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Abstract: Most modern processes involve multiple quality characteristics that are all measured on attribute levels, and their
overall quality is determined by these characteristics simultaneously. The characteristic factors usually correlate with each other,
making multivariate categorical control techniques a must. We study Phase I analysis of multivariate categorical processes (MCPs)
to identify the presence of change-points in the reference dataset. A directional change-point detection method based on log-linear
models is proposed. The method exploits directional shift information and integrates MCPs into the unified framework of multi-
variate binomial and multivariate multinomial distributions. A diagnostic scheme for identifying the change-point location and the
shift direction is also suggested. Numerical simulations are conducted to demonstrate the detection effectiveness and the diagnostic
accuracy. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 160–173, 2013

Keywords: contingency table; generalized likelihood ratio test; log-linear model; multivariate multinomial distribution; statistical
process control

1. INTRODUCTION

Nowadays, most processes involve multiple quality char-
acteristics. For instance, a bearing has both an inner diameter
and an outer diameter that together determine its usefulness
and are assumed to follow a bivariate normal distribution.
Here, the observed variables are numerical, and therefore
manufacturing bearings represents a multivariate continuous
process. Most multivariate statistical process control (SPC)
techniques have been devoted to monitoring such processes.
We refer to Lowry and Montgomery [13] and Bersimis et al.
[2] for nice literature reviews. Conversely, due to intrinsic
properties or expensive data collection costs, the continu-
ous values of many quality characteristics are not available.
Instead, some attribute levels of them, such as good or bad,
may be available, since these categorical values are rough
and do not need expensive precise measurements. Such situ-
ations have become increasingly common. Examples include
products on a production line whose multiple characteris-
tics are classified simply as conforming or nonconforming
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to their predefined specifications, and multiple indexes in
a service flow that are assessed as excellent, acceptable, or
unacceptable. Here, the characteristic factors involved have
two or more attribute levels, and such data are known as
multivariate categorical.

SPC usually consists of two phases. In Phase I, a process
dataset is collected and examined to see if any unusual pat-
terns exist. Among others, a change-point is a sustained
special cause that remains until some corrective action is
taken, and an outlier is an isolated special cause that affects
a single sample and then disappears (Hawkins et al. [10]). If
there are any change-points or outliers, they are identified and
adjusted, resulting in a clean dataset. This dataset is called the
in-control (IC) dataset and used for estimating the IC model,
which characterizes the process under IC operating condi-
tions. The performance of Phase I analysis is often measured
by the power of detecting these abnormalities statistically
and the accuracy of identifying them. After this retrospec-
tive analysis, quality inspectors will have a good reference
IC model. In Phase II, the main task is to construct control
charts (Montgomery [16]) and plot the charting statistic of
each successive sample online for monitoring the process to
see if there is any shift from the IC state.

© 2013 Wiley Periodicals, Inc.
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Compared to multivariate continuous processes, SPC tools
for multivariate categorical processes (MCPs) are relatively
rare. Woodall [23] listed many control charts for monitoring
attribute data, including the well-known p-chart for binomi-
ally distributed variables and the generalized p-chart (Mar-
cucci [15]) for multinomially distributed ones, but most of
them are for univariate processes. Among control charts for
simultaneously monitoring multiple categorical character-
istics, the χ2-chart proposed by Patel [18], the mnp-chart
suggested by Lu et al. [14], and the mp-chart designed by
Chiu and Kuo [4] monitor multiple factors all with two lev-
els. It should be noted that these control charts used in Phase
II SPC all assume that the reference dataset is IC. However,
in reality this is not always the case, and any unusual pat-
terns such as change-points or outliers in the reference dataset
could yield an erroneous IC model estimate.

Therefore, Phase I analysis of MCPs is crucial, which,
however, still remains a challenge and has not been investi-
gated to the best of our knowledge. We found that the models
adopted for establishing the control charts mentioned above
are limited in two aspects. First, they can apply only when
there are only two attribute levels for each factor. If at least
one of the factors has three or more levels, these models
become useless. Second, these models focus merely on the
marginal sums of each factor, neglecting cross-classifications
among multiple factors. So cross-classification probability
shifts cannot be detected quickly. To best characterize MCPs
and overcome these two drawbacks, we turn to log-linear
models (Bishop et al. [3]), which characterize appropriately
the association structure among multiple categorical factors.
It follows that logarithms of the cross-classification prob-
abilities may be assumed to depend linearly on the levels
of multiple factors. Log-linear models resemble multiway
analysis of variance (ANOVA) models, in which the expected
observations are supposed to be linearly dependent on the
levels of several factors.

This article tries to perform Phase I analysis of MCPs
by change-point detection. Besides its application in indus-
trial statistics such as SPC, change-point detection is actually
useful in many other areas, such as genetic linkage analy-
sis (Siegmund [19]) and array-CGH data analysis (Zhang
and Siegmund [25]) in biostatistics. In Phase I SPC, it is
assumed that there is already an off-line dataset collected
from the process chronologically. We intend to see if there is
a time point, at which there is a step change of the process
and by which the dataset can be divided into two homo-
geneous segments. Here, homogeneous means that the data
in such a segment come from the same distribution. Note
that this change-point detection is an off-line procedure that
deals with the beforehand collected reference dataset, rather
than an online sequential process that collects data as it pro-
ceeds. Sequential change-point detection is similar to Phase
II SPC, which at each time point k combines the current kth

observation with the earlier ones to see if there is a change-
point in the observed dataset up to k (see Lai and Xing [12],
Moustakides et al. [17], and Shih et al. [21]). As k increases,
this procedure repeats and continues on and on.

Our suggested method is based on log-linear models and
applies to the unified framework of multiple factors each
with an arbitrary number of attribute levels. Furthermore,
to detect change-points as powerfully as possible, the pro-
posed approach also integrates some practical directional
shift information. Like multiway ANOVA, it is known that
in a log-linear model the cross-classification probabilities
are determined by main factor effects and factor interac-
tion effects. At the change-point, shifts may arise in factor
effects, which correspond to deviations of some coefficient
subvectors in the log-linear model. Such practical knowledge
formulated as shift directions should be exploited. A diag-
nostic scheme is also developed to identify the change-point
location and the shift direction upon change-point detec-
tion. Monte Carlo simulations are performed to demonstrate
the effectiveness of the proposed change-point detection and
diagnostic approach.

The rest of this article is organized as follows. The log-
linear modeling of MCPs in terms of multivariate binomial
and multivariate multinomial distributions is first introduced.
Then, the proposed directional change-point detection and
diagnostic methodology is described. Finally, numerical sim-
ulations investigate the performance of the proposed method-
ology, and a real-life example demonstrates its implementa-
tion. Some derivations can be found in Appendices.

2. MULTIVARIATE CATEGORICAL MODELING

2.1. Multivariate Categorical Processes

Let us first illustrate an MCP with a real manufacturing
example. Consider aluminum electrolytic capacitors (AECs)
on a production line, the quality of which is mainly evalu-
ated in terms of leakage current (LC), dissipation factor (DF),
and capacity (CAP). For an AEC, an electronic device eval-
uates each of its three characteristics LC, DF, and CAP as
conforming or nonconforming automatically at a very high
speed. Although obtaining the continuous values of them
is possible, with consideration of a huge amount of AECs
on the production line, this would be cost prohibitive. So
this forms a multivariate categorical process involving three
factors each with two attribute levels, giving 23 = 8 level
combinations. For each factor, without loss of generality,
we denote “conforming” by −1 and “nonconforming” by
1. So the combination (1, 1, −1) represents an AEC with
nonconforming LC and DF and conforming CAP.

The AEC example is a trivariate categorical process. Now,
we extend it to a general MCP. Imagine p categorical factors
C = {C1, . . . , Cp}, and that each Ci takes a number, say hi ,
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of possible levels. The overall cross-classifications among all
level combinations of the p factors form a p-way h1×· · ·×hp

contingency table with h = ∏p

i=1 hi cells. In addition, each
cell corresponding to a certain level combination of the p

factors stores the count under this combination.
Suppose that during a process, observations are collected

over a period of time without prior knowledge of their total
count. Then, each cell count in the contingency table is sub-
ject to an independent Poisson distribution (Bishop et al. [3]).
However, for research convenience, we formalize the MCP
within the framework of multivariate binomial or multivari-
ate multinomial distributions and then fix the total count N

of observations. Conditional on N , the cell counts jointly
follow a multinomial distribution. Based on this, for a gen-
eral p-way contingency table of size h1 × · · · × hp, denote
the probability of an observation falling into the cell cor-
responding to the level combination a1, . . . , ap by pa1...ap

(ai = 1, . . . , hi and i = 1, . . . , p). All of the cell probabilities
add up to 1. Denote also the count of observations among a
sample of size N in this cell by na1...ap

and the expectation of
na1...ap

by ma1...ap
= Npa1...ap

. Then, the joint distribution of
the marginal counts n(i)1, . . . , n(i)hi

with respect to factor Ci

(i = 1, . . . , p), where

n(i)v =
∑
a1

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap

na1...ai−1vai+1...ap
,

v = 1, . . . , hi ,

follow the multinomial distribution MN(N ; p(i)1, . . . , p(i)hi
),

where

p(i)v =
∑
a1

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap

pa1...ai−1vai+1...ap
,

v = 1, . . . , hi .

Actually, p(i)1, . . . , p(i)hi
are the marginal probabilities of Ci .

The joint distribution of the p sets of variables n(i)1, . . . , n(i)hi

(i = 1, . . . , p), each being a multinomial distribution, is a
multivariate multinomial distribution (Johnson et al. [11]). If
each factor has only two levels, the distribution simplifies to
a multivariate binomial distribution.

2.2. Log-Linear Model

Given the total sample size N , we need to know the rela-
tionship between cell probabilities or cell count expectations
and their corresponding factor levels. Actually, log-linear
models can be used to model this relationship (Bishop et
al. [3]). A log-linear model originally relates the logarithms
of cell count expectations in a multiway contingency table
to factor levels, when there is no restriction on the total
sample size and the cell counts are subject to Poisson distribu-
tions. Here, since the simple multinomial sampling scheme is

adopted with a fixed sample size N , it would be more conve-
nient to focus on the logarithms of cell probabilities, instead
of cell count expectations that are the products of size N and
cell probabilities.

Take a simple three-way contingency table of size h1×h2×
h3 for illustration. The log-linear model describing the rela-
tionship between the cell probability pa1a2a3 (ai = 1, . . . , hi

and i = 1, 2, 3) in cell(a1, a2, a3) and the factor levels indexed
with a1, a2, a3 is

ln pa1a2a3 = u(0) + u(1)
a1

+ u(2)
a2

+ u(3)
a3

+ u(1,2)
a1a2

+ u(1,3)
a1a3

+ u(2,3)
a2a3

+ u(1,2,3)
a1a2a3

,

where u(0) is the intercept, u(1), u(2), u(3) are the main effects,
u(1,2), u(1,3), u(2,3) are the two-factor interaction effects, and
u(1,2,3) is the three-factor interaction effect. The cell probabil-
ities satisfy

∑
a1,a2,a3

pa1a2a3 = 1, and the cell counts na1a2a3

jointly follow a multinomial distribution MN(N ; pa1a2a3)

(ai = 1, . . . , hi and i = 1, 2, 3). Log-linear models that char-
acterize cell probabilities in a multinomial distribution rather
than cell count expectations in independent Poisson distribu-
tions, have also appeared in Dahinden et al. [7]. In addition,
identifiability requires constraints such as

∑
a1

u(1)
a1

=
∑
a1

u(1,2)
a1a2

=
∑
a1

u(1,3)
a1a3

=
∑
a1

u(1,2,3)
a1a2a3

= 0

for factorC1 along its indexa1. Similarly, such equations exist
for factors C2 and C3 along their indexes a2 and a3, respec-
tively. The dependence among factors should be reflected by
the interaction effects among them. For example, u(1,2) repre-
sents the dependence between factors C1 and C2. Therefore, if
a log-linear model involves no interaction effects, the factors
are independent of each other.

A log-linear model with separate identifiability constraints
is inconvenient to use, but it can be written in another
equivalent form, which automatically satisfies these con-
straints. This is illustrated by a 2 × 3 contingency table. The
identifiability constraints allow setting

u(0) = β0, u
(1)
1 = β1, u

(1)
2 = −β1,

u
(2)
1 = β2, u

(2)
2 = β3, u

(2)
3 = −β2 − β3,

u
(1,2)
1,1 = β4, u

(1,2)
1,2 = β5, u

(1,2)
1,3 = −β4 − β5,

u
(1,2)
2,1 = −β4, u

(1,2)
2,2 = −β5, u

(1,2)
2,3 = β4 + β5.

Therefore, the probability pij (i = 1, 2; j = 1, 2, 3) will be
ln pij = β0 + ∑5

k=1 βkxk , and xk (k = 1, . . . , 5) takes the
value 1, 0, or −1 where appropriate. Obviously, β1 measures
the main effect u(1) of factor C1, [β2, β3]T measures the main
effect u(2) of factor C2, and [β4, β5]T measures the interaction
effect u(1,2) of factors C1 and C2. Clearly, this is a regression
form with the cell probabilities as the responses, the factor
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levels composing the design matrix, and the β coefficients as
the regressors.

Let us now show that this regression form applies to a gen-
eral multiway contingency table. We shall see that imposed
by identifiability constraints, the log-linear model for a p-way
contingency table in the original u-term form above can be
expressed in a regression form as

ln p = 1β0 +
2p−1∑
i=1

Xiβ i , (1)

where 1 is a column vector consisting of 1 as all its elements
with appropriate dimensions, p satisfying 1T p = 1 is the h×1
probability vector in the h cells of the contingency table, Xi

is an h×qi design submatrix corresponding to the ith main or
interaction effect and with 1, 0, or −1 as its entries, and β i is
the coefficient subvector of size qi × 1. Clearly, β0 is a scalar
representing the intercept. Let X = (X1, . . . , X2p−1) and
β = (βT

1 , . . . , βT
2p−1)

T , then the design matrix X̃ = (1, X)

and the coefficient vector β̃ = (β0, βT )T , and Eq. (1) can be
rewritten as

ln p = X̃β̃ = 1β0 + Xβ.

The log-linear model (1) is at the effect level, and in total
there are 2p − 1 factor effects. If each factor has only two
levels, all of the design submatrixes Xi will reduce into col-
umn vectors, and their corresponding coefficient subvectors
β i will all be scalars.

The design matrix X̃ guarantees the identifiability con-
straints, which is in known in advance. Its derivation is a little
complex and left in Appendix A. The design submatrixes such
as Xi and their corresponding coefficient subvectors β i are
actually arranged following the order from the overall mean
β0, the main effects, up to the highest interaction effect. For
example, we consider three factors C1, C2, and C3 with 2, 3,
and 3 levels, respectively. The sequence is the overall mean,
the main effects C1, C2, and C3, the two-factor interaction
effects C1C2, C1C3, and C2C3, and finally the three-factor
interaction effect C1C2C3. So, we obtain the design matrix
X̃ and the coefficient vector

β̃ = [ β0 β(1) β(21) β(22) β(31) β(32)

β(1,21) β(1,22) β(1,31) β(1,32) β(21,31) β(21,32)

β(22,31) β(22,32) β(1,21,31) β(1,21,32) β(1,22,31) β(1,22,32) ]T .

Because of the constraint 1T p = 1 on the log-linear model
(1), given β, the coefficient β0 can be determined. There-
fore, attention may be paid mainly to β. Following the above
arrangement of coefficients, we see that for example, β3 =
[β(31), β(32)]T measures the main effect of factor C3, β4 =
[β(1,21), β(1,22)]T measures the two-factor interaction effect of
C1 and C2, and β7 = [β(1,21,31), β(1,21,32), β(1,22,31), β(1,22,32)]T

measures the three-factor interaction effect of C1, C2, and C3.
Clearly, the ith main or interaction effect, the design subma-
trix Xi , and the coefficient subvector β i (i = 1, . . . , 2p − 1)
are in one-to-one correspondence. So the probability vector p
is ultimately determined by the magnitudes of the coefficient
subvectors β i (i = 1, . . . , 2p − 1).

There is another expression of the log-linear model (1),
which changes it equivalently from the effect level into the
coefficient level and is

ln p = 1β0 +
h−1∑
i=1

xiβi , (2)

where xi is the ith column vector of the matrix X and βi as
a scalar is its corresponding coefficient. For instance, in the
example of the contingency table of size 2×3×3, β5 = β(32),
β11 = β(21,32), and β17 = β(1,22,32). In addition, we have
X = [x1, . . . , xh−1] and β = [β1, . . . , βh−1]T . Clearly, there
is also correspondence between the ith column vector xi and
the coefficient βi (i = 1, . . . , h − 1).

3. CHANGE-POINT DETECTION IN MCPs

Before introducing the proposed change-point detection
method, we need first to state the two-sample multivari-
ate categorical test, which is the basis of the change-point
problem.

3.1. Two-Sample Multivariate Categorical
Test Problem

In a log-linear model, the marginal distribution of one
factor is mainly determined by its main effect, whereas the
dependence among multiple factors is represented by their
interaction effect. Furthermore, according to the one-to-one
correspondence between factor effects and coefficient sub-
vectors, shifts in the marginal distribution of one factor appear
in the form of deviations of the coefficient subvector cor-
responding to its main effect, and shifts in the dependence
among multiple factors arise in the form of deviations of the
coefficient subvector reflecting their interaction effect. So the
practical explanation of shifts in MCPs is defined.

In the systematic framework of multivariate binomial or
multivariate multinomial distributions, the two-sample test
problem for MCPs is formulated as follows. Given a p-way
contingency table with h cells, consider the two multinomial
distributions MN(Na; pa) and MN(Nb; pb), where pa and pb

are both of size h × 1 and

ln pa = 1β
(a)
0 + Xβ(a), ln pa = 1β

(b)
0 + Xβ(b).

We want to test the following hypothesis

H0 : pa = pb versus H1 : pa �= pb. (3)
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Since β
(t)
0 (t = a, b) can be determined by β(t) (as 1T p = 1),

hypothesis (3) is equivalent to

H0 : β(b) = β(a) versus H1 : β(b) �= β(a). (4)

Assume that na and nb are two independent random vectors
subject to MN(Na; pa) and MN(Nb; pb), respectively. Then,
1T na = Na and 1T nb = Nb. A natural test for hypotheses (3)
and (4) may be constructed using the generalized likelihood
ratio test (GLRT; Anderson, 2003 [1]). It is easy to see that the
maximum likelihood estimates (MLEs) of pa and pb under
H0 in hypothesis (3) are both equal to (na + nb)/(Na + Nb),
whereas under H1 they are na/Na and nb/Nb, respectively.
So the −2LRT (likelihood ratio test) statistic is

θ = 2nT
a ln

(
na

Na

)
+ 2nT

b ln

(
nb

Nb

)

− 2(na + nb)
T ln

(
na + nb

Na + Nb

)
. (5)

Note that here we consider a saturated log-linear model
as expressed in Eqs. (1) and (2), which includes effects of
all orders, namely from main effects to the highest p-factor
interaction effect. In other words, the considered log-linear
model is not a reduced hierarchical one, in which some effects
are removed subject to the hierarchical principle (Chritensen
[5]). For a saturated log-linear model, the MLE of the cell
probability vector is simply the observed cell count vector
divided by the total sample size. This is illustrated above for
deriving the MLEs of pa and pb under H0 and H1. So the
existence of these MLEs is clear.

Hypotheses (3) and (4) state that β(b) differs from β(a) in
all coefficients. With the practical definition of shifts, how-
ever, it is usually reasonable to assume that in real processes
shifts occur in only a few coefficient subvectors or coeffi-
cients, reflecting the changes in their corresponding main or
interaction effects. Suppose that there is some prior knowl-
edge that a shift arises in only one coefficient in β(a), say
the ith (1 ≤ i ≤ h − 1) coefficient, by adding an unknown

constant δi to it. Then, β̃
(a)

and β̃
(b)

have a relationship such
that⎧⎪⎨

⎪⎩
β

(b)
i = β

(a)
i + δi for some i, and 1 ≤ i ≤ h − 1,

β
(b)
j = β

(a)
j for all j �= i, and 1 ≤ j ≤ h − 1,

β
(b)
0 = β

(a)
0 + αi ,

(6)

where β
(t)
i is the ith element of β(t) (t = a, b) and αi is also

an unknown constant. Here, αi is actually the increment of
β

(a)
0 induced by the constraint 1T p = 1. Now the hypothesis

can be expressed as

H0 : β(b) = β(a) versus H1 : β(b) = β(a) + diδi , (7)

where di is the direction vector of size (h − 1) × 1 with 1 at
its ith element and 0 elsewhere.

Hypothesis (7) assumes that the location of the only dis-
similar coefficient between β(a) and β(b) is known. Here, we
consider a more practical and general case where compared
to β(a), β(b) deviates in only one coefficient, but its location
is unknown. So the original alternative hypothesis in Eq. (4)
becomes

H1 : β(b) = β(a) + d1δ1 or . . . or β(b) = β(a) + dh−1δh−1,
(8)

where δi (i = 1, . . . , h−1) are the unknown shift magnitudes,
and the possible shift direction vectors d1, …, dh−1, which
apply to β

(a)
1 , …, β

(a)
h−1, respectively, are defined similarly. In

other words, hypothesis (8) states that β(b) may differ from
β(a) in only one unknown coefficient, which may be any of
the coefficients from the main factor effects up to the high-
est p-factor interaction effect. Since the GLRT derived from
hypothesis (8) exploits more constructive information about
potential shift directions, it should be more powerful than that
from hypothesis (4).

Let us now generalize hypothesis (8). Hypothesis (8) con-
siders shifts in effects of all orders, but it is believed that
usually deviations containing fewer factors occur more fre-
quently. It follows reasonably that most shifts appear in lower
order effects such as main effects and two-factor interaction
effects, instead of higher order ones. So we may pay suffi-
cient attention to effects of the first few, say q, orders. This
allows focusing detection power on a limited subspace with
improved sensitivity. For the log-linear model (2), let the set
of coefficient indexes corresponding to the effects of the first
q orders be Iq (1 ≤ q ≤ p). Then, hypothesis (8) has a
coefficient set Ip, and it can further be generalized as

H0 : β(b) = β(a) versus H1 :
⋃
i ∈ Iq

(
β(b) = β(a) + diδi

)
,

1 ≤ q ≤ p. (9)

If q = p, the alternative hypothesis in Eq. (9) is equivalent to
hypothesis (8). Since shifts usually occur in low-order effects,
it is clear that the larger q is, the less powerful the GLRT based
on hypothesis (9) will be. This follows because the alternative
hypothesis considers redundant high-order shift directions. If
the real shift indeed appears in an effect of the first q orders,
the GLRT will certainly be powerful. Even if a shift occurs
in an effect of an order higher than q, this change will be
reflected to a large extent by the derived −2LRT statistic,
and the GLRT will still be effective.

To obtain the −2LRT statistic λ for testing hypothesis (9),
we need first to derive the −2LRT statistic λi for testing
hypothesis (7), where it is assumed that only the coefficient
βi shifts. The MLEs of pa and pb under H0 of hypothesis

Naval Research Logistics DOI 10.1002/nav



Li, Tsung, and Zou: Directional Multivariate Categorical Change-Point Detection 165

(7) is the same as that in hypothesis (4), but their derivation
under H1 of hypothesis (7) is a little complex, so it is left in
Appendix B. Actually, the key step is to get the MLE of δi ,
and from Appendix B it can be seen that the second-order
partial derivative of the log-likelihood L with respect to δi

under H1 is smaller than or equal to zero. This means the
log-likelihood L is concave with respect to δi , which guar-
antees the existence of the MLE of δi , hence the existence of
the MLEs of pa and pb under H1 of hypothesis (7). Given λi

finalized in Eq. (22) in Appendix B, the −2LRT statistic for
testing hypothesis (9) is

λ = max
i∈Iq

λi . (10)

This section shows how to derive the MLEs of pa and
pb under both H0 and H1 of hypotheses (4) and (7). Their
existence can also be guaranteed, which further insures that
the two-sample multivariate categorical test and therefore the
following proposed change-point detection methods can still
be performed in a large and sparse contingency table. Here,
sparsity means that there are quite a few zero cell counts in
the table, which result from either some extremely small cell
probabilities or a total sample size that is small relative to the
number of cells in the table (Eriksson et al. [8] and Fienberg
and Rinaldo [9]).

3.2. Directional Change-Point Detection

Based on the two-sample test with directional shift infor-
mation, we can build the directional change-point detection
method for Phase I analysis of MCPs. The prespecified
log-linear model can be summarized as

ln p = X̃β̃ and 1T p = 1.

Denote this model by F(X̃; β̃). In Phase I analysis, it is usu-
ally reasonable to assume that the given reference dataset is
composed of multiple samples, say M , of size N , and each
sample forms an observation vector of size h × 1 subject
to the multinomial distribution MN(N ; p). Furthermore, it
is also reasonably assumed that the j th multivariate sam-
pling observation vector nj is collected over time from the
following change-point model

nj

i.i.d.∼
⎧⎨
⎩F

(
X̃; β̃

(a)
)

, for j = 1, . . . , τ ,

F
(

X̃; β̃
(b)

)
, for j = τ + 1, . . . , M ,

where τ is the unknown change-point, and β̃
(a) �= β̃

(b)
are

the unknown pre-change and post-change process coefficient
vectors, respectively.

To detect the change-point, like Srivastava and Worsley
[22] which aimed at detecting a change-point in the mean

vector of a multivariate normal distribution, one natural idea
is to integrate the GLRT with the binary segmentation proce-
dure. Given the observation vectors nj (j = 1, . . . , M), the
change-point τ is unknown and may take any of the values
1, . . . , M−1. Therefore, for each possible τ , we pool both the
pre-τ and post-τ samples together to form two large samples,
respectively, and based on them compare the process coeffi-

cient vectors β̃
(a)

and β̃
(b)

by performing the two-sample test
for hypothesis (4) in multivariate categorical distributions. If
the maximum of the M − 1 statistics is large enough, there
will be a change-point during the process. To be specific, let

nA
k =

k∑
j=1

nj , nB
k =

M∑
j=k+1

nj ,

NA
k = kN , NB

k = (M − k)N . (11)

Actually, nA
k and nB

k can be regarded as being collected from
MN(NA

k ; pa) and MN(NB
k ; pb), respectively, where the prob-

ability vectors pt , t = a, b are determined by β̃
(t)

. This results
in a two-sample test problem. By replacing na, nb, Na, and
Nb in Eq. (5) by nA

k , nB
k , NA

k , and NB
k in Eq. (11), respectively,

we obtain a −2LRT statistic 	k . If the maximum

	 = max
k∈{1,...,M−1}

	k

exceeds a critical value, an alarm will sound a change-point.
Accordingly, the change-point τ may be estimated as

τ̂ = arg max
k∈{1,...,M−1}

	k . (12)

The above change-point detection approach is based on the
two-sample test without considering directional shift infor-
mation. In reality, however, practical shifts tend to appear in
only a few effects, leading to deviations of only a few coeffi-
cient subvectors. In change-point detection, such knowledge
about the most likely shift directions should be exploited
sufficiently. Similar ideas also appeared in Zou and Tsung
[26] and Zou et al. [27], which both dealt with multistage
process monitoring and diagnosis by capitalizing on infor-
mation about shift directions from the first stage to the last
one. To this end, we combine the −2LRT statistic in Eq. (10)
for testing hypothesis (9) with the foregoing binary segmen-
tation method. This leads to the change-point detection test
statistic


 = max
i∈Iq


i = max
i∈Iq

max
k∈{1,...,M−1}


i,k ,

where 
i,k is obtained in a similar fashion to λi in Eq. (10)
by using nA

k , nB
k , NA

k , and NB
k in Eq. (11).

There remains an issue about the choice of Iq . Generally,
if indeed most shifts arise in lower order effects, the GLRT

Naval Research Logistics DOI 10.1002/nav



166 Naval Research Logistics, Vol. 60 (2013)

for testing hypothesis (9) will be less powerful as more shift
directions are included. If q is chosen to be 1, then only
shifts in main effects are considered, ignoring correlations
between factors. Clearly, this is inappropriate. In practice,
most applications pay attention to the first two moments
such as means and variances because of their importance in
describing a distribution. Moreover, higher moments usually
cannot be accurately estimated given a dataset of moder-
ate size. Therefore, we recommend considering only main
effects and two-factor interactions and let Iq be I2. If the shift
indeed occurs in a main or two-factor interaction effect, the
GLRT for testing hypothesis (9) with I2 should definitely be
powerful. Further, even if a shift appears in a three-factor
or higher order interaction effect, this GLRT indexed by I2

will still be influenced to a fairly large extent, so it would
still be detected powerfully. Therefore, the test statistic for
directional change-point detection can be finalized as


 = max
i∈I2


i = max
i∈I2

max
k∈{1,...,M−1}


i,k = max
k∈{1,...,M−1}

max
i∈I2


i,k .

(13)

Similar to the change-point estimation in Eq. (12), a rel-
evant diagnostic approach could also be developed based
on the directional detection method, which aims at identi-
fying both the change-point and the shift direction. However,
unlike detection which uses an index subset I2 and can only
tell whether there is a change-point or not, diagnosis needs
to recognize the shift direction, which may indeed be in an
effect of an order higher than two. Therefore, it is necessary
to select a candidate subset of diagnostic index shift direc-
tions larger than I2 in case the real shift directions are left
out. The subset for diagnosis should be at least I3, so that it is
still safe even if a shift indeed occurs in a three-factor interac-
tion effect. Conversely, it is believed that shifts in four-factor
or higher order interaction effects are rare. In addition, the
diagnostic consistency will decrease as more shift directions
are included into candidates. Hence, the candidate diagnostic
subset of shift directions is suggested as I3. Accordingly, the
change-point τ can be estimated as

τ̂ = arg max
k∈{1,...,M−1}

(
max
i∈I3


i,k

)
. (14)

Based on the estimated change-point τ̂ , the shift direction ζ

can further be identified as

ζ̂ = arg max
i∈I3


i,τ̂ . (15)

It should be emphasized that the performance of such change-
point estimation depends on the location of the true change-
point. To obtain an accurate estimation, it is usually required
that both the pre-τ and post-τ samples are sufficiently

large. From the viewpoint of asymptotics, τ needs to sat-
isfy τ/M → η ∈ (0, 1) as M → ∞, to achieve some sense
of consistency (Csörgő and Horváth [6]). If there are too few
data on one side of τ , the observations on the other side of τ

are almost equivalent to the whole dataset, and the test and
detection of the change-point would be rather difficult.

3.3. Approximation of Significance Levels

The derived −2LRT statistics 	 and 
 for change-point
detection need to be compared with their critical values. How-
ever, since the exact distributions of these statistics seem
impossible to find, in this section we suggest a suitable
approach to approximate their critical values or equivalently
the significance levels.

By noticing 
 = maxi∈I2 
i in Eq. (13), the significance
level of 
 can be approximated based on that of 
i . The
significance levels of 	 and 
i are in fact approximated in
the same way. Here, 	 = maxk 	k is the maximal LRT sta-
tistic without integrating directional information, and 	k is

the −2LRT statistic for testing hypothesis (4) where β̃
(b)

dif-

fers from β̃
(a)

in h − 1 independent parameters. Similarly,

i = maxk 
i,k is the maximal LRT statistic with a given
shift direction, and 
i,k is the −2LRT statistic for testing

hypothesis (7) where β̃
(b)

deviates from β̃
(a)

in only one inde-
pendent parameter. So the difference between 	 and 
i lies
mainly in the number of changed parameters.

According to Theorem 1.3.2 in Csörgő and Horváth [6],
this book recommended an accurate approximation for the
p-value of a maximal LRT statistic Z such as 	 or 
i , which
is

Pr
(
Z

1
2 > x

)
= xd exp(−x2/2)

2d/2
(d/2)

(
ln s − d

x2
ln s + 4

x2

)
(16)

with d = h − 1 for Z = 	 and d = 1 for Z = 
i

(i ∈ I2), where s = (1 − b1)(1 − b2)/(b1b2) and b1 =
b2 = (ln M)

3
2 /M .

Furthermore, based on the approximate p-values of 
i ,
let us now turn to the significance level of 
 = maxi∈I2 
i .
Generally, these 
is are correlated, and therefore the ana-
lytical form of Pr(
 > c) seems rather difficult to obtain.
One simple and natural idea is to use the classical Bonferroni
procedure in terms of rejecting 
 ≥ c with a desired type
I error α if any Pr(
i > c) ≤ α/K (i ∈ I2), where K is
the cardinality of the subset I2. If K is small, the Bonferroni
procedure would have a false alarm rate close to α. How-
ever, it is rather conservative if K is large and the 
is are
highly correlated. Hence, we recommend using the famous
modified Bonferroni procedure (Simes [20]), which is less
conservative than the classical one but is still simple to apply.
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Table 1. Performance of the modified Bonferroni procedure in
approximating the significance levels of 
.

α M i ∈ I1, K = 5 i ∈ I2, K = 14 i ∈ I3, K = 21

40 0.045 0.036 0.035
0.05 80 0.046 0.044 0.042

120 0.051 0.046 0.042
40 0.089 0.077 0.075

0.10 80 0.096 0.084 0.079
120 0.101 0.089 0.082

In addition, the modified procedure is superior to the classi-
cal one when the test statistics involved are highly correlated.
The modified Bonferroni procedure for these 
i (i ∈ I2) are
summarized as follows:

Step 1. Calculate 
i for each i ∈ I2 based on 
i,k (k =
1, . . . , M − 1);

Step 2. Use Eq. (16) with d = 1 to compute the approxi-
mate p-values p̂i for each 
i , i ∈ I2;

Step 3. Given a desired type I error α, reject the null
hypothesis if p̂(i) ≤ iα/K for at least one i, where
p̂(1) ≤ . . . ≤ p̂(K) are the ordered values of p̂1, . . . , p̂K .

Table 1 lists the approximate false alarm rate α̂ of 
 in
various cases, given a desired type I error α and simulated
by applying the modified Bonferroni procedure and Eq. (16).
Here, we consider four factors with 2, 2, 2, and 3 levels, as
shown in Section 4.2. In addition, for simulation purpose, we
also consider shift directions with indexes in the subsets I1,
I2, and I3 with their cardinalities K = 5, 14, and 21, respec-
tively. The results are based on 5000 replicated simulations.
Clearly, the false alarm rate α̂ increases as the number K of
changed parameters decreases and the number M of samples
increases. These simulated α̂s are close to their desired value
α. Even for the worst case of K = 21 and M = 40, the
method still produces a good approximation.

4. PERFORMANCE ASSESSMENT

In this section, we investigate the powers of the two change-
point detection methods, which are based on the two-sample
test with and without integrating directional shift information.
The investigation is done in both multivariate binomial and
multivariate multinomial settings. In the multivariate bino-
mial context, we also compare the two proposed methods
with the χ2-chart developed in Patel [18]. After detection,
we test the corresponding diagnostic performance of the two
proposed approaches in identifying the change-point τ and
the shift direction ζ . Finally, by revisiting the AEC example
introduced previously, we illustrate the implementation of the

proposed directional change-point detection and diagnostic
approaches. All reported results are based on 5000 replicated
simulations, and the desired type I error α is set as 0.05 for
detection.

4.1. Power Comparison in a Multivariate
Binomial Process

Suppose that a production process involves four quality
characteristics each with two attribute levels of conforming
and nonconforming. This results in a multivariate binomial
process with four factors, hence a four-way contingency table
of size 2×2×2×2. Also assume that before the change-point
τ , the log-linear model has the coefficient vector

β̃
(a) = [ β0 0.89 0.89 0.92 0.90 0.10 0.08 0.03

−0.12 −0.05 0.10 −0.06 0.07 0 0 0 ]T ,

where β0 is the intercept accommodating the constraint

1T p = 1. Based on β̃
(a)

, the pre-change probability vector
pa can be further calculated. Assume that there are M = 80
samples of size N = 600, and that the change-point τ is set
as 30.

The comparison is among the proposed two detection
methods and the χ2-chart approach, and we leave a brief
introduction to the application of the χ2-chart in Appendix
C. As mentioned previously, shifts in the marginal distribu-
tion of one factor are represented by deviations of its main
effect or the corresponding coefficient subvector, and shifts
in the dependence among multiple factors are reflected by
deviations of their interaction effect or the corresponding
coefficient subvector. We suppose that at the change-point
τ , only one coefficient, say βi (i ∈ I2), in β(a) shifts with
an increment δ. In other words, this one-coefficient shift
occurs in a main effect or a two-factor interaction effect.
Table 2 tabulates the powers of the two change-point detec-
tion approaches “with” and “without” the knowledge of shift
directions as well as the χ2-chart. Hereafter, the three meth-
ods are represented by “With,” “Without,” and χ2 for short
in the tables. Note that the approximate false alarm rate α̂

of the directional method is 0.040, smaller than the α̂ 0.050
of the undirectional one. In spite of this, in the case of one-
coefficient shifts such as deviations of β(1) corresponding to
the main effect of factor C1, β(4), β(1,2), β(2,3), β(2,4), and β(3,4),
the power of the directional method is uniformly greater than
those of the undirectional approach and the χ2-chart. This is
expected, bacause the directional method takes advantage of
the information about one-coefficient shifts in the effects of
the first two orders, whereas the undirectional approach has
to consider all kinds of shifts. In addition, the χ2-chart does
not exploit the pre-change and post-change group informa-
tion using binary segmentation, and therefore it shows little
power.
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Table 2. Power comparison for one-coefficient shifts in a multivariate binomial process.

β(1) β(4) β(1,2)

δ With Without χ2 With Without χ2 With Without χ2

0.04 0.282 0.161 0.063 0.313 0.172 0.063 0.577 0.324 0.060
0.05 0.463 0.261 0.069 0.519 0.291 0.066 0.822 0.531 0.064
0.06 0.700 0.426 0.077 0.735 0.455 0.076 0.959 0.789 0.092
0.07 0.859 0.595 0.089 0.895 0.653 0.086 0.994 0.924 0.094
0.08 0.955 0.770 0.105 0.971 0.823 0.107 0.999 0.991 0.102
0.10 0.997 0.963 0.144 0.999 0.978 0.154 1.000 1.000 0.139

β(2,3) β(2,4) β(3,4)

0.04 0.638 0.364 0.063 0.607 0.324 0.066 0.552 0.296 0.064
0.05 0.890 0.638 0.076 0.863 0.581 0.073 0.795 0.523 0.075
0.06 0.982 0.859 0.093 0.974 0.823 0.085 0.950 0.758 0.074
0.07 0.999 0.966 0.113 0.997 0.951 0.099 0.994 0.926 0.091
0.08 1.000 0.995 0.127 1.000 0.992 0.112 1.000 0.984 0.100
0.10 1.000 1.000 0.205 1.000 1.000 0.175 1.000 1.000 0.142

α̂ = 0.040 for “With,” 0.050 for “Without,” 0.050 for χ2-chart.

4.2. Power Comparison in a Multivariate Multinomial
Process

Assume that there are four quality characteristics with the
first three assessed as conforming or nonconforming and the
last one evaluated as excellent, acceptable, or unacceptable.
This leads to a multivariate multinomial process with four
factors, which can be arranged into a four-way table of size
2 × 2 × 2 × 3. Also suppose that before the change-point τ ,
the log-linear model has the coefficient vector

β̃
(a) = [ β0 0.86 0.89 0.82 0.72 0.08

0.10 0.12 0.12 −0.13 0.10 −0.06
0.07 0.16 −0.14 0.13 −0.10 −0.08

−0.04 −0.07 −0.11 −0.05 0 0 ]T ,

Table 3. Power comparison for one-coefficient shifts of the first
two orders.

β(2) β(41) β(1,3)

δ With Without With Without With Without

0.02 0.121 0.081 0.210 0.107 0.171 0.100
0.03 0.332 0.151 0.555 0.239 0.486 0.221
0.04 0.633 0.314 0.876 0.503 0.847 0.488
0.05 0.888 0.553 0.985 0.809 0.981 0.785
0.06 0.985 0.804 1.000 0.967 0.999 0.950
0.07 0.998 0.944 1.000 0.999 1.000 0.994

β(1,42) β(2,3) β(3,41)

0.02 0.130 0.085 0.192 0.102 0.214 0.110
0.03 0.339 0.154 0.532 0.247 0.607 0.273
0.04 0.673 0.327 0.875 0.532 0.910 0.574
0.05 0.908 0.562 0.988 0.832 0.993 0.870
0.06 0.986 0.825 0.999 0.969 1.000 0.984
0.07 0.999 0.953 1.000 0.998 1.000 0.999

α̂ = 0.044 for “With” and 0.048 for “Without.”

where β0 is the intercept accommodating the constraint
1T p = 1. Throughout the simulations there are M = 80
samples of size N = 1200, and the change-point τ is 30.
Note that the χ2-chart method does not apply to this case, so
we only compare the proposed two change-point detection
approaches.

Let us consider first that at the change-point τ , there is a
one-coefficient shift of magnitude δ in βi of β(a) (i ∈ I2),
which means that this shift occurs in a main or two-factor
interaction effect. The comparison results are listed in Table 3
for the directional and undirectional detection approaches.
Similar to Table 2 in a multivariate binomial setting, in the
case of one-coefficient shifts such as deviations of β(2), β(41),
β(1,3), β(1,42), β(2,3), and β(3,41), the directional method out-
performs uniformly the undirectional approach in terms of a
higher power, which is natural.

Now we turn to the performance of the two methods if at
the change-point τ the only shift occurs in a three-factor inter-
action effect. The results are given in Table 4, where shifts
in β(1,2,3), β(1,3,42), and β(2,3,41) are considered. Since shifts in
a third-order effect can still have a strong influence on the

Table 4. Power comparison for one-coefficient shifts of the third
order.

β(1,2,3) β(1,3,42) β(2,3,41)

δ With Without With Without With Without

0.02 0.157 0.116 0.102 0.075 0.197 0.125
0.03 0.406 0.289 0.229 0.151 0.490 0.315
0.04 0.733 0.623 0.461 0.307 0.817 0.644
0.05 0.939 0.900 0.721 0.571 0.975 0.920
0.06 0.992 0.989 0.907 0.819 0.999 0.992
0.07 1.000 1.000 0.979 0.959 1.000 1.000

α̂ = 0.044 for “With” and 0.048 for “Without.”
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Table 5. Power comparison for two-coefficient shifts of the first three orders.

β(1) β(42) β(2) β(1,41) β(3) β(2,3) β(1,2) β(1,3)

δ1 δ2 With Without With Without With Without With Without

0.02 0.02 0.180 0.115 0.285 0.162 0.599 0.290 0.589 0.303
0.02 0.04 0.651 0.358 0.915 0.653 0.987 0.839 0.973 0.804
0.04 0.02 0.554 0.335 0.707 0.450 0.957 0.715 0.983 0.833
0.04 0.04 0.799 0.634 0.960 0.867 1.000 0.986 1.000 0.990

β(2,3) β(3,41) β(2,41) β(2,42) β(1,2,41) β(1,2,42) β(1,3,41) β(2,3,41)

0.02 0.02 0.455 0.256 0.532 0.255 0.446 0.263 0.783 0.504
0.02 0.04 0.959 0.787 0.914 0.647 0.852 0.691 0.996 0.970
0.04 0.02 0.935 0.753 0.986 0.832 0.952 0.857 0.996 0.966
0.04 0.04 0.997 0.974 0.999 0.977 0.995 0.984 1.000 0.999

α̂ = 0.044 for “With” and 0.048 for “Without.”

test statistic indexed by I2, Table 4 shows that the directional
method still uniformly outperforms the undirectional one.

We come next to the case of two-coefficient shifts to ver-
ify the robustness of the directional method, which special-
izes in detecting one-coefficient shifts. Here, two coefficients
increase by δ1 and δ2, for example, β(1) + δ1 and β(42) + δ2

simultaneously at the change-point τ . Table 5 demonstrates
the powers of the two detection approaches under different
combinations of coefficients of the first three orders. We can
see that the directional method is still more powerful than the
undirectional one, reflecting robustness to shifts in more than
one coefficient.

4.3. Diagnostic Performance

The diagnostic performance is investigated in this subsec-
tion, under the same parameter settings as in Section 4.2 for a
multivariate multinomial process, in which the true change-
point τ is set as 30. The change-point τ is estimated based
on Eq. (12) for the method without directional shift informa-
tion and on Eq. (14) for the one with such information. These
two schemes are compared in terms of the bias (Bias) as the
difference of the average minus the true one, the standard
deviation (Std) of change-point estimates τ̂ , and the proba-
bilities Pr(|τ̂ − τ | ≤ 1) and Pr(|τ̂ − τ | ≤ 2) (denoted by
Pr1 and Pr2, respectively), which quantify the consistency
of change-point identification. Conversely, the shift direction
estimate ζ̂ is derived using only Eq. (15) for the directional
approach, and to the best of our knowledge, there is currently
no method for comparison in recognizing shift directions.
Here, the matching probability that the estimated index ζ̂

of the only deviated coefficient βζ is indeed the true one ζ ,
Pr(ζ̂ = ζ ) denoted by Prζ , is selected for measuring the accu-
racy of identifying shift directions. Note that for diagnosis
the directional method uses the one-coefficient shift direc-
tion index subset I3 rather than I2, including coefficients in
the main, two-factor interaction, and three-factor interaction
effects as the candidate diagnostic shift directions.

Table 6 presents the results for some one-coefficient shifts
in the effects of the first three orders, such as β(2), β(1,3), β(3,41),
and β(1,3,42). It can be seen that the estimator (14) for the direc-
tional method is always more consistent than the estimator
(12) in recognizing the change-point, giving smaller biases,
smaller standard deviations, and higher probabilities Pr1 and
Pr2. Again, this follows because the estimator (14) exploits
fully the directional information. As for the shift direction,
the estimator (15) derived from the directional approach per-
forms fairly well in that it has a high matching probability
of ζ̂ = ζ , and certainly this probability increases as the shift
magnitude δ increases. In addition, according to the practical
definition of shifts, estimating the shift direction may provide
some insights into MCPs. For example, if the shift direction
index is estimated as ζ̂ = 7, by the relation β7 = β(1,3),
we may conclude that the interaction of factors C1 and C3

deviates at the change-point.

4.4. Revisiting the AEC Example

Here, we turn to the AEC example introduced previously
to show how to implement the proposed directional detection
and diagnostic methodology in practice. The AEC example
has p = 3 factors: LC, DF, and CAP, and each has two levels
of conforming and nonconforming. The cross-classification
counts with all factor level combinations are stored in a three-
way contingency table with 23 = 8 cells. The following
log-linear model can appropriately describe the relationship
between the cell probabilities and the level combinations:

ln pa1a2a3 = β0 + β(1)x1 + β(2)x2 + β(3)x3 + β(1,2)x1x2

+ β(1,3)x1x3 + β(2,3)x2x3 + β(1,2,3)x1x2x3,

where a1 = 1, 2; a2 = 1, 2; a3 = 1, 2, all the cell prob-
abilities pa1a2a3 sum up to 1, and x1, x2, x3 take 1 or −1
representing the two levels of the three factors LC, DF, and
CAP, respectively. There is a reference dataset of the mul-
tivariate sampling observations, which involves M = 120
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Table 6. Diagnostic comparison for one-coefficient shifts of the first three orders.

Bias Std Pr1 Pr2 Prζ

β δ With Without With Without With Without With Without With

0.03 4.32 6.09 19.5 24.1 0.188 0.105 0.267 0.157 0.522
0.04 1.70 4.30 13.2 19.9 0.354 0.197 0.461 0.271 0.765

β(2) 0.05 0.452 2.05 7.58 14.5 0.516 0.320 0.643 0.421 0.917
0.06 0.205 0.975 4.37 9.74 0.633 0.453 0.761 0.582 0.981
0.08 0.013 0.083 1.87 3.53 0.787 0.685 0.882 0.803 0.999
0.10 0.003 0.027 1.17 1.63 0.888 0.830 0.952 0.914 1.000
0.03 2.89 5.77 16.2 22.4 0.269 0.135 0.361 0.186 0.633
0.04 1.10 2.75 9.06 16.0 0.469 0.280 0.595 0.376 0.874

β(1,3) 0.05 0.073 0.968 4.50 10.2 0.622 0.437 0.751 0.564 0.968
0.06 0.045 0.203 2.75 5.47 0.725 0.593 0.835 0.712 0.992
0.08 0.025 0.055 1.32 1.99 0.857 0.801 0.937 0.893 1.000
0.10 −0.005 0.016 0.809 1.01 0.937 0.913 0.976 0.965 1.000
0.03 2.13 4.75 14.1 20.6 0.309 0.184 0.418 0.254 0.565
0.04 0.581 2.14 7.17 14.4 0.516 0.343 0.639 0.438 0.797

β(3,41) 0.05 0.126 0.795 3.78 8.10 0.679 0.531 0.791 0.648 0.924
0.06 0.021 0.159 2.09 4.00 0.775 0.670 0.880 0.785 0.972
0.08 −0.009 0.002 1.04 1.37 0.899 0.854 0.962 0.933 0.997
0.10 0.007 0.017 0.634 0.747 0.960 0.945 0.988 0.981 1.000
0.03 4.32 6.80 19.7 24.4 0.198 0.098 0.269 0.143 0.412
0.04 1.42 4.27 12.6 20.0 0.357 0.195 0.463 0.269 0.646

β(1,3,42) 0.05 0.732 2.19 7.74 14.2 0.514 0.332 0.636 0.433 0.827
0.06 0.141 0.878 4.23 9.37 0.648 0.474 0.769 0.595 0.921
0.08 0.030 0.066 1.82 3.05 0.804 0.716 0.896 0.829 0.988
0.10 0.014 0.037 1.09 1.48 0.891 0.849 0.953 0.925 0.999

samples of size N = 500. Usually, the sample size can
be chosen as tens of the number of cells. The observation
vector nk (k = 1, . . . , 120) is of size 8 × 1, for instance,
n1 = [483, 14, 2, 0, 1, 0, 0, 0]T . The elements of nk jointly
follow a multinomial distribution MN(500; p), where p is a
cell probability vector and may shift at a change-point.

In Phase I, the main task is to check whether there are
unusual patterns in the reference dataset. Let us now use the
proposed directional detection method to see if a change-
point exists. We select the index subset I2, because shifts tend
to occur in main effects and two-factor interaction effects. In
addition, the desired type I error α is set as 0.05. By first
fixing each i ∈ I2, for each k = 1, . . . , 119, based on the
grouped data

∑k
j=1 nj and

∑120
j=k+1 nj , we use the method

given in Appendix B to calculate the −2LRT statistic 
i,k

for testing hypothesis (7). Then, for each i ∈ I2, we obtain

i = maxk 
i,k , which are 2.013, 7.099, 17.33, 5.081, 20.17,
and 11.06. By using Eq. (16) with d = 1, we calculate the
approximate p-values of these 
i as 0.900, 0.140, 0.001,
0.323, 0.000, and 0.024, respectively. Arranging these p-
values from the minimum to the maximum as p̂(1), . . . , p̂(6)

(I2 has a cardinality K = 6), we find that p̂(i) ≤ iα/6
holds for i = 1, 2. Therefore, there is a change-point in the
reference dataset.

Since a change-point exists, the next step is to identify its
location and the shift direction, with the assumption that only

one coefficient deviates in the effects of the first three orders.
Here, the proposed directional diagnostic approach adopts the
candidate index subset I3 for the only potential shift direc-
tion. Still, for each i ∈ I3 and k = 1, . . . , 119, we calculate
the −2LRT statistic 
i,k for testing hypothesis (7). For each
k, by calculating maxi∈I3 
i,k , we see that maxi∈I3 
i,48 is the
maximum among all maxi∈I3 
i,k (k = 1, . . . , 119). Accord-
ing to the estimator (14), the change-point is identified as
τ̂ = 48. For 
i,48 (i ∈ I3), it turns out that the maximum
among them is 
5,48. Hence, the shift direction index is rec-
ognized as ζ̂ = 5 based on the estimator (15), and the shifted
coefficient is β5 = β(1,3), which represents the interaction
effect of factors C1 and C3. In the case of the AEC exam-
ple, this corresponds to a shift in the dependence between the
factors LC and CAP.

For comparison, the application to this AEC example of
the proposed undirectional change-point method and the χ2-
chart in Patel [18] are also illustrated here. For the undi-
rectional method, obtain 	 = 	51 = 24.94 as the maxi-
mum among 	k (k = 1, . . . , 119). By using Eq. (16) with
d = 8 − 1 = 7, the approximated p-values is further cal-
culated as 0.028, smaller than 0.05. Hence a change-point
may exist in the dataset, and the change-point is identified as
τ̂ = 51 using the estimator (12). Conversely, we construct a
χ2-chart based on the 120 samples in this dataset and get a
charting statistic for each sample. The maximum among the
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120 charting statistics is 17.56. In the IC state, each charting
statistic should follow approximately the χ2(3) distribution
with d.f. 3, since three factors are involved in the AEC exam-
ple. The desired type I error α is 0.05, so the control limit of
the χ2-chart may be selected to be (1 − 0.05)

1
120 th quantile

of the χ2(3) distribution, which is 18.06 and larger than the
maximum among the 120 charting statistics. So the χ2-chart
does not signal a change-point.

5. CONCLUSION

This study has developed a new log-linear directional
change-point detection methodology for Phase I analysis of
multivariate categorical processes. The method integrates the
knowledge of potential shift directions, which are formulated
as deviations of coefficient subvectors in log-linear modeling.
In addition, a post-signal diagnostic scheme for recognizing
the change-point location and the shift direction has been pro-
posed. Both the detection and diagnostic approaches work
well in multivariate categorical processes that follow multi-
variate binomial and multivariate multinomial distributions.
Monte Carlo simulations have shown high detection power
and good diagnostic consistency.

It should be pointed out that the proposed approach can
be readily extended for detecting multiple change-points by
using the binary segmentation method recursively (Yao [24]).
Moreover, the presence of outliers has seriously adverse
effects on the modeling and monitoring of MCPs. Therefore,
outlier detection procedures, which aim at identifying any
abnormal samples from a dataset, are quite important and
deserve future research. In addition, the proposed change-
point detection method can be extended to Phase II SPC.
In the literature, some authors have developed change-point
schemes for online monitoring (see Hawkins et al. [10] and
Lai and Xing [12]) without the knowledge of pre- and post-
change parameters. In an ongoing effort, we are developing a
control scheme that integrates sequential change-point detec-
tion and the proposed directional change-point test based on
log-linear models, which might be expected to be more pow-
erful in detecting shifts at a certain expense of computational
efforts.

APPENDIX A

Derivation of the Design Matrix ˜X

Here, we take four factors C1, C2, C3, and C4 with 2, 2, 2, and 3 levels,
respectively, for illustration. Let

12 =
[

1
1

]
, 13 =

⎡
⎣1

1
1

⎤
⎦ , J2 =

[
1

−1

]
,

J3 =
⎡
⎣ 1 0

0 1
−1 −1

⎤
⎦ =

[
I2

−1T
2

]
.

Note that the column sums of matrixes J2 and J3 are all zeros, which assures
identifiability. For instance, the design submatrix corresponding to the main
effect of C3 is 12 ⊗ 12 ⊗ J2 ⊗ 13, where ⊗ is Kronecker product operator.
The design submatrix corresponding to the two-factor interaction effect of
C2C4 is 12 ⊗ J2 ⊗ 12 ⊗ J3, and the design submatrix corresponding to the
three-factor interaction effect of C1C3C4 is J2 ⊗ 12 ⊗ J2 ⊗ J3. All the other
design submatrixes can be constructed similarly, and they all combine to
form X̃. In a word, given 12 ⊗ 12 ⊗ 12 ⊗ 13 with the subscripts correspond-
ing to the number of attribute levels of each factor, the design submatrix
corresponding to an effect is obtained by replacing 1 with J with appropriate
dimensions at all the positions where the factors are contained in this effect.

APPENDIX B

Derivation of the −2LRT Statistic λi for Testing
Hypothesis (7)

Under H1 of Eq. (7), β̃
(a)

and β̃
(b)

have a relationship as described in Eq.
(6). Because of the constraint 1T pt = 1 (t = a, b), the following equations
hold

1T exp
(

1β
(a)
0 + Xβ(a)

)
= 1,

1T exp
(

1β
(a)
0 + Xβ(a) + 1αi + xi δi

)
= 1,

where xi is the ith column of X. So β
(a)
0 and αi can be expressed as

β
(a)
0 = − ln

(
1T exp

(
Xβ(a)

))
,

αi = − ln
(

1T exp
(

1β
(a)
0 + Xβ(a) + xi δi

))
.

Again, assume that na and nb are two independent random vectors subject
to MN(Na; pa) and MN(Nb; pb), respectively. The log-likelihood function
of pa and pb can be written as

L = nT
a ln pa + ln Na ! − 1T ln na ! + nT

b ln pb + ln Nb! − 1T ln nb!
= nT

a X̃β̃
(a) + ln Na ! − 1T ln na ! + nT

b X̃β̃
(b) + ln Nb! − 1T ln nb!

= (Na + Nb)β
(a)
0 + (na + nb)

T Xβ(a) + Nbαi + nT
b xi δi

+ ln Na ! − 1T ln na ! + ln Nb! − 1T ln nb!.

To determine the MLEs of pa and pb, the first-order partial derivatives of
L with respect to both β(a) and δi are required. After some simplifications,
we have

∂L

∂β(a)
= XT (na + nb − Napa − Nbpb),

∂L

∂δi

= s(δi ) = xT
i nb − NbxT

i exp
[
1β

(a)
0 + Xβ(a) + xi δi

− 1 ln
(

1T exp
(

1β
(a)
0 + Xβ(a) + xi δi

))]
.

Let

k(δi ) = exp
[
1β

(a)
0 + Xβ(a) + xi δi − 1 ln

(
1T exp

(
1β

(a)
0 + Xβ(a) + xi δi

))]
.

The second-order partial derivative of L with respect to δi can be formulated
as

s′(δi ) = ∂2L

∂δ2
i

= −NbxT
i

[
diag(k(δi )) − k(δi )kT (δi )

]
xi ,
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where diag(a) is the diagonal square matrix with the column vector a as
its diagonal elements. Note that k(δi ) actually satisfies 1T k(δi ) = 1, and
therefore it can be regarded as the probability vector of a multinomial distri-
bution. In addition, the matrix diag(k(δi )) − k(δi )kT (δi ) is the covariance
matrix of this multinomial distribution, hence semipositive definite. Thus,
the second-order partial derivative of L with respect to δi

∂2L

∂δ2
i

≤ 0.

This means the log-likelihood L is concave with respect to δi , which guar-
antees the existence of the MLE of δi , hence the existence of the MLEs of
pa and pb under H1 of hypothesis (7).

It is obvious that

s(0) = xT
i nb − NbxT

i exp
(

1β
(a)
0 + Xβ(a)

)
= xT

i (nb − Nbpa),

s′(0) = −NbxT
i diag(pa)xi + NbxT

i papT
a xi = −NbxT

i �axi ,

where �a = diag(pa) − papT
a . By performing the first-order Taylor

expansion of s(δi ) at δi = 0, we have

s(δi ) ≈ s(0) + s′(0)δi .

To obtain the MLE of δi , let s(δi ) be 0. Therefore, the MLE of δi should
approximately satisfy

δi ≈ − s(0)

s′(0)
= 1

Nb

(
xT

i �axi

)−1
xT

i (nb − Nbpa) . (17)

Conversely, by performing the first-order Taylor expansion of pb at pa (i.e.,
δi = 0), we have

pb = exp
(

1β
(a)
0 + Xβ(a) + 1αi + xi δi

)
= exp

(
1β

(a)
0 + Xβ(a) − 1 ln

(
1T exp

(
1β

(a)
0 + Xβ(a) + xi δi

))
+ xi δi

)
≈ exp

(
1β

(a)
0 + Xβ(a)

)
+ (

diag
(
pay)xi − papT

a xi

)
δi

= pa + �axi δi . (18)

Therefore, similar to δi , the MLE of β(a) should satisfy

∂L

∂β(a)
≈ XT (na + nb − Napa − Nbpa − Nb�axi δi ) = 0. (19)

By substituting δi in Eq. (17) into Eq. (19), we have

XT [na + nb − Napa − Nbpa

− �axi

(
xT

i �axi

)−1
xT

i (nb − Nbpa)] = 0. (20)

After some calculations, Eq. (20) plus the constraint 1T pa = 1 leads to

pa =
[

1T

XT (Na + Nb) − XT �aAiNb

]−1 [
1

XT (na + nb) − XT �aAinb

]
,

(21)

where Ai = xi (xT
i �axi )

−1xT
i . Note that Eq. (21) may be regarded as

pa = f(pa).
By performing numerical iterations based on Eq. (21) until some stop-

ping criterion is reached, we obtain the MLE p̂H1
a of pa under H1 and hence

�̂
H1
a . Generally, the initial value of pa in the above iteration can be set as

(na + nb)/(Na + Nb), and our simulations show that this iteration will stop
after only a few steps. The MLE δ̂

H1
i of δi can be calculated from Eq. (17).

Based on p̂H1
a and δ̂

H1
i , and according to Eq. (18), the MLE p̂H1

b of pb under
H1 can also be derived. Under H0 of Eq. (7), it is known that the MLEs of pa

and pb are p̂H0
a = p̂H0

b = (na + nb)/(Na +Nb). Based on these, the −2LRT
statistic λi for testing (7) can finally be formulated as

λi = 2nT
a ln p̂H1

a + 2nT
b ln p̂H1

b − 2(na + nb)
T ln

(
na + nb

Na + Nb

)
. (22)

APPENDIX C

The χ2-chart Method in Patel [18]

Based on the M samples nj (j = 1, . . . , M) each of size h×1, we calculate
their average n̄ and use p̄ = n̄/N as the cell probability vector. The covari-
ance matrix is obtained as � = diag(p̄) − p̄p̄T . Let XP = [X1, . . . , Xp]T ,
which is the design submatrix corresponding to the main effects of the p

factors. In a multivariate binomial setting, Xi (i = 1, . . . , p) actually all
reduce into column vectors and contain only 1 and −1 as their entries. Fur-
ther replace all −1s in XP by 0, and denote this new matrix by XM, that is,
XM = I (XP > 0). The charting statistic for the j th sample is calculated as

Rj = 1

N

(
nj − N p̄

)T XM
(
XT

M�XM
)−1

XT
M

(
nj − N p̄

)
.

The control limit can be selected by simulation to make an false alarm rate
of 0.05 when there is no change-point. Then, the charting statistic for each
sample is plotted in the chart against the control limit. If at least one charting
statistic falls beyond the limit, there may be a change-point.
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[6] M. Csörgő and L. Horváth, Limit theorems in change-point
analysis, John Wiley & Sons, New York, 1997.

Naval Research Logistics DOI 10.1002/nav



Li, Tsung, and Zou: Directional Multivariate Categorical Change-Point Detection 173

[7] C. Dahinden, G. Parmigiani, M.C. Emerick, and P. Bühlmann,
Penalized likelihood for sparse contingency tables with an
application to full-length cDNA libraries, BMC Bioinfomatics
8 (2007), 476.

[8] N. Eriksson, S.E. Fienberg, A. Rinaldo, and S. Sullivant,
Polyhedral conditions for the nonexistence of the MLE for
hierarchical log-linear models, J Symb Comput 41 (2006),
222–233.

[9] E.S. Fienberg and A. Rinaldo, Maximum likelihood estimation
in log-linear models, Ann Statist 40 (2012), 996–1023.

[10] D.M. Hawkins, P. Qiu, and C.W. Kang, The changepoint
model for statistical process control, J Qual Technol 35 (2003),
355–366.

[11] N.L. Johnson, S. Kotz, and N. Balakrishnan, Discrete multi-
variate distributions (1997).

[12] T.L. Lai and H. Xing, Sequential change-point detection when
the pre- and post-change parameters are unknown, Sequen
Anal 29 (2010), 162–175.

[13] C.A. Lowry and D.C. Montgomery, A review of multivariate
control charts, IIE Trans 27 (1995), 800–810.

[14] X.S. Lu, M. Xie, T.N. Goh, and C.D. Lai, Control charts for
multivariate attribute processes, Int J Prod Res 36 (1998),
3477–3489.

[15] M. Marcucci, Monitoring multinomial processes, J Qual
Technol 17 (1985), 86–91.

[16] D.C. Montgomery, Statistical quality control: A modern intro-
duction, 6th ed., Wiley, New York, 2009.

[17] G.V. Moustakides, A.S. Polunchenko, and A.G. Tartakovsky,
A numerical approach to performance analysis of quickest

change-point detection procedures, Stat Sinica 21 (2011),
571–596.

[18] H.I. Patel, Quality control methods for multivariate bino-
mial and poisson distributions, Technometrics 15 (1973), 103–
112.

[19] D. Siegmund, Model selection in irregular problems: Applica-
tions to mapping quantitative trait loci, Biometrika 91 (2004),
785–800.

[20] R.J. Simes, An improved Bonferroni procedure for multiple
tests of significance, Biometrika 73 (1986), 751–754.

[21] M. Shih, T.L. Lai, J.F. Heyse, and J. Chen, Sequential gener-
alized likelihood ratio tests for vaccine safety evaluation, Stat
Med 29 (2010), 2698–2708.

[22] M.S. Srivastava and K.J. Worsley, Likelihood ratio tests for a
change in the multivariate normal mean, J Am Stat Assoc 81
(1986), 199–204.

[23] W.H. Woodall, Control charts based on attribute data: Biblio-
graphy and review, J Qual Technol 29 (1997), 172–183.

[24] Y. Yao, Estimating the number of change-points via Schwarz
criterion, Stat Probabil Lett 6 (1988), 181–189.

[25] N. Zhang and D. Siegmund, A modified Bayes information cri-
terion with applications to the analysis of comparative genomic
hybridization data, Biometrics 63 (2007), 22–32.

[26] C. Zou and F. Tsung, Directional MEWMA schemes for mul-
tistage process monitoring and diagnosis, J Qual Technol 40
(2008), 407–427.

[27] C. Zou, F. Tsung, and Y. Liu, A change point approach for
phase I analysis in multistage processes, Technometrics 50
(2008), 344–356.

Naval Research Logistics DOI 10.1002/nav


