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Figure 8: OC ARL curves of charts P = {(x1, x2)}, P = {(x1, x3)} and P = {(x1, x4)} for x1 shift.

For shifts of more than one dimension, the choice of pairs is more complicated. We consider

mean or variance shift of both x1 and x2 in charts P = {(x1, x2), (x1, x3)}, P = {(x1, x2)} and
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P = {(x1, x3)}. From Figure 9, we can see that generally chart P = {(x1, x2)} performs best,

with minor advantage than chart P = {(x1, x2), (x1, x3)}. This is because that though the later

has more pairs of x1, its proportion of pairs of x2 is lower. The noise introduced by pair (x1, x3)

is bigger than the detection power contributed by it. From this point we can see that introducing

more pairs is not always better.
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Figure 9: OC ARL curves of charts P = {(x1, x2), (x1, x3)}, P = {(x1, x2)} and P = {(x1, x3)} for
shifts in both x1 and x2.

Now we consider the correlation shift, and deliver our conclusions from the following simu-

lation results. We consider the correlation between x1 and x2 changing from −0.9 to 0.9 while

remaining the other correlation components unchanged. We compare the detection power of all

possible 63 Ps as Figure 10 shows. We denote the Ps that do not have pair (x1, x2) by black

dot curves with cross marks. Otherwise we denote Ps by 6 different line styles and marks with

respect to their different proportions of pair (x1, x2), i.e., 1
6
, 1
5
, 1
4
, 1
3
, 1
2
, 1. We can see that as long

as the pair (x1, x2) is included in P , the chart can detect its correlation change to some degree.

Otherwise, the chart almost has no detection power. This demonstrates that it is only (x1, x2)

that contributes to the OC signal. Furthermore, from Figure 10, we can see that the higher the

proportion, the better the performance is. This means that the detection power is interfered by

the other unrelated pairs in P . The more unrelated pairs included, the more noise will be added

and consequently leads to a worse detection power.

From the discussion above, we can see that including all possible p(p−1)/2 pairs in P brings

about the most omnipotent detection performance. In this way the chart can detect any marginal

mean and variance shift, as well as any correlation structure shift, though for detecting certain

shift pattern, the charting performance is not the best compared with other pair selection mecha-

nisms. For example, the detection power of chart P = {(x1, x2), (x1, x3), (x2, x3), (x2, x4), (x3, x4)}
for x1 shift only ranks in the middle of the total 63 charts as Figure 11 shows. Here we also

summarize some guidelines on the optimal pair selection mechanism targeting different shift

patterns.
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Figure 11: OC ARL curves of chart P = {(x1, x2), (x1, x3), (x2, x3), (x2, x4), (x3, x4)} for x1 shift.
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• For mean and variance shift

– If no prior information is known, the bottomline is to include all the components in

P , which corresponds to p/2 pairs. In this way the chart can detect all mean shifts

and all marginal variance shifts. Furthermore, how to pair these p components has

no influence on the detection power, which brings convenience for the practitioners.

– If certain shift pattern is prioritized, including all pairs of the shifted component and

pruning away all irrelevant pairs bring about the best detection power.

– If more than one shift pattern are prioritized, only including these shifted components

in P by combining them as pairs and trying the best to prune away other irrelevant

components bring about the best detection power.

• For correlation shift

– If we want to detect any change in any correlation component, then involving all the

p(p− 1)/2 pairs is the most parsimonious.

– If some pairwise correlations are of more interest than others based on some prior

information, then only involving these interested pairs and pruning away any other

irrelevant pair bring about the best charting performance.

6 A real data application

We use a real dataset from a semiconductor manufacturing process to illustrate the application

of DFMGoF chart. The dataset, which is publicly available in the UC Irvine Machine Learning

Repository (http://archive.ics.uci.edu/ml/datasets/SECOM), contains a total 1597 sam-

ples from a semiconductor manufacturing process. Each sample is a vector of 591 components,

consisting of continuous measurements during the process in producing each batch. Among

them, 1363 samples are classified as conforming ones (IC samples), while the remaining 104

samples are classified as nonconforming ones (OC samples). The goal of this section is to use

this dataset to demonstrate on-line process quality control using the proposed DFMGoF chart.

As a preprocessing step, we remove 117 variables with constant values in all 1597 samples.

In addition, we impute the missing data by replacing the missing values with the mean of the ob-

served values from that variable because the fraction of missing values in the dataset is trivial. We

find that 12 variables, namely {X3, X15, X38, X99, X126, X146, X148, X264, X348, X350, X374, X383},
among the remaining 471 variables, have no significant differences in their mean between IC

samples and OC samples. As a result, any MSPC chart designed to monitor mean vector might

be ineffective. Subsequently, we focus on the 12 variables to demonstrate the advantages of

DFMGoF chart. The variables are denoted as {V1, . . . , V12} for notation simplicity. Figure 12
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compares scatter plots for some variables between 100 IC and 60 OC samples. It clearly re-

veals that the mean values of the variables do not differ much between IC and OC samples,

but their variance and correlation structure change to some degree. Furthermore, the normal

QQ plots (Figure 13) show that these variables do not follow normal distribution, indicating

distribution-free charts might perform more robustly for this dataset.
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Figure 12: The scatter plots of three pairs of variables. The red dots represent the IC samples,
and the blue cross represent the OC samples.
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Figure 13: The normal Q-Q plots for V3 and V4.

To demonstrate the application of DFMGoF chart, we monitor the observations sequentially:

we randomly draw m0 = 500 IC observations without replacement as the reference samples from

the 1,463 IC samples, then we draw observations sequentially as on-line testing samples. We

set the target ARL0=200, λ = 0.05 and w = 58. We first evaluate the IC performance of the

chart by drawing testing observations independently from the remaining 963 IC samples. In each

replications, the charts run until an OC signal is generated, and the corresponding run length

is recorded. The procedure is repeated for 2000 times, and the estimated ARL0 are reported

in Table 5. It shows that except DFMGoF, the other three charts have excessive false alarms

after short-runs, indicating unacceptable IC performance. This is because the non-normality of

the data makes the normal assumption of SSEWMAC and ChangePt invalid, and the reference

sample size m0 = 500 is insufficient for RTC to have a proper control limit. In contrast, the
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DMGoF demonstrates superior performance in this case.

Next we compare the OC performance of DFMGoF with other charts. Similar to Section 4.2,

we adjust the control limits of other chart to make the ARL0 close to 200 through resampling

from IC samples. We choose τ = 60, meaning that the first 60 observations are drawn from IC

samples and subsequent observations are drawn from OC samples. The procedure is repeated

for 2000 times and steady state ARL are compared in Table 5, where DFMGoF has the best

performance among these four charts with SSARL 38.5 and SDRL 30.31. For illustration, Figure

14 shows one example of chart operation, where the blue solid dot represents the monitoring test

statistics Zn and the red circle represents the corresponding control limit Hn(α,Fm0+n). We can

see that DFMGoF has a quick response to process shifts with increases in Zn(w, λ) after sample

τ . Zn reaches the control limit at n = 67, signalling alarms with run length 7.

Table 5: ARL comparison for monitoring semiconductor production process with p = 12, when m0 =
500, λ = 0.05 and τ = 60; numbers in parentheses are SDRL values.

DFMGoF RTC ChangePt SSEWMAC

IC 199(181) 70.1(11.5) 52.5(55.5) 21.0(4.54)

OC 38.5(30.3) 83.6(85.0) 92.3(20.8) 40.0(20.1)
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Figure 14: Operations of DFMGoF for monitoring the semiconductor production process when
changes occur at τ = 60. The black dot represents the Zn calculated at each step, and the red
dot represents the control limit Hn(α,Fm0+n) at each step.

7 Concluding remarks

Though nonparametric MSPC has been extensively studied in the literature, the challenges as-

sociated with designing distribution-free control schemes for monitoring both mean vector and

covariance matrix simultaneously are yet to be well addressed. This paper presents a new MSPC

method to fill this gap. We propose a new charting procedure based on multivariate goodness-of-

fit test to detect general distributional changes. We also propose to use data-dependent control
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limits to achieve distribution-free property regardless of the type or dimension of the IC distri-

bution. A computational algorithm based on the permutation principle is proposed to find the

limits on-line along with the charting statistics. Numerical studies show that our scheme has

exactly distribution-free property and proves to be robust in detecting general process shifts. Its

application in real dataset is also illustrated through a case study.

Along the research direction, there are also some valuable extensions. First, how to select

the pairs adaptively in multivariate GoF test is an interesting topic. It might provide more

protection against unknown shifts patterns. Second, when the dimension is large, the procedure

requires a large number of permutation to have a valid control limit. It is of interest to design a

more efficient computation procedure taking advantage of modern computing, e.g., distributed

computing or importance sampling, to reduce the execution time for on-line applications. Last

but not least, under the framework of data-dependent control limits, other charting schemes

(e.g., change detection models) can be explored in addition to current EWMA schemes.

Appendices

A-I Computational complexity of DFMGoF

Further computational issues deserve our consideration for fast implementation of the chart.

Computing the monitoring statistic Zn requires at most O(qn) ordering computations (i.e.,

comparing (Xnj, Xnk) with (Xij, Xik) for i = −m0 + 1, · · · , n − 1 for every pair (j, k)). But

it is computationally expensive to compute the control limit Hn(α,Fm0+n) by permutation,

as Algorithm 1 shows below. Every permutation of Svn = {Xv−m0+1 , · · · ,Xv0 ,Xv1 , · · · ,Xvn}
needs O(n) computation. To calculate Zv

n from Svn, the new probabilities {P̂ vn,r
0,jk (Xvi,jk),−m0 +

1 ≤ i ≤ n} can be obtained directly from {P̂ n,r
0,jk(Xi,jk),−m0 + 1 ≤ i ≤ n} (by the same

permutation sequence). However, {P̂ vn,r
jk (Xvi,jk),max{1, n − w + 1} ≤ i ≤ n} are different

from {P̂ n,r
jk (Xi,jk),max{1, n − w + 1} ≤ i ≤ n}, because the former are based on the ranks of

Xvi(max{1, n−w+ 1} ≤ i ≤ n) in the sample Svn rather than in the sample Sn. Therefore they

have to be recalculated with additional O(qw2) computation. Zv
t for max {1, n− w + 1} ≤ t < n

can be calculated for every time point t in a recursive manner and only O(qw) computation is

needed in each update. Then the total computational complexity is O(qbw2 + qn), linear in n, b

and p. Such computational complexity is implementable with the powerful computing resource

nowadays. With the help of parallel computing, the computation time would be reduced and it

is easy to apply DFMGoF for high-dimensional process monitoring.
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Algorithm 1 Permutation procedure to find control limits

Define flag = 1
Draw a permutation sample Svn = {Xv−m0+1 , · · · ,Xv0 ,Xv1 , · · · ,Xvn}
Get {P̂ vn,r

0,jk (Xv−m0+1:vn,jk)} directly from {P̂ n,r
0,jk(X−m0+1:n,jk)}

Compute {P̂ vn,r
jk (Xvi,jk),max{n− w + 1, 1} ≤ i ≤ n}

Calculate Zv
n

for i = n− 1 to max{n− w + 1, 1} do
Update {P̂ vt,r

0,jk(Xvi,jk)} from {P̂ vt+1,r
0,jk (Xvi,jk)} for max{t− w + 1, 1} ≤ i ≤ t

Update {P̂ vt,r
jk (Xvi,jk)} from {P̂ vt+1,r

jk (Xvi,jk)} for max{t− w + 1, 1} ≤ i ≤ t
Calcuate Zv

t

if Zv
t > Ht(α,Fm0+t) then

Discard current permutation, set flag = 0
end if

end for

if flag = 1 then
return current permutation Zv

n

end if

A-II The Multivariate t and Gamma Distributions

The multivariate t distribution used in this paper is based on the proposal by Johnson and Kotz

(1972). It is defined as follows. Let X follows p dimensional multivariate normal distribution

Np(0,Σ) with mean vector zero and covariance matrix Σ. Let Z follows independent chi-

square distribution with ζ degrees of freedom. Then T = µ + X/
√
Z/ζ follows p dimensional t

distribution with ζ degrees of freedom with non-centrality parameter µ. In addition, we have

E(T) = µ, Var(T) =
ζ

ζ − 2
Σ.

For more detailed discussion on multivariate t distribution, please refer to (Anderson 1984).

The multivariate Gamp,ζ distribution considered here is firstly proposed by Krishnamoorthy

and Parthasarathy (1951). It could be generated as follows. Let X be a matrix of dimension ζ×p.
Each row of X follows p dimensional multivariate normal distribution Np(0,Σ) independently.

Then

G ≡ 1

2
diag(XTX) + µ

follows a Gamp,ζ with non-centrality parameter µ. In addition, denoting G = (G1, · · · , Gp),

then Gi =
∑ζ

j=1X
2
ji/2+µi(1 ≤ i ≤ p) follows Gamma distribution with scale parameter θi = σii

and shape parameter β = ζ/2. Therefore, the density of the marginal distribution function can
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be expressed as

f(Gi = x) =
(x− µi)ζ/2−1 exp

[
−x−µi

σii

]
(σii)ζ/2Γ(ζ/2)

, x ≥ µi. (A.1)

Its expectation and variance follows the property of Gamma distribution as E(Gi) = ζσii/2 +µi

and var(Gi) = ζσ2
ii/2. In addition, we can find the covariance between Gi and Gj by definition

as

Cov(Gi, Gk) = Cov

(
ζ∑
j=1

X2
ji/2 + µi,

ζ∑
j=1

X2
jk/2 + µk

)

=
ζ

4
Cov(X2

ji, X
2
ik) =

ζ

2
σ2
ik.

Thus the correlation between any two components of the Gamp,ζ distribution is non-negative.

Furthermore, we could see that the mean vector of Gamp,ζ depends on both the non-centrality

parameter µ and the variance of the underlying multivariate normal distribution σii. Therefore,

the change of covariance matrix of the multivariate gamma distribution will lead to the change

of its mean vector.
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