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Prologue

Why asymptotic statistics? The use of asymptotic approximation is two-fold. First, they

enable us to find approximate tests and confidence regions. Second, approximations can be

used theoretically to study the quality (efficiency) of statistical procedures— Van der Vaart

Approximate statistical procedures

To carry out a statistical test, we need to know the critical value of the test statistic.

Roughly speaking, this means we must know the distribution of the test statistic under the

null hypothesis. Because such distributions are often analytically intractable, only approxi-

mations are available in practice.

Consider for instance the classical t-test for location. Given a sample of iid observations

X1, . . . , Xn, we wish to test H0 : µ = µ0. If the observations arise from a normal distribution

with mean µ0, then the distribution of t-test statistic,
√
n(X̄n − µ0)/Sn, is exactly known,

say t(n − 1). However, we may have doubts regarding the normality. If the number of

observations is not too small, this does not matter too much. Then we may act as if
√
n(X̄n − µ0)/Sn ∼ N(0, 1). The theoretical justification is the limiting result, as n→∞,

sup
x

∣∣∣∣P (√n(X̄n − µ)

Sn
≤ x

)
− Φ(x)

∣∣∣∣→ 0,

provided that the variables Xi have a finite second moment. Then, a “large-sample” or

“asymptotical” level α test is to reject H0 if |
√
n(X̄n−µ0)/Sn| > zα/2. When the underlying

distribution is exponential, the approximation is satisfactory if n ≥ 100. Thus, one aim of

asymptotic statistics is to derive the asymptotical distribution of many types of statistics.

There are similar benefits when obtaining confidence intervals. For instance, consider

maximum likelihood estimator θ̂n of dimension p based on a sample of size n from a density

f(X;θ). A major result in asymptotic statistic is that in many situations
√
n(θ̂n − θ) is

asymptotically normally distributed with zero mean and covariance matrix I−1
θ , where

Iθ = Eθ

[(
∂ log f(X; θ)

∂θ

)(
∂ log f(X; θ)

∂θ

)T]

is the Fisher information matrix. Thus, acting as if
√
n(θ̂n − θ) ∼ Np(0, I

−1
θ ), we can find
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the following ellipsoid {
θ : (θ − θ̂n)T Iθ(θ − θ̂n) ≤

χ2
p,α

n

}
is an approximate 1− α confidence region.

Efficiency of statistical procedures

For a relatively small number of statistical problems, there exists an exact, optimal

solution. For example, the Neyman-Pearson lemma to find UMP tests, the Rao-Blackwell

theory to find MVUE, and Cramer-Rao Theorem.

However, there are not always exact optimal theory or procedure, then asymptotic op-

timality theory may help. For instance, to compare two tests, we might compare approxi-

mations to their power functions. Consider the foregoing hypothesis problem for location.

A well-known nonparametric test statistic is the sign statistic Tn = n−1
n∑
i=1

IXi>θ0 , where the

null hypothesis is H0 : θ = θ0 and θ denotes the median associated the distribution of X. To

compare the efficiency of sign and t-test is rather difficult because the exact power functions

of two tests are untractable. However, by the definitions and methods introduced later, we

can obtain the asymptotic relative efficiency of the sign test versus the t-test is equal to

4f 2(0)

∫
x2f(x)dx.

To compare estimators, we might compare asymptotic variances rather than exact variances.

A major result in this area is that for smooth parametric models maximum likelihood es-

timators are asymptotically optimal. This roughly means the following. First, MLE are

asymptotically consistent; Second, the rate at which MLE converge to the true value is the

fastest possible, typically
√
n; Third, the asymptotic variance, attain the C-R bound. Thus,

asymptotic justify the use of MLE in certain situations. (Even though in general it does

not lead to best estimators for finite sample in many cases, it is always not a worst one and

always leads to a reasonable estimator.
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Chapter 1

Basic convergence concepts and

preliminary theorems

Throughout this course, there will usually be an underlying probability space (Ω,F , P ),

where Ω is a set of points, F is a σ-field of subsets of Ω, and P is a probability distribution

or measure defined on the element of F . A random variable X(w) is a transformation of

Ω into the real line R such that images X−1(B) of Borel sets B are elements of F . A

collection of random variables X1(w), X2(w), . . . on a given (Ω,F) will typically be denoted

by X1, X2, . . ..

1.1 Modes of convergence of a sequence of random

variables

Definition 1.1.1 (convergence in probability) Let {Xn, X} be random variables defined

on a common probability space. We say Xn converges to X in probability if, for any ε > 0,

P (|Xn −X| > ε)→ 0 as n→∞, or equivalently

lim
n→∞

P (|Xn −X| < ε) = 1, every ε > 0.
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This is usually written as Xn
p→X. Extensions to the vector case: for random p-vectors

X1,X2 . . . and X, we say Xn
p→X if ||Xn − X|| p→ 0, where ||z|| = (

∑p
i=1 z

2
i )

1/2 denotes

the Euclidean distance (L2-norm) for z ∈ Rp. It is easily to seen that Xn
p→X iff the

corresponding component-wise convergence holds.

Example 1.1.1 For iid Bernoulli trials with a success probability p = 1/2, let Xn denote the

number of times in the first n trials that a success is followed by a failure. Denoting Ti = I{ith
trial is success and (i+1)st trial is a failure}, Xn =

∑n−1
i=1 Ti, and therefore E[Xn] = (n−1)/4,

and Var[Xn] =
∑n−1

i=1 Var[Ti]+2
∑n−2

i=1 Cov[Ti, Ti+1] = 3(n−1)/16−2(n−2)/16 = (n+1)/16.

It then follows by an application of Chebyshev’s inequality that Xn/n
p→ 1/4. [P (|x− µ| ≥

ε) ≤ σ2/ε2]

Definition 1.1.2 (bounded in probability) A sequence of random variables Xn is said

to be bounded in probability if, for any ε > 0, there exists a constant k such that P (|Xn| >
k) ≤ ε for all n.

Any random variable (vector) is bounded in probability. It is convenient to have short

expressions for terms that converge or bounded in probability. If Xn
p→ 0, then we write

Xn = op(1), pronounced by “small oh-P-one”; The expression Op(1) (“big oh-P-one”) denotes

a sequence that is bounded in probability, say, write Xn = Op(1). These are so-called

stochastic o(·) and O(·). More generally, for a given sequence of random variables Rn,

Xn = op(Rn) means Xn = YnRn and Yn
p→ 0;

Xn = Op(Rn) means Xn = YnRn and Yn = Op(1).

This expresses that the sequence Xn converges in probability to zero or is bounded in prob-

ability “at the rate Rn”. For deterministic sequences Xn and Rn, Op(·) and op(·) reduce to

the usual o(·) and O(·) from calculus. Obviously, Xn = op(Rn) implies that Xn = Op(Rn).

An expression we will often used is: for some sequence an, if anXn
p→ 0, then we write

Xn = op(a
−1
n ); if anXn = Op(1), then we write Xn = Op(a

−1
n ).

Definition 1.1.3 (convergence with probability one) Let {Xn, X} be random variables
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defined on a common probability space. We say Xn converges to X with probability 1 (or al-

most surely, strongly, almost everywhere) if

P
(

lim
n→∞

Xn = X
)

= 1.

This can be written as P (ω : Xn(ω)→ X(ω)) = 1. We denote this mode of convergence as

Xn
wp1→ X or Xn

a.s→X. Extensions to random vector case is straightforward.

Almost sure convergence is a stronger mode of convergence than convergence in proba-

bility. In fact, a characterization of wp1 is that

lim
n→∞

P (|Xm −X| < ε, all m ≥ n) = 1, every ε > 0. (1.1)

It is clear from this equivalent condition that wp1 is stronger than convergence in probability.

Its proof can be found on page 7 in Serfling (1980).

Example 1.1.2 Suppose X1, X2, . . . is an infinite sequence of iid U [0, 1] random variables,

and let X(n) = max{X1, . . . , Xn}. See X(n)
wp1→ 1. Note that

P (|X(n) − 1| ≤ ε, ∀n ≥ m) = P (X(n) ≥ 1− ε, ∀n ≥ m)

= P (X(m) ≥ 1− ε) = 1− (1− ε)m → 1, as m→∞.

Definition 1.1.4 (convergence in rth mean) Let {Xn, X} be random variables defined

on a common probability space. For r > 0, we say Xn converges to X in rth mean if

lim
n→∞

E|Xn −X|r = 0.

This is written Xn
rth→X. It is easily shown that

Xn
rth→X ⇒ Xn

sth→X, 0 < s < r,

by Jensen’s inequality (If g(·) is a convex function on R, and X and g(X) are integrable

r.v.’s, then g(E[X]) ≤ E[g(X)]).
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Definition 1.1.5 (convergence in distribution) Let {Xn, X} be random variables. Con-

sider their distribution functions FXn(·) and FX(·). We say that Xn converges in distribution

(in law) to X if limn→∞ FXn(t) = FX(t) at every point that is a continuity point of FX .

This is written as Xn
d→X or FXn ⇒ FX .

Example 1.1.3 Consider Xn ∼ Uniform{ 1
n
, 2
n
, . . . , n−1

n
, 1}. Then, it can be shown easily

that the sequence Xn converges in law to U [0, 1]. Actually, consider any t ∈ [ i
n
, i+1
n

), the

difference between FXn(t) = i
n

and FX(t) = t can be arbitrarily small if n is sufficiently large

(| i
n
− t| < n−1). The result follows from the definition of

d→.

Example 1.1.4 Let {Xn}∞n=1 is a sequence of random variables where Xn ∼ N(0, 1 + n−1).

Taking the limit of the distribution function of Xn as n→∞ yields limn FXn(x) = Φ(x) for

all x ∈ R. Thus, Xn
d→N(0, 1).

According to the assertion below the definition of
p→, we know that Xn

p→X is equivalent

to convergence of every one of the sequences of components. The analogous statement

for convergence in distribution is false: Convergence in distribution of the sequence Xn is

stronger than convergence of every one of the sequences of components Xni. The point is

that the distribution of the components Xni separately does not determine their distribution

(they might be independent or dependent in many ways). We speak of joint convergence in

law versus marginal convergence.

Example 1.1.5 If X ∼ U [0, 1] and Xn = X for all n, and Yn = X for n odd and Yn = 1−X
for n even, then Xn

d→X and Yn
d→U [0, 1], yet (Xn, Yn) does not converge in law.

Suppose {Xn, X} are integer-valued random variables. It is not hard to show that

Xn
d→X ⇔ P (Xn = k)→ P (X = k)

for every integer k. This is a useful characterization of convergence in law for integer-valued

random variables.
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1.2 Fundamental results and theorems on convergence

1.2.1 Relationship

The results describes the relationship among four convergence modes are summarized as

follows.

Theorem 1.2.1 Let {Xn, X} be random variables (vectors).

(i) If Xn
wp1→ X, then Xn

p→X.

(ii) If Xn
rth→X for a r > 0, then Xn

p→X.

(iii) If Xn
p→X, then Xn

d→X.

(iv) If, for every ε > 0,
∞∑
n=1

P (|Xn −X| > ε) <∞, then Xn
wp1→ X.

Proof. (i) is an obvious consequence of the equivalent characterization (1.1); (ii) for any

ε > 0,

E|Xn −X|r ≥ E[|Xn −X|rI(|Xn −X| > ε)] ≥ εrP (|Xn −X| > ε)

and thus

P (|Xn −X| > ε) ≤ ε−rE|Xn −X|r → 0, as n→∞.

(iii) This is a direct application of Slutsky Theorem; (iv) Let ε > 0 be given. We have

P (|Xm −X| ≥ ε, for some m ≥ n) = P

(
∞⋃
m=n

{|Xm −X| ≥ ε}

)
≤

∞∑
m=n

P (|Xm −X| ≥ ε).

The last term in the equation above is the tail of a convergent series and hence goes to zero

as n→∞. �

Example 1.2.1 Consider iid N(0, 1) random variables X1, X2, . . . , and suppose X̄n is the

mean of the first n observations. For an ε > 0, consider
∑∞

n=1 P (|X̄n| > ε). By Markov’s

inequality, P (|X̄n| > ε) ≤ E[X̄4
n]

ε4
= 3

ε4n2 . Since
∑∞

n=1 n
−2 < ∞, from Theorem 1.2.1-(iv) it

follows that Xn
wp1→ 0.
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1.2.2 Transformation

It turns out that continuous transformations preserve many types of convergence, and this

fact is useful in many applications. We record it next. Its proof can be found on page 24 in

Serfling (1980).

Theorem 1.2.2 (Continuous Mapping Theorem) Let X1,X2, . . . and X be random p-

vectors defined on a probability space, and let g(·) be a vector-valued (including real-valued)

continuous function defined on Rp. If Xn converges to X in probability, almost surely, or in

law, then g(Xn) converges to X in probability, almost surely, or in law, respectively.

Example 1.2.2 (i) If Xn
d→N(0, 1), then χ2

1; (ii) If (Xn, Yn)
d→N2(0, I2), then

max{Xn, Yn}
d→max{X, Y },

which has the CDF [Φ(x)]2.

The most commonly considered functions of vectors converging in some stochastic sense

are linear and quadratic forms, which is summarized in the following result.

Corollary 1.2.1 Suppose that the p-vector Xn converge to the p-vector X in probability,

almost surely, or in law. Let Aq×p and Bp×p be matrices. Then AXn → AX and XT
nBXn →

XTBX in the given mode of convergence.

Proof. The vector-valued function

Ax =

(
p∑
i=1

a1ixi, . . . ,

p∑
i=1

aqixi

)T

and the real-valued function

xTBx =

p∑
i=1

p∑
j=1

bijxixj

are continuous function of x = (x1, . . . , xp)
T . �
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Example 1.2.3 (i) If Xn
d→Np(µ,Σ), then CXn

d→N(Cµ,CΣCT ) where Cq×p is a matrix;

Also, (Xn−µ)TΣ−1(Xn−µ)
d→χ2

p; (ii) (Sums and products of random variables converging

wp1 or in probability) If Xn
wp1→ X and Yn

wp1→ Y , then Xn + Yn
wp1→ X + Y and XnYn

wp1→ XY .

Replacing the wp1 with in probability, the foregoing arguments also hold.

Remark 1.2.1 The condition that g(·) is continuous function in Theorem 1.2.2 can be

further relaxed to that g(·) is continuous a.s., i.e., P (X ∈ C(g)) = 1 where C(g) = {x :

g is continuous at x} is called the continuity set of g.

Example 1.2.4 (i) If Xn
d→X ∼ N(0, 1), then 1/Xn

d→Z, where Z has the distribution of

1/X, even though the function g(x) = 1/x is not continuous at 0. This is due to P (X =

0) = 0. However, if Xn = 1/n (degenerate distribution) and

g(x) =

 1, x > 0,

0, x ≤ 0,

then Xn
d→ 0 but g(Xn)

d→ 1 6= g(0); (ii)If (Xn, Yn)
d→N2(0, I2) then Xn/Yn

d→Cauchy.

Example 1.2.5 Let {X}∞n=1 be a sequence of independent random variables where Xn has

a Poi(θ) distribution. Let X̄n be the sample mean computed on X1, . . . , Xn. By definition,

we can see that X̄n
p→ θ as n→∞. If we wish to find a consistent estimator of the standard

deviation of Xn which is θ1/2 we can consider X̄
1/2
n . CMT implies that the square root

transformation is continuous at θ if θ > 0 that X̄
1/2
n

p→ θ1/2 as n→∞.

In Example 1.2.2, the condition that (Xn, Yn)
d→N2(0, I2) cannot be relaxed to Xn

d→X

and Yn
d→Y where X and Y are independent, i.e., we need the convergence of the joint CDF

of (Xn, Yn). This is different when
d→ is replaced by

p→ or
wp1→ , such as in Example 1.2.3-(ii).

The following result, which plays an important role in probability and statistics, establishes

the convergence in distribution of Xn +Yn or XnYn when no information regarding the joint

CDF of (Xn, Yn) is provided.

Theorem 1.2.3 (Slutsky’s Theorem) Let Xn
d→X and Yn

p→ c, where c is a finite con-

stant. Then,
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(i) Xn + Yn
d→X + c;

(ii) XnYn
d→ cX;

(iii) Xn/Yn
d→X/c if c 6= 0.

Proof. The method of proof of the theorem is demonstrated sufficiently by proving (i).

Choose and fix t such that t− c is a continuity point of FX . Let ε > 0 be such that t− c+ ε

and t− c− ε are also continuity points of FX . Then

FXn+Yn(t) = P (Xn + Yn ≤ t)

≤ P (Xn + Yn ≤ t, |Yn − c| < ε) + P (|Yn − c| ≥ ε)

≤ P (Xn ≤ t− c+ ε) + P (|Yn − c| ≥ ε)

and, similarly

FXn+Yn(t) ≥ P (Xn ≤ t− c− ε)− P (|Yn − c| ≥ ε).

It follows from the previous two inequalities and the hypotheses of the theorem that

FX(t− c− ε) ≤ lim inf
n

FXn+Yn(t) ≤ lim sup
n

FXn+Yn(t) ≤ FX(t− c+ ε).

Since t− c is a continuity point of FX , and since ε can be taken arbitrary small, the above

equation yields

lim
n
FXn+Yn(t) = FX(t− c).

The result follows from FX(t− c) = FX+c(t). �

Extensions to the vector case is straightforward. (iii) is valid provided C 6= 0 is under-

stood as C being invertible.

A straightforward but often used result by this theorem is that Xn
d→X and Xn−Yn

p→ 0,

then Yn
d→X. In asymptotic practice, we often firstly derive the result such as Yn = Xn+op(1)

and then investigate the asymptotic distribution of Xn.
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Example 1.2.6 (i) Theorem 1.2.1-(iii); Furthermore, convergence in probability to a con-

stant is equivalent to convergence in law to the given constant. “⇒” follows from the part (i).

“⇐” can be proved by definition. Because the degenerate distribution function of constant

c is continuous everywhere except for point c, for any ε > 0,

P (|Xn − c| ≥ ε) = P (Xn ≥ c+ ε) + P (Xn ≤ c− ε)

→ 1− FX(c+ ε) + FX(c− ε) = 0

The results follows from the definition of convergence in probability.

Example 1.2.7 Let {Xn}∞n=1 is a sequence of independent random variables where Xn ∼
Gamma(αn, βn), where αn and βn are sequences of positive real numbers such that αn → α

and βn → β for some positive real numbers α and β. Also, let β̂n be a consistent estimator

of β. We can conclude that Xn/β̂n
d→Gamma(α, 1).

Example 1.2.8 (t-statistic) Let X1, X2, . . . be iid random variables with EX1 = 0 and

EX2
1 < ∞. Then the t-statistic

√
nX̄n/Sn, where S2

n = (n − 1)−1
∑n

i=1(Xi − X̄n)2 is the

sample variance, is asymptotically standard normal. To see this, first note that by two

applications of WLLN and CMT

S2
n =

n

n− 1

(
1

n

n∑
i=1

X2
i − X̄2

n

)
p→ 1(EX2

1 − (EX1)2) = Var(X1).

Again, by CMT, Sn
p→
√

Var(X1). By the CLT,
√
nX̄n

d→N(0,Var(X1)). Finally, Slutsky’s

Theorem gives that the sequence of t-statistics converges in law toN(0,Var(X1))/
√

Var(X1) =

N(0, 1).

1.2.3 WLLN and SLLN

We next state some theorems known as the laws of large numbers. It concerns the limiting

behavior of sums of independent random variables. The weak law of large numbers (WLLN)

refers to convergence in probability, whereas the strong of large numbers (SLLN) refers to

a.s. convergence. Our first result gives the WLLN and SLLN for a sequence of iid random

variables.
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Theorem 1.2.4 Let X1, X2, . . ., be iid random variables having a CDF F .

(i) The WLLN The existence of constants an for which

1

n

n∑
i=1

Xi − an
p→ 0

holds iff limx→∞ x[1− F (x) + F (−x)] = 0, in which case we may choose an =
∫ n
−n xdF (x).

(ii) The SLLN The existence of a constant c for which

1

n

n∑
i=1

Xi
wp1→ c

holds iff E[X1] is finite and equals c.

Example 1.2.9 Suppose {Xi}∞i=1 is a sequence of independent random variables where Xi ∼
t(2). The variance of Xi does not exist, but Theorem 1.2.4 still applies to this case and we

can still therefore conclude that X̄n
p→ 0 as n→∞.

The next result is for sequences of independent but not necessarily identically distributed

random variables.

Theorem 1.2.5 Let X1, X2, . . ., be random variables with finite expectations.

(i) The WLLN Let X1, X2, . . ., be uncorrelated with means µ1, µ2, . . . and variances σ2
1, σ

2
2, . . ..

If limn→∞
1
n2

∑n
i=1 σ

2
i = 0, then

1

n

n∑
i=1

Xi −
1

n

n∑
i=1

µi
p→ 0.

(ii) The SLLN Let X1, X2, . . ., be independent with means µ1, µ2, . . . and variances σ2
1, σ

2
2, . . ..

If
∑∞

i=1 σ
2
i /c

2
i <∞ where cn ultimately monotone and cn →∞, then

c−1
n

n∑
i=1

(Xi − µi)
wp1→ 0.
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(iii) The SLLN with common mean Let X1, X2, . . ., be independent with common mean

µ and variances σ2
1, σ

2
2, . . .. If

∑∞
i=1 σ

−2
i =∞, then

n∑
i=1

Xi

σ2
i

/
n∑
i=1

σ−2
i

wp1→ µ.

A special case of Theorem 1.2.5-(ii) is to set ci = i in which we have

1

n

n∑
i=1

Xi −
1

n

n∑
i=1

µi
wp1→ 0.

The proof of Theorems 1.2.4 and 1.2.5 can be found in Billingsley (1995).

Example 1.2.10 Suppose Xi
indep∼ (µ, σ2

i ). Then, by simple calculus, the BLUE (best linear

unbiased estimate) of µ is
∑n

i=1 σ
−2
i Xi/

∑n
i=1 σ

−2
i . Suppose now that the σ2

i do not grow at

a rate faster than i; i.e., for some constant K, σ2
i ≤ iK. Then,

∑n
i=1 σ

−2
i clearly diverges as

n→∞, and so by Theorem 1.2.5-(iii) the BLUE of µ is strongly consistent.

Example 1.2.11 Suppose (Xi, Yi), i = 1, . . . , n are iid bivariate samples from some distri-

bution with E(X1) = µ1, E(Y1) = µ2, Var(X1) = σ2
1, Var(Y1) = σ2

2, and corr(X1, Y1) = ρ.

Let rn denote the sample correlation coefficient. The almost sure convergence of rn to ρ

follow very easily. We write

rn =
1
n

∑
XiYi − X̄Ȳ√

(
∑ X2

i

n
− X̄2)(

∑ Y 2
i

n
− Ȳ 2)

,

then from the SLLN for iid random variables (Theorem 1.2.4) and continuous mapping

theorem (Theorem 1.2.2; Example 1.2.3-(ii)),

rn
wp1→ E(X1Y1)− µ1µ2

σ2
1σ

2
2

= ρ.

1.2.4 Characterization of convergence in law

Next we provide a collection of basic facts about convergence in distribution. The following

theorems provide methodology for establishing convergence in distribution.
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Theorem 1.2.6 Let X,X1,X2, . . . random p-vectors.

(i) (The Portmanteau Theorem) Xn
d→X is equivalent to the following condition:

E[g(Xn)]→ E[g(X)] for every bounded continuous function g.

(ii) (Levy-Cramer continuity theorem) Let ΦX, ΦX1, ΦX2 , . . . be the character func-

tions of X,X1,X2, . . ., respectively. Xn
d→X iff limn→∞ΦXn(t) = ΦX(t) for all t ∈ Rp.

(iii) (Cramer-Wold device) Xn
d→X iff cTXn

d→ cTX for every c ∈ Rp.

Proof. (i) See Serfling (1980), page 16; (ii) Shao (2003), page 57; (iii) Assume cTXn
d→ cTX

for any c, then by Theorem 1.2.6-(ii)

lim
n→∞

ΦXn(tc1, . . . , tcp) = ΦX(tc1, . . . , tcp), for all t.

With t = 1, and since c is arbitrary, it follows by Theorem 1.2.6-(ii) again that Xn
d→X. The

converse can be proved by a similar argument. [ΦcTXn
(t) = ΦXn(tc) and ΦcTX(t) = ΦX(tc)

for any t ∈ R and any c ∈ Rp.] �

A straightforward application of Theorem 1.2.6 is that if Xn
d→X and Yn

d→ c for con-

stant vector c, then (Xn,Yn)
d→(X, c).

Example 1.2.12 Example 1.1.3 revisited. Consider now the function g(x) = x10, 0 ≤
x ≤ 1. Note that g is continuous and bounded. Therefore, by the Portmanteau theorem,

E(g(Xn)) =
∑n

i=1
i10

n11 → E(g(X)) =
∫ 1

0
x10dx = 1

11
.

Example 1.2.13 For n ≥ 1, 0 ≤ p ≤ 1, and a given continuous function g : [0, 1] → R,

define the sequence

Bn(p) =
n∑
k=0

g(
k

n
)Ck

np
k(1− p)n−k,

which is so-called Bernstein polynomials. Note that Bn(p) = E[g(X
n

)|X ∼ Bin(n, p)]. As

n → ∞, X
n

p→ p (WLLN), and it follows that X
n

d→ δp, the point mass at p. Since g is

continuous and hence bounded (compact interval), it follows from the Portmanteau theorem

that Bn(p)→ g(p).
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Example 1.2.14 (i) Let X1, . . . , Xn be independent random variables having a common

CDF and Tn = X1 + . . . + Xn, n = 1, 2, . . .. Suppose that E|X1| < ∞. It follows from

the property of CHF and Taylor expansion that the CHF of X1 satisfies [∂ΦX(t)
∂t

]|t=0 =
√
−1EX, [∂

2ΦX(t)
∂t2

]|t=0 = −EX2]

ΦX1(t) = ΦX1(0) +
√
−1µt+ o(|t|)

as |t| → 0, where µ = EX1. Then, it follows that the CHF of Tn/n is

ΦTn/n(t) =

[
ΦX1

(
t

n

)]n
=

[
1 +

√
−1µt

n
+ o(|t|n−1)

]n
for any t ∈ R as n→∞. Since (1 + cn/n)n → exp{c} for any complex sequence cn satisfying

cn → c, we obtain that ΦTn/n(t) → exp{
√
−1µt}, which is the CHF of the distribution

degenerated at µ. By Theorem 1.2.6-(ii), Tn/n
d→µ. From 1.2.6-(i), this also shows that

Tn/n
p→µ (an informal proof of WLLN); (ii) Similarly, µ = 0 and σ2 = Var(X1) <∞ imply

[second-order Taylor expansion]

ΦTn/
√
n(t) =

[
1− σ2t2

2n
+ o(t2n−1)

]n
for any t ∈ R as n → ∞, which implies that ΦTn/

√
n(t) → exp{−σ2t2/2}, the CHF of

N(0, σ2). Hence, Tn/
√
n

d→N(0, σ2); (iii) Suppose now that X1, . . . ,Xn are random p-vectors

and µ = EX1 and Σ = Cov(X1) are finite. For any fixed c ∈ Rp, it follows from the previous

discussion that (cTTn − ncTµ)/
√
n

d→N(0, cTΣc). From Theorem 1.2.6-(iii), we conclude

that (Tn − nµ)/
√
n

d→Np(0,Σ).

The following two simple results are frequently useful in calculations.

Theorem 1.2.7 (i) (Prohorov’s Theorem) If Xn
d→X for some X, then Xn = Op(1).

(ii) (Polya’s Theorem) If FXn ⇒ FX and FX is continuous, then as n→∞,

sup
−∞<x<∞

|FXn − FX | → 0.

Proof. (i) For any given ε > 0, fix a constant M such that P (X ≥ M) < ε. By the

definition of convergence in law, P (|Xn| ≥ M) exceeds P (|X| ≥ M) arbitrarily small for
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sufficiently large n. Thus, there exists N such that P (|Xn| ≥ M) < 2ε, for all n ≥ N . The

results follows from the definition of Op(1). (ii) Firstly, fix k ∈ N. By the continuity of F

there exists points −∞ = x0 < x1 < · · · < xk = ∞ with F (xi) = i/k. By monotonicity, we

have, for xi−1 ≤ x ≤ xi,

FXn(x)− FX(x) ≤ FXn(xi)− FX(xi−1) = FXn(xi)− FX(xi) + 1/k

≥ FXn(xi−1)− FX(xi) = FXn(xi−1)− FX(xi−1)− 1/k.

Thus, FXn(x)− FX(x) is bounded above by supi |FXn(xi)− FX(xi)|+ 1/k, for every x. The

latter, finite supremum converges to zero because each term converges to zero due to the

condition, for each fixed k. Because k is arbitrary, the result follows. �

The following result can be used to check whether Xn
d→X when X has a PDF f and

Xn has a PDF fn.

Theorem 1.2.8 (Scheffe Theorem) Let fn be a sequence of densities of absolutely con-

tinuous functions,, with limn fn(x) = f(x), each x ∈ Rp. If f is a density function, then

limn

∫
|fn(x)− f(x)|dx = 0.

Proof. Put gn(x) = [f(x)− fn(x)]If(x)≥fn(x). By noting that
∫

[fn(x)− f(x)]dx = 0,∫
|fn(x)− f(x)|dx = 2

∫
gn(x)dx.

Since 0 ≤ gn(x) ≤ f(x) for all x. Hence, by dominated convergence, limn

∫
gn(x)dx = 0.

[Dominated convergence theorem. If limn→∞ fn = f and there exists an integrable function

g such that |fn| ≤ g, then limn

∫
fn(x)dx =

∫
limn fn(x)dx holds] �

As an example, consider the PDF fn of the t- distribution tn, n = 1, 2, . . .. One can show

(exercise) that fn → f , where f is the standard normal PDF.

The following result provides a convergence of moments criterion for convergence in law.

Theorem 1.2.9 (Frechet and Shohat Theorem) Let the distribution function Fn possess

finite moments αnk =
∫
tkdFn(t) for k = 1, 2, . . . and n = 1, 2, . . .. Assume that the limits

αk = limn αnk exist (finite) for each k. Then,
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(i) the limits αk are the moments of some a distribution function F ;

(ii) if the F given by (i) is unique, then Fn ⇒ F .

[A sufficient condition: the moment sequence αk determines the distribution F uniquely if

the Carleman condition
∑∞

i=1 α
−1/(2i)
2i =∞ holds.]

1.2.5 Results on op and Op

There are many rules of calculus with o and O symbols, which we will apply without com-

ment. For instance,

op(1) + op(1) = op(1), op(1) +Op(1) = Op(1), Op(1)op(1) = op(1)

(1 + op(1))−1 = Op(1), op(Rn) = Rnop(1), Op(Rn) = RnOp(1), op(Op(1)) = op(1).

Two more complicated rules are given by the following lemma.

Lemma 1.2.1 Let g be a function defined on Rp such that g(0) = 0. Let Xn be a sequence

of random vectors with values on R that converges in probability to zero. Then, for every

r > 0,

(i) if g(t) = o(||t||r) as t→ 0, then g(Xn) = op(||Xn||r);

(ii) if g(t) = O(||t||r) as t→ 0, then g(Xn) = Op(||Xn||r).

Proof. Define f(t) = g(t)/||t||r for t 6= 0 and f(0) = 0. Then g(Xn) = f(Xn)||Xn||r.

(i) Because the function f is continuous at zero by assumption, f(Xn)
p→ f(0) = 0 by

Theorem 1.2.2.

(ii) By assumption there exists M and δ > 0 such that |f(t)| ≤ M whenever ||t|| ≤ δ.

Thus

P (|f(Xn)| > M) ≤ P (||Xn|| > δ)→ 0,

and the sequence f(Xn) is bounded. �
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1.3 The central limit theorem

The most fundamental result on convergence in law is the central limit theorem (CLT) for

sums of random variables. We firstly state the case of chief importance, iid summands.

Definition 1.3.1 A sequence of random variables Xnis asymptotically normal with µn and

σ2
n if (Xn − µn)/σn

d→N(0, 1), written by Xn is AN(µn, σ
2
n).

1.3.1 The CLT for the iid case

Theorem 1.3.1 (Lindeberg-Levy) Let Xi be iid with mean µ and finite variance σ2. Then

√
n
(
X̄ − µ

)
σ

d→N(0, 1).

By Slutsky’s Theorem, we can write
√
n
(
X̄ − µ

) d→N(0, σ2). Also, X̄ is AN(µ, σ2/n). See

Billingsley (1995) for a proof.

Example 1.3.1 (Confidence intervals) This theorem can be used to approximate P (X̄ ≤
µ+ kσ√

n
) by Φ(k). This is very useful because the sampling distribution of X̄ is not available

except for some special cases. Then, setting k = Φ−1(1 − α) = zα, [X̄n − σ/
√
nzα, X̄n +

σ/
√
nzα] is a confidence interval for µ of asymptotic level 1 − 2α. More precisely, we have

that the probability that µ is contained in this interval converges to 1− 2α (how accurate?).

Example 1.3.2 (Sample variance) Suppose X1, . . . , Xn are iid with mean µ, variance σ2

and E(X4
1 ) <∞. Consider the asymptotic distribution of S2

n = 1
n−1

∑n
i=1(Xi − X̄n)2. Write

√
n(S2

n − σ2) =
√
n

(
1

n− 1

n∑
i=1

(Xi − µ)2 − σ2

)
−
√
n

n

n− 1
(X̄n − µ)2.

The second term converges to zero in probability and the first term is asymptotically normal

by the CLT. The whole expression is asymptotically normal by the Slutsky’ Theorem, i.e.,

√
n(S2

n − σ2)
d→N(0, µ4 − σ4),
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where µ4 denotes the centered fourth moment of X1 and µ4 − σ4 comes certainly from

computing the variance of (X1 − µ)2.

Example 1.3.3 (Level of the Chi-square test) Normal theory prescribes to reject the

null hypothesis H0 : σ2 ≤ 1 for values of nS2
n exceeding the upper α point χ2

n−1,α of the χ2
n−1

distribution. If the observations are sample from a normal distribution, the test has exactly

level α. However, this is not approximately the case of the underlying distribution is not

normal. The CLT and the Example 1.3.2 yield the following two statements

χ2
n−1 − (n− 1)√

2(n− 1)

d→N(0, 1),
√
n

(
S2
n

σ2
− 1

)
d→N(0, κ+ 2),

where κ = µ4/σ
4 − 3 is the kurtosis of the underlying distribution. The first statement

implies that (χ2
n−1,α − (n − 1))/

√
2(n− 1) converges to the upper α point zα of N(0, 1).

Thus, the level of the chi-square test satisfies

PH0(nS
2
n > χ2

n−1,α) = P

(√
n

(
S2
n

σ2
− 1

)
>
χ2
n−1,α − n√

n

)
→ 1− Φ

(
zα
√

2√
k + 2

)
So, the asymptotic level reduces to 1−Φ(zα) = α iff the kurtosis of the underlying distribution

is 0. If the kurtosis goes to infinity, then the asymptotic level approaches to 1−Φ(0) = 1/2.

We conclude that the level of the chi-square test is nonrobust against departures of normality

that affect the value of the kurtosis. If, instead, we would use a normal approximation to

the distribution
√
n(S2

n/σ
2 − 1) the problem would not arise, provided that the asymptotic

variance κ+ 2 is estimated accurately.

Theorem 1.3.2 (Multivariate CLT for iid case) Let Xi be iid random p-vectors with

mean µ and and covariance matrix Σ. Then

√
n
(
X̄− µ

) d→Np(0,Σ).

Proof. By the Cramer-Wold device, this can be proved by finding the limit distribution of

the sequences of real variables

cT

(
1√
n

n∑
i=1

(Xi − µ)

)
=

1√
n

n∑
i=1

(cTXi − cTµ).
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Because the random variables cTXi − cTµ are iid with zero mean and variance cTΣc, this

sequence is AN(0, cTΣc) by Theorem 1.3.1. This is exactly the distribution of cTX if X

possesses an Np(0,Σ). �

Example 1.3.4 Suppose that X1, . . . , Xn is a random sample from the Poisson distribution

with mean θ. Let Zn be the proportions of zero observed, i.e., Zn = 1/n
∑n

i=1 I{Xj=0}. Let

us find the joint asymptotic distribution of (X̄n, Zn). Note that E(X1) = θ, EI{X1=0} = e−θ,

Var(X1) = θ, Var(I{X1=0}) = e−θ(1 − e−θ), and EX1I{X1=0} = 0. So, Cov(X1, I{X1=0}) =

−θe−θ. Hence,
√
n
(
(X̄n, Zn)− (θ, e−θ)

) d→N2(0,Σ), where

Σ =

 θ −θe−θ

−θe−θ e−θ(1− e−θ)

 .

It is not as widely known that existence of a variance is not necessary for asymptotic

normality of partial sums of iid random variables. A CLT without a finite variance can

sometimes be useful. We present the general result below and then give an illustrative

example. Feller (1966) contains detailed information on the availability of CLTs without the

existence of a variance, along with proofs. First, we need a definition.

Definition 1.3.2 A function g : R → R is called slowly varying at ∞ if, for every t > 0,

limx→∞ g(tx)/g(x) = 1.

Examples of slowly varying functions are log x, x/(1 + x), and indeed any function with a

finite limit as x→∞. But, for example, x or e−x are not slowly varying.

Theorem 1.3.3 Let X1, X2, . . . be iid from a CDF F on R. Let v(x) =
∫ x
−x y

2dF (y). Then,

there exist constants {an}, {bn} such that∑n
i=1Xi − an

bn

d→N(0, 1),

if and only if v(x) is slowly varying at ∞.
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If F has a finite second moment, then automatically v(x) is slowly varying at ∞. We

present an example below where asymptotic normality of the sample partial sums still holds,

although the summands do not have a finite variance.

Example 1.3.5 Suppose X1, X2, . . . are iid from a t-distribution with 2 degrees of freedom

(t(2)) that has a finite mean but not a finite variance. The density is given by f(y) =

c/(2 + y2)
3
2 for some positive c. Hence, by a direct integration, for some other constant k,

v(x) = k

√
1

2 + x2

[
x−
√

2 + x2arcsinh(x/
√

2)
]
.

Therefore, on using the fact that arcsinh(x) = log(2x) + O(x−2) as x → ∞, we get, for

any t > 0, v(tx)
v(x)

→ 1 on some algebra. It follows that for iid observations from a t(2)

distribution, on suitable centering and normalizing, the partial sums
∑n

i=1Xi converge to

a normal distribution, although the Xi’s do not have a finite variance. The centering can

be taken to be zero for the centered t-distribution; it can be shown that the normalizing

required is bn =
√
n log n (why?).

1.3.2 The CLT for the independent not necessarily iid case

Theorem 1.3.4 (Lindeberg-Feller) Suppose Xn is a sequence of independent variables

with means µn and variances σ2
n <∞. Let s2

n =
∑n

i=1 σ
2
i . If for any ε > 0

1

s2
n

n∑
j=1

∫
|x−µj |>εsn

(x− µj)2dFj(x)→ 0, (1.2)

where Fi is the CDF of Xi, then

n∑
i=1

(Xi − µi)

sn

d→N(0, 1).

A proof can be seen on page 67 in Shao (2003). The condition (1.2) is called Lindeberg-Feller

condition.
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Example 1.3.6 Let X1, X2 . . . , be independent variables such that Xj has the uniform

distribution on [−j, j], j = 1, 2, . . .. Let us verify the conditions of Theorem 1.3.4 are satisfied.

Note that EXj = 0 and σ2
j = 1

2j

∫ j
−j x

2dx = j2/3 for all j. Hence,

s2
n =

n∑
j=1

σ2
j =

1

3

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

18
.

For any ε > 0, n < εsn for sufficiently large n, since limn n/sn = 0. Because |Xj| ≤ j ≤ n,

when n is sufficiently large,

E(X2
j I{|Xj |>εsn}) = 0.

Consequently, limn→∞
∑n

j=1 E(X2
j I{|Xj |>εsn}) < ∞. Considering sn → ∞, Lindeberg’s con-

dition holds.

The Lindeberg- Feller theorem is a landmark theorem in probability and statistics. Gen-

erally, it is hard to verify the Lindeberg-Feller condition. A simpler theorem is the following.

Theorem 1.3.5 (Liapounov) Suppose Xn is a sequence of independent variables with

means µn and variances σ2
n <∞. Let s2

n =
∑n

i=1 σ
2
i . If for some δ > 0

1

s2+δ
n

n∑
j=1

E|Xj − µj|2+δ → 0 (1.3)

as n→∞, then

n∑
i=1

(Xi − µi)

sn

d→N(0, 1).

A proof is given in Sen and Singer (1993). For instance, if sn →∞, supj≥1E|Xj−µj|2+δ <∞
and n−1sn is bounded, then the condition of Liapounov’s theorem is satisfied. In practice,

usually one tries to work with δ = 1 or 2 for algebraic convenience. It can be easily checked

that if Xi is uniformly bounded and sn → ∞, the condition is immediately satisfied with

δ = 1.

Example 1.3.7 Let X1, X2, . . . be independent random variables. Suppose that Xi has the

binomial distribution BIN(pi, 1), i = 1, 2, . . .. For each i, EXi = pi and E|Xi − EXi|3 =
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(1 − pi)3pi + p3
i (1 − pi) ≤ 2pi(1 − pi). Hence,

∑n
i=1 E|Xi − EXi|3 ≤ 2s2

n = 2
∑n

i=1E|Xi −
EXi|2 = 2

∑n
i=1 pi(1 − pi). Then Liapounov’s condition (1.3) holds with δ = 1 if sn → ∞.

For example, if pi = 1/i or M1 ≤ pi ≤ M2 with two constants belong to (0, 1), sn → ∞
holds. Accordingly, by Liapounov’s theorem,

∑n
i=1(Xi−pi)

sn

d→N(0, 1).

A consequence especially useful in regression is the following theorem, which is also

proved in Sen and Singer (1993).

Theorem 1.3.6 (Hajek-Sidak) Suppose X1, X2, . . . are iid random variables with mean µ

and variance σ2 <∞. Let cn = (cn1, cn2, . . . , cnn) be a vector of constants such that

max
1≤i≤n

c2
ni

n∑
j=1

c2
nj

→ 0 (1.4)

as n→∞. Then
n∑
i=1

cni(Xi − µ)

σ

√
n∑
j=1

c2
nj

d→N(0, 1).

The condition (1.4) is to ensure that no coefficient dominates the vector cn, and is

referred as Hajek-Sidak condition in the literatures. For example, if cn = (1, 0, . . . , 0), then

the condition would fail and so would the theorem. The Hajek-Sidak’s theorem has many

applications, including in the regression problem. Here is an important example.

Example 1.3.8 (Simplest linear regression) Consider the simple linear regression model

yi = β0 + β1xi + εi, where εi’s are iid with mean 0 and variance σ2 but are not necessarily

normally distributed. The least squares estimate of β1 based on n observations is

β̂1 =

∑n
i=1(yi − ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2
= β1 +

∑n
i=1 εi(xi − x̄n)∑n
i=1(xi − x̄n)2

.

So, β̂1 = β1 +
∑n

i=1 εicni/
∑n

j=1 c
2
nj, where cni = xi − x̄n. Hence, by the Hajek-Sidak’s

Theorem √√√√ n∑
j=1

c2
nj

β̂1 − β1

σ
=

∑n
i=1 εicni

σ
√∑n

j=1 c
2
nj

d→N(0, 1),
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provided

max1≤i≤n(xi − x̄n)2∑n
j=1(xj − x̄n)2

→ 0

as n → ∞. For most reasonable designs, this condition is satisfied. Thus, the asymptotic

normality of the LSE (least squares estimate) is established under some conditions on the

design variables, an important result.

Theorem 1.3.7 (Lindeberg-Feller multivariate) Suppose Xi is a sequence of indepen-

dent vectors with means µi, covariances Σi and distribution function Fi. Suppose that

1
n

∑n
i=1 Σi → Σ as n→∞, and that for any ε > 0

1

n

n∑
j=1

∫
||x−µj ||>ε

√
n

||x− µj||2dFj(x)→ 0,

then

1√
n

n∑
i=1

(Xi − µi)
d→N(0,Σ).

Example 1.3.9 (multiple regression) In the linear regression problem, we observe a

vector y = Xβ + ε for a fixed or random matrix X of full rank, and an error vector ε

with iid components with mean zero and variance σ2. The least squares estimator of β is

β̂ = (XTX)−1XTy. This estimator is unbiased and has covariance matrix σ2(XTX)−1. If

the error vector ε is normally distributed, then β̂ is exactly normally distributed. Under

reasonable conditions on the design matrix, β̂ is asymptotically normally distributed for a

large range of error distributions. Here we fix p and let n tend to infinity. This follows from

the representation

(XTX)1/2(β̂ − β) = (XTX)−1/2XTε =
n∑
i=1

aniεi,

where an1, . . . , ann are the columns of the (p×n) matrix (XTX)−1/2XT =: A. This sequence

is asymptotically normal if the vectors an1ε1, . . . , annεn satisfy the Lindeberg conditions.

The norming matrix (XTX)1/2 has been chosen to ensure that the vectors in the display

have covariance matrix σ2Ip for every n. The remaining condition is

n∑
i=1

||ani||2Eε2
i I{||ani|||εi|>ε} → 0.
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This can be simplified to other conditions in several ways. Because
∑
||ani||2 = tr(AAT ) = p,

it suffices that maxiEε
2
i I{||ani|||εi|>ε} → 0, which is also equivalent to maxi ||ani|| → 0. Al-

ternatively, the expectation Eε2
i I{||ani|||εi|>ε} can be bounded ε−kE|εi|k+2||ani||k and a second

set of sufficient conditions is

n∑
i=1

||ani||k → 0; E|ε1|k <∞, k > 2.

1.3.3 CLT for a random number of summands

The canonical CLT for the iid case says that if X1, X2, . . . are iid with mean zero and a finite

variance σ2, then the sequence of partial sums Tn =
∑n

i=1Xi obeys the central limit theorem

in the sense Tn
σ
√
n

d→N(0, 1). There are some practical problems that arise in applications, for

example in sequential statistical analysis, where the number of terms present in a partial sum

is a random variable. Precisely, {N(t)}, t ≥ 0, is a family of (nonnegative) integer-valued

random variables, and we want to approximate the distribution of TN(t), where for each fixed

n, Tn is still the sum of n iid variables as above. The question is whether a CLT still holds

under appropriate conditions. Here is the Anscombe-Renyi theorem.

Theorem 1.3.8 (Anscombe-Renyi) Let Xi be iid with mean µ and a finite variance σ2,

and let {Nn}, be a sequence of (nonnegative) integer-valued random variables and {an} a

sequence of positive constants tending to ∞ such that Nn/an
p→ c, 0 < c < ∞, as n → ∞.

Then,

TNn −Nnµ

σ
√
Nn

d→N(0, 1) as n→∞.

Example 1.3.10 (coupon collection problem) Consider a problem in which a person

keeps purchasing boxes of cereals until she obtains a full set of some n coupons. The as-

sumptions are that the boxes have an equal probability of containing any of the n coupons

mutually independently. Suppose that the costs of buying the cereal boxes are iid with

some mean µ and some variance σ2. If it takes Nn boxes to obtain the complete set of all

n coupons, then Nn/(n lnn)
p→ 1 as n → ∞ The total cost to the customer to obtain the
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complete set of coupons is TNn = X1 + . . . + XNn . By the Anscombe-Renyi theorem and

Slutsky’s theorem, we have that
TNn−Nnµ
σ
√
n lnn

is approximately N(0, 1).

[On the distribution of Nn. Let ti be the boxes to collect the i-th coupon after i − 1

coupons have been collected. Observe that the probability of collecting a new coupon given

i−1 coupons is pi = (n−i+1)/n. Therefore, ti has a geometric distribution with expectation

1/pi and Nn =
∑n

i=1 ti. By Theorem 1.2.5, we know

1

n lnn
Nn

p→ 1

n lnn

n∑
i=1

p−1
i =

1

n lnn

n∑
i=1

n
1

i
=

1

lnn

n∑
i=1

1

i
=:

1

lnn
Hn.

Note that Hn is the harmonic number and hence by using the asymptotics of the harmonic

numbers (Hn = lnn+ γ + o(1); γ is Euler-constant), we obtain Nn
n lnn

→ 1.]

1.3.4 Central limit theorems for dependent sequences

The assumption that observed data X1, X2, . . . form an independent sequence is often one

of technical convenience. Real data frequently exhibit some dependence and at the least

some correlation at small lags. Exact sampling distributions for fixed n are even more

complicated for dependent data than in the independent case, and so asymptotics remain

useful. In this subsection, we present CLTs for some important dependence structures. The

cases of stationary m-dependence and without replacement sampling are considered.

Stationary m-dependence

We start with an example to illustrate that a CLT for sample means can hold even if the

summands are not independent.

Example 1.3.11 Suppose X1, X2, . . . is a stationary Gaussian sequence with E(Xi) = µ,

Var(Xi) = σ2 <∞. Then, for each n,
√
n(X̄n − µ) is normally distributed and so

√
n(X̄n −

µ)
d→N(0, τ 2), provided τ 2 = limn→∞Var(

√
n(X̄n − µ)) <∞. But

Var(
√
n(X̄n − µ)) = σ2 +

1

n

∑
i 6=j

Cov(Xi, Xj) = σ2 +
2

n

n∑
i=1

(n− i)γi,
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where γi = Cov(X1, Xi+1). Therefore, τ 2 <∞ if and only if 1
n

n∑
i=1

(n− i)γi has a finite limit,

say ρ, in which case
√
n(X̄n − µ)

d→N(0, σ2 + ρ).

What is going on qualitatively is that 1
n

n∑
i=1

(n−i)γi is summable when |γi| → 0 adequately

fast. Instances of this are when only a fixed finite number of the γi are nonzero or when γi is

damped exponentially; i.e., γi = O(ai) for some |a| < 1. It turns out that there are general

CLTs for sample averages under such conditions. The case of m-dependence is provided

below.

Definition 1.3.3 A stationary sequence {Xn} is called m-dependent for a given fixed m if

(X1, . . . , Xi) and (Xj, Xj+1, . . .) are independent whenever j − i > m.

Theorem 1.3.9 (m-dependent sequence) Let {Xi} be a stationary m-dependent se-

quence. Let E(Xi) = µ and Var(Xi) = σ2 < ∞. Then
√
n(X̄n − µ)

d→N(0, τ 2), where

τ 2 = σ2 + 2
∑m+1

i=2 Cov(X1, Xi).

See Lehmann (1999) for a proof; m-dependent data arise either as standard time series

models or as models in their own right. For example, if {Zi} are i.i.d. random variables

and Xi = a1Zi−1 + a2Zi−2, i ≥ 3, then {Xi} is 1-dependent. This is a simple moving

average process of use in time series analysis. A more general m-dependent sequence is

Xi = h(Zi, Zi+1, . . . , Zi+m) for some function h.

Example 1.3.12 Suppose Zi are i.i.d. with a finite variance σ2, and let Xi = (Zi+Zi+1)/2.

Then, obviously
∑n

i=1 Xi = Z1+Zn+1

2
+
∑n

i=2 Zi. Then, by Slutsky’s theorem,
√
n(X̄n −

µ)
d→N(0, σ2). Notice we write

√
n(X̄n − µ) into two parts in which one part is dominant

and produces the CLT, and the other part is asymptotically negligible. This is essentially

the method of proof of the CLT for more general m-dependent sequences.

Sampling without replacement

Dependent data also naturally arise in sampling without replacement from a finite popula-

tion. Central limit theorems are available and we will present them shortly. But let us start
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with an illustrative example.

Example 1.3.13 Suppose, among N objects in a population, D are of type 1 and N −D
of type 2. A sample without replacement of size n is taken, and let X be the number of

sampled units of type 1. We can regard these D type 1 units as having numerical values

X1, . . . , XD = 1 and the rest as having values XD+1, . . . , XN = 0, X =
∑n

i=1XNi , where

XN1 , . . . , XNn correspond to the sampled units.

Of course, X has the hypergeometric distribution

P (X = x) =
Cx
DC

n−x
N−D

Cn
N

, 0 ≤ x ≤ D.

Two configurations can be thought of: (a) n is fixed, and D/N → p, 0 < p < 1 with N →∞.

In this case, by applying Stirlings approximation to N ! and D!, P (X = x)→ Cx
np

x(1− p)x,
and so X

d→Bin(n, p); (b) n,N,N − n → ∞, D/N → p, 0 < p < 1. This is the case where

convergence of X to normality holds.

Here is a general result; again, see Lehmann (1999) for a proof.

Theorem 1.3.10 For N ≥ 1, let πN be a finite population with numerical values X1, X2, . . . XN .

Let XN1 , XN2 , . . . , XNn be the values of the units of a sample without replacement of size n.

Let X̄n =
∑n

i=1XNi/n and X̄N =
∑N

i=1 XN/N . Suppose n,N − n→∞, and

(a)
max1≤i≤N(Xi − X̄N)2

N∑
i=1

(Xi − X̄N)2

→ 0,

and n/N → 0 < τ < 1 as N →∞;

(b)
N max1≤i≤N(Xi − X̄N)2

N∑
i=1

(Xi − X̄N)2

= O(1), as N →∞.

Then,
X̄n − E(X̄n)√

Var(X̄n)

d→N(0, 1).
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Example 1.3.14 Suppose XN1 , . . . , XNn is a sample without replacement from the set

{1, 2, . . . , N}, and let X̄n =
∑n

i=1XNi/n . Then, by a direct calculation,

E(X̄n) =
N + 1

2
, Var(X̄n) =

(N − n)(N + 1)

12n
.

Furthermore,
N max1≤i≤N(Xi − X̄N)2

N∑
i=1

(Xi − X̄n)2

=
3(N − 1)

N + 1
= O(1).

Hence, by Theorem 1.3.10, X̄n−E(X̄n)√
VarX̄n

d→N(0, 1).

1.3.5 Accuracy of CLT

Suppose a sequence of CDFs FXn
d→FX for some FX . Such a weak convergence result is

usually used to approximate the true value of FXn(x) at some fixed n and x by FX(x).

However, the weak convergence result by itself says absolutely nothing about the accuracy

of approximating FXn(x) by FX(x) for that particular value of n. To approximate FXn(x) by

FX(x) for a given finite n is a leap of faith unless we have some idea of the error committed;

i.e., |FXn(x)− FX(x)|. More specifically, if for a sequence of random variables X1, . . . , Xn

X̄n − E(X̄n)√
Var(X̄n)

d→Z ∼ N(0, 1),

then we need some idea of the error∣∣∣∣∣P
(
X̄n − E(X̄n)√

Var(X̄n)
≤ x

)
− Φ(x)

∣∣∣∣∣ .
in order to use the central limit theorem for a practical approximation with some degree

of confidence. The first result for the iid case in this direction is the classic Berry-Esseen

theorem. Typically, these accuracy measures give bounds on the error in the appropriate

CLT for any fixed n, making assumptions about moments of Xi.

In the canonical iid case with a finite variance, the CLT says that
√
n(X̄−µ)/σ converges

in law to the N(0, 1). By Polya’s theorem, the uniform error ∆n = sup−∞<x<∞ |P (
√
n(X̄ −

µ)/σ ≤ x)−Φ(x)| → 0 as n→∞. Bounds on ∆n for any given n are called uniform bounds.
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The following results are the classic Berry-Esseen uniform bound and an extension of the

Berry-Esseen inequality to the case of independent but not iid variables.; a proof can be seen

in Petrov (1975). Introducing higher-order moment assumptions (third), the Berry-Esseen

inequality assert for this convergence the rate O(n−1/2).

Theorem 1.3.11 (i) (Berry-Esseen; iid case) Let X1, . . . , Xn be iid with E(X1) = µ,

Var(X1) = σ2, and β3 = E|X1 − µ|3 < ∞. Then there exists a universal constant C, not

depending on n or the distribution of the Xi, such that

sup
x

∣∣∣∣P (√n(X̄n − µ)

σ
≤ x

)
− Φ(x)

∣∣∣∣ ≤ Cβ3

σ3
√
n
.

(ii) (independent but not iid case) Let X1, . . . , Xn be independent with E(Xi) = µi,

Var(Xi) = σ2
i , and β3i = E|Xi − µi|3 < ∞. Then there exists a universal constant C∗, not

depending on n or the distribution of the Xi, such that

sup
x

∣∣∣∣∣P
(
X̄n − E(X̄n)√

Var(X̄n)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C∗
∑n

i=1 β3i

(
∑n

i=1 σ
2
i )

3/2
.

It is the best possible rate in the sense of not being subject to improvement without narrowing

the class of distribution functions considered. For some specific underlying CDFs FX , better

rates of convergence in the CLT may be possible. This issue will be clearer when we discuss

asymptotic expansions for P (
√
n(X̄n − µ)/σ ≤ x). In Theorem 1.3.11-(i), the universal

constant C may be taken as C = 0.8.

Example 1.3.15 The Berry-Esseen bound is uniform in x, and it is valid for any n ≥ 1.

While these are positive features of the theorem, it may not be possible to establish that

∆n ≤ ε for some preassigned ε > 0 by using the Berry-Esseen theorem unless n is very large.

Let us see an illustrative example. Suppose X1, . . . , Xn
iid∼ BIN(p, 1) and n = 100. Suppose

we want the CLT approximation to be accurate to within an error of ∆n = 0.005. In the

Bernoulli case, β3 = pq(1− 2pq), where q = 1− p. Using C = 0.8, the uniform Berry-Esseen

bound is

∆n ≤
0.8pq(1− 2pq)

(pq)3/2
√
n

.
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This is less than the prescribed ∆n = 0.005 iff pq > 0.4784, which does not hold for any

0 < p < 1. Even for p = 0.5, the bound is less than or equal to ∆n = 0.005 only when

n > 25, 000, which is a very large sample size. Of course, this is not necessarily a flaw

of the Berry-Esseen inequality itself because the desire to have a uniform error of at most

∆n = 0.005 is a tough demand, and a fairly large value of n is probably needed to have such

a small error in the CLT.

Example 1.3.16 As an example of independent variables that are not iid, consider Xi ∼
BIN(i−1, 1), i ≥ 1, and let Sn =

∑n
i=1Xi. Then, E(Sn) =

∑n
i=1 i

−1, Var(Sn) =
∑n

i=1(i−1)/i2

and β3i = (i− 1)(i2 − 2i+ 2)/i4 . Therefore, from Theorem 1.3.11-(ii),

∆n ≤ C∗
∑n

i=1(i− 1)(i2 − 2i+ 2)/i4∑n
i=1[(i− 1)/i2]3/2

Observe now
∑n

i=1(i− 1)/i2 = log n+O(1) and
∑n

i=1(i− 1)(i2 − 2i+ 2)/i4 = log n+O(1).

Substituting these back into the Berry-Esseen bound, one obtains with some minor algebra

that ∆n = O(log n)−1/2.

For x sufficiently large, while n remains fixed, the quantities FXn(x) and FX(x)each

become so close to 1 that the bound given in Theorem 1.3.11 is too rude. There has been

a parallel development on developing bounds on the error in the CLT at a particular x as

opposed to bounds on the uniform error. Such bounds are called local Berry-Esseen bounds.

Many different types of local bounds are available.We present here just one.

Theorem 1.3.12 Let X1, . . . , Xn be independent with E(Xi) = µi, Var(Xi) = σ2
i , and

E|Xi − µi|2+δ <∞ for some 0 < δ ≤ 1. Then∣∣∣∣∣P
(
X̄n − E(X̄n)√

Var(X̄n)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ D

1 + |x|2+δ

∑n
i=1E|Xi − µi|2+δ

(
∑n

i=1 σ
2
i )

1+ δ
2

.

for some universal constant 0 < D <∞.

Such local bounds are useful in proving convergence of global error criteria such as∫
|FXn(x) − Φ(x)|pdx or for establishing approximations to the moments of FXn . Uniform

error bounds would be useless for these purposes. If the third absolute moments are finite,
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an explicit value for the universal constant D can be chosen to be 31. Good reference for

local bounds is Serfling (1980).

Error bounds for normal approximations to many other types of statistics besides sample

means are known, such as the result for statistics that are smooth functions of means. The

order of the error depends on the conditions one assumes on the nature of the function. We

will discuss this problem in Section 2 after we introduced the Delta method.

1.3.6 Edgeworth and Cornish-Fisher expansions

We now consider the important topic of writing asymptotic expansions for the CDFs of

centered and normalized statistics. When the statistic is a sample mean, let Zn =
√
n(X̄n−

µ)/σ and FZn(x) = P (Zn ≤ x), where X1, . . . , Xn are i.i.d with a CDF F having mean µ

and variance σ2 <∞.

The CLT says that FZn(x) → Φ(x) for every x, and the Berry-Esseen theorem says

|FZn(x) − Φ(x)| = O(n−1/2) uniformly in x if X has three moments. If we change the

approximation Φ(x) to Φ(x) + C1(F )p1(x)φ(x)/
√
n for some suitable constant C1(F ) and a

suitable polynomial p1(x), we can assert that

|Fn(x)− Φ(x)− C1(F )p1(x)φ(x)√
n

| = O(n−1),

uniformly in x. Expansions of the form

Fn(x) = Φ(x) +
k∑
s=1

qs(x)√
n
s + o(n−k/2) uniformly in x,

are known as Edgeworth expansions for Zn. One needs some conditions on F and enough

moments of X to carry the expansion to k terms for a given k. Excellent references for the

main results on Edgeworth expansions are Hall (1992). The coefficients in the Edgeworth

expansion for means depend on the cumulants of F , which share a functional relationship

with the sequence of moments of F . Cumulants are also useful in many other contexts, for

example, the saddlepoint approximation.

We start with the definition and recursive representations of the sequence of cumulants

of a distribution. The term cumulant was coined by Fisher (1931).
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Definition 1.3.4 Let X ∼ F have a finite m.g.f. ψn(t) in some neighborhood of zero,

and let K(t) = logψn(t) when it exists. The rth cumulant of X (or of F ) is defined as

κr = dr

dtr
K(t)|t=0.

Equivalently, the cumulants of X are the coefficients in the power series expansion K(t) =
∞∑
n=1

κn
tn

n!
within the radius of convergence of K(t). By equating coefficients in eK(t) with

those in ψ(t), it is easy to express the first few moments (and therefore the first few central

moments) in terms of the cumulants. Indeed, letting ci = E(X i), µi = E(X − µ)i, one

obtains the expressions

c1 = κ1, c2 = κ2 + κ2
1, c3 = κ3 + 3κ1κ2 + κ3

1, c4 = κ4 + 4κ1κ3 + 3κ2
2 + 6κ2

1κ2 + κ4
1

µ2 = σ2 = κ2, µ3 = κ3, µ4 = κ4 + 3κ2
2.

In general, the cumulants satisfy the recursion relations

κn = cn −
n−1∑
j=1

Cj−1
n−1cn−jκj,

which results in

κ1 = µ, κ2 = σ2, κ3 = µ3, κ4 = µ4 − 3µ2
2.

The higher-order ones are quite complex but can be found from Kendall’s Advanced Theory

of Statistics.

Example 1.3.17 Suppose X ∼ N(µ, σ2). Of course, κ1 = µ, κ2 = σ2. Since K(t) =

tµ+ t2σ2/2, a quadratic, all derivatives of K(t) of order higher than 2 vanish. Consequently,

κr = 0 for r > 2. If X ∼ Poisson(λ), then K(t) = λ(et − 1), and therefore all derivatives of

K(t) are equal to λet. It follows that κr = λ for r ≥ 1. These are two interesting special

cases with neat structure and have served as the basis for stochastic modeling.

Now let us consider the expansion for (function of) means. To illustrate the idea, let

us consider Zn. Assume that the m.g.f of W = (X1 − µ)/σ is finite and positive in a

neighborhood of 0. The m.g.f of Zn is equal to

ψn(t) =
[
exp{K(t/

√
n)}
]n

= exp

{
t2

2
+
∞∑
j=3

κjt
j

j!n(j−2)/2

}
,
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where K(t) is the cumulant generating function of W and κj’s are the corresponding cumu-

lants (κ1 = 0, κ2 = 1, κ3 = EW 3 and κ4 = EW 4 − 3). Using the series expansion for et
2/2,

we obtain that

ψn(t) = et
2/2 + n−1/2r1(t)et

2/2 + · · ·+ n−j/2rj(t)e
t2/2 + · · · , (1.5)

where rj is a polynomial of degrees 3j depending on κ3, . . . , κj+2 but not on n, j = 1, 2, . . ..

For example, it can be shown that

r1(t) =
1

6
κ3t

3, r2(t) =
1

24
κ4t

4 +
1

72
κ2

3t
6.

Since ψn(t) =
∫
etxdFZn(x) and et

2/2 =
∫
etxdΦ(x), expansions (1.5) suggests the inverse

expansion

FZn(x) = Φ(x) + n−1/2R1(x) + · · ·+ n−j/2Rj(x) + · · · ,

where Rj(x) is a function satisfying
∫
etxdRj(x) = rj(t)e

t2/2, j = 1, 2, . . .. Thus, Rj’s can be

obtained once rj’s are derived. For example,

R1(x) = −1

6
κ3(x2 − 1)φ(x)

R2(x) = −
[

1

24
κ4(x2 − 3) +

1

72
κ2

3x(x4 − 10x2 + 15)

]
φ(x)

The CLT for means fails to capture possible skewness in the distribution of the mean

for a given finite n because all normal distributions are symmetric. By expanding the CDF

to the next term, the skewness can be captured. Expansion to another term also adjusts for

the kurtosis. Although expansions to any number of terms are available under existence of

enough moments, usually an expansion to two terms after the leading term is of the most

practical importance. Indeed, expansions to three terms or more can be unstable due to the

presence of the polynomials in the expansions. We present the two-term expansion next. A

rigorous statement of the Edgeworth expansion for a more general Zn will be introduced in

the next chapter after entailing the multivariate Delta theorem. The proof can be found in

Hall (1992).

Theorem 1.3.13 (Two-term Edgeworth expansion) Suppose F is absolutely continu-

ous distributions and EF (X4) <∞. Then

FZn(x) = Φ(x) +
C1(F )p1(x)φ(x)√

n
+
C2(F )p2(x) + C3(F )p3(x)

n
+O(n−3/2),
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uniformly in x, where

C1(F ) =
E(X − µ)3

6σ3
, C2(F ) =

E(X−µ)4

σ4 − 3

24
, C3(F ) =

C2
1(F )

72
,

p1(x) = 1− x2, p2(x) = 3x− x3, p3(x) = 10x3 − 15x− x5.

Note that the terms C1(F ) and C2(F ) can be viewed as skewness and kurtosis correction

of departure from normality for FZn(x), respectively. It is useful to mention here that the

corresponding formal two-term expansion for the density of Zn is given by

φ(z)+n−1/2C1(F )(z3−3z)φ(z)+n−1[C3(F )(z6−15z4 +45z2−15)+C2(F )(z4−6z2 +3)]φ(z).

One of the uses of an Edgeworth expansion in statistics is approximation of the power of

a test. In the one-parameter regular exponential family, the natural sufficient statistic is a

sample mean, and standard tests are based on this statistic. So the Edgeworth expansion for

sample means of iid random variables can be used to approximate the power of such tests.

Here is an example.

Example 1.3.18 Suppose X1, . . . , Xn
iid∼ Exp(λ) and we wish to test H0 : λ = 1 vs. H1 :

λ > 1. The UMP test rejects H0 for large values of
∑n

i=1Xi. If the cutoff value is found by

using the CLT, then the test rejects H0 for X̄n > 1 + k/
√
n, where k = zα. The power at an

alternative λ equals

Power = Pλ
(
X̄n > 1 + k/

√
n
)

= Pλ

(
X̄n − λ
λ/
√
n
>

1 + k/
√
n− λ

λ/
√
n

)
= 1− Pλ

(
X̄n − λ
λ/
√
n
≤
√
n(1− λ)

λ
+
k

λ

)
→ 1.

For a more useful approximation, the Edgeworth expansion is used. For example, the general

one-term Edgeworth expansion for sample means

Fn(x) = Φ(x) +
C1(F )(1− x2)φ(x)√

n
+O(n−1),

can be used to approximate the power expression above. Algebra reduces the one-term

Edgeworth expression to the formal approximation

Power ≈ Φ

(√
n(λ− 1)− k

λ

)
+

1

3
√
n

[
(
√
n(λ− 1)− k)2

λ2
− 1

]
φ

(√
n(λ− 1)− k

λ

)
.
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This is a much more useful approximation than simply saying that for large n the power is

close to 1.

For constructing asymptotically correct confidence intervals for a parameter on the basis

of an asymptotically normal statistic, the first-order approximation to the quantiles of the

statistic (suitably centered and normalized) comes from using the central limit theorem. Just

as Edgeworth expansions produce more accurate expansions for the CDF of the statistic than

does just the central limit theorem, higher-order expansions for the quantiles produce more

accurate approximations than does just the normal quantile. These higher-order expansions

for quantiles are essentially obtained from recursively inverted Edgeworth expansions, start-

ing with the normal quantile as the initial approximation. They are called Cornish-Fisher

expansions. We briefly present the case of sample means. Let the standardized cumulants

are the quantities ρr = κr/σ
r.

Theorem 1.3.14 Let X1, . . . , Xn be i.i.d with absolutely continuous CDF F having a finite

m.g.f in some open neighborhood of zero. Let Zn =
√
n(X̄n−µ)/σ and Hn(x) = PF (Zn ≤ x).

Then,

H−1
n (α) = zα +

(z2
α − 1)ρ3

6
√
n

+
(z3
α − 3zα)ρ4

24n
− (2z3

α − 5zα)ρ2
3

36n
+O(n−3/2).

Using Taylor’s expansions at zα for Φ(wnα), p1(wnα)φ(wnα) and p2(wnα)φ(wnα), and the fact

that φ′(x) = −xφ(x), we can obtain this theorem by inverting the Edgeworth expansion.

Example 1.3.19 Let Wn ∼ χ2
n and Zn = (Wn − n)/

√
2n

d→N(0, 1) as n → ∞, so a first-

order approximation to the upper αth quantile of Wn is just n+zα
√

2n. The Cornish-Fisher

expansion should produce a more accurate approximation. To verify this, we will need the

standardized cumulants, which are ρ3 = 2
√

2 and ρ4 = 12. Now substituting into the theorem

above, we get the two-term Cornish-Fisher expansion χ2
n,α = n+zα

√
2n+ 2

3
(z2
α−1)+ z3α−7zα

9
√

2n
.
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1.3.7 The law of the iterated logarithm

The law of the iterated logarithm (LIL) complements the CLT by describing the precise

extremes of the fluctuations of the sequence of random variables∑n
i=1(Xi − µ)

σn1/2
, n = 1, 2, . . . .

The CLT states that this sequence converges in law to N(0, 1), but does not otherwise provide

information about the fluctuations of these random variables about the expected value 0.

The LIL asserts that the extremes fluctuations of this sequence are essentially of the exact

order of magnitude (2 log log n)1/2. The classical iid case is covered by

Theorem 1.3.15 (Hartman and Wintner). let {Xi} be iid with mean µ and finite vari-

ance σ2. Then

lim sup
n→∞

∑n
i=1(Xi − µ)

(2σ2n log log n)1/2
= 1 wp1;

lim inf
n→∞

∑n
i=1(Xi − µ)

(2σ2n log log n)1/2
= −1 wp1.

In other words: with probability 1, for any ε > 0, only finitely many of the events∑n
i=1(Xi − µ)

(2σ2n log log n)1/2
> 1 + ε, n = 1, 2, . . . ;∑n

i=1(Xi − µ)

(2σ2n log log n)1/2
> −1− ε, n = 1, 2, . . .

are realized, whereas infinitely many of the events∑n
i=1(Xi − µ)

(2σ2n log log n)1/2
> 1− ε, n = 1, 2, . . . ;∑n

i=1(Xi − µ)

(2σ2n log log n)1/2
> −1 + ε, n = 1, 2, . . . ,

occur. That is, with probability 1, for any ε > 0, all but finitely many of these fluc-

tuations fall within the boundaries ±(1 + ε)(2 log log n)1/2 and moreover, the boundaries

±(1− ε)(2 log log n)1/2 are reached infinitely often.

In LIL theorem, what is going on is that, for a given n, there is some collection of sample

points ω for which the partial sum Sn − nµ stays in a specific
√
n-neighborhood of zero.
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But this collection keeps changing with changing n, and any particular ω is sometimes in

the collection and at other times out of it. Such unlucky values of n are unbounded, giving

rise to the LIL phenomenon. The exact rate
√
n log log n is a technical aspect and cannot

be explained intuitively.

The LIL also complements-indeed, refines- the SLLN (assuming existence of 2nd mo-

ments). It terms of the average dealt with the SLLN, 1
n

n∑
i=1

Xi − µ, the LIL assert that the

extreme fluctuations are essentially of the exact order of magnitude

σ(2 log log n)1/2

n1/2
.

Thus, with provability 1, for any ε > 0, the infinite sequence of “confidence intervals”{
1

n

n∑
i=1

Xi ± (1 + ε)
σ(2 log log n)1/2

n1/2

}

contains µ with only finitely many exceptions. Say, in this asymptotic fashion, the LIL

provides the basis for concepts of 100% confidence intervals. The LIL also provides an

example of almost sure convergence being truly stronger than convergence in probability.

Example 1.3.20 Let X1, X2, . . . be iid with a finite variance. Then,

Sn − nµ√
2n log log n

=
Sn − nµ√

n

1√
2 log log n

= Op(1) · o(1) = op(1).

But, by the LIL, Sn−nµ√
2n log logn

does not converge a.s. to zero. Hence, convergence in probability

is weaker than almost sure convergence, in general.
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Chapter 2

Transformations of given statistics:

The delta method

Distributions of transformations of a statistic are of importance in applications. Suppose an

estimator Tn for a parameter θ is available, but the quantity of interest is g(θ) for some known

function g. A natural estimator is g(Tn). The aim is to deduce the asymptotic behavior of

g(Tn) based on those of Tn.

A first result is an immediate consequence of the continuous-mapping theorem. Of

greater interest is a similar question concerning limit distributions. In particular, if
√
n(Tn−

θ) converges in law to a limit distribution, is the same true for
√
n [g(Tn)− g(θ)]? If g is

differentiable, then the answer is affirmative.

2.1 Basic result

The delta theorem says how to approximate the distribution of a transformation of a statistic

in large samples if we can approximate the distribution of the statistic itself. We firstly treat

the univariate case and present the basic delta theorem as follows.
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Theorem 2.1.1 (Delta Theorem) Let Tn be a sequence of statistics such that

√
n(Tn − θ)

d→N(0, σ2(θ)). (2.1)

Let g : R→ R be once differentiable at θ with g′(θ) 6= 0. Then

√
n [g(Tn)− g(θ)]

d→N(0, [g′(θ)]2σ2(θ)).

Proof. First note that it follows from the assumed CLT for Tn that Tn converges in prob-

ability to θ and hence Tn − θ = op(1). The proof of the theorem now follows from a simple

application of Taylor’s theorem that says that

g(x0 + h) = g(x0) + hg′(x0) + o(h)

if g is differentiable at x0. Therefore

g(Tn) = g(θ) + (Tn − θ)g′(θ) + op(Tn − θ).

That the remainder term is op(Tn− θ) follows from our observation that Tn− θ = op(1) and

Lemma 1.2.1. Taking g(θ) to the left and multiplying both sides by
√
n, we obtain

√
n [g(Tn)− g(θ)] =

√
n(Tn − θ)g′(θ) +

√
nop(Tn − θ).

Observing that
√
n(Tn − θ) = Op(1) by the assumption of the theorem, we see that the

last term on the right-hand side is
√
nop(Tn − θ) = op(1). Hence, an application of Slutskys

theorem to the above gives
√
n [g(Tn)− g(θ)]

d→N(0, [g′(θ)]2σ2(θ)). �

Remark 2.1.1 Assume that g is differentiable in a neighborhood of θ, and g′(x) is continu-

ous at θ. Further, if σ(θ) is a continuous function of θ, then we have the modified conclusion

by replacing g′(θ) and σ(θ) with g′(Tn) and σ(Tn),
√
n [g(Tn)− g(θ)]

{[g′(Tn)]2σ2(Tn)}1/2

d→N(0, 1).

Remark 2.1.2 In fact, the Delta Theorem does not require the asymptotic distribution of

Tn to be normal. By the foregoing proofs, we see that assuming an(Tn − θ)
d→Y in which

an is a sequence of positive numbers with limn→∞ an = ∞ and the conditions in the Delta

Theorem hold, we have

an[g(Tn)− g(θ)]
d→[g′(θ)]Y.

42



Example 2.1.1 Suppose X1, . . . , Xn are iid with mean µ and variance σ2. By taking Tn =

X̄n, θ = µ, σ2(θ) = σ2, and g(x) = x2, one gets for µ 6= 0

√
n(X̄2

n − µ2)
d→N(0, 4µ2σ2).

For µ = 0, nX̄2
n/σ

2 d→χ2
1 by continuous mapping theorem.

Example 2.1.2 For estimating p2, suppose that we have the choice between (a) X ∼
Bin(n, p2); (b) Y ∼ Bin(n, p) and that as estimators of p2 in the two cases, we would

use respectively X/n and (Y/n)2. Then we have

√
n

(
X

n
− p2

)
d→N(0, p2(1− p2));

√
n

((
Y

n

)2

− p2

)
d→N(0, pq · 4p2).

At least for large n, X/n will thus be more accurate than (Y/n)2, provided

p2(1− p2) < pq · 4p2,

say X/n or Y 2/n2 is preferable as p > 1/3 or p < 1/3.

Let us finally consider an example in which g′(·) does not exist.

Example 2.1.3 Suppose Tn is a sequence of statistics satisfying (2.1) and that we are

interested in the limiting behavior of |Tn|. Since g(θ) = |θ| is differentiable with derivative

g′(θ) = ±1 at all values of θ 6= 0, it follows from Theorem 2.1.1 that

√
n(|Tn| − |θ|)

d→N(0, σ2) for all θ 6= 0.

When θ = 0, Theorem 2.1.1 does not apply, but it is easy to determine the limit behavior of

|Tn| directly. With |Tn| − |θ| = |Tn|, we have

P (
√
n|Tn| < a) = P (−a <

√
nTn < a)

→ Φ
(a
σ

)
− Φ

(
−a
σ

)
= P (σχ1 < a),

where χ1 =
√
χ2

1 is the distribution of the absolute value of a standard normal variable. The

convergence rate of |Tn| therefore continues to be 1/
√
n, but the form of the limit distribution

is χ1 rather than normal.
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2.2 Higher-order expansions

There are instances in which g′(θ) = 0 (at least for some special value of θ), in which case

the limiting distribution of g(Tn) is determined by the third term in the Taylor expansion.

Thus, if g′(θ) = 0, then

g(Tn) = g(θ) +
(Tn − θ)2

2
g′′(θ) + op

(
(Tn − θ)2

)
(2.2)

and hence

n(g(Tn)− g(θ)) = n
(Tn − θ)2

2
g′′(θ) + op(1)

d→ g′′(θ)σ2(θ)

2
χ2

1.

Formally, the following result generalizes Theorem 2.1.1 to include this case.

Theorem 2.2.1 Let Tn be a sequence of statistics such that

√
n(Tn − θ)

d→N(0, σ2(θ)).

Let g be a real-valued function differentiable k(≥ 1) at θ with g(k)(θ) 6= 0 but g(j)(θ) = 0 for

j < k. Then

(
√
n)k [g(Tn)− g(θ)]

d→ 1

k!
[g(k)(θ)][N(0, σ2(θ))]k.

Proof. The argument is similar to that for Theorem 2.1.1, this time using the higher-order

Taylor expansions as in (2.2). The remaining details are left as an exercise. �

Example 2.2.1 (i) Example 2.1.1 revisited. For µ = 0, nX̄2
n/σ

2 d→ 1
2
·2 · [N(0, 1)]2 = χ2

1; (ii)

Suppose that
√
nX̄n converges in law to a standard normal distribution. Now consider the

limiting behavior of cos(X̄n). Because the derivative of cos(x) is zero at x = 0, the proof of

Theorem 2.1.1 yields that
√
n(cos(X̄n)− 1) converges to zero in probability (or equivalently

in law). Thus, it should be concluded that
√
n is not the right norming rate for the random

sequence cos(X̄n)− 1. A more informative statement is that −2n(cos(X̄n)− 1) converges in

law to χ2
1.
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2.3 Multivariate version of delta theorem

Next we state the multivariate delta theorem, which is similar to the univariate case.

Theorem 2.3.1 Suppose {Tn} is a sequence of k-dimensional random vectors such that
√
n(Tn − θ)

d→Nk(0,Σ(θ)). Let g : Rk → Rm be once differentiable at θ with the gradient

matrix ∇g(θ). Then

√
n(g(Tn)− g(θ))

d→Nm

(
0,∇Tg(θ)Σ(θ)∇g(θ)

)
provided ∇Tg(θ)Σ(θ)∇g(θ) is positive definite.

Proof. This theorem can be proved by using the Cramer-Wold device. It suffices to show

that for every c ∈ Rm, we have

√
ncT (g(Tn)− g(θ))

d→N
(
0, cT∇Tg(θ)Σ(θ)∇g(θ)c

)
The first-order Taylor’s expansion gives

g(Tn) = g(θ) +∇Tg(θ)(Tn − θ) + op(||Tn − θ||).

The remaining proofs are similar to the univariate case by the application of Corollary 1.2.1

and left to exercises. �

The multivariate delta theorem is useful in finding the limiting distribution of sample

moments. We state next some examples most often used.

Example 2.3.1 (Sample variance revisited) Suppose X1, . . . , Xn are iid with mean µ,

variance σ2 and E(X4
1 ) <∞. Then by taking

Tn = (X̄n, X2
n)T , θ = (EX1, EX

2
1 )T , Σ =

 Var(X1) Cov(X1, X
2
1 )

Cov(X2
1 , X1) Var(X2

1 )


and using the multivariate CLT theorem (Theorem 1.3.2), we have

√
n(Tn − θ)

d→N2 (0,Σ) .
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Taking the function g(u, v) = v − u2 which is obviously differentiable at the point θ with

derivative g′(u, v) = (−2u, 1), it follows that

√
n

(
1

n

n∑
i=1

(Xi − X̄n)2 − Var(X1)

)
d→N2

(
0, (−2µ, 1)Σ(−2µ, 1)T

)
.

Because the sample variance does not depend on location, we may as well assume µ = 0 (or

equivalently working with Xi − µ). Thus, it is readily seen that

√
n(S2

n − σ2)
d→N(0, µ4 − σ4),

where µ4 denotes the centered fourth moment of X1. If the parent distribution is normal,

then µ4 = 3σ4 and
√
n(S2

n− σ2)
d→N(0, 2σ4). In view of Slutsky’s Theorem, the same result

is valid for the unbiased version n/(n− 1)S2
n of the sample variance. From here, by another

use of the univariate delta theorem, one sees that

√
n(Sn − σ)

d→N

(
0,
µ4 − σ4

4σ2

)
.

In the previous example the asymptotic distribution of
√
n(S2

n − σ2) was obtained by

the delta method. Actually, it can also and more easily be derived by a direct application of

CLT and Slutsky’ theorem as we have illustrated in Example 1.3.2. Thus, it is not always a

good idea to apply the general theorems. However, in many cases the delta method is a good

way to package the mechanics of Taylor expansions in a transparent way. The followings are

more examples.

Example 2.3.2 (The joint limit distribution) (i) Consider the joint limit distribution

of the sample variance S2
n and the t-statistic X̄n/Sn. Again for the limit distribution it does

not make a difference whether we use a factor n or n − 1 to standardize S2
n. For simplicity

we use n. Then (S2
n, X̄n/Sn) can be written as g(X̄n, X2

n) for the map g : R2 → R2 given by

g(u, v) =

(
v − u2,

u

(v − u2)1/2

)
.

The joint limit distribution of
√
n(X̄n − α1, X2

n − α2) is derived in the preceding example,

where αk denotes the kth moment of X1. The function g is differentiable at θ = (EX1, EX
2
1 )
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provided that σ2 is positive, with derivative

[g′(α1,α2)]
T =

 −2α1 1

α2
1

(α2−α2
1)3/2

+ 1
(α2−α2

1)1/2
−α1

2(α2−α2
1)3/2

 .

It follows that the sequence
√
n(S2

n−σ2, X̄n/Sn−α1/σ) is asymptotically bivariate normally

distributed, with mean zero and covariance matrix,

[g′(α1,α2)]
T

 α2 − α2
1 α3 − α1α2

α3 − α1α2 α4 − α2
2

 g′(α1,α2).

It is easy but uninteresting to compute this explicitly; A direct application of this result is

to analyze the so-called effect size θ = µ/σ. A natural estimator of θ is X̄n/Sn.

(ii) A more commonly seen case is to derive the joint limit distribution of X̄n and S2
n.

Then, by using the multivariate delta theorem on some algebra,

√
n

 X̄n − µ

S2
n − σ2

 d→N2

 0

0

 σ2 µ3

µ3 µ4 − σ4


Thus X̄n and S2

n are asymptotically independent if the population skewness is 0 (i.e., µ3=0).

2.4 Variance-stabilizing transformations

A principal use of parametric asymptotic theory is to construct asymptotically correct con-

fidence intervals. More precisely, suppose θ̂ is a reasonable estimate of some parameter

θ. Suppose it is consistent and even asymptotically normal; i.e.,
√
n(θ̂ − θ) d→N(0, σ2(θ))

for some function σ(θ) > 0. Then, a simple calculation shows that the confidence interval

θ̂ ± σ(θ̂)zα/2/
√
n is asymptotically correct; i.e., its limiting coverage is 1− α under every θ.

A number of approximations have been made in using this interval. The exact distribution

of θ̂ has been replaced by a normal; the correct standard deviation has been replaced by

another plug-in estimate σ(θ); and the true mean of θ̂ has been replaced by θ. The plug-in

standard deviation estimate is quite often an underestimate of the true standard deviation.

And depending on the situation, θ̂ may have a nontrivial bias as an estimate of θ. Interest
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has centered on finding transformations, say g(θ̂), that (i) have an asymptotic variance func-

tion free of θ, eliminating the annoying need to use a plugin estimate, (ii) have skewness≈ 0

in some precise sense, and (iii) have bias ≈ 0 as an estimate of g(θ), again in some precise

sense.

Transformations of the first type are known as variance-stabilizing transformations (VST-

s), those of the second type are known as symmetrizing transformations (STs), and those of

the third type are known as bias-corrected transformations (BCTs). In this course, we only

elaborate on the first one, i.e., VSTs since it is of greatest interest in practice and also a

major use of the delta theorem. Unfortunately, the concept does not generalize to multipa-

rameter cases, i.e., it is generally infeasible to find a dispersion-stabilizing transformation.

It is, however, a useful tool in one-parameter problems.

Suppose Tn is sequence of statistics such that
√
n(Tn − θ)

d→N(0, σ2(θ)), σ(θ) > 0. By

the delta theorem, if g(·) is once differentiable at θ with g′(θ) 6= 0, then

√
n(g(Tn)− g(θ))

d→N(0, [g′(θ)]2σ2(θ)).

Therefore, if we want the variance in the asymptotic distribution of g(Tn) to be constant,

we set

[g′(θ)]2σ2(θ) = k2.

for some constant k. Thus, a way of deriving g(·) from σ(·) is

g(θ) = k

∫
1

σ(θ)
dθ

if σ(θ) is continuous in θ. k can obviously be chosen as any nonzero real number. In the

above, the integral is to be interpreted as a primitive. For such a g(·), g(Tn) has an asymptotic

distribution with a variance that is free of θ. Such a statistic or transformation of Tn is called

a variance-stabilizing transformation. Note that the transformation is monotone. So, if we

use g(Tn) to make an inference for g(θ), then we can automatically retransform to make an

inference for θ, which is the parameter of interest.

As long as there is an analytical formula for the asymptotic variance function in the

limiting normal distribution for Tn, and as long as the reciprocal of its square root can be
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integrated in closed form, a VST can be written down. Next, we work out some examples of

VSTs and show how they are used to construct asymptotically correct confidence intervals

for an original parameter of interest.

Example 2.4.1 Suppose X1, X2, . . ., are iid Poisson(θ). Then
√
n(X̄n−θ)

d→N(0, θ). Thus

σ(θ) =
√
θ and so a variance-stabilizing transformation is

g(θ) =

∫
k√
θ
dθ = 2k

√
θ.

Taking k = 1/2 gives that g(θ) =
√
θ is a variance-stabilizing transformation for the Poisson

case. Indeed
√
n(
√
X̄n −

√
θ)

d→N(0, 1/4). Thus, an asymptotically correct confidence

interval for
√
θ is

√
X̄n± zα

2
√
n
. This implies that an asymptotically correct confidence interval

for θ is {(√
X̄n −

zα
2
√
n

)2

,

(√
X̄n +

zα
2
√
n

)2
}
.

Of course, if
√
X̄n − zα

2
√
n
< 0, that expression should be replaced by 0. This confidence

interval is different from the more traditional interval, namely X̄n± zα√
n

√
X̄n, which goes by

the name of the Wald interval. In fact, the actual coverage properties of the interval based

on the VST are significantly better than those of the Wald interval.

Example 2.4.2 (Sample correlation revisited) Consider the same assumption in Ex-

ample 1.2.11. Firstly, by using the multivariate delta theorem, we can derive the limiting

distribution of the sample correlation coefficient rn. By taking

Tn =

(
X̄n, Ȳn,

1

n

n∑
i=1

X2
i ,

1

n

n∑
i=1

Y 2
i ,

1

n

n∑
i=1

XiYi

)T

,

θ = (EX1, EY1, EX
2
1 , EY

2
1 , EX1Y1)T ,

Σ = Cov(X1, Y1, X
2
1 , Y

2
1 , X1Y1),

and using the transformation g(u1, u2, u3, u4, u5) = (u5 − u1u2)/
√

(u3 − u2
1)(u4 − u2

2), it fol-

lows that

√
n(rn − ρ)

d→N(0, v2)
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for some v > 0, provided that the fourth moments of (X, Y ) exist. It is not possible to write

a clean formula for v in general. If (Xi, Yi) are iid N2(µX , µY , σ
2
X , σ

2
Y , ρ), then the calculation

can be done in closed form and

√
n(rn − ρ)

d→N(0, (1− ρ2)2).

However, it does not work well to base an asymptotic confidence interval directly on this

result. The transformation

g(ρ) =

∫
1

1− ρ2
dρ =

1

2
log

1 + ρ

1− ρ
= arctanh(ρ)

is a VST for rn. This is the famous arctanh transformation of Fisher, popularly known as

Fisher’s z. Thus, the sequence
√
n(arctanh(rn)−arctanh(ρ)) converges in law to the N(0, 1)

distribution. Confidence intervals for ρ are computed from the arctanh transformation as(
tanh(arctanh(rn)− zα/

√
n), tanh(arctanh(rn) + zα/

√
n)
)
.

rather than by using the asymptotic distribution of rn itself. The arctanh transformation

of rn attains normality much quicker than rn itself. (Interest students may run a small

simulation to verify it by using R) .

2.5 Approximation of moments

The delta theorem is proved by an ordinary Taylor expansion of Tn around θ. The same

method also produces approximations, with error bounds, on the moments of g(Tn). The

order of the error can be made smaller the more moments Tn has. To keep notation simple,

we give approximations to the mean and variance of a function g(Tn) below when Tn is a

sample mean.

Before proceeding, we need to address the so-called moment convergence problem. Some-

times we need to establish that moments of some sequence {Xn}, or at least some lower-order

moments, converge to moments of X when Xn
d→X. Convergence in distribution by itself

simply cannot ensure convergence of any moments. An extra condition that ensures con-

vergence of appropriate moments is uniform integrability. However, direct verification of
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its definition is usually cumbersome. Thus, here we choose to introduce some sufficient

conditions which could ensure convergence of moments.

Theorem 2.5.1 Suppose Xn
d→X for some X. If supnE|Xn|k+δ <∞ for some δ > 0, then

E(Xr
n)→ E(Xr) for every 1 ≤ r ≤ k.

Another common question is the convergence of moments in the canonical CLT for iid

random variables, which is stated in the following theorem.

Theorem 2.5.2 (von Bahr) Suppose X1, . . . , Xn are i.i.d. with mean µ and finite variance

σ2, suppose that, for some specific k, E|X1|k <∞. Suppose Z ∼ N(0, 1). Then,

E

(√
n(X̄n − µ)

σ

)r
= E(Zr) +O(

1√
n

),

for every r ≤ k.

By a similar arguments in the proof of Delta theorem, a direct application of this theorem

is the following approximations to the mean and variance of a function g(Tn).

Proposition 2.5.1 Suppose X1, X2, . . . are iid observations with a finite fourth moment.

Let E(X1) = µ and Var(X1) = σ2. Let g be a scalar function with four uniformly bounded

derivatives. Then

(i) E(g(X̄n)) = g(µ) + g′′(µ)σ2

2n
+O(n−2)

(ii) Var(g(X̄n)) = (g′(µ))2σ2

n
+O(n−2).

The variance approximation above is simply what the delta theorem says. With more deriva-

tives of g that are uniformly bounded, higher-order approximations can be given.

Example 2.5.1 Suppose X1, X2, . . . are iid Poi(µ) and we wish to estimate P (X1 = 0) =

e−µ. The MLE is e−X̄n , and suppose we want to find an approximation to the bias and

variance of e−X̄n . We apply Proposition 2.5.1 with the function g(x) = e−x so that g′(x) =
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−g′′(x) = −e−x. Plugging into the proposition, we get the approximations Bias(e−X̄n) =
µe−µ

2n
+O(n−2), and Var(e−X̄n) = µe−2µ

n
+O(n−2).

Note that it is in fact possible to derive exact expressions for the mean and variance

of e−X̄n in this case, as
∑n

i=1Xi has a Poi(nµ) distribution and therefore its mgf (moment

generating function) equals ψn(t) = E(etX̄n) = (eµ(et/n−1))n. In particular, the mean of e−X̄n

is (eµ(e−1/n−1))n. It is possible to recover the approximation for the bias given above from

this exact expression. Indeed,

(eµ(e−1/n−1))n = enµ(e−1/n−1) = enµ(
∑∞
k=1

(−1)k

k!nk
) = e−µ(1 +

µ

2n
+O(n−2))

on collecting the terms of the exponentials together. On subtracting e−µ, this reproduces

the bias approximation given above. The delta theorem produces it more easily than the

direct calculation.

2.6 Multivariate-version Edgeworth expansion

In this section, we present the a more general result regarding Edgeworth expansions, which

can be applied to many useful cases.

Theorem 2.6.1 (Edgeworth expansions) Let m be a positive integer and X1,X2, . . . be

i.i.d. random k-vectors having finite m + 2 moments. Consider Wn =
√
nh(X̄n)/σh, where

X̄n = n−1
∑

i Xi, h is a function being m+2 times continuous differentiable in a neighborhood

of µ = EX1, h(µ) = 0, σ2
h = [∇h(µ)]TVar(X1)∇h(µ) > 0. Assume the C.D.F. of X1 is

absolutely continuous. Then FWn admits the Edgeworth expansion

sup
x

∣∣∣∣∣FWn − Φ(x)−
m∑
j=1

pj(x)φ(x)

nj/2

∣∣∣∣∣ = o(
1

nm/2
),

where pj(x) is a polynomial of degree at most 3j − 1, with coefficients depending on the first

m+ 2 moments of X1. In particular,

p1(x) = −c1σ
−1
h +

1

6
c2σ
−3
h (x2 − 1),
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with c1 = 1
2

∑k
i=1

∑k
i=1 aijµij and

c2 =
k∑
i=1

k∑
j=1

k∑
l=1

aiajalµijl + 3
k∑
i=1

k∑
j=1

k∑
l=1

k∑
q=1

aiajalqµilµjq,

where ai is the ith component of ∇h(µ), aij is the (i,j)th element of the Hessian matrix

∇2h(µ), µij = E(YiYj), µijl = E(YiYjYl), and Yi is the ith component of X1 − µ.

Example 2.6.1 The t-test and the t confidence interval are among the most used tools of

statistical methodology. As such, an Edgeworth expansion for the C.D.F. of the t-statistic for

general populations is interesting and useful, and we can derive it according to Theorem 2.6.1.

Consider the studentized random variable Wn =
√
n(X̄n − µ)/σ̂, where σ̂2 = 1

n

∑n
i=1(Xi −

X̄n)2. Assuming that EX2m+4
1 < ∞ and applying multivariate Delta theorem to random

vectors (Xi, X
2
i ), i = 1, 2, . . ., and h(x, y) = (x − µ)/

√
y − x2, we obtain the Edgeworth

expansion with σh = 1

p1(x) =
1

6
κ3(2x2 + 1).

Furthermore, it can be found in Hall (1992; p73) that

p2(x) =
1

12
κ4x(x2 − 3)− 1

18
κ2

3x(x4 + 2x2 − 3)− 1

4
x(x2 + 3).
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Chapter 3

The basic sample statistics

3.1 The sample distribution function

Consider X1, X2 . . . be iid with distribution function F . For each sample of size n, a corre-

sponding sample distribution function Fn is constructed by placing at each observation Xi a

mass 1/n. Thus Fn can be represented as

Fn(x) =
1

n

n∑
i=1

I{Xi≤x},

which is always called empirical cumulative distribution function; ECDF. When Xi ∈ Rp,

the inequality above is understood as componentwise version. For simplicity, here we only

consider the case d = 1. The Fn can and does play a fundamental role in statistical inference.

In this subsection, we discuss several aspects of the properties and applications of Fn.

3.1.1 Basic properties

The simplest aspect of Fn is that, for each fixed x, Fn(x) serves as an estimator of F (x).

Proposition 3.1.1 For fixed x, x ∈ (−∞,∞),
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(i) Fn(x) is unbiased and has variance

Var[Fn(x)] =
F (x)[1− F (x)]

n
;

(ii) Fn(x) is consistent in mean square, i.e., Fn(x)
2nd→ F (x);

(iii) Fn(x)
wp1→ F (x);

(iv) Fn(x) is AN
(
F (x), F (x)[1−F (x)]

n

)
.

Proof. Note that the exact distribution of nFn(x) is BIN(F (x), n). And, (i)-(ii) follows im-

mediately; The third part is a direct application of SLLN; (iv) is a consequence of Lindeberg-

Levy CLT and (i).

3.1.2 Kolmogorov-Smirnov distance

The ECDF is quite useful for estimation of the population distribution function F . Besides

pointwise estimation of F (x), it is also of interest to characterize globally the estimation of

F by Fn. To this end, a popular useful measure of closeness of Fn to F is the Kolmogorov-

Smirnov distance

Dn = sup
−∞<x<∞

|Fn(x)− F (x)|.

This measure is also known as the sup-norm distance between Fn and F , and denoted as

||Fn(x)− F (x)||∞. The metrics such as Dn has many applications: (1) goodness-of-fit test;

(2) confidence band; (3) theoretical investigation of many other statistics of interest which

can be advantageously carried out by representing exactly and approximately as functions of

ECDF. In this respect, the following results concerning the sup-norm distance is of interest

on its own account but also provides a useful starting tool for the asymptotic analysis of

other statistics, such as quantiles, order statistics and ranks.

The next results give useful explicit bounds on probabilities of large values for the devi-

ation of Fn from F .
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Theorem 3.1.1 (DKW’s inequality) Let Fn be the ECDF based on iid X1, . . . , Xn from

a CDF F defined on R. There exists a positive constant C (not depending on F ) such that

P (Dn > z) ≤ Ce−2nz2 , z > 0, for all n = 1, 2, . . . ,

Note that this inequality may be expresses in the form:

P (
√
nDn > z) ≤ Ce−2z2 ,

which clearly demonstrate that
√
nDn = Op(1). The originally DKW inequality did not

specify the constant C, however, Massart (1990) found that C = 2 which cannot be improved.

It is stated next.

Theorem 3.1.2 (Massart) If nz2 ≥ log 2/2,

P (
√
nDn > z) ≤ 2e−2z2 , z > 0, for all n = 1, 2, . . . .

The following results useful in statistics are direct consequences of Theorem 3.1.1.

Corollary 3.1.1 Let F and C be as in Theorem 3.1.1. Then for every ε > 0,

P

(
sup
m≥n

Dm > ε

)
≤ C

1− hε
hnε ,

where hε = exp(−2ε2).

Proof.

P

(
sup
m≥n

Dm > ε

)
≤

∞∑
m=n

P (Dm > ε) ≤ C
∞∑
m=n

hmε =
C

1− hε
hnε .

Theorem 3.1.3 (Glivenko-Cantelli) Dn
wp1→ 0.

Proof. Note that
∑∞

n=1 P (Dn > z) < ∞ by DKW’s inequality. Hence, the result follows

from Theorem 1.2.1-(iv). �

From the Glivenko-Cantelli theorem, we know that Dn = op(1). However, the statistic
√
nDn may have a nondegenerate limit distribution as suggested by DKW’s inequality, and,

this is true as revealed by the following result.
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Theorem 3.1.4 (Kolmogorov) Let F be continuous. Then

lim
n→∞

P (
√
nDn ≤ z) = 1− 2

∞∑
j=1

(−1)j+1e−2j2z2 , z > 0.

A convenient feature of this asymptotic distribution is that it does not depend upon F . In

fact, for every n, if the true CDF F is continuous, then Dn has the remarkable property that

its exact distribution is completely independent of F which is stated as follows.

Proposition 3.1.2 Let F be continuous. Then
√
nDn is distribution-free in the sense that

its exact distribution does not depend on F for every fixed n.

Proof. The quickest way to see this property is to notice the identity:

√
nDn

d
=
√
n max

0≤i≤n
max

(
i

n
− U(i), U(i) −

i− 1

n

)
,

where U(1) ≤ . . . ≤ U(n) are order statistics of an independent sample from U [0, 1] and the

relation
d
= denotes “equality in law”. �

Example 3.1.1 (Kolmogorov-Smirnov confidence intervals) A method constructing

asymptotically valid intervals for a mean is due to T. W. Anderson. The construction

depends on the classical Dn distance due to Kolmogorov and Smirnov, summarized below.

By Proposition 3.1.2, we know given α ∈ (0, 1), there is a well-defined d = dα,n such that,

for any continuous CDF F , PF (
√
nDn > d) = α. Thus,

1− α = PF (
√
nDn ≤ d) = PF (

√
n||Fn − F ||∞ ≤ d)

= PF

(
|Fn − F | ≤

d√
n
,∀x
)

= PF

(
Fn(x)− d√

n
≤ F (x) ≤ Fn(x) +

d√
n
,∀x
)
.

This gives us a “confidence band” for the true CDF F . More precisely, the 1−α Kolmogorov-

Smirnov confidence band for the CDF F is

KSn,α :

{
max(0, Fn(x)− d√

n
) ≤ F (x) ≤ min(1, Fn(x) +

d√
n

)

}
.

The computation of d = dα,n is quite nontrivial, but tables are available which will be

discussed later.
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3.1.3 Applications: Kolmogorov-Smirnov and other ECDF-based

GOF tests

We know that, for large n, Fn is “close” to the true F . So if H0 : F = F0 holds, then we

should be able to test H0 by studying the deviation between Fn and F0. Any choice of a

discrepancy measure between Fn and F0 would result in a test. The utility of the test would

depend on whether one can work out the distribution theory of the test statistic. Three most

well-known discrepancy measures that have been proposed are the following

Dn = max(D+
n , D

−
n ) ≡ max

(
sup

−∞<x<∞
(Fn(x)− F0(x)), sup

−∞<x<∞
(F0(x)− Fn(x))

)
,

Cn = n

∫
(Fn(t)− F0(t))2dF0(t),

An = n

∫
(Fn(t)− F0(t))2

F0(t)(1− F0(t))
dF0(t),

which are respectively known as the Kolmogorov-Smirnov, the Cramer-von Mises, and the

Anderson-Darling test statistics.

Similar to Proposition 3.1.2, we have the following simple expressions for Cn and An.

Proposition 3.1.3 Let F0 be continuous.

Cn =
1

12n
+

n∑
i=1

(
U(i) −

i− 1
2

n

)2

,

An = −n− 2

n

n∑
i=1

[(
i− 1

2

)
logU(i) +

(
n− i+

1

2

)(
log(1− U(n−i+1))

)]
.

It is clear from these computational formulas that, for every fixed n, the sampling distribu-

tions of Cn and An under H0 do not depend on F0, provided F0 is continuous. For small n,

the true sampling distributions can be worked out exactly by discrete enumeration.

The tests introduced above based on the ECDF Fn all have the pleasant property that

they are consistent against any alternative F 6= F0. For example, the Kolmogorov-Smirnov

statistic Dn has the property that PF (
√
nDn > G−1

n (1−α))→ 1,∀F 6= F0, where G−1
n (1−α)

is the (1 − α)th quantile of the distribution of
√
nDn under F0. To explain heuristically
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why this should be the case, consider a CDF F1 6= F0, so that there exists η such that

F1(η) 6= F0(η). Let us suppose that F1(η) > F0(η). First note that G−1
n (1−α)→ λ for some

λ by Theorem 3.1.4, say G−1
n (1− α) = O(1). So,

PF1

(√
nDn > G−1

n (1− α)
)

= PF1

(
sup
t

∣∣√n(Fn(t)− F0(t))
∣∣ > G−1

n (1− α)

)
= PF1

(
sup
t

∣∣√n(Fn(t)− F1(t)) +
√
n(F1(t)− F0(t))

∣∣ > G−1
n (1− α)

)
≥ PF1

(∣∣√n(Fn(η)− F1(η)) +
√
n(F1(η)− F0(η))

∣∣ > G−1
n (1− α)

)
→ 1,

as n → ∞ since
√
n(Fn(η) − F1(η)) = Op(1) under F1, and

√
n(F1(η) − F0(η)) → ∞.

The same argument establishes the consistency of the other ECDF-based tests against all

alternatives. In contrast, we will later see that chi-square goodness-of-fit tests cannot be

consistent against all alternatives.

Example 3.1.2 (The Berk-Jones procedure) Berk and Jones (1979) proposed an in-

tuitively appealing ECDF-base method of testing the simple goodness-of-fit null hypothesis

F = F0 for some specified continuous F0 in the one-dimensional iid situation. It has al-

so led to subsequent developments of other tests for the simple goodness-of-fit problem as

generalizations of the Berk-Jones idea.

The Berk-Jones method is to transform the simple goodness-of-fit problem into a family

of binomial testing problems. More specifically, if the true underlying CDF is F , then for

any given x, as stated above, nFn(x) ∼ Bin(n, F (x)). Suppressing the x and writing p for

F (x) and p0 for F0(x), for the given x, we want to test p = p0. We can use a likelihood

ratio test corresponding to a two-sided alternative to test this hypothesis. It will require

maximization of the binomial likelihood function over all values of p that corresponds to

maximization over F (x), with x being fixed, while F is an arbitrary CDF. The likelihood is

maximized at F (x) = Fn(x), resulting in the likelihood ratio statistic

λn(x) =
Fn(x)nFn(x)(1− Fn(x))n−nFn(x)

F0(x)nFn(x)(1− F0(x))n−nFn(x)
.

60



But, of course, the original problem is to test that F (x) = F0(x),∀x. So, it would make sense

to take a supremum of the log-likelihood ratio statistics over x. The Berk-Jones statistic is

Rn = n−1 sup
x

log λn(x).

In recent literatures, some authors have found that an analog of the traditional Anderson-

Darling rank test based on log λn(x)∫
log λn(x)

Fn(t)(1− Fn(t))
dFn(t)

is much more powerful than the Anderson-Darling test and the foregoing Berk-Jones statistic.

Example 3.1.3 (The two-sample case) Suppose Xi, i = 1, . . . , n are iid samples from

some continuous CDF F1 and Yi, i = 1, . . . ,m are iid samples from some continuous CDF

F2, and all random variables are mutually independent. Let Fn1 and Fm2 denote the empirical

CDFs of the Xi’s and the Yi’s, respectively. Analogous to the one-sample case, one can define

two-sided Kolmogorov- Smirnov test statistics and other ECDF based GOF tests, such as

Dm,n = sup
−∞<x<∞

|Fn1 − Fm2|.

Am,n =
nm

n+m

∫
(Fn1(x)− Fm2(x))2

Fn,m(x)(1− Fn,m(x))
dFn,m(x),

where Fn,m(x) is the ECDF of the pooled sample X1, . . . , Xn, Y1, . . . , Ym. Similar to Propo-

sition 3.1.3, one can also show that neither the null distribution of Dm,n nor that of the Am,n

depends on F1 or F2.

3.1.4 The Chi-square test

Chi-square tests are well-known competitors to ECDF-based statistics. They discretize the

null distribution in some way and assess the agreement of observed counts to the postulated

counts, so there is obviously some loss of information and hence a loss in power. But they are

versatile. Unlike ECDF-based tests, a chi-square test can be used for continuous as well as

discrete data and in one dimension as well as many dimensions. Thus, a loss of information

is being exchanged for versatility of the principle and ease of computation.
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Suppose X1, . . . Xn are iid observations from some distribution F in and that we want

to test H0 : F = F0, F0 being a completely specified distribution. Let S be the support of

F0 and, for some given k ≥ 1, Aki, i = 1, . . . , k form a partition of S. Let p0i = PF0(Aki)

and ni = #{j : xj ∈ Aki}, i.e., the observed frequency of the partition set Aki. Therefore,

under H0, E(ni) = np0i. K. Pearson suggested that as a measure of discrepancy between

the observed sample and the null hypothesis, one compare (n1, . . . , nk) with (np01, . . . , np0k).

The Pearson chi-square statistic is defined as

K2 =
k∑
i=1

(ni − np0i)
2

np0i

.

For fixed n, certainly K2 is not distributed as a chi-square, for it is just a quadratic form

in a multinomial random vector. However, the asymptotic distribution of K2 is χ2
k−1 if H0

holds, which is stated in the following result.

Theorem 3.1.5 (The asymptotic null distribution) Suppose X1, X2, . . . Xn are iid ob-

servations from some distribution F . Consider testing H0 : F = F0 (specified). K2 d→χ2
k−1

under H0.

Proof. Define

Y = (Y1, . . . , Yk)
T =

(
n1 − np01√

np01

, . . . ,
nk − np0k√

np0k

)T
.

By the multivariate CLT, we know Y
d→Nk(0,Σ), where Σ = Ik−µµT and µ = (

√
p01, . . . ,

√
p0k)

T .

This can be easily seen by writing n = (n1, . . . , nk)
T =

∑n
i=1 Zi, where Zi = (0, . . . , 0, 1, 0, . . . , 0)T

with a single nonzero component 1 located in the jth position if the ith trial yields the jth

outcome. Note that Zi’s are iid with mean p0 = (p01, . . . , p0k)
T and covariance matrix

diag(p0)− p0p
T
0 . By the multivariate CLT, n−np0√

n

d→Nk(0, diag(p0)− p0p
T
0 ). Thus,

Y = diag−1(
√
p01, . . . ,

√
p0k)

n− np0√
n

d→Nk

(
0, diag−1(

√
p01, . . . ,

√
p0k)

[
diag(p0)− p0p

T
0

]
diag−1(

√
p01, . . . ,

√
p0k)

)
d
=Nk(0,Σ).
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Note that tr(Σ) = k − 1. Notice now that Pearson’s K2 = YTY, and if Y ∼ Nk(0,Σ) for

any general Σ, then YTY
d
= XTPTPX = XTX, where X ∼ Nk(0, diag(λ1, . . . , λk)), λi are

the eigenvalues of Σ, and PTΣP = diag(λ1, . . . , λk) is the spectral decomposition of Σ. Note

that X has the same distribution as the vector (
√
λ1η1, . . . ,

√
λkηk)

T , where ηj’s are the iid

standard normal variates. So, it follows that XTX
d
=
∑k

i=1 λiwi with wi
iid∼ χ2

1. Because the

eigenvalues of a symmetric and idempotent matrix (Σ) are either 0 or 1, for our Σ, k− 1 of

λi’s are 1 and the remaining one is zero. Since a sum of independent chi-squares is again a

chi-square, it follows that K2 d→χ2
k−1 under H0. �

Example 3.1.4 (The Hellinger statistic)We may consider a transformation g(x) that

makes the denominator in Pearson’s χ2 a constant. Specially, the differentiable function

of the form g(x) = (g1(x1), . . . , gk(xk))
T , such that the jth component of the transfor-

mation is a function only of the jth component of x. As a consequence, the gradient

∇g(x) = diag{g′1(x1), . . . , g′k(xk)}. As in the proof of Delta Theorem,
√
n(g(Z̄n)− g(p0)) is

asymptotically equivalent to
√
n∇g(p0)(Z̄n − p0), so that in Pearson’s χ2, we may replace

√
n(Z̄n − p0) by

√
n∇−1g(p0)(g(Z̄n)− g(p0)) and obtain the transformed χ2

χ2
g = n

(
g(Z̄n)− g(p0)

)T ∇−1g(p0)diag(p)∇−1g(p0)
(
g(Z̄n)− g(p0)

)
= n

k∑
i=1

(gi(ni/n)− gi(p0i))
2

p0i[g′i(p0i)]2
d→χ2

k−1.

Naturally, we are led to investigate the transformed χ2 with g(x) = (
√
x1, . . . ,

√
xk)

T .

The transformed χ2, with g′i(p0i) = 1
2
√
p0i

, becomes

χ2
H = 4n

k∑
i=1

(√
ni/n−

√
p0i

)2

.

This is known as the Hellinger χ2 because of its relation to Hellinger distance. The Hellinger

distance between two densities, f(x) and g(x), is d(f, g), where

d2(f, g) =

∫ (√
f(x)−

√
g(x)

)2

dx.

Let F1 be a distribution different from F0 and let p1i = PF1(Aki). Clearly, if by chance

p1i = p0i ∀i = 1, . . . k (which is certainly possible), then a test based on the empirical
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frequencies of Aki cannot distinguish F0 from F1, even asymptotically. In such a case, the

χ2 test cannot be consistent against F1. However, otherwise it will be consistent, as can be

seen easily from the following result.

Proposition 3.1.4 Under F1,

(i) K2

n

p→
∑k

i=1
(p1i−p0i)2

p0i
.

(ii) If
∑k

i=1
(p1i−p0i)2

p0i
> 0, then K2

P

p→∞ and hence the Pearson χ2 test is consistent against

F1.

This is evident as K2 =
∑k

i=1
(ni−np0i)2

np0i
= n

∑k
i=1

(ni/n−p0i)2
p0i

. But n/n
p→(p11, . . . p1k) ≡ p1

under F1. Therefore, by the continuous mapping theorem, K2 p→n
∑k

i=1
(p1i−p0i)2

p0i
. Thus, for

a fixed alternative F1 such that the vector p1 6= p0, Pearson’s χ2 cannot have a nondegenerate

limit distribution under F1. However, if the alternative is very close to the null, in the sense

of being a Pitman alternative, there is a nondegenerate limit distribution.

To obtain an approximation to the power, we consider the behavior of K2 under a

sequence of local alternatives to the null hypothesis. In particular, take

p1i = p0i + δin
−1/2, 1 ≤ i ≤ k.

Note that because both p1 and p0 are probability vectors, 1Tδ =
∑

i δi = 0. Then, we

have the following result which allows us to approximate the power of the χ2 test at a close

alternative by using the noncentral χ2 CDF as an approximation to the exact CDF of χ2

under the alternative.

Theorem 3.1.6 (The asymptotic alternative distribution) Under H1, say p = p1 =

p0 + δn−1/2. Then K2 d→χ2
k−1(λ), where λ =

∑k
i=1 δ

2
i /p0i is the noncentrality parameter.

Proof. Recall the definition in the proof of Theorem 3.1.5. It can be easily seen that

Y
d→Nk(diag−1(

√
p01, . . . ,

√
p0k)δ,Σ) by using the Slutsky’s Theorem and CLT. Since Σ is

symmetric and idempotent,

K2 = YTY
d→χ2

k−1

(
k∑
i=1

δ2
i /p0i

)
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by using the Cochran Theorem (or derived by a similar arguments in the proof of Theorem

3.1.5). �

A direct application of this theorem is to calculate the approximate power of K2 test.

Suppose that the critical region is {K2 > c}, where the choice of c for a level α test would

be based on the null hypothesis asymptotic χ2
k−1 distribution of K2. Then the approximate

power of K2 at the alternative H1 is given by calculating the probability that a random

variable having the distribution χ2
k−1

(
n
∑k

i=1
1
p0i

(nj/n− p0i)
2
)

exceeds the value c, in which

the expected value p1i in the noncentrality parameter is replaced by the observed frequencies

nj/n.

3.2 The sample moments

Let X1, X2 . . . be iid with distribution function F . For k ∈ N+, the kth moment and central

moment of F are defined as

αk =

∫ ∞
−∞

xkdF (x) = EXk
1

µk =

∫ ∞
−∞

(x− α1)kdF (x) = E[(X1 − α1)k],

respectively. α1 and µ2 are certainly the mean and variance of F respectively. Also, µ1 = 0.

αk and µk represent important characteristics for describing F . Natural estimators of these

parameters are given by the corresponding moments of the sample distribution function

Fn(x) = 1
n

∑n
i=1 I{Xi≤x}, say

ak =

∫ ∞
−∞

xkdFn(x) =
1

n

n∑
i=1

Xk
i , k = 1, 2, . . . ,

mk =

∫ ∞
−∞

(x− α1)kdFn(x) =
1

n

n∑
i=1

(Xi − a1)k, k = 2, 3, . . . .

Since Fn possesss desirable properties as an estimator of F , it could be expected that

the sample moment ak and mk posses desirable features as estimators of αk and µk. The

first result is the strong mean square consistencies regarding the ak.
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Proposition 3.2.1 (i) ak
wp1→ αk; (ii) E(ak) = αk; (iii) Var(ak) =

α2k−α2
k

n
.

By noting that ak is a mean of iid random variables having mean αk and variance α2k−α2
k,

the result follows immediately by SLLN. Furthermore, because the vector (a1, . . . , ak)
T is

the mean of the iid vectors (Xi, . . . , X
k
i )T , 1 ≤ i ≤ n, we have the following asymptotically

normal result.

Proposition 3.2.2
√
n(a1−α1, . . . , ak−αk)T is ANk(0,Σ), where Σ = (σij)k×k with σij =

αi+j − αiαj.

Certainly, it is implicitly assumed that all stated moments are finite. This proposition is a

direct application of the multivariate CLT Theorem 1.3.2.

To deduce the the properties of mk, as seen in Example 1.3.2, it is advantageous to

consider the closely related random variables bk = 1
n

∑n
i=1(Xi−α1)k, k = 1, 2, . . .. The same

arguments employed in dealing with the ak’s immediately yield

Proposition 3.2.3 (i) bk
wp1→ µk; (ii) E(bk) = µk; (iii) Var(bk) =

µ2k−µ2k
n

; (iv)
√
n(b1 −

µ1, . . . , bk − µk)T is ANk(0, Σ̃), where Σ̃ = (σ̃ij)k×k with σ̃ij = µi+j − µiµj.

The following result concerns the consistency and the asymptotically normality of the

vector m1, . . . ,mk.

Theorem 3.2.1 Suppose that µ2k <∞.

(i) mk
wp1→ µk;

(ii) The random vector
√
n(m2−µ2, . . . ,mk−µk)T is ANk−1(0,Σ∗), where Σ∗ = (σ∗ij)(k−1)×(k−1)

with σ∗ij = µi+j+2 − µi+1µj+1 − (i+ 1)µiµj+2 − (j + 1)µi+2µj + (i+ 1)(j + 1)µiµjµ2.

Proof. Instead of dealing with mk directly, we exploit the connection between mk and bj’s.

Writing

mk =
1

n

n∑
i=1

(Xi − a1)k =
1

n

n∑
i=1

k∑
j=0

Cj
k(Xi − α1)j(α1 − a1)k−j,
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we have

mk =
k∑
j=0

Cj
k(−1)k−jbjb

k−j
1 ,

where we define b0 = 1. (i). By noting that µ1 = 0, this result follows from (i) of Proposition

3.2.3 and the CMT; (ii) This is again an application of the multivariate Delta Theorem.

Consider the map g : Rk → Rk−1 given by

g(t1, . . . , tk) =

(
2∑
j=0

Cj
2(−1)2−jtjt

2−j
1 , . . . ,

k∑
j=0

Cj
k(−1)k−jtjt

k−j
1

)T

.

Let θ = (0, µ2, . . . , µk)
T and g(θ) = (µ2, . . . , µk)

T . A direct evaluation of ∇g at θ yields

∇Tg|θ =



−2µ1 1 0 · · · 0
...

. . .

−(i+ 1)µi 0 · · · 1 · · ·
...

...

−kµk−1 0 · · · 1


.

It follows that the sequence
√
n(m2−µ2, . . . ,mk−µk)T is asymptotically normally distributed,

with mean zero and covariance matrix,

Σ∗ = ∇Tg|θΣ̃∇g|θ.

The assertion follows immediately from some simple algebras on ∇Tg|θΣ̃∇g|θ. �.

A most direct result from this theorem is the asymptotical normality of the sample

variance (by choosing k = 2 in (ii)) which is studied detailedly in Example 1.3.2.

3.3 The sample quantiles

A few selected sample percentiles provide useful diagnostic summaries of the full ECDF. For

example, the three quartiles of the sample already provide some information about symmetry

of the underlying population, and extreme percentiles give information about the tail. So

asymptotic theory of sample percentiles is of great interest in statistics. In this section, we
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present a selection of the fundamental results on the asymptotic theory for percentiles. The

iid case and then an extension to the regression setup are discussed.

Suppose X1, . . . , Xn are iid real-valued random variables with CDF F . We denote the

order statistics of X1, . . . , Xn by X(1), . . . , X(n). For 0 < p < 1, the pth quantile of F is

defined as F−1(p) ≡ ξp = inf{x : F (x) ≥ p}. Note that ξp satisfies F (ξp−) ≤ p ≤ F (ξp).

Correspondingly, the sample quantile is defined as the pth quantile of the ECDF Fn, that

is, F−1
n (p) ≡ ξ̂p = inf{x : Fn(x) ≥ p}. Also, the sample quantile can be expressed as X(dnpe)

where dke denotes the smallest integer greater than or equal to k. Thus, the discussion of

quantile could be carried out formally in terms of order statistics.

3.3.1 Basic results

The first result is a probability inequality for |ξ̂p − ξp| which implies that ξ̂p is strongly

consistent, say ξ̂p
wp1→ ξp.

Theorem 3.3.1 Let X1, . . . , Xn be iid random variables from a CDF F satisfying p < F (ξp+

ε) for any ε > 0. Then, for every ε > 0 and n = 1, 2, . . . ,

P (|ξ̂p − ξp| > ε) ≤ 2Ce−2nδ2ε ,

where δε = min{F (ξp + ε)− p, p−F (ξp− ε)} and C is the same constant in DKW inequality.

Proof. Let ε > 0 be fixed. Note that G(x) ≥ t iff x ≥ G−1(t) for any CDF G on R. Hence

P (ξ̂p > ξp + ε) = P (p > Fn(ξp + ε))

= P (F (ξp + ε)− Fn(ξp + ε) > F (ξp + ε)− p)

≤ P (D(Fn, F ) > δε) ≤ Ce−2nδ2ε

where the last inequality follows from DKW’s inequality (Theorem 3.1.1). Similarly,

P (ξ̂p < ξp − ε) ≤ Ce−2nδ2ε .

This proves the assertion. �
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By this inequality, the strong consistency of ξ̂p can be established easily from Theorem

1.2.1-(iv).

Remark 3.3.1 The exact distribution of ξ̂p can be obtained as follows. Since nFn(t) has

the binomial distribution BIN(F (t), n) for any t ∈ R,

P (ξ̂p ≤ t) = P (Fn(t) ≥ p)

=
n∑

i=lp

Ci
n[F (t)]i[1− F (t)]n−i,

where lp = dnpe. If F has a PDF f , then ξ̂p has the PDF

φn(t) = nC
lp−1
n−1 [F (t)]lp−1[1− F (t)]n−lpf(t).

The following result provides an asymptotic distribution for
√
n(ξ̂p − ξp).

Theorem 3.3.2 Let X1, . . . , Xn be iid random variables from a CDF F . Suppose that F is

continuous at ξp.

(i) If there exists F ′(ξp−) > 0, then for any t < 0,

lim
n→∞

P

( √
n(ξ̂p − ξp)√

p(1− p)/F ′(ξp−)
≤ t

)
= Φ(t);

(ii) If there exists F ′(ξp+) > 0, then for any t > 0,

lim
n→∞

P

( √
n(ξ̂p − ξp)√

p(1− p)/F ′(ξp+)
≤ t

)
= Φ(t);

(iii) If F ′(ξp) exists and is positive, then

√
n(ξ̂p − ξp)

d→N

(
0,
p(1− p)
[F ′(ξp)]2

)
.

Proof. If F is differentiable at ξp, then F ′(ξp−) = F ′(ξp+) = F ′(ξp). Thus, part (iii) is a

direct consequence of (i) and (ii). Note that the proofs of (i) and (ii) are similar. Thus, we

only give a proof for (ii).
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Let t > 0, pnt = F (ξp+tσ+
F n
−1/2), cnt =

√
n(pnt−p)/

√
pnt(1− pnt), and Znt = [Bn(pnt)−

npnt]/
√
npnt(1− pnt), where σ+

F =
√
p(1− p)/F ′(ξp+) and Bn(q) denotes a random variable

having the binomial distribution BIN(q, n). Then,

P
(
ξ̂p ≤ ξp + tσ+

F n
−1/2

)
= P

(
p ≤ Fn(ξp + tσ+

F n
−1/2)

)
= P (Znt ≥ −cnt).

Under the assumed conditions on F , pnt → p and cnt → t. Hence, the result follows from

P (Znt < −cnt)− Φ(−cnt)→ 0.

But this follows from the CLT and Polya’s theorem (Theorem 1.2.7-(ii)). �

Remark 3.3.2 If both F ′(ξp+) and F ′(ξp−) exist and are positive, but F ′(ξp+) 6= F ′(ξp−),

then the asymptotic distribution of
√
n(ξ̂p−ξp) has the CDF Φ(t/σ−F )I{−∞<t<0}+Φ(t/σ+

F )I{0≤t<∞},

a mixture of two normal distributions, where σ−F =
√
p(1− p)/F ′(ξp−). An example of such

a case when p = 1
2

is

F (x) = xI{0≤x< 1
2
} + (2x− 1

2
)I{ 1

2
≤x< 3

4
} + I{ 3

4
≤x<∞}.

Example 3.3.1 Suppose X1, X2, . . . , are iid N(µ, 1). Let Mn = ξ̂ 1
2

denote the sample

median. Since the standard normal density φ(x) at zero equals 1/
√

2π, it follows from

Theorem 3.3.2 that
√
n(Mn−µ)

d→N(0, π
2
). On the other hand,

√
n(X̄n−µ)

d→N(0, 1). The

ratio of the variances in the two asymptotic distributions, 2/π, is called the ARE (asymptotic

relative efficiency) of Mn relative to X̄n. Thus, for normal data, Mn is less efficient than X̄n.

3.3.2 Bahadur’s representation

The sample median of an iid sample from some CDF F is clearly not a linear statistic;

i.e., it is not a function of the form
∑n

i=1 hi(Xi). In 1966, Bahadur proved that the sample

median, and more generally any fixed sample percentile, is almost a linear statistic. The

result in Bahadur (1966) not only led to an understanding of the probabilistic structure of

percentiles but also turned out to be an extremely useful technical tool. For example, as
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we shall shortly see, it follows from Bahadur’s result that, for iid samples from a CDF F ,

under suitable conditions not only are X̄n, ξ̂ 1
2

marginally asymptotically normal but they

are jointly asymptotically bivariate normal. The result derived in Bahadur (1966) is known

as the Bahadur representation of quantiles.

Theorem 3.3.3 (Bahadur’s representation) Let X1, . . . , Xn be iid random variables

from a CDF F . Suppose that F ′(ξp) exists and is positive. Then

ξ̂p = ξp +
F (ξp)− Fn(ξp)

F ′(ξp)
+ op(

1√
n

).

Proof. Let t ∈ R, ξnt = ξp + tn−1/2, Zn(t) =
√
n[F (ξnt) − Fn(ξnt)]/F

′(ξp), and Un(t) =
√
n[F (ξnt)− Fn(ξ̂p)]/F

′(ξp). It can be shown that

Zn(t)− Zn(0) = op(1). (3.1)

Note that |p− Fn(ξ̂p)| ≤ n−1. Then,

Un(t) =
√
n[F (ξnt)− p+ p− Fn(ξ̂p)]/F

′(ξp) (3.2)

=
√
n[F (ξnt)− p]/F ′(ξp) +O(n−1/2)→ t

Let ηn =
√
n(ξ̂p − ξp). Then for any t ∈ R and ε > 0,

P (ηn ≤ t, Zn(0) ≥ t+ ε) = P (Zn(t) ≤ Un(t), Zn(0) ≥ t+ ε)

≤ P (|Zn(t)− Zn(0)| ≥ ε/2) + P (|Un(t)− t| ≥ ε/2)→ 0

by (3.1) and (3.2). Similarly,

P (ηn ≥ t+ ε, Zn(0) ≤ t)→ 0.

It follows that ηn − Zn(0) = op(1) with Lemma 3.3.1 given below, which is the same as the

assertion. �

Lemma 3.3.1 Let {Xn} and {Yn} be two sequences of random variables such that Xn is

bounded in probability and, for any real number t and ε > 0, limn[P (Xn ≤ t, Yn ≥ t + ε) +

P (Xn ≥ t+ ε, Yn ≤ t)] = 0. Then Xn − Yn
p→ 0.
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Proof. For any ε > 0, there exists and M > 0 such that P (|Xn| > M) ≤ ε for any n, since

Xn is bounded in probability. For this fixed M , there exists an N such that 2M/N < ε/2.

Let ti = −M + 2Mi/N, i = 0, 1, . . . , N . Then,

P (|Xn − Yn| ≥ ε) ≤ P (|Xn| ≥M) + P (|Xn| < M, |Xn − Yn| ≥ ε)

≤ ε+
N∑
i=1

P (ti−1 ≤ Xn ≤ ti, |Xn − Yn| ≥ ε)

≤ ε+
N∑
i=1

P (Yn ≤ ti−1 − ε/2, ti−1 ≤ Xn) + P (Yn ≥ ti + ε/2, Xn ≤ ti).

This, together with the given condition, implies that

lim sup
n
P (|Xn − Yn| ≥ ε) ≤ ε.

Since ε is arbitrary, we conclude that Xn − Yn
p→ 0. �

Remark 3.3.3 Actually, Bahadur gave an a.s. order for op(n
−1/2) under the stronger as-

sumption that F is twice differentiable at ξp with F ′(ξp) > 0. The theorem stated here is in

the form later given in Ghosh (1971). The exact a.s. order was shown to be n−3/4(log log n)3/4

by Kiefer (1967) in a landmark paper. However, the weaker version presented here suffices

for proving the following CLTs.

The Bahadur representation easily leads to the following two joint asymptotic distributions.

Corollary 3.3.1 Let X1, . . . , Xn be iid random variables from a CDF F having positive

derivatives at ξpj , where 0 < p1 < · · · < pm < 1 are fixed constants. Then

√
n[(ξ̂p1 , . . . , ξ̂pm)− (ξp1 , . . . , ξpm)]

d→Nm(0,D),

where D is the m×m symmetric matrix with element

Dij = pi(1− pj)/[F ′(ξpi)F ′(ξpj)], i ≤ j.

Proof. By Theorem 3.3.3, we know that the
√
n[(ξ̂p1 , . . . , ξ̂pm)− (ξp1 , . . . , ξpm)]T is asymp-

totically equivalent to
√
n[

F (ξp1 )−Fn(ξp1 )

F ′(ξp1 )
, . . . , F (ξpm )−Fn(ξpm )

F ′(ξpm )
]T and thus we only need to derive
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the joint asymptotic distribution of
√
n[F (ξpi )−Fn(ξpi )]

F ′(ξpi )
, i = 1, . . . ,m. By the definition of ECD-

F, the sequence of [Fn(ξp1), . . . , Fn(ξpm)]T can be represented as the sum of independent

random vectors
1

n

n∑
i=1

[I{Xi≤ξp1}, . . . , I{Xi≤ξpm}]
T .

Thus, the result immediately follows from the multivariate CLT by using the fact that

E(I{Xi≤ξpk}) = F (ξpk), Cov(I{Xi≤ξpk}, I{Xi≤ξpl}) = pk(1− pl), k ≤ l.

Example 3.3.2 (Interquartile range; IQR) One application of Corollary 3.3.1 is the

derivation of the derivation of the asymptotic distribution of the interquartile range ξ̂0.75 −
ξ̂0.25. It is widely used as a measure of the variability among Xi’s. Use of such an estimate

is quite common when normality is suspect. It can be shown that

√
n[(ξ̂0.75 − ξ̂0.25)− (ξ0.75 − ξ0.25)]

d→N(0, σ2
F )

with

σ2
F =

3

16[F ′(ξ0.75)]2
+

3

16[F ′(ξ0.25)]2
− 1

8F ′(ξ0.75)F ′(ξ0.25)
.

In particular, if X1, . . . , Xn are iid N(0, σ2), then, by using the general result above, on

some algebra,
√
n(IQR − 1.35σ)

d→N(0, 2.48σ2). Consequently, for normal data, IQR/1.35

is a consistent estimate of σ (the 1.35 value of course is an approximation) with asymptotic

variance 2.48σ2/1.352 = 1.36σ2. On the other hand,
√
n(Sn − σ)

d→N(0, 0.5σ2). The ratio

of the asymptotic variances, namely 0.5/1.36 = 0.37, is the ARE of the IQR-based estimate

relative to Sn. Thus, for normal data, one is better off using Sn. For populations with thicker

tails, IQR-based estimates can be more efficient.

Example 3.3.3 (Gastwirth estimate) Suppose X1, . . . , Xn are continuous and distribut-

ed as iid F (x−µ), where F (−x) = 1−F (x) and we wish to estimate the location parameter

µ. An obvious idea is to use a convex combination of order statistics
∑n

i=1 cniX(i). Such

statistics are called L-statistics. A particular L-statistic that was found to have attractive

versatile performance is the Gastwirth estimate

µ = 0.3X(n
3

) + 0.4X(n
2

) + 0.3X( 2n
3

).
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This estimate is asymptotically normal with an explicitly available variance formula since we

know from our general theorem that [X(n
3

), X(n
2

), X( 2n
3

)]
T is jointly asymptotically trivariate

normal under mild conditions.

Corollary 3.3.2 Let X1, . . . Xn be iid from a CDF F . Let 0 < p < 1 and suppose VarF (X1) <

∞. If F is differentiable at ξp with F ′(ξp) = f(ξp) > 0, then

√
n
(
X̄n − µ, F−1

n (p)− ξp
) d→N2(0,Σ),

where

Σ =

 Var(X1) p
f(ξp)

EF (X1)− 1
f(ξp)

∫
x≤ξp xdF (x)

p
f(ξp)

EF (X1)− 1
f(ξp)

∫
x≤ξp xdF (x) p(1−p)

f2(ξp)

 .

The proof of this corollary is very similar to Corollary 3.3.1 and hence left as an exercise.

Example 3.3.4 As an application of this result, consider iid N(µ, 1) data. Take p = 1
2

so that Corollary 3.3.2 gives the joint asymptotic distribution of the sample mean and the

sample median. The covariance entry in the matrix Σ equals (assuming without any loss

of generality that µ = 0) −
√

2π
∫ 0

−∞ xφ(x)dx = 1. Therefore, the asymptotic correlation

between the sample mean and median in the normal case is
√

2
π

= 0.7979, a fairly strong

correlation.

3.3.3 Confidence intervals for quantiles

Since the population median and more generally population percentiles provide useful sum-

maries of the population CDF, inference for them is of clear interest. Confidence intervals

for population percentiles are therefore of interest in inference. Suppose X1, X2, . . . , Xn
iid∼ F

and we wish to estimate ξp = F−1(p) for some 0 < p < 1. The corresponding sample

percentile ξ̂p = F−1
n (p) is typically a fine point estimate for p. But how does one find a

confidence interval of guaranteed coverage?

74



One possibility is to use the quantile transformation and observe that

(F (X(1)), F (X(2)), . . . , F (X(n)))
d
=(U(1), U(2), . . . , U(n)),

where U(i) is the ith order statistic of a U [0, 1] random sample, provided F is continuous.

Therefore, for given 1 ≤ i1 < i2 ≤ n,

PF
(
X(i1) ≤ ξp ≤ X(i2)

)
= PF

(
F (X(i1)) ≤ p ≤ F (X(i2))

)
= P

(
U(i1) ≤ p ≤ U(i2)

)
≥ 1− α

if i1, i2 are appropriately chosen. The pair (i1, i2) can be chosen by studying the joint density

of (U(i1), U(i2)), which has an explicit formula. However, the formula involves incomplete Beta

functions, and for certain n and α, the actual coverage can be substantially larger than 1−α.

This is because no pair (i1, i2) may exist such that the event involving the two uniform order

statistics has exactly or almost exactly 1 − α probability. This will make the confidence

interval [X(i1), X(i2)] larger than one wishes and therefore less useful.

Alternatively, under previously stated conditions,

√
n(ξ̂p − ξp)

d→N

(
0,
p(1− p)
[F ′(ξp)]2

)
.

Hence, an asymptotically correct 1 − α confidence interval for ξp is ξ̂p ± zα√
n

√
p(1−p)
F ′(ξp)

. This

confidence interval typically will have an asymptotic 1−α coverage probability. The interval

has a simplistic appeal and is computed much more easily than the interval based on order

statistics.

However, an obvious drawback of this procedure is that F ′(ξp) must be known in advance.

Say, this method is not asymptotically distribution-free. A remedy is given as follows. Before

proceeding, we need a refinement of Bahadur representation.

Theorem 3.3.4 Let X1, . . . , Xn be iid random variables from a continuous CDF F . Suppose

that for 0 < p < 1, F ′(ξp) exists and is positive. Let kn be a sequence of integers satisfying

1 ≤ kn ≤ n and kn/n = p+ cn−1/2 + o(n−1/2) with a constant c. Then

√
n(X(kn) − ξ̂p)

p→ c

F ′(ξp)
.
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Proof. Let t ∈ R, ξnt = ξp+tn
−1/2, ηn =

√
n(ξ̂ kn

n
−ξp), Zn(t) =

√
n[F (ξnt)−Fn(ξnt)]/F

′(ξp),

and Un(t) =
√
n[F (ξnt)− Fn(ξ̂ kn

n
)]/F ′(ξp). By using similar arguments in proving Theorem

3.3.3, it is not difficult to show that for any t ∈ R and ε > 0,

P

(
ηn ≤ t, Zn(0) +

c

F ′(ξp)
≥ t+ ε

)
→ 0

It follows that ηn = Zn(0) + c
F ′(ξp)

+ op(1). Thus, we have

X(kn) − ξp =
kn/n− Fn(ξp)

F ′(ξp)
+ op(n

−1/2).

By Theorem 3.3.3 again, we know

ξ̂p − ξp =
p− Fn(ξp)

F ′(ξp)
+ op(n

−1/2).

The result follows by taking the difference of the two previous equations. �

Using this theorem, we can obtain an asymptotic 1− α confidence interval for ξp.

Corollary 3.3.3 Assume the conditions in Theorem 3.3.4. Let {k1n} and {k2n} be two

sequences of integers satisfying 1 ≤ k1n < k2n ≤ n,

k1n/n = p− zα/2
√
p(1− p)/n+ o(n−1/2)

k1n/n = p+ zα/2
√
p(1− p)/n+ o(n−1/2),

where zα = Φ−1(1−α). Then, the confidence interval C(X) = [X(k1n), X(k2n)] has the property

that P (ξp ∈ C(X)) does not depend on F and

lim
n→∞

P (ξp ∈ C(X)) = 1− α.

Proof. Note that

PF
(
X(k1n) ≤ ξp ≤ X(k2n)

)
= PF

(
F (X(k1n)) ≤ p ≤ F (X(k2n))

)
= P

(
U(k1n) ≤ p ≤ U(k2n)

)
and thus P (ξp ∈ C(X)) does not depend on F .
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By Theorems 3.3.4, 3.3.2 and Slutsky’s Theorem,

P (X(k1n) > ξp) = P

(
ξ̂p − zα/2

√
p(1− p)

F ′(ξp)
√
n

+ op(n
−1/2) > ξp

)

= P

( √
n(ξ̂p − ξp)√

p(1− p)/F ′(ξp)
+ op(1) > zα/2

)
→ 1− Φ(zα/2) = α/2.

Similarly, P (X(k2n) < ξp)→ α/2 which completes the proofs. �

3.3.4 Quantile regression

Least squares estimates in regression minimize the sum of squared deviations of the observed

and the expected values of the dependent variable. In the location-parameter problem, this

principle would result in the sample mean as the estimate. If instead one minimizes the

sum of the absolute values of the deviations, one would obtain the median as the estimate.

Likewise, one can estimate the regression parameters by minimizing the sum of the absolute

deviations between the observed values and the regression function.

For example, if the model says yi = xTi β+εi, then one can estimate the regression vector

β by minimizing
∑n

i=1 |yi − xTi β|, a very natural idea. This estimate is called the least

absolute deviation (LAD) regression estimate. While it is not as good as the least squares

estimate when the errors are exactly normal, it outperforms the least squares estimate for

a variety of error distributions that are heavy-tailed. Generalizations of the LAD estimate,

analogous to sample percentiles, are called quantile regression estimate. A good reference

for the material in this section and proofs of theorems below is Koenker (2005).

Definition 3.3.1 For 0 < p < 1, the pth quantile regression estimate is defined as

β̂QR = arg min
β

n∑
i=1

p|yi − xTi β|I{yi≥xTi β} + (1− p)|yi − xTi β|I{yi<xTi β}.

We always write the equivalent definition

β̂QR = arg min
β

n∑
i=1

ρp(yi − xTi β),
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where ρp(t) = pt+ +(1−p)t− is the so-called check function where subscripts + and − stand

for the positive and negative parts, respectively. The following theorem describe the limiting

distribution of quantile regression estimate. There are some neat analogies in this result to

limiting distribution of the sample quantile for iid data.

Theorem 3.3.5 Let yi = xTi β + εi, where εi
iid∼ F , with F having median zero. Let 0 < p <

1, and let β̂QR be any pth quantile regression estimate. Suppose F has a strictly positive

derivative f(ξp) at ξp. Then,

√
n(β̂QR − β − ξpe1)

d→Np(0, νΣ
−1),

where e1 = (1, 0, . . . , 0)T , Σ = limn
1
n
XTX (assumed to exist), and ν = p(1−p)

f2(ξp)
.
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Chapter 4

Asymptotics in parametric inference

In this chapter, we treats asymptotic statistics which arises in connection with estimation

or hypothesis testing relative to a parametric family of possible distributions for the data.

In this respect, maximum likelihood inference might be one of the most popular methods.

Many think that maximum likelihood is the greatest conceptual invention in the history of

statistics. Although in some high-or infinite-dimensional problems, computation and per-

formance of maximum likelihood estimates (MLEs) are problematic, in a vast majority of

models in practical use, MLEs are about the best that one can do. They have many asymp-

totic optimality properties that translate into fine performance in finite samples. Before

elaborating on maximum likelihood estimates and testings, we first consider the concept of

asymptotic optimality of point estimators in parametric models.

4.1 Asymptotic efficient estimation

Let θ̂n be a sequence of estimators of θ based on a sequence of samples X = {X1, . . . , Xn}
whose distributions are in a parametric family indexed by θ. Suppose that as n→∞

(θ̂n − θ) ∼ ANk(0,Vn(θ)), (4.1)
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where for each n, Vn(θ) is a k × k positive definite matrix depending on θ. If θ is one-

dimensional (k = 1), then Vn(θ) is the asymptotic variance as well as the asymptotic MSE

of θ̂n. When k > 1, Vn(θ) is called the asymptotic covariance matrix of θ̂n and can be used

as a measure of asymptotic performance of estimators.

If θ̂jn satisfies (4.1) with asymptotic covariance matrix Vjn(θ), j = 1, 2, and V1n(θ) ≤
V2n(θ) (in the sense that V2n(θ)−V1n(θ) is nonnegative definite) for all θ ∈ Θ, then θ̂1n is

said to be asymptotically more efficient than θ̂2n. When Xi’s are iid, Vn(θ) is usually of the

form n−δV(θ) for some δ > 0 (=1 in the majority of cases) and a positive definite matrix

V(θ) that does not depend on n.

Definition 4.1.1 Assume that the Fisher information matrix

In(θ) = E

 ∂

∂θ

∑
i

log fθ(Xi)

[
∂

∂θ

∑
i

log fθ(Xi)

]T
is well defined and positive definite for every n. A sequence of estimators θ̂n satisfying (4.1)

is said to be asymptotically efficient or asymptotically optimal iff Vn(θ) = [In(θ)]−1.

Suppose that we are interested in estimating β = g(θ), where g is a differentiable

function from Rk to Rp, 1 ≤ p ≤ k. If θ̂n satisfies (4.1), then by Delta Theorem, β̂n = g(θ̂n) is

asymptotically distributed as Np(β, [∇g(θ)]TVn(θ)∇g(θ)). Thus, the information inequality

[∇g(θ)]TVn(θ)∇g(θ) ≥ [Ĩn(β)]−1,

where Ĩn(β) is the Fisher information matrix about β. If p = k and g is one-to-one, then

[Ĩn(β)]−1 = [∇g(θ)]T [In(θ)]−1∇g(θ),

and, therefore, β̂n is asymptotically efficient iff θ̂n is asymptotically efficient. For this reason,

we can focus on the estimation of θ only.

Remark 4.1.1 (The super-efficiency and Hodges estimator)

It was first believed as folklore that the MLE under regularity conditions on the un-

derlying distribution is asymptotically the best for every value of θ0 ∈ Θ; i.e., if an MLE
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θ̂n exists and
√
n(θ̂n − θ0)

d→N(0, I−1(θ0)), and if another competing sequence Tn satisfies
√
n(Tn − θ0)

d→N(0, V (θ0)), then for every θ0, V (θ0) ≥ I−1(θ0).

It was a major shock when in 1952 Hodges gave an example that destroyed this belief and

proved it to be false even in the normal case. Hodges, in a private communication to LeCam,

produced an estimate Tn that beats the MLE X̄n locally at some θ0, say θ0 = 0. Later, in

a very insightful result, LeCam (1953) showed that this can happen only on Lebesgue-null

sets of θ. An excellent reference for this topic is van der Vaart (1998).

Let X1, . . . , Xn
iid∼ N(θ, 1). Define an estimate Tn as

θ̃ =

 X̄n, X̄n ≥ n−1/4,

tX̄n, X̄n < n−1/4,

where we choose 0 < t < 1. We are interested in estimating the population mean. If X̄n is

not close to 0, we simply take the sample mean as the estimator. If we know that it is pretty

close to 0, we can shrink it further to make it closer to 0. Thus, the resulting estimator

should be more efficient than the sample mean X̄n at 0. Of course, we can take other values

than 0, the same thing will happen too. Now, let’s find the asymptotic distribution of θ̃. If

θ = 0, then we can write

√
nθ̃ =

√
n
[
X̄nI{|X̄n|≥n−1/4} + tX̄nI{|X̄n|<n−1/4}

]
=
√
n
[
tX̄n + (1− t)X̄nI{|X̄n|≥n−1/4}

]
= tYn + (1− t)YnI{|Yn|≥n1/4}

where Yn =
√
nX̄n ∼ N(0, 1), and hence tYn ∼ N(0, t2). Now let us look at the second term

Wn = YnI{|Yn|≥n1/4}. Since

(E|Wn|)2 ≤ E(Y 2
n )E(I2

{|Yn|≥n1/4})

= P (|Yn| ≥ n1/4) ≤ E|Yn|2/n1/2 = n−1/2 → 0,

which implies Wn
p→ 0. By Slutsky’s theorem, we get

√
nθ̃

d→N(0, t2), if θ = 0.
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Similarly, when θ 6= 0, we can write

√
nθ̃ = Yn + (t− 1)YnI{|Yn|<n1/4}.

Again, Yn −
√
nθ =

√
n(X̄n − θ) ∼ N(0, 1). Now it remains to show that YnI{|Yn|<n1/4}

p→ 0.

For any 0 < ε < n1/4,

P (|YnI{|Yn|<n1/4}| > ε) ≤ P (n1/4I{|Yn|<n1/4} > ε)

= P (I{|Yn|<n1/4} > ε/n1/4)

= P (|Yn| < n1/4)

= P (−n1/4 < Yn < n1/4)

= Φ(−
√
nθ + n1/4)− Φ(−

√
nθ − n1/4)→ 0.

By Slutsky’s theorem again, we get
√
n(θ̃ − θ) d→N(0, 1). Combining the above two cases,

we get

√
n(θ̃ − θ) d→

N(0, t2), θ = 0,

N(0, 1), θ 6= 0,

In the case of θ = 0, the usual asymptotic Cramer-Rao theorem does not hold, since t2 <

1 = I−1(θ). It is clear, however, that Tn has certain undesirable features. First, as a function

of X1, ..., Xn , Tn is not smooth. Second, V (θ) is not continuous in θ.

4.2 Maximum likelihood estimation

Let X = {X1, . . . , Xn} be iid with distribution Fθ belonging to a family F = {Fθ : θ =

(θ1, . . . , θk)
T ∈ Θ} and suppose that the distribution Fθ posses densities fθ(x). The likeli-

hood function of the sample X is defined as

L(θ; X) =
n∏
i=1

fθ(Xi).
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The maximum likelihood estimate (MLE) is given by θ̂ = arg maxθ∈Θ logL(θ; X). Often,

the estimate θ̂ may be obtained by solving the system of likelihood equations (score function),

∂ logL

∂θi
∣∣∣θ=θ̂

= 0

and check that the solution θ̂ indeed maximizes L. Since the solutions of likelihood equations

may not be the MLE, we also always term the root of the likelihood equation as RLE.

Next, we will show that under regularity condition on F , the MLE (RLE) are strongly

consistent, asymptotically normal, and asymptotically efficient. For simplicity, we focus on

the case of k = 1. The multivariate version will be discussed without giving it proof.

Regularity Condition of F Consider Θ to be an open interval in R. Assume:

(C1) The third derivative with respect to θ, ∂3log fθ(x)
∂θ3

, exists for all x, and also for each

θ0 ∈ Θ there exists a function H(x) ≥ 0 (possibly depending on θ0) such that for

θ ∈ N(θ0, ε) = {θ : |θ − θ0| < ε},∣∣∣∣∂3log fθ(x)

∂θ3

∣∣∣∣ ≤ H(x), EθH(X1) <∞;

(C2) For gθ(x) = fθ(x) or gθ(x) = ∂fθ(x)
∂θ

, we have

∂

∂θ

∫
gθ(x)dx =

∫
∂gθ(x)

∂θ
dx;

(C3) For each θ ∈ Θ, we have

0 < I(θ) = Eθ

(
∂log fθ(x)

∂θ

)2

<∞.

Remark 4.2.1 Condition (C1) ensures that ∂log fθ(x)
∂θ

, for any x, has a Taylor’s expansion as

a function of θ; Condition 2 means that fθ(x) or ∂fθ(x)
∂θ

can be differentiated with respect to

θ under the integral sign. That is, the integration and differentiation can be interchanged;

A sufficient condition for Condition 2 is the following:

83



For each θ0 ∈ Θ, there exists functions g(x), h(x), and H(x) (possibly depending on θ0)

such that for θ ∈ N(θ0, ε) = {θ : |θ − θ0| < ε},∣∣∣∣∂fθ(x)

∂θ

∣∣∣∣ ≤ g(x),

∣∣∣∣∂2fθ(x)

∂θ2

∣∣∣∣ ≤ h(x),

∣∣∣∣∂3log fθ(x)

∂θ3

∣∣∣∣ ≤ H(x)

hold for all x and ∫
g(x)dx <∞,

∫
h(x)dx <∞, EθH(X1) <∞;

Condition 3 ensures that the variance of ∂log fθ(x)
∂θ

is finite.

Theorem 4.2.1 Assume regularity conditions (C1)-(C3) on the family F . Consider iid

observations on Fθ0, for θ0 an element of Θ. Then with probability 1, the likelihood equations

admit a sequence of solutions {θ̂n} satisfying

(i) strong consistency: θ̂n → θ0, as n→∞;

(ii) asymptotic normality and efficiency: θ̂n is AN(θ0, [nI(θ0)]−1).

Proof. (i) Denote the score function by

s(X, θ) =
1

n

∂ logL(θ; X)

∂θ
=

1

n

n∑
i=1

∂ log fθ(Xi)

∂θ
.

Then,

s′(X, θ) =
1

n

n∑
i=1

∂2 log fθ(Xi)

∂θ2
, s′′(X, θ) =

1

n

n∑
i=1

∂3 log fθ(Xi)

∂θ3
.

Note that

|s′′(X, θ)| ≤ 1

n

n∑
i=1

∣∣∣∣∂3 log fθ(Xi)

∂θ3

∣∣∣∣ ≤ 1

n

n∑
i=1

|H(Xi)| ≡ H̄(X),

where H̄(X) = n−1
∑n

i=1H(Xi). By Taylor’s expansion

s(X, θ) = s(X, θ0) + s′(X, θ0)(θ − θ0) +
1

2
s′′(X, ξ)(θ − θ0)2

= s(X, θ0) + s′(X, θ0)(θ − θ0) +
1

2
H̄(X)η∗(θ − θ0)2,
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where |η∗| = |s′′(X, ξ)|/H̄(X) ≤ 1. By the SLLN, we have,

s(X, θ0)
wp1→ Eθ0s(X, θ0) = 0,

s′(X, θ0)
wp1→ Eθ0s

′(X, θ0) = −I(θ0),

H̄(X)
wp1→ Eθ0H(Xi) <∞,

where we use the fact that

Eθ

(
∂ log fθ(x)

∂θ

)
=

∫
1

fθ(x)

∂fθ(x)

∂θ
fθ(x)dx =

∂

∂θ

∫
fθ(x)dx = 0

Eθ

(
∂2 log fθ(x)

∂θ2

)
=

∫ [
1

fθ(x)

∂2fθ(x)

∂θ2
−
(

1

fθ(x)

∂fθ(x)

∂θ

)2
]
fθ(x)dx

= −E
(
∂ log fθ(x)

∂θ

)2

provided Condition (C2) holds.

Clearly, for ε > 0, we have with probability one,

s(X, θ0 ± ε) = s(X, θ0) + s′(X, θ0)(±ε) +
1

2
H̄(X)η∗(±ε)2

≈ ∓I(θ0)ε+
1

2
Eθ0H(X1)cε2, |c| < 1.

In particular, we choose 0 < ε < I(θ0)/Eθ0H(X1). Then for large enough n, we have, with

probability 1,

s(X, θ0 + ε) = s(X, θ0) + s′(X, θ0)ε+
1

2
H̄(X)η∗ε2 ≤ −I(θ0)ε+

1

2
Eθ0H(X1)cε2 < 0

s(X, θ0 − ε) = s(X, θ0)− s′(X, θ0)ε+
1

2
H̄(X)η∗ε2 ≥ I(θ0)ε− 1

2
Eθ0H(X1)cε2 > 0.

Therefore, by the continuity of s(X, θ), for such n, the interval [θ0 − ε, θ0 + ε] contains a

solution of the likelihood equation s(X, θ) = 0. In particular, it contains the solution

θ̂n,ε = inf{θ : θ0 − ε ≤ θ ≤ θ0 + ε, and s(X, θ) = 0}.

It can be shown that θ̂n,ε is a proper random variable. It can be also shown that we can

obtain a sequence of θ̂n not depending on the choice of ε. The details are omitted here but

can be found in Serfling (1980). This proves (i).
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(ii) For large n, we have seen that

0 = s(X, θ̂n) = s(X, θ0) + s′(X, θ0)(θ̂n − θ0) +
1

2
H̄(X)η∗(θ̂n − θ0)2.

Thus,
√
ns(X, θ0) =

√
n(θ̂n − θ0)

(
−s′(X, θ0)− 1

2
H̄(X)η∗(θ̂n − θ0)

)
.

Since
√
ns(X, θ0)

d→N(0, I(θ0)) by CLT, and −s′(X, θ0)− 1
2
H̄(X)η∗(θ̂n − θ0)

wp1→ I(θ0), then

it follows from Slutsky’s theorem that

√
n(θ̂n − θ0) =

√
ns(X, θ0)

−s′(X, θ0)− 1
2
H̄(X)η∗(θ̂n − θ0)

d→N(0, I(θ0))/I(θ0) = N(0, I−1(θ0)).

For the case of θ ∈ Rk, under appropriate generalization of the Conditions (C1)-

(C3), there exists a sequence of θ̂n of solutions to s(X,θ) such that θ̂n
wp1→ θ0 and θ̂n is

AN(θ0, I
−1
n (θ0)), where I−1

n (θ0) is the information matrix defined in Definition 4.1.1. A

succinct proof can be found on page 290 of Shao (2003).

Remark 4.2.2 This theorem does not say which sequence of roots of s(X; θ) = 0 should be

chosen to ensure consistency in the case of multiple roots. It does not even guarantee that

for any given n, however large, the likelihood function logL(θ; X) has any local maxima at

all. This specific theorem is useful in only those cases where s(X; θ) = 0 has a unique root

for all n.

4.3 Improving the sub-efficient estimates

The method of moments ordinarily provides asymptotically normal estimates. Sometimes

these estimates are asymptotically efficient. For example, in estimating (µ, σ2) in N(µ, σ2)

by (X̄n, S
2
n), the method of moments and MLE coincide but usually they are not. One would

like to use MLE, but this has the disadvantage of being difficult to evaluate in general. The

likelihood equations, s(X, θ) = 0, are generally highly nonlinear and one must to numerical

approximation methods to solve them.

86



One good strategy is to use Newton’s method with one of simply computed estimates

based on the method of moments or sample quantiles as the initial guess. This method takes

the initial guess, θ̂(0), and inductively generates a sequence of hopefully better and better

estimates by

θ̂(k+1) = θ̂(k) − [s′(X, θ̂(k))]−1s(X, θ̂(k)), k = 0, 1, 2, . . . .

One simplification of this strategy can be made if the Fisher information is available. Ordi-

narily, s′(X, θ̂(k)) will converge as n → ∞ to −I(θ0) and so can be replaced by −I(θ̂(k)) in

the iterations,

θ̂(k+1) = θ̂(k) + [I(θ̂(k))]−1s(X, θ̂(k)), k = 0, 1, 2, . . . .

As we know, this method is the method of scoring. The scores, [I(θ̂(k))]−1s(X, θ̂(k)) are

increments added to an estimate to improve it.

Example 4.3.1 (Logistic distribution) Let X1, . . . , Xn be a sample from density

fθ(x) =
exp {−(x− θ)}

(1 + exp {−(x− θ)})2
.

The log-likelihood function is given by

ln(θ) = −
n∑
j=1

(Xj − θ)− 2
n∑
j=1

log (1 + exp {−(Xj − θ)})

and the likelihood equations are

l′n(θ) = n− 2
n∑
j=1

1

1 + exp {Xj − θ}
= 0.

Newton’s method is easy to apply here because

l′′n(θ) = −2
n∑
j=1

exp {Xj − θ}
(1 + exp {Xj − θ})2 .

Even easier is the method of scoring, since I(θ) = 1
3

[I(θ) is a constant for location parameter

families of distributions.] As an initial guess we may use the sample median, mn, or the

sample mean, X̄n. The asymptotic distributions are

√
n(mn − θ)

d→N

(
0,

1

4fθ(θ)2

)
= N(0, 4),

√
n(X̄n − θ)

d→N

(
0,
π2

3

)
≈ N(0, 3.2899).
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Since for the MLE, θ̂n,

√
n(θ̂n − θ)

d→N(0, I(θ)−1) = N(0, 3),

it would seem worthwhile to improve mn and X̄n by once iteration or two of

θ̂(k+1) = θ̂(k) + 3

[
1− 2

n

n∑
j=1

1

1 + exp {Xj − θ̂(k)}

]
.

Once is enough. In improving asymptotically normal estimates by scoring, one iteration

is generally enough to achieve asymptotically efficiency! Let θ̂(0) be an estimator that is

sub-efficient. The estimator

θ̂(1) = θ̂(0) − [s′(X, θ̂(0))]−1s(X, θ̂(0)), k = 0, 1, 2, . . . .

is the first iteration in improving the estimator as discussed above. In fact, this is just the

first iteration in computing and MLE using the Newton-Raphson iteration method with θ̂(0)

as the initial value and, hence, is often called the one-step MLE. Under some conditions, θ̂(1)

is asymptotically efficient, as the following result shows.

Theorem 4.3.1 Assume the conditions in Theorem 4.2.1 hold and that θ̂(0) is
√
n-consistent

for θ. Then

(i) The one-step MLE θ̂(1) is asymptotically efficient;

(ii) The one-step MLE obtained by replacing s′(X, θ̂(0)) with its expected value, −I(θ̂(0)),

is asymptotically efficient.

Proof. Let θ̂n be a
√
n-consistent sequence satisfying s(X; θ̂n) = 0. In what follows, we

suppress “X” for simplicity. Expanding θ̂(0) at θ̂n,

s(θ̂(0)) = s(θ̂n) + s′(θ̂n)(θ̂(0) − θ̂n) +
1

2
s′′(ξ)(θ̂(0) − θ̂n)2, (4.2)

and using

(θ̂(1) − θ̂n) = (θ̂(0) − θ̂n)− [s′(θ̂(0))]−1s(θ̂(0)), s(θ̂n) = 0
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we find

√
n(θ̂(1) − θ̂n) =

√
ns(θ̂(0))

{
[s′(θ̂n)]−1 − [s′(θ̂(0))]−1

}
−
√
n

2
s′′(ξ)(θ̂(0) − θ̂n)2[s′(θ̂n)]−1. (4.3)

Now, we need to study the right hand of (4.3). Firstly, note that the term
√
n(θ̂(0) −

θ̂n) =
√
n(θ̂(0) − θ0) −

√
n(θ̂n − θ0), is bounded in probability because the second term is

asymptotically normal from Theorem 4.2.1-(ii) and the first term is Op(1) by the assumption.

By

|s′′(ξ)| ≤ H̄(X)
wp1→ Eθ0H(Xi) <∞

we have s′′(ξ) = Op(1). Also, by CMT, we know s′(θ̂n) = s′(θ0) + op(1) = −I(θ0) + op(1).

Thus, the last term in (4.3) is of order Op(n
−1/2). Similarly, [s′(θ̂n)]−1 − [s′(θ̂(0))]−1 = op(1).

Finally, by (4.2) again, we obtain s(θ̂(0)) = Op(n
−1/2), which leads to

√
n(θ̂(1) − θ̂n) =

√
nOp(n

−1/2)op(1) +Op(n
−1/2) = op(1).

Hence,
√
n(θ̂(1)−θ̂n)

p→ 0 as n→∞. Say,
√
n(θ̂(1)−θ̂n) =

√
n(θ̂(1)−θ0)−

√
n(θ̂n−θ0) = op(1).

√
n(θ̂(1) − θ0) is asymptotically equivalent to

√
n(θ̂n − θ0) which is asymptotically efficient

according to Theorem 4.2.1. It follows that
√
n(θ̂(1) − θ0) is AN(θ0, [I(θ0)]−1) and thus

asymptotically efficient. The agrement for estimate using scoring method is identical. �

4.4 Hypothesis testing by likelihood method

As we know, UMP and UMPU tests often do not exist in a particular problem. In this

chapter, we shall introduce other tests. These tests may not be optimal, but they are very

general methods, easy to use, and have intuitive appeal. They often coincide with optimal

tests (UMP, UMPU tests). They play similar role to the MLE in the estimation theory. For

all these reasons, a treatment of testing is essential. We discuss the asymptotic theory of

likelihood ratio, Wald, and Rao score tests in the remainder of this chapter.

Let X = {X1, . . . , Xn} be iid with distribution Fθ belonging to a family F = {Fθ : θ =

(θ1, . . . , θk)
T ∈ Θ ⊂ Rk} and suppose that the distribution Fθ possess densities fθ(x). The
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testing problem is

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

where Θ0

⋃
Θ1 = Θ and Θ0

⋂
Θ1 = ∅.

The likelihood ratio test (LRT) rejects H0 for small values of

Λn =
supθ∈Θ0

L(θ; X)

supθ∈Θ L(θ; X)

Equivalently, the test may be carried out in terms of the commonly used statistic

λn = −2 log Λn,

which turns out to be more convenient for asymptotic derivation. The motivation for Λn

comes from two sources: (a) The case where H0, and H1 are each simple, for which a UMP

test is found from Λn by the Neyman-Pearson lemma; (b) The intuitive explanation that,

for small values of Λn, we can better match the observed data with some value of θ outside

of Θ0.

A null hypothesis H0 will be specified as a subset Θ0 of Θ, where Θ0 is determined by a

set of r ≤ k restrictions given by equations

Ri(θ) = 0, 1 ≤ i ≤ r.

In the case of a simple hypothesis θ = θ0, the set Θ0 = {θ0}, and the function Ri(θ) may

be taken to be

Ri(θ) = θi − θ0i, 1 ≤ i ≤ k.

In the case of a composite hypothesis, the set Θ0 contains more than one element and we must

have r < k. For instance, k = 3, we might have H0 : θ0 ∈ Θ0 = {θ = (θ1, θ2, θ3) : θ1 = θ01}.
In this case, r = 1 and the function R1(θ) may be taken to be R1(θ) = θ1 − θ01. We start

with a well-known but intuitive example that illustrate important aspects of the likelihood

ratio method.

Example 4.4.1 Let X1, . . . , Xn
iid∼ N(µ, σ2), and consider testing H0 : µ = 0 versus H1 :
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µ 6= 0. Let θ = (µ, σ2)T . Then, k = 2, r = 1. Apparently,

Λn =
supθ∈Θ0

(1/σn) exp{− 1
2σ2

∑
i(Xi − µ)2}

supθ∈Θ1
(1/σn) exp{− 1

2σ2

∑
i(Xi − µ)2}

=

(∑
i(Xi − X̄n)2∑

iX
2
i

)n/2
by an elementary calculation of MLEs of θ under H0 and in the general parameter space.

By another elementary calculation, Λn < c is seen to be equivalent to t2n > k, where

tn =

√
nX̄n√

1
n−1

∑
i(Xi − X̄n)2

.

is the t-statistic. In other words, the t-test is the LRT (equivalently). Also, observe that

t2n = (n− 1)Λ−2/n
n − (n− 1).

This implies

Λn =

(
n− 1

t2n + n− 1

)n/2
⇒ λn = −2 log Λn = n log

(
1 +

t2n
n− 1

)
= n

(
t2n

n− 1
+ op(

t2n
n− 1

)

)
d→χ2

1.

under H0 since tn
d→N(0, 1) as illustrated in Example 1.2.8.

As seen earlier, sometimes it is very difficult or impossible to find the exact distribution

of λn. So approximations in these cases become necessary. The next celebrated theorem

originally stated Wilks (1938), established the asymptotic chi-square distribution of λn under

H0. The degree of freedom is just the number of independent constraints specified by H0; it

is useful to remember this as a general rule. Before proceeding, to better derive the result,

we need have a representation of Θ0 given above. As we have r constraints on the parameter

θ, then only k − r components of θ = (θ1, . . . , θk)
T are free to change, and so it has k − r

degrees of freedom. Without loss of generality, we denote these k−r dimension parameter by

ϑ = (ϑ1, . . . , ϑk−r). So, this specification of Θ0 may equivalently be given as a transformation

H0 : θ = g(ϑ), (4.4)
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where g is a continuously differentiable function from Rk−r to Rk with a full rank ∂g(ϑ)/∂ϑ.

For example, consider again H0 : θ0 ∈ Θ0 = {θ = (θ1, θ2, θ3) : θ1 = θ01}. Then, we can set

ϑ1 = θ2, ϑ2 = θ3, g1(ϑ) = θ01, g2(ϑ) = θ2, g3(ϑ) = θ3; Also, suppose θ = (θ1, θ2, θ3)T and

H0 : θ1 = θ2. Here, Θ = R3, k = 3 and r = 1, and θ2 and θ3 are the two free changing

parameters. Then we can take ϑ = (θ2, θ3)T ∈ Rk−r = R2, and g1(ϑ) = θ2, g2(ϑ) = θ2,

g3(ϑ) = θ3.

Theorem 4.4.1 Assume the conditions in Theorem 4.2.1 hold and H0 is determined by

(4.4). Under H0, λn
d→χ2

r.

Proof. Without loss of generality, we assume that there exists an MLE θ̂n and MLE ϑ̂n

under H0 such that

Λn =
supθ∈Θ0

L(θ; X)

supθ∈Θ L(θ; X)
=
L(g(ϑ̂n),X)

L(θ̂n; X)
.

Following the proof of Theorem 4.2.1-(ii), we can obtain that

√
nI(θ0)(θ̂n − θ0) =

√
ns(θ0) + op(1),

and also, by Taylor’s expansion,

2
[
logL(θ̂n)− logL(θ0)

]
= 2n(θ̂n − θ0)T s(θ0) + n(θ̂n − θ0)T s′(θ0)(θ̂n − θ0) + op(1)

= n(θ̂n − θ0)T I(θ0)(θ̂n − θ0) + op(1).

Then,

2
[
logL(θ̂n)− logL(θ0)

]
= nsT (θ0)[I(θ0)]−1s(θ0) + op(1).

Similarly, under H0,

2
[
logL(g(ϑ̂n))− logL(g(ϑ0))

]
= ns̃T (ϑ0)[Ĩ(ϑ0)]−1s̃(ϑ0) + op(1)

where

s̃(ϑ) =
1

n

∂ logL(g(ϑ))

∂ϑ
= D(ϑ)s(g(ϑ)),

D(ϑ) = ∂g(ϑ)/∂ϑ,
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and Ĩ(ϑ) is the Fisher information matrix about ϑ. Combining these results, we can obtain

λn = −2 log Λn = 2
[
logL(θ̂n)− logL(g(ϑ̂n))

]
= n[s(g(ϑ0))]TB(ϑ0)s(g(ϑ0)) + op(1)

under H0, where

B(ϑ) = [I(g(ϑ))]−1 − [D(ϑ)]T [Ĩ(ϑ)]−1D(ϑ).

By the CLT,
√
n[I(θ0)]−1/2s(θ0)

d→Z, where Z = Nk(0, Ik). Then, it follows from the

Slutsky’s Theorem that, under H0,

λn
d→ZT [I(g(ϑ0))]1/2B(ϑ0)[I(g(ϑ0))]1/2Z.

Finally, it remains to investigate the properties of the matrix [I(g(ϑ0))]1/2B(ϑ0)[I(g(ϑ0))]1/2.

For notational convenience, let D = D(ϑ), B = B(ϑ), A = I(g(ϑ)), and C = Ĩ(ϑ). Then,

(A1/2BA1/2)2 = A1/2BABA1/2

= A1/2(A−1 −DTC−1D)A(A−1 −DTC−1D)A1/2

= (Ik − A1/2DTC−1DA1/2)(Ik − A1/2DTC−1DA1/2)

= Ik − 2A1/2DTC−1DA1/2 + A1/2DTC−1DADTC−1A1/2

= Ik − A1/2DTC−1DA1/2

= A1/2BA1/2,

where the fourth equality follows from the fact that C = DADT . This shows that A1/2BA1/2

is a projection matrix. The rank of A1/2BA1/2 is

tr(A1/2BA1/2) = tr(Ik −DTC−1DA)

= k − tr(C−1DADT ) = k − tr(C−1C) = k − (k − r) = r.

Thus, by using similar arguments in the proof of Theorem 3.1.5 (or more directly by Cochran

Theorem), ZT [I(g(ϑ0))]1/2B(ϑ0)[I(g(ϑ0))]1/2Z
d
=χ2

r. �

Consequently, the LRT with rejection Λn < e−χ
2
r,α/2 has asymptotic significance level α,

where χ2
r,α is the (1− α)th quantile of the chi-square distribution χ2

r.
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Under the first type of null hypothesis, say H0 : θ = θ0, the same result holds with the

degree of freedom being k. This result can be easily derived in a similar fashion to Theorem

4.4.1 but with less algebras. We do not elaborate here but left as an exercise.

To find the power of the test that rejects H0 when λn > χ2
r,α, for some r, one would need

to know the distribution of λn at the particular θ = θ1 value where we want to know the

power. But the distribution under θ1 of λn for a fixed n is also generally impossible to find, so

we may appeal to asymptotics. However, there cannot be a nondegenerate limit distribution

on [0,∞) for λn under a fixed θ1 in the alternative. The following simple example illustrates

this difficulty.

Example 4.4.2 Consider the testing problem in Example 4.4.1 again. We saw earlier that

λn = n log

(
1 +

X̄2
n

1
n

∑
(Xi − X̄n)2

)
Consider now a value µ 6= 0. Then, X̄2

n

wp1→ µ2(> 0) and 1
n

∑
(Xi − X̄n)2 wp1→ σ2. Therefore,

clearly λn
wp1→∞ under each fixed µ 6= 0. Thus, There cannot be a non-degenerate limit

distribution for λn under a fixed alternative µ.

Instead, similar to the Pearson’s Chi-square test discussed earlier, we may also consider

the behavior of λn under “local” alternative, that is, for a sequence θ1n = θ0 +n−1/2δ, where

δ = (δ1, . . . , δk)
T . In this case, a non-central χ2 approximation under the alternative could

be achieved.

4.5 The Wald and Rao score tests

Two competitors to the LRT are available in the literature, see Wald (1943) and Rao (1948)

for the first introduction of these procedures respectively. Both of them are general and can

be applied to a wide selection of problems. Typically, the three procedures are asymptotically

first-order equivalent. Recall the null hypothesis

H0 : R(θ) = 0, (4.5)
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where R(θ) is continuously differentiable function from Rk to Rr. The Wald test statistic is

defined

Wn = [R(θ̂n)]T
{

[C(θ̂n)]T [In(θ̂n)]−1C(θ̂n)
}−1

R(θ̂n),

where θ̂n is an MLE or RLE of θ, In(θ̂n) is the Fisher information matrix based on X and

C(θ) = ∂R(θ)/∂θ. For testing a simple null hypothesis H0 : θ = θ0, R(θ) will become

θ − θ0 and Wn simplifies to

Wn = n(θ̂n − θ0)T I(θ̂n)(θ̂n − θ0).

Rao (1947) introduced a score test that rejects H0 when the value of

Rn = n[s(θ̃n)]T [I(θ̃n)]−1s(θ̃n)

is large, where θ̃n is an MLE or RLE of θ under H0. For testing a simple null hypothesis

H0 : θ = θ0, Rn will simplify to

Rn = n[s(θ0)]T [I(θ0)]−1s(θ0).

Here are the asymptotic chi-square results for these two statistics.

Theorem 4.5.1 Assume the conditions in Theorem 4.2.1 hold. Under H0 given by (4.5),

then (i) Wn
d→χ2

r and (ii) also Rn
d→χ2

r.

Proof. (i) Using Theorem 4.2.1 and Delta Theorem,

√
n(R(θ̂n)−R(θ0))

d→Nr(0, [C(θ0)]T [I(θ0)]−1C(θ0)).

Under H0, R(θ0) = 0 and, therefore,

n[R(θ̂n]T
{

[C(θ0)]T [I(θ0)]−1C(θ0)
}−1

R(θ̂n)
d→χ2

r.

by CMT. Then the result follows from Slutsky’s theorem and the fact that θ̂n
p→θ0 and I(θ)

and C(θ) are continuous at θ.
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(ii) From the Lagrange multipliers, θ̃n satisfies

ns(θ̃n) + C(θ̃n)ηn = 0 and R(θ̃n) = 0.

Using Taylor’s expansion, one can show that under H0

[C(θ0)]T (θ̃n − θ0) = op(n
−1/2) (4.6)

and

ns(θ0)− nI(θ0)(θ̃n − θ0) + C(θ0)ηn = op(n
1/2), (4.7)

Multiplying [C(θ0)]T [nI(θ0)]−1 to the left-hand side of (4.7) and using (4.6), we obtain that

[C(θ0)]T [nI(θ0)]−1C(θ0)ηn = −n[C(θ0)]T [nI(θ0)]−1s(θ0) + op(n
−1/2),

which implies

ηTn [C(θ0)]T [nI(θ0)]−1C(θ0)ηn
d→χ2

r.

Then, the result follows from the above equation and the fact that C(θ̃n)ηn = −ns(θ̃n), and

I(θ) is continuous at θ0. �

Thus, Wald’s test, Rao’s tests and LRT are asymptotically equivalent. Note that Wald’s

test requires computing θ̂n, whereas Rao’s score test requires computing θ̃n, not θ̂n. On

the other hand, the LRT requires computing both θ̂n and θ̃n (or solving two maximization

problems). Hence, one may choose one of these tests that is easy to compute in a particular

application.

4.6 Confidence sets based on likelihoods

The usual duality between testing and confidence intervals says that the acceptance region

of a test with size α can be inverted to give a confidence set of coverage probability (1−α).

In other words, suppose A(θ0) is the acceptance region of a size α test for H0 : θ = θ0,

and define C(X) = {θ : X ∈ A(θ)}. Then Pθ0(θ0 ∈ C(x)) = 1 − α and hence C(X) is
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a 100(1 − α)% confidence set for θ. For example, the acceptance region of the LRT with

Θ0 = {θ : θ = θ0} is

A(θ0) = {x : L(θ0; x) ≥ e−χ
2
k,α/2L(θ̂n; x)}

Consequently,

C(X) = {θ : L(θ; X) ≥ e−χ
2
k,α/2L(θ̂n; X)}

is a 1− α asymptotically correct confidence set.

This method is often called the inversion of a test. In particular, the LRT, the Wald test,

and the Rao score test can all be inverted to construct confidence sets that have asymptot-

ically a 100(1 − α)% coverage probability. The confidence sets constructed from the LRT,

the Wald test, and the score test are respectively called the likelihood ratio, Wald, and s-

core confidence sets. Of these, the Wald and the score confidence sets are ellipsoids because

of how the corresponding test statistics are defined. The likelihood ratio confidence set is

typically more complicated but it is also ellipsoids from asymptotic viewpoints. Here is an

example.

Example 4.6.1 Suppose Xi
iid∼ BIN(p, 1), 1 ≤ i ≤ n. For testing H0 : p = p0 versus H1 :

p 6= p0, the LRT statistic is

Λn =
pY0 (1− p0)n−Y

supp p
Y (1− p)n−Y

=
pY0 (1− p0)n−Y(

Y
n

)Y (
1−

(
Y
n

))n−Y =
pY0 (1− p0)n−Y

p̂Y (1− p̂)n−Y
,

where Y =
∑n

i=1 Xi and p̂ = Y/n. Thus, the likelihood ratio confidence set is of the form

C1(X) =
{
p : pY (1− p)n−Y ≥ e−χ

2
1,α/2p̂Y (1− p̂)n−Y

}
.

The confidence set obtained by inverting acceptance regions of Wald’s test is simply

C2(X) =

{
p : |p̂− p| ≤

zα/2√
n

√
p̂(1− p̂)

}
=
[
p̂− zα/2

√
p̂(1− p̂)/n, p̂+ zα/2

√
p̂(1− p̂)/n

]
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since (χ2
1,α)1/2 = zα/2 and Wn = n(p̂ − p0)2I(p̂), where I(p) = 1

p(1−p) . This is the textbook

confidence interval for p.

For the score test statistic, we need

s(p) =
p̂

p
− 1− p̂

1− p
=

p̂− p
p(1− p)

and

n[s(p)]2[I(p)]−1 = n
(p̂− p)2

p2(1− p)2
p(1− p) =

n(p̂− p)2

p(1− p)
.

Hence, The confidence set obtained by inverting acceptance regions of Rao’s score test is

C3(X) =
{
p : n(p̂− p)2 ≤ p(1− p)χ2

1,α

}
≡ [lC , uC ],

where lC , uC are the roots of the quadratic equation p(1− p)χ2
1,α − n(p̂− p)2 = 0.
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Chapter 5

Asymptotics in nonparametric

inference

5.1 Sign test (Fisher)

5.1.1 Test procedure

This is perhaps the earliest example of a nonparametric testing procedure. In fact, the test

was apparently discussed by Laplace in the 1700s. The sign test is a test for the median of

any continuous distribution without requiring any other assumptions.

Hypothesis The null hypothesis of interest here is that of zero shift in location due to the

treatment, namely, H0 : θ = 0 versus H0 : θ > 0. This null hypothesis asserts that each

of the distributions (not necessarily the same) for the difference (post-treatment minus pre-

treatment observations) has median 0, corresponding to no shift in location due to treatment.

Certainly, this is essentially equivalent to consider the null hypothesis H0 : θ = θ0 because

we can simply use H0 : θ − θ0 = 0.

Procedure The test statistic is given by the total number of X1, X2, . . . , Xn that are greater
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than θ0, say

Sn =
n∑
i=1

I(Xi > θ0),

where I(·) is the indicator function. Then, small value of Sn leads to reject H0. We now

need to know the distribution of Sn. Obviously, the distribution of Sn under H0:

Sn ∼ BIN(n, 1/2), P (Sn = k) = Ck
n

(
1

2

)n
Thus, the p-value is

P (Bin(n, 1/2) ≥ Sn) =
n∑

k=Sn

Ck
n

(
1

2

)n
.

For simplicity, we may use the following large-sample approximation to obtain an ap-

proximated p-value. Note that

EH0(Sn) =
n∑
i=1

(
1

2

)
= n/2

VarH0(Sn) =
n∑
i=1

(
1

4

)
= n/4.

The asymptotic normality of the standardized form

S∗n =
Sn − EH0(Sn)

Var
1/2
H0

(Sn)
=

Sn − n
2

(n/4)1/2
.

follows from standard central limit theory for sums of mutually independent, identically

distributed random variables.

For large sample sizes, we can make use of the standard central limit theorem for sums

of i.i.d. random variables to conclude that

Sn − npθ
[npθ(1− pθ)]1/2

=
Sn − n(1− F (0))

[n(1− F (0))(F (0))]1/2

has an asymptotic N(0, 1) distribution. Thus, for large n, we can approximate the exact

power by

Powerθ = 1− Φ

(
bα,1/2 − npθ

[npθ(1− pθ)]1/2

)
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We note that both the exact power and the approximate power against an alternative θ > 0

depend on the common distribution only through the value of its distribution F (z) at z = 0.

Thus, if two distributions F1 and F2 have a common median θ > 0 and F1(0) = F2(0), then

the exact power of the sign test against the alternative θ > 0 will be the same for both F1

and F2.

5.1.2 Asymptotic Properties

Consistency of the sign Test

Definition 5.1.1 Let {φn} be a sequence of tests for H0 : F ∈ Ω0 versus H1 : F ∈ Ω1.

Then, {φn} is consistent against the alternatives Ω1 if

(i) EF (φn)→ α ∈ (0, 1), ∀F ∈ Ω0;

(ii) EF (φn)→ 1, ∀F ∈ Ω1.

As in estimation, consistency is a rather weak property of a sequence of tests. However,

something must be fundamentally wrong with the test for it not to be consistent. If a test

is inconsistent against a large class of alternatives, then it is considered an undesirable test.

Example 5.1.1 For a parametric example, let X1, . . . , Xn be an i.i.d. sample from the

Cauchy distribution, C(θ, 1). For all n ≥ 1, we know that X̄n also has the C(θ, 1) distri-

bution. Consider testing the hypothesis H0 : θ = 0 versus H1 : θ > 0 by using a test that

rejects for large X̄n. The cutoff point, k, is found by making PH0(X̄n > k) = α. But k is

simply the αth quantile of the C(0, 1) distribution. Then the power of this test is given by

Pθ(X̄n > k) = P (C(θ, 1) > k) = P (θ + C(0, 1) > k) = P (C(0, 1) > k − θ).

This is a fixed number not dependent on n. Therefore, the power does not approach to 1

as n → ∞, and so so the test is not consistent even against parametric alternatives. In

contrast, a test based on the median would be consistent in the C(θ, 1) case (why?).
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Theorem 5.1.1 If F is a continuous C.D.F. with unique median θ, then the sign test is

consistent for tests on θ.

Proof. Recall that the sign test rejects H0 if Sn =
∑
I(Xi > θ0) ≥ kn. If we choose

kn = n
2

+ zα
√

n
4
, then, by the ordinary central limit theorem, we have

PH0(Sn ≥ kn)→ α.

The power of the test is

Qn = PF (Sn ≥ kn) = PF

(
1

n
Sn − pθ ≥

1

n
kn − pθ

)
,

where pθ = Pθ(X1 > θ0). Since we assume θ > θ0, it follows that 1
n
kn − pθ < 0 for all large

n. Also, 1
n
Sn−pθ converges in probability to 0 under any F (WLLN), and so Qn → 1. Since

the power goes to 1, the test is consistent against any alternative F satisfying θ > θ0. �

Asymptotic relative efficiency (ARE)

We wish to compare the sign test with the t-test in terms of asymptotic relative efficiency.

The point is that, at a fixed alternative θ, if α remains fixed, then, for large n, the power

of both tests is approximately 1 (say, consistent) and there would be no way to practically

compare the two tests. Perhaps we can see how the powers compare for θ ≈ θ0. The idea is

to take θ = θn → θ0 at such a rate that the limiting power of the tests is strictly between α

and 1. If the two powers converge to different values, then we can take the ratio of the limits

as a measure of efficiency. The idea is due to E.J.G. Pitman (Pitman 1948). We firstly give

a brief introduction to the concept of ARE regarding the test.

In estimation, an agreed-on basis for comparing two sequences of estimates whose mean

squared error each converges to zero as n → ∞ is to compare the variances in their limit

distributions. Thus, if
√
n(θ̂1n − θ)

d→N(0, σ2
1(θ)) and

√
n(θ̂2n − θ)

d→N(0, σ2
2(θ)), then the

asymptotic relative efficiency (ARE) of θ̂2n with respect to θ̂1n is defined as σ2
1(θ)/σ2

2(θ).

One can similarly ask what should be a basis for comparison of two sequences of tests

based on statistics T1n and T2n of a hypothesis H0 : θ = θ0. Suppose we use statistics such

that large values of them correspond to rejection of H0; i.e., H0 is rejected if Tn > cn. Let α,
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β denote the type 1 error probability and the power of the test, and let θ denote a specific

alternative. Suppose n(α, β, θ, T ) is the smallest sample size such that

PH0(Tn ≥ cn) ≤ α, Pθ(Tn ≥ cn) ≥ β,

Two tests based on T1n and T2n can be compared through the ratio

e(T2, T1) = n(α, β, θ, T1)/n(α, β, θ, T2),

and T1n is preferred if this ratio is less than 1. The threshold sample size n(α, β, θ, T ) is

difficult or impossible to calculate even in the simplest examples. Furthermore, the ratio can

depend on particular choices of α, β, θ.

Fortunately, if α → 0, β → 1, or θ → θ0 (an element of the boundary θ0), then the

ratio (generally) converges to something that depends on θ alone or is just a constant.

The three respective measures of efficiency correspond to approaches by Bahadur, Hodges

and Lehmann, and Pitman; see Pitman (1948), Hodges and Lehmann (1956), and Bahadur

(1960). Typically, of these, Pitman ARE is the easiest to calculate in most applications by a

fixed recipe under frequently satisfied conditions that we present below. It is also important

to note that the Pitman efficiency works out to just the asymptotic efficiency in the point

estimation problem, with T1n and T2n being considered as the respective estimates. Testing

and estimation come together in the Pitman approach. We state a theorem describing the

calculation of the Pitman efficiency, which is a simple one in form and suffices for many

applications.

Theorem 5.1.2 Let −∞ < h < ∞ and θn = θ0 + h√
n

. Consider the following conditions:

(i) there exist functions µ(θ), σ(θ), such that, for all h,

√
n(Tn − µ(θn))

σ(θn)

d→N(0, 1);

(ii) µ′(θ0) > 0; (iii) σ(θ0) > 0 and σ(θ) is continuous at θ0. Suppose T1n and T2n each satisfy

conditions (i)-(iii). Then

e(T2, T1) =
σ2

1(θ0)

σ2
2(θ0)

[
µ′2(θ0)

µ′1(θ0)

]2
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See Serfling (1980) for a detailed proof. By this theorem, we are now ready to derive the

ARE of the sign test with respect to the t-test.

Corollary 5.1.1 Let X1, . . . , Xn be i.i.d. observations from any symmetric continuous dis-

tribution function F (x − θ) with density f(·), where f(0) > 0, f is continuous at 0 and

F (0) = 1
2
. The Pitman asymptotic relative efficiency of the one-sample test procedure (one-

or two-sided) based on the sign test statistic Sn with respect to the corresponding normal

theory test based on X̄n is

e(Sn, X̄n) = 4σ2
Ff

2(0),

where σ2
F = VarF (X) <∞.

Proof. For T2n = 1
n
Sn, first notice that Eθ(T2n) = Pθ(X1 > 0) = 1 − F (−θ). Also

Varθ(T2n) = F (−θ)(1 − F (−θ))/n. We choose µn(θ) = 1 − F (−θ) and σ2
n(θ) = F (−θ)(1 −

F (−θ))/n. Therefore, µ′n(θ) = f(−θ) and µ′n(θ0) = f(0) > 0. For T1n = X̄n, choose

µn(θ) = θ and σ2
n(θ) = σ2

F/n. Conditions (i)-(iii) are easily verified here, too, with these

choices of µn(θ) and σn(θ). Therefore, by Theorem 5.1.2, the result follows immediately. �

Some values of this ARE for selected F (·) are:

F: Normal Uniform Logistic DE Cauchy t3 t5

e(Sn, Tn) 0.637 0.333 0.822 2.000 ∞ 1.620 0.961

The sign test, however, cannot get arbitrarily bad with respect to the t-test under some

restrictions on the C.D.F. F , as is shown by the following result, although the t-test can be

arbitrarily bad with respect to the sign test. Hodges and Lehmann (1956) found that within

a certain class of populations, e(Sn, X̄n) is always at least 1/3 and the bound is attained

when F is any symmetric uniform distribution. Of course, the minimum efficiency is not

very good. We will later discuss alternative nonparametric tests for the location-parameter

problem that have much better asymptotic efficiencies.
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5.2 Signed rank test (Wilcoxon)

5.2.1 Procedure

Recall that Hodges and Lehmann proved that the sign test has a small positive lower bound

of 1/3 on the Pitman efficiency with respect to the t-test in the class of densities with a

finite variance, which is not satisfactory. The problem with the sign test is that it only uses

the signs of Xi − θ0, not the magnitude of Xi − θ0. A nonparametric test that incorporates

the magnitudes as well as the signs is called the Wilcoxon signed-rank test, under a little bit

more assumption about the population distribution; see Wilcoxon (1945).

Suppose that X1, . . . , Xn are the observed data from some location parameter distribu-

tion F (x − θ), and assume that F is symmetric. Let θ = median(F ). We want to test

H0 : θ = 0 against H1 : θ > 0. We start by ranking |Xi| from the smallest to the largest,

giving the units ranks R1, . . . , Rn and order statistics |X|(1), . . . , |X|(n).

Then, the Wilcoxon signed-rank statistic is defined to be the sum of these ranks that

correspond to originally positive observations. That is,

Tn =
n∑
i=1

RiI(Xi > 0),

where the term RiI(Xi > 0) is known as the positive signed rank of Xi.

When θ is greater than 0, there will tend to be a large proportion of positive X and they

will tend to have the larger absolute values. Hence, we would expect a higher proportion of

positive signed ranks with relatively large sizes. At the α level of significance, reject H0 if

Tn ≥ tα, where the constant tα is chosen to make the type I error probability equal to α.

Lower-sided and two-sided tests can be constructed similarly.

Remark 5.2.1 It may appear that some of the information in the ranking of the sample is

being lost by using only the positive signed ranks to compute Tn. Such is not the case. If we

define T̃n to be the sum of ranks (of the absolute values) corresponding to the negative X

observations, then T̃n =
∑n

i=1(1−I(Xi > 0)Ri. It follows that Tn+ T̃n =
n∑
i=1

Ri = n(n+1)/2.
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Thus, the test procedures defined above could be constructed equivalently based on T̃n =

n(n+ 1)/2− Tn.

To do a test, we need the null distribution of Tn. If we define

Wi = I(|X|(i) corresponds to some positive Xj),

then we have an alternative expression for Tn, namely

Tn =
n∑
i=1

iWi.

It turns out that, under H0, the {Wi} have a relatively simple joint distribution.

Proposition 5.2.1 Under H0, W1, . . . ,Wn are i.i.d. BIN(1, 1/2) variables.

Proof. By the symmetric assumption, Wi ∼ BIN(1, 1/2) is obvious. To show the indepen-

dence, we define the so-called anti-rank,

Dk = {i : Ri = k, 1 ≤ i ≤ n},

say, the index of the observation whose absolute rank is k. Thus, Wk = I(XDk > 0). Let

D = (D1, . . . , Dn), d = (d1, . . . , dn), and then we have

P (W1 = w1, . . . ,Wn = wn)

=
∑
d

P (I(XD1 > 0) = w1, . . . , I(XDn > 0) = wn | D = d)P (D = d)

=
∑
d

P (I(Xd1 > 0) = w1, . . . , I(Xdn > 0) = wn)P (D = d)

=

(
1

2

)n∑
d

P (D = d) =

(
1

2

)n
,

where the second equality comes from the fact that I(X1 > 0), . . . , I(Xn > 0) are indepen-

dent with (D1, . . . , Dn). The independence is therefore immediately obtained by noting that

P (Wi = wi) = 1
2
. The independence between I(X1 > 0), . . . , I(Xn > 0) and (D1, . . . , Dn)

can be easily established as follows. Actually, (D1, . . . , Dn) is the function of |X1|, . . . , |Xn|
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and (I(Xi > 0), |Xi|), i = 1, . . . , n are independent each other. Thus, it suffices to show that

I(Xi > 0) is independent with |Xi|. In fact,

P (I(Xi > 0) = 1, |Xi| ≤ x) = P (0 < Xi ≤ x) = F (x)− F (0) = F (x)− 1

2

=
2F (x)− 1

2
= P (I(Xi > 0) = 1)P (|Xi| ≤ x). �

When n is large, a large-sample approximation is sufficient to obtain an approximately

correct signed-rank test. Proposition 5.2.1, together with the representation of Tn above and

Hajek-Sidak’s CLT, leads to the asymptotic null distribution of Tn. Clearly,

EH0(Tn) =
n(n+ 1)

4
, and VarH0(Tn) =

n(n+ 1)(2n+ 1)

24
.

The results above imply the following theorem.

Theorem 5.2.1 Let X1, . . . , Xn be i.i.d. observations from F (x−θ), where F is continuous

and symmetric. Under H0 : θ = 0,

Tn − n(n+1)
4√

n(n+1)(2n+1)
24

d→N(0, 1).

Therefore, the signed-rank test can be implemented by rejecting the null hypothesis, H0 :

θ = 0 if

Tn >
n(n+ 1)

4
+ zα

√
n(n+ 1)(2n+ 1)

24
.

The other option would be to find the exact finite sample distribution of Tn under the null

as illustrated above. This can be done in principle, but the CLT approximation works pretty

well.

Unlike the null case, the Wilcoxon signed-rank statistic Tn does not have a representation

as a sum of independent random variables under the alternative. So the asymptotic non-null

distribution of Tn, which is very useful for approximating the power and establishing the

consistency of the test, does not follow from the CLT for independent summands. However,

Tn still belongs to the class of U -statistics, and hence the CLTs for U -statistics can be used

to derive the asymptotic nonnull distribution of Tn and thereby get an approximation to the

power of the Wilcoxon signed-rank test. The following proposition is useful for deriving its

non-null distribution.
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Proposition 5.2.2 We have the following equivalent expression for Tn,

Tn =
∑
i≤j

I

(
Xi +Xj

2
> 0

)
.

Proof. Consider to use the antirank Dk again. Note that

∑
i≤j

I

(
Xi +Xj

2
> 0

)
=

n∑
i=1

I(Xi > 0) +
∑
i<j

I

(
XDi +XDj

2
> 0

)
. (5.1)

For i < j, hence |XDi | ≤ |XDj |, consider the expression I
(
XDi+XDj

2
> 0
)

. There are four

cases to consider: where XDi and XDj are both positive; where they are both negative; and

the two cases where they have mixed signs. In all these cases, though, it is easy to see that

I

(
XDi +XDj

2
> 0

)
= I(XDj > 0).

Using this, we have that the right side of expression (5.1) is equal to

n∑
i=1

I(Xi > 0) +
∑
i<j

I

(
XDi +XDj

2
> 0

)
=

n∑
j=1

I(XDj > 0) +
n∑
j=1

(j − 1)I(XDj > 0)

=
n∑
j=1

jI(XDj > 0),

and we are finished. �

To established the asymptotic normality of Tn under alternative cases, we present the

basic results about U -statistics here. Suppose that h(x1, x2, . . . , xr) is some real-valued func-

tion of r arguments x1, x2, . . . , xr . The arguments x1, x2, . . . , xr can be real or vector valued.

Now, suppose X1, . . . , Xn are i.i.d. observations from some C.D.F. F, and for a given r ≥ 1 we

want to estimate or make inferences about the parameter θ = θ(F ) = EFh(X1, X2, . . . , Xr).

We assume n ≥ r. Of course, one unbiased estimate is h(X1, X2, . . . , Xr) itself. But one

should be able to find a better unbiased estimate if n > r because h(X1, X2, . . . , Xr) does

not use all of the sample data. Indeed, in this case

1

Cr
n

∑
1≤i1<i2···<ir≤n

h(Xi1 , Xi2 , . . . , Xir)

may be a better unbiased estimate than h(X1, X2, . . . , Xr).
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Statistics of this form are called U -statistics (U for unbiased), and h is called the kernel

and r its order. We will assume that h is permutation symmetric in order that U has that

property as well.

Example 5.2.1 Suppose, r = 1. Then the linear statistic 1
n

∑n
i=1 h(Xi) is clearly a U -

statistic. In particular, 1
n

∑n
i=1 X

k
i is a U -statistic for any k; Let r = 2 and h(x1, x2) =

1
2
(x1 − x2)2. Then, on calculation,

1

C2
n

∑
i<j

1

2
(Xi −Xj)

2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Thus, the sample variance is a U -statistic; Let x0 be a fixed real, r = 1, and h(x) = I(x ≤ x0).

Then U = 1
n

∑n
i=1 I(Xi ≤ x0) = Fn(x0), the empirical C.D.F. at x0. Thus Fn(x0) for any

specified x0 is a U -statistic.

Example 5.2.2 Let r = 2 and h(X1, X2) = I(X1 + X2 > 0). The corresponding U =

1
C2
n

∑
i<j I(Xi +Xj > 0). Now, U is related to the one-sample Wilcoxon statistic, Tn

The summands in the definition of a U -statistic are not independent. Hence, neither the

exact distribution theory nor the asymptotics are straightforward. Hajek had the brilliant

idea of projecting U onto the class of linear statistics of the form 1
n

∑n
i=1 h(Xi). It turns out

that the projection is the dominant part and determines the limiting distribution of U . The

main theorems can be seen in Serfling (1980).

For k = 1, . . . , r, let

hk(x1, . . . , xk) = E[h(X1, . . . , Xr) | X1 = x1, . . . , Xk = xk]

= E[h(x1, . . . , xk, Xk+1, . . . , Xr)].

Define ζk = Var(hk(X1, . . . , Xk)).

Theorem 5.2.2 Suppose that the kernel h satisfying Eh2(X1, . . . , Xr) < ∞. Assume that

0 < ζ1 <∞. Then,
U − θ√
Var(U)

d→N(0, 1).

where Var(U) = 1
n
r2ζ1 +O(n−2).
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With these results, we are ready to present the asymptotic normality of Tn.

Theorem 5.2.3 The Wilcoxon signed-rank statistic Tn is asymptotically normally distribut-

ed,

Tn − E(Tn)√
Var(Tn)

d→N(0, 1).

Proof. By Proposition 5.2.2,

1

C2
n

Tn =
1

C2
n

∑
i≤j

I

(
Xi +Xj

2
> 0

)

=
1

C2
n

n∑
i=1

I(Xi > 0) +
1

C2
n

∑
i<j

I

(
Xi +Xj

2
> 0

)
.

Note that the first term is of smaller order (Op(n
−1)) and we need only consider the second

term (Op(1)). However, the second term, denoted as Un is a U -statistic as defined above.

Thus, by Theorem 5.2.2, (Un − E(Un))/Var(Un)
d→N(0, 1). The result immediately follows

from the Slutsky’s Theorem. �

With the help of this theorem, we can easily establish the consistency of the Tn test.

Theorem 5.2.4 If F is a continuous symmetric C.D.F. with unique median θ, then the

signed rank test is consistent for tests on θ.

Proof. Recall that the signed-rank test rejects H0 if Tn =
∑

i≤j I(
Xi+Xj

2
> 0) ≥ tn. If we

choose tn = n(n+1)
4

+ zα

√
n(n+1)(2n+1)

24
, then, by Theorem 5.2.1, we have

PH0(Tn ≥ tn)→ α.

The power of the test is

Qn = PF (Tn ≥ tn) = PF

(
1

C2
n

Tn − pθ ≥
1

C2
n

tn − pθ
)
,

where pθ = Pθ(X1 + X2 > 0). Since we assume θ > 0 under the alternative, it follows that

1
C2
n
kn − pθ < 0 for all large n. Also, 1

C2
n
Tn − pθ converges in probability to 0 under any F
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(Theorem 5.2.2), and so Qn → 1. Since the power goes to 1, the test is consistent against

any alternative F satisfying θ > 0. �

Furthermore, Theorem 5.2.2 allows us to derive the relative efficiency of Tn with respect

to other tests. Since Tn takes into account the magnitude as well as the sign of the sample

observations, we expect that overall it may have better efficiency properties than the sign

test. The following striking result was proved by Hodges and Lehmann in (1956).

Theorem 5.2.5 Let X1, . . . , Xn be i.i.d. observations from any symmetric continuous dis-

tribution function F (x− θ) with density f(x− θ),

(i) The Pitman asymptotic relative efficiency of the one-sample test procedure based on

the Tn with respect to the test based on X̄n is

e(Tn, X̄n) = 12σ2
F

(∫ ∞
−∞

f 2(u)du

)2

,

where σ2
F = VarF (X) <∞.

(ii) infF∈F e(Tn, X̄n) = 108
125
≈ 0.864, where F is the family of CDFs satisfying continuous,

symmetric and σ2
F <∞. The equality is attained at F such that f(x) = b(a2−x2), |x| <

a, where a =
√

5 and b = 3
√

5/20.

Proof. (i) Similar to the proof of Corollary 5.1.1, we need to verify the conditions in

Theorem 5.1.2. Let T2n = 1
C2
n
Tn. By Theorem 5.2.3, we know the T2n is asymptotically

normally distributed. It suffices to study its expectation and variance. It is easily to see that

E(T2n) =
1

C2
n

[
n(1− F (−θ)) +

n(n− 1)

2
Pθ(X1 +X2 > 0)

]
= Pθ(X1 +X2 > 0) +O(n−1) ≈

∫
[1− F (−x− θ)]f(x− θ)dx.
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The variance is more complicated, however, by using Theorem 5.2.2,

Var(T2n) =
1

n
22Var(h1(X1)) +O(n−2)

≈ 4

n

{
E(E2(h(X1, X2) | X1))− (E(E(h(X1, X2) | X1)))2

}
.

=
4

n

{
E [1− F (−X1)]2 − E2h(X1, X2)

}
=

4

n

{∫
[1− F (−x− θ)]2f(x− θ)dx−

(∫
[1− F (−x− θ)]f(x− θ)dx

)2
}
.

Thus, to apply Pitman efficiency theorem, we choose µn(θ) =
∫
F (x+ θ)f(x− θ)dx and

σ2
n(θ) =

4

n

{∫
F 2(x+ θ)f(x− θ)dx−

(∫
F (x+ θ)f(x− θ)dx

)2
}
.

Therefore, some calculation yields µ′n(θ) = 2
∫
f(x+θ)f(x−θ)dx and µ′n(0) = 2

∫
f 2(u)du >

0, while σ2
n(0) = 4

n
VarF [F (X)] = 4

n
1
12

= 1
3n

. For T1n = X̄n, choose µn(θ) = θ and σ2
n(θ) =

σ2
F/n. With these choices of µn(θ) and σn(θ), the results are immediately follows from

Theorem 5.1.2.

(ii) It can be shown that e(Tn, X̄n) is location and scale invariant, so, we can assume that

h is symmetric about 0 and σ2
F = 1. The problem, then, is to minimize

∫
f 2(u)du subject to∫

f(u)du =
∫
u2f(u) = 1 and

∫
uf(u) = 0 (by symmetry). This is equivalent to minimizing∫
f 2 + 2b

∫
u2f − 2ba2

∫
f, (5.2)

where a and b are positive constants to be determined later. We now write as (5.2)∫
[f 2 + 2b(x2 − a2)f ] =

∫
|x|≤a

[f 2 + 2b(x2 − a2)f ] +

∫
|x|>a

[f 2 + 2b(x2 − a2)f ]. (5.3)

First complete the square on the first term on the right side of (5.3) to get∫
|x|≤a

[f + b(x2 − a2)]2 −
∫
|x|≤a

b2(x2 − a2)2. (5.4)

Now (5.3) is equal to the two terms of (5.4) plus the second term on the right side of (5.3).

We can now write the density that minimizes (5.3).

If |x| > a take f(x) = 0, since x2 > a2, and if |x| ≤ a take f(x) = b(a2 − x2), since the

integral in the first term of (5.4) is nonnegative. We can now determine the values of a and
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b from the side conditions. From
∫
f = 1, we have∫ a

−a
b(a2 − x2)dx = 1,

which implies that a3b = 3/4. Further, from
∫
x2f = 1, we have

∫ a
−a x

2b(a2 − x2)dx = 1,

from which a5b = 15/4. Hence solving for a and b yields a =
√

5 and b = 3
√

5/100. Now,

∫
f 2 =

∫ √5

−
√

5

[
3
√

5

100
(5− x2)

]2

dx =
3
√

5

25
,

which leads to the result, infF∈F e(Tn, X̄n) = 12
(

3
√

5
25

)2

= 108
125
≈ 0.864. �

Remark 5.2.2 Notice that the worst-case density f is not one of heavy tails but one with

no tails at all (i.e., it has a compact support). Also note that the minimum Pitman efficiency

is 0.864 in the class of symmetric densities with a finite variance, a very respectable lower

bound.

F: Normal Uniform Logistic DE Cauchy t3 t5

e(Sn, Tn) 0.955 1.000 1.097 1.500 ∞ 1.900 1.240

The following table shows the value of the Pitman efficiency for several distributions

that belong to the family of CDFs F defined in Theorem 5.2.5. They are obtained by direct

calculation using the formula given above. It is interesting that, even in the normal case,

the Wilcoxon test is 95% efficient with respect to the t-test.

5.2.2 Point estimator and confidence interval associated with the

Wilcoxon signed rank statistic

The Wilcoxon signed-rank statistic Tn can be used to construct a point estimate for the point

of symmetry of a symmetric density, and from it one can construct a confidence interval.

Suppose X1, . . . , Xn ∼ F , where F has a symmetric density centered at θ. Consider to

estimate the θ. When θ = 0, the distribution of the statistic Tn =
∑

i≤j I
(
Xi+Xj

2
> 0
)

is
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symmetric about its mean n(n+ 1)/4. A natural estimator of θ is the amount θ̂ that should

be subtracted from each Xi so that the value of Tn, when applied to the shifted sample

X1 − θ̂, . . . , Xn − θ̂, is as close to n(n + 1)/4 as possible. Intuitively, we estimate θ by the

amount (θ̂) that the X sample should be shifted in order that X1− θ̂, . . . , Xn− θ̂ as a sample

from a population with median 0.

For any pair i, j with i ≤ j, define the Walsh average Wij = 1
2
(Xi + Xj) (see Walsh

(1959)). Then the Hodges-Lehmann estimate θ̂ is defined as

θ̂ = Median{Wij : 1 ≤ i ≤ j ≤ n}.

Theorem 5.2.6 Let X1, . . . , Xn ∼ F (x−θ), where f , the density of F , is symmetric around

zero. Let θ̂ be the Hodges-Lehmann estimator of θ. Then, if
∫∞
−∞ f

2(u)du <∞,

√
n(θ̂ − θ) d→N

0,
1

12
{∫∞
−∞ f

2(u)du
}2

 .

The proof of this theorem can be found in Hettmansperger and McKean (1998). For sym-

metric distributions, by CLT,
√
n(X̄ − θ) d→N(0, σ2

F ). The ratio of the variances in the two

asymptotic distributions, 12σ2
F

(∫∞
−∞ f

2(u)du
)2

, is the ARE of θ̂ relative to X̄n. This ARE

equals to the asymptotic relative efficiency of the Wilcoxon signed rank test with respect to

t-test in the testing problem (Theorem 5.2.5).

A confidence interval for θ can be constructed using the distribution of Tn. The interval

is found from the following connection with the null distribution of Tn. Let M = n(n+1)
2

be

the total number of Walsh averages W(1) ≤, · · · ≤ W(M).

Theorem 5.2.7 (Tukey’s method of confidence interval) Let kα denote the positive

integer such that: P (Tn < kα) = α/2. Then, [W(kα),W(M−kα+1)] is a confidence interval for

θ at confidence level 1− α (0 < α < 1/2).

114



Proof. Write

P (θ ∈ [W(kα),W(M−kα+1)])

= 1− P
(
θ < W(kα)

)
− P

(
θ > W(M−kα+1)

)
= 1− P (Tn ≥M − kα + 1)− P (Tn ≤ kα − 1)

= 1− 2P (Tn < kα) = 1− α,

where we use the fact that Tn follows a symmetric distribution about n(n + 1)/4 (Remark

??). �

In practice, we can approximate kα by using the asymptotic normality of Tn:

kα =
n(n+ 1)

4
− zα/2

√
n(n+ 1)(2n+ 1)

24
.

For any continuous symmetric distribution, this confidence interval all holds. Hence, we can

control the coverage probability to be 1 − α whiteout having any more specific knowledge

about the forms of the underlying X distributions. Thus, it is a distribution-free confidence

interval for θ over a very large class of populations.
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