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Abstract

This article considers the problem of monitoring Poisson count data with time-

varying sample sizes without assuming a prior knowledge of sample sizes in advance.

Traditional control charts, whose control limits are often determined before the control

charts start working, are constructed based on perfect knowledge of sample sizes. In

practice, however, there is often little foreknowledge about future sample sizes. An

inappropriate assumption of the distribution function may lead to unexpected perfor-

mance of control charts, e.g., excessive false alarms at early runs of the control charts

which in turn hurt an operator’s confidence in valid alarms. To overcome this problem,

we propose the use of probability control limits, which are determined based on the

realization of sample sizes on-line. The conditional probability that the charting statis-

tic exceeds the control limit at present given that there is no alarm before the current

time point can be guaranteed to attain a specified false alarm rate. Our simulation

studies show that the proposed control chart is able to deliver satisfactory run-length

performance for any time-varying sample sizes. The idea presented in this paper can

be applied to any effective control charts such as the CUSUM chart.

Keywords: Average run length; EWMA; False alarm rate; Health care; Run length

distribution; Statistical process control
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1 Introduction

Statistical process control (SPC) charts have been widely used in various applications ranging

from industrial quality control, service operations management, to healthcare surveillance

(Sonesson and Bock, 2003; Woodall, 2006). In particular, monitoring occurrence of a rare

event from a sequence of stochastic processes has received considerable attention recently,

e.g., the detection of non-conformities in precise machining and manufacturing, the detection

of increase in the rate of people visiting an emergency room, mortality of heart surgery

(Poloniecki et al., 1998), and number of cancer patients (Nancy, 2008). In general, the

detection aims to issue an out-of-control (OC) signal as early as possible once an adverse

event occurs after SPC charts start working. Meanwhile, the false alarm rate needs to be

controlled in a desired level so that practitioners would not be bothered by excessive false

alarms to investigate their root causes.

To detect changes in the occurrence rate of an adverse event, both the count of events

recorded in regular time intervals and the corresponding sample size need to be collected.

For example, in manufacturing quality control, a sample of products with size nt is inspected

and the number of non-conformities in the sampled products is monitored for the interest

of detecting possible increases of incidence rate of the non-conformities. Usually, it assumes

that the count of events or non-conformities follows an (conditionally) independent Poisson

distribution given the corresponding sample size. When the sample size is a constant, detect-

ing a change in the rate may be characterized as detecting a change in Poisson mean. Several

control charts have been proposed including the Shewhart chart (Montgomery, 1990), the cu-

mulative sum (CUSUM) chart (Lucas, 1985; White and Keats, 1996), and the exponentially

weighted moving average (EWMA) chart (Gan, 1990; Frisén and De Maré, 1991; Huwang et

al. 2009). These control charts have been successfully employed in manufacturing quality

control in practice.

In some applications such as healthcare surveillance, sample size refers to population at

risk, which however often changes over time. Increasing attentions have thus been paid to

the problem of monitoring the occurrence rate of an adverse event with time-varying sample

sizes in Phase II analysis. Under the assumption that the sample size can be characterized by

a (deterministic) logistic function, Mei et al. (2011) proposed three CUSUM-based control

charts taking into account the time-varying sample sizes. Shu et al. (2011) compared a
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weighted CUSUM and conventional CUSUM procedures. Dong et al. (2008) proposed

to monitor the EWMA statistic of incidence rate estimation. Ryan and Woodall (2010)

compared CUSUM methods and the EWMA chart by Dong et al. (2008) assuming that

the sample size follows a Uniform distribution, and suggested a modified EWMA chart by

adding a lower reflecting barrier. Zhou et al. (2012) proposed a new EWMA method based

on weighted likelihood estimation and testing. All of these works were built on the ground

that the sample size is assumed to follow a pre-specified random or deterministic model,

which is known a priori when establishing appropriate control limits before the control

charts initiate. As Zhou et al. (2012) pointed out, unfortunately, traditional control charts

are very sensitive to the correct specification of sample sizes.

In practice, our knowledge about the time-varying sample sizes is rarely available. A

practical solution is to estimate the sample size distribution function based on a set of

historical observations. When the historical observations are limited, such estimation is

inevitably unreliable and model mis-specification and/or estimation errors would lead to

unacceptable performance when implementing the control charts (Zhou et al., 2012). To

overcome this drawback, this paper proposes the use of probability control limits in an

EWMA control chart for monitoring Poisson count data with time-varying sample sizes in

Phase II. Notice that, though only the EWMA-type chart is discussed in particular in this

paper, the key idea can be similarly applied to any effective traditional control charts such

as the CUSUM chart. No matter what the (unknown) time-varying sample sizes are, the

proposed EWMA chart always shares identical run length distribution with the Geometric

distribution and is thus called EWMAG chart. Essentially the EWMAG chart uses dynamic

control limits which are determined online and depend only on the current and past sample

size observations. It does not need to specify any sample size models before implementation

except the desired false alarm rate. The main idea is to maintain the conditional probability

(the probability that the charting statistic exceeds the control limit given that there is no

alarm before the current time point) to the specified false alarm rate at each time point.

To dynamically determine the probability control limit online, a simulation-based procedure

and a Markov chain procedure are discussed.

The remainder of this paper is organized as follows. We first discuss the statistical model

and some previous work in Section 2. Then the new EWMA control chart with probability

control limits is proposed in Section 3, followed by a performance study of the proposed

control chart in Section 4. A healthcare surveillance example is visited to demonstrate the
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application of the EWMAG chart in Section 5. Finally, several remarks draw the paper to

its conclusion in Section 6.

2 The Statistical Model

Let Xt be the count of an adverse event during the fixed time period (t− 1, t], for simplicity,

we will call it the count of event at time t. Suppose Xt independently follows the Poisson

distribution with the mean θnt conditional on nt, where θ and nt denote the occurrence

rate of the event and sample size at time t, respectively. To detect an abrupt change in the

occurrence rate from θ0 to another unknown value θ1 > θ0 at some unknown time τ , we use

the following change point model,

Xi
i.d∼





Poisson(θ0ni|ni) for i = 1, . . . , τ − 1

Poisson(θ1ni|ni) for i = τ, . . . ,
(1)

where the symbol
i.d∼ means “independently distributed”. The objective is to detect the

change as soon as possible when it occurs through the sequential counts.

In the change point detection problem, a detection rule is often characterized by a charting

statistic a(nt,Xt) and a control limit h(nt) determined based on the historical data set

{ni, Xi}1≤i≤t, where nt = {ni : 1 ≤ i ≤ t} and Xt = {Xi : 1 ≤ i ≤ t}. The stopping time

T is defined as

T = min{t : a(nt,Xt) > h(nt)}. (2)

T = t means that an alarm (OC signal) is issued at time t the first time to declare that

a change has occurred somewhere during the time period [1, t]. Similarly to the literature

of health surveillance, we focus on the detection of increasing occurrence rate, that is the

situation θ1 > θ0. Thus only upward shift is studied in this paper, while the detection of

downward and two-side shifts can be constructed similarly without much difficulty. Note

that the control limit h(nt) depends only on nt, not Xt.

Several control charts have been developed for Poisson count data in previous studies. In

the following, we will discuss two EWMA charts proposed by Dong et al. (2008) and Ryan

and Woodall (2010) and one CUSUM chart suggested by Mei et al. (2011) in detail.
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The statistic of the EWMA-type control chart proposed by Dong et al. (2008) is

Zi = (1− λ)Zi−1 + λ
Xi

ni

, (3)

where i = 1, 2, . . . , t, Z0 = θ0, and λ ∈ (0, 1] is a smoothing parameter which determines the

weights of past observations. Derived from the EWMA sequence, the first EWMA control

chart proposed by Dong et al. (2008), termed EWMAe, has a stopping rule,

TEWMAe = min{t; Zt ≥ θ0 + Lσt, t ≥ 1}, σ2
t = λ2

t∑
i=1

(1− λ)2t−2i θ0

ni

. (4)

The control limit constant L is determined by the nominal value of ARL0. To avoid the

inertial problems, Ryan and Woodall (2010) modified the EWMAe method by adding a

lower reflecting barrier at Zt = θ0, i.e.,

TEWMAM = min{t; Z̃t ≥ Lσt, t ≥ 1}, (5)

where

Z̃t = max

{
θ0, (1− λ)Z̃t−1 + λ

Xt

nt

}
, Z̃0 = θ0.

This method is referred as EWMA-modified (EWMAM) control chart. The CUSUM chart

proposed by Mei et al. (2011) is given by

Wt = max

{
0,Wt−1 +

[
Xt log

θ1

θ0

− nt(θ1 − θ0)

]}
,

which signals when Wt > LC , where W0 = 0. Its control limit LC is determined based on

the desired ARL0.

To determine the control limits for these control charts with time-varying sample sizes,

the distribution of the sample size ni is assumed to be known a priori. As discussed in the

introduction, there is usually very little foreknowledge about the distribution of sample sizes

in the future, especially when population-at-risk may be subject to sudden changes due to

certain events such as wars. Once the assumption of the distribution deviates significantly

from reality, the control limit determined based on the assumption will not be appropri-

ate and result in undesired false alarm rates accordingly, which in turn hurt an operator’s

confidence in valid alarms. To address this issue, an EWMA control chart with probability

control limits is discussed in the next section.
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3 An EWMA Chart With Probability Control Limits

3.1 EWMAG chart

We use the EWMA-type control chart statistic (3) as the charting statistic in the following

discussion of the probability control limits. The proposed exponentially weighted moving

average control chart with probability control limits is called EWMAG chart since its in-

control (IC) run length distribution is theoretically identical to the Geometric distribution,

i.e., the false alarm rate does not depends on the time of the monitoring, nor the sample

sizes being monitored.

The control limit of the EWMAG chart is set so that the conditional probability, i.e.,

the probability that the charting statistic exceeds the control limit given there is no alarm

before the current time point, equals to a specified value of false alarm rate. To be more

specific, we want to find the control limits satisfying the following equations,

Pr(Z1 > h1(α) | n1) = α,

Pr(Zt > ht(α) | Zi < hi(α), 1 ≤ i < t, nt) = α for t > 1, (6)

where α is the pre-specified false alarm rate. This is equivalent to performing a hypothesis

test with the type-I error α at each time point t. Therefore the corresponding IC run

length distribution is exactly the Geometric distribution (Hawkins and Olwell, 1998). At

time t, the probability control limit is determined right after we observe the value of nt.

Consequently, the EWMAG chart does not need the assumption of future sample sizes and

does not suffer from wrong model assumptions. This property makes the proposed EWMAG

chart significantly different from previous control charts.

It is worth noting that the idea of using time-varying control limits was employed in the

literature of self-starting control schemes. As indicated in those studies, the probabilities of

false alarms from a chart may increase dramatically after short-runs if a fixed control limit

is applied. The approach of using dynamic control limits is originally proposed by Margavio

et al. (1995) and Lai (1995) and has been successfully formalized and utilized by Hawkins et

al. (2003) in the parametric change-point based control charts with unknown IC parameters.

See also Zou and Tsung (2010) for a related discussion. However, it should be emphasized

here that our procedure distinguishes from those use of dynamic control limits mentioned
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above in the sense that the control limits in our procedure are determined on-line along with

the process observations rather than decided before monitoring. That is, those control limits

are data-dependent. This is a unique feature due to the time-varying population size nt.

Due to the intricacy of the conditional probability (6), it seems impossible to solve ht(α)

analytically. Thus two computational procedures, simulation-based and Markov-chain, are

suggested to approximate ht(α) in this paper. Though only the EWMA-type control chart

is discussed here, the two computational procedures can be applied to other charts such as

the CUSUM chart with probability control limits.

3.2 Computational procedures for probability control limits

First we introduce the simulation-based procedure for computing the probability control

limits. To explain this procedure clearly, let us start with the consideration of time t = 1.

Under the IC condition, X1 should follow the Poisson distribution with mean θ0n1, where

n1 is known exactly. Therefore we can obtain the control limit at the first time point

by randomly generating X̂1,i, where i = 1, . . . , M and M is a sufficiently large integer,

from the distribution Poisson(θ0n1) and correspondingly calculating M values of pseudo Z1

from (3) with Z0 = θ0, say Ẑ1,1, . . . , Ẑ1,M . We then sort those values in ascending order

and store them in a vector Ẑ1M . The control limit h1(α) can be approximated as the

M ′ = bM(1− α)c largest value in Ẑ1M , where bAc denotes the largest integer less than or

equal to A. Theoretically, if M → ∞, the equation Pr(Z1 > h1(α)) = α can be exactly

satisfied. In this paper M is set to half a million to obtain an appropriate control limit at

each time point. After determining the control limit h1(α), we compare the value of Ẑ1,

which is calculated based on the observed X1 and n1, with h1(α). An OC signal is issued if

Ẑ1 > h1(α). Otherwise, we continue to the next time point t = 2.

According to (6), in order to determine the control limit h2(α), we should ensure that the

value of pseudo Z1 is less than or equal to h1. Hence only the ranked values Ẑ1,(1), . . . Ẑ1,(M ′)

should be kept to determine h2(α). We store the M ′ ranked pseudo Z1 into a vector Ẑ
′
1M ′ .

Given n2, a vector Ẑ2M with the dimension M can then be obtained by

Ẑt,i = (1− λ)Ẑt−1,j + λ
X̂t,i

n2

(7)
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where t = 2, i = 1, . . . , M , Ẑ1,j is uniformly selected from Ẑ
′
1M ′ with j ∈ {1, . . . , M ′}, and

X̂2,i are randomly generated from Poisson(θ0n2). Sort the M elements of Ẑ2M in ascending

order, we can obtain the control limit h2(α) by setting it at the (1 − α)-quantile of the

M elements. Again we keep the ranked statistics Ẑ2,(1), . . . , Ẑ2,(M ′) to the next stage t =

3. Repeat the above procedure by simulating M samples of Poisson(θ0n3), . . . etc. The

simulation-based procedure can be summarized as the following algorithm:

Algorithm 1 (Simulation-based procedure)

1. If there is no OC signal at time t− 1 (t = 1, 2, . . .), X̂t,i (i = 1, . . . , M) are generated

from the distribution Poisson(θ0nt) where nt is known exactly. Accordingly, M values

of the pseudo charting statistic Zt are obtained through (7).

2. Sort them in ascending order and the α upper empirical quantile of those M values is

used for approximating the control limit ht(α).

3. Compare the value of Ẑt, which is calculated based on observed Xt and nt, with ht(α)

to decide whether to issue an OC signal or to continue to the next time point.

4. If continue, set M ′ = [M(1 − α)] and eliminate the values Ẑt,(M ′+1), . . . , Ẑt,(M). Go

back to step 1.

Next we turn attention to the Markov-chain procedure for computing the probability

control limits. The Markov-chain model described here can be considered as an extension

of the methods proposed by Brook and Evans (1972) and Borror et al. (1998). However,

different from the previous methods, we particularly design the Markov-chain procedure

for monitoring the occurrence rate with time-varying sample sizes in this paper. Before

discussing this procedure in detail, we first introduce a critical idea of this procedure, as well

as some concepts including bounds of charting statistics and states, in the following.

At time t, the value of charting statistic Zt is inside an interval with two-side bounds.

Since Zt = (1 − λ)Zt−1 + λXt/nt and Xt ≥ 0, we can simply set the lower bound L = 0

and search for the upper bound U with the constraint Pr(Zt ≤ U) = 1 − ξ, where ξ > 0

is a sufficiently small constant at each time point. In this study, we set ξ = 1e−16. After

determining the two-side bounds, we divide the interval (L,U) equally into K partitions
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(states). Then the ith state is the subinterval (Li, Ui), where

Li = L +
(i− 1)(U − L)

K
and Ui = L +

i(U − L)

K
.

The corresponding midpoint, mi, of the ith state can be determined by mi = L+(2i− 1)(U − L)/2K.

When Zt falls into the ith state at the time t, we have Li < (1−λ)Zt−1 +λXt/nt ≤ Ui, which

is equivalent to

nt[Li − (1− λ)Zt−1]

λ
< Xt ≤ nt[Ui − (1− λ)Zt−1]

λ
. (8)

The probability that Zt is within the ith state, conditioned on Zt−1 = mj (i, j ∈ {1, . . . , K}),
can be obtained by calculating the corresponding probability of Xt since its probability

density function is f(Xt) = e−θ0nt(θ0nt)
Xt/Xt!.

To clearly describe the procedure, we again start with the consideration of time t = 1.

Since Z0 is specified as θ0, we consider that Z0 is in the point θ0 with probability 1 at time

t = 0. At time t = 1, given Z0 and n1, we first determine the upper bound U with the

constraint

Pr(Z1 ≤ U) = Pr

(
X1 ≤ n1(U − (1− λ)Z0)

λ

)
= 1− ξ,

and then divide the interval into K states. Also the probability of Z1 falls into ith state can

be easily calculated by

Pr(Z1 ∈ state i | Z0) =





Pr
(

n1[Li−(1−λ)Z0]
λ

< X1 ≤ n1[Ui−(1−λ)Z0]
λ

)
,

if bn1[Li−(1−λ)Z0]
λ

c < bn1[Ui−(1−λ)Z0]
λ

c,
0, otherwise,

(9)

where i = 1, . . . , K. We then obtain a vector of K probabilities at time t = 1, P 1 =

(p1, p2, . . . , pK)′, where the element pi equals to the value of Pr(Z1 ∈ state i | Z0). The

control limit h1(α) at time t = 1 is determined as the upper bound Ur of the rth state, where

r = arg min{j :

j∑
i=1

pi ≥ 1− α}, j = 1, 2, . . . , K. (10)

If Ẑ1 < h1(α) at time t = 1, where Ẑ1 is calculated based on observed X1 and n1, the process

is declared as in-control and we can proceed to the next stage t = 2. Otherwise, an alarm

should be issued.
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At time t = 2, we first deal with Z1 since Z2 is partially dependent on it. The restriction of

Z1 < h1(α) requires us to keep only the r states of Z1 and store their normalized probabilities

p̃j = pj/
∑r

j=1 pj (j = 1, . . . , r) into a vector P̃ 1 = (p̃1, . . . , p̃r)
′. For any value of Z1 in the

jth state, it is represented with Z1j = mj where j = 1, . . . , r. Then all possible values of Z1

considered at time t = 2 are the r elements of Z1 = (Z11, Z12, . . . , Z1r)
′. Given Z1 = Z1r and

n2, the upper bound U of Z2 can then be determined with the constraint

Pr(Z2 ≤ U) = Pr

(
X2 ≤ n2[U − (1− λ)Z1r]

λ

)
= 1− ξ. (11)

Again, we divide the interval (0, U) into K states. When Z1 = Z1j, K conditional probabili-

ties of Z2 are obtained and stored in a vector P 2j = (p1j, p2j, . . . , pKj)
′, where pij = Pr(Z2 ∈

state i | Z1j, n2), i = 1, . . . , K and j ∈ {1, . . . , r}. Let pi be the probability of that Z2 falls

into the ith state given that Z1 is in-control. The vector of conditional probabilites of Z2,

P 2 = (p1, p2, . . . , pK)′, is calculated as

P 2 = (P 21, P 22, . . . , P 2r)(K×r) P̃ 1(r×1). (12)

With the conditional probabilities of Z2, the control limit h2(α) at time t = 2 is approximated

by the upper bound of the rth state satisfying (10). The procedure is summarized in the

following Algorithm 2.

Algorithm 2 (Markov-chain procedure)

1. If there is no OC signal at time t − 1 (t = 1, 2, . . .), calculate the vector P̃ t−1 storing

r normalized probabilities and the vector Zt−1 containing the values of r midpoints.

Both of the two vectors are with the size (r × 1). Specially, at time 0, we have r = 1,

P̃0 = 1 and Z0 = θ0.

2. Always set the lower bound, L, to be 0 and search for the upper bound, U , of Zt based

on the value of Z(t−1)r and divide the interval (L,U) into K states.

3. For each Z(t−1)j, j = 1, . . . , r, compute the probability vector P tj with the size (K×1).

Then the vector of conditional probabilities can be obtained through formula (12).

4. Compare the value of Ẑt calculated based on observed Xt and nt with the determined

control limit at time t. The control limit, ht(α), is chosen to be the upper bound of

rth state, where r = arg min{j | ∑j
i=1 pi ≥ 1− α}. If Ẑt > ht(α), an OC signal should

be issued. Otherwise, go back to step 1 and continue to the next time stage.
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3.3 Comparison of the two computational procedures

As discussed before, theoretically the EWMAG chart has identical IC run-length distribu-

tion with that of the Geometric random variable, although its design does not utilize any

information of nt. To verify this statement and compare the two computational procedures,

we conduct simulation studies under various scenarios of sample size discussed as follows.

In healthcare surveillance, Mei et al. (2011) suggested to model population growth by the

logistic model. Constant sample size (Dong et al., 2008) and uniformly distributed nt (Ryan

and Woodall, 2010) have also been considered in modeling the population size. In particular,

the following four scenarios are used in our simulation studies.

(I) Increasing Scenario: nt = c1
C(0.5+exp{−(t−c2)/c3}) , where C = 1 or 8;

(II) Decreasing Scenario: nt = c1/2.4
1+exp{(t−c2)/c3} + C, where C = 1 or 7;

(III) Constant Scenario: nt = 4.5 or nt = 10;

(IV) Uniform Scenario: nt ∼ U(1, 4) or nt ∼ U(5, 18),

In Scenarios (I) and (II) c1 = 13.8065, c2 = 11.8532 and c3 = 26.4037 which are the same

as those in Mei et al. (2011). Notice that each scenario is set to have different parameters,

e.g., different C’s and different constant values. For conciseness, we just choose one setting

in each scenario for testing in this section.

Under each scenario, we set the desired false alarm rate α = 0.0027 and accordingly the

desired IC ARL (ARL0) should approximately be 370. For illustration, the control chart

performance is summarized using ARL0, percentiles of the marginal distribution of the run

length, and standard deviation of the run length (SDRL). Besides these quantities, we study

the false alarm rate for the first 30 observations, P (T ≤ 30 | in-control), as well. We set

θ0 = 1 and the smoothing parameter λ = 0.1 and use Monte Carlo simulations of 50, 000

replications to estimate the run length distribution of the EWMAG chart. The Fortran codes

for implementing the EWMAG chart is available from the authors upon request.

Tables 1 and 2 summarize the simulation results of the EWMAG charts with the simulation-

based and Markov-chain procedures, respectively. M in the simulation-based procedure is
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set as 500, 000 and K in the Markov-chain procedure is chosen as 3, 000. We use the nota-

tions SE, Q(.10), Q(.90) and FAR for the standard error of ARL0 estimation, 10th percentile,

90th percentile and false alarm rate, respectively. The IC run-length distribution is consid-

ered to be satisfactory here if it is close to the Geometric distribution or more generally its

variation is less than that of a Geometric distribution. As a reference, when the run-length

distribution is geometric, the SDRL should be approximately equal to ARL0 and Q(.10),

Q(.90) and FAR are about 39, 852 and 0.078, respectively.

Table 1: IC performance of the EWMAG chart with simulation-based procedure; θ0 = 1

Distribution ARL0 SE SDRL Q(.10) Median Q(.90) FAR

(I) [C=8] 372 1.66 371.75 40 258 857 0.0781

(II) [C=1] 371 1.67 373 39 256 854 0.0805

(III) [nt=4.5] 370 1.65 369 39 258 849 0.0805

(IV) [U(1,4)] 369 1.66 370 37 256 846 0.0826

Geometric 370 - 370 39 256 852 0.078

Table 2: IC performance of the EWMAG chart with Markov-chain procedure; θ0 = 1

Distribution ARL0 SE SDRL Q(.10) Median Q(.90) FAR

(I) [C=8] 370 1.65 368.81 39 258 843 0.0785

(II) [C=1] 372 1.66 370.19 40 259 858 0.0765

(III) [nt=4.5] 371 1.67 373 39 257 852 0.0796

(IV) [U(1,4)] 372 1.67 373 40 257 852 0.0769

Geometric 370 - 370 39 256 852 0.078

Under Scenarios (I)-(IV), the values of ARL0 obtained from the EWMAG charts based

on the two procedures are apparently close to the desired value of 370 (the slight difference

is due to simulation errors). SDRL, Q(.10), Q(.90), Median and FAR are all approximately

equivalent to the theoretical values. That is, the EWMAG chart has identical IC run-length

distribution with that of the Geometric distribution and the two proposed calculation pro-

cedures have the similar design and performance. Therefore we will use only the simulation-

based procedure in the following studies when evaluating the EWMAG chart because it is

faster in implementation.
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4 Performance Comparison

In this section, the performance of the EWMAG chart is compared with that of the EWMAe,

EWMAM, and CUSUM charts respectively under the four scenarios of time-varying sample

sizes discussed previously. We set the false alarm rate α = 0.0027 and choose the smoothing

parameter of EWMA-type control charts as λ = 0.1, and θ0 = 1 of the CUSUM chart

as in Mei et al. (2011). In order to make a comprehensive comparison, we consider the

performance under both the IC and OC situations in the following.

4.1 IC performance

Assume that population sizes can be known exactly. Figure 1 presents the IC run lengths of

the four control charts (EWMAe, EWMAM, CUSUM and EWMAG) under the four scenarios

considered in Section 3.3. As expected, the run length distribution curve of the EWMAG

chart merges with that of the Geometric distribution, which verifies again that the IC run

length distribution of the proposed EWMAG chart is exactly the Geometric distribution. In

contrast, the curves of the other three control charts deviate significantly from the Geometric

distribution curve in different degrees under various scenarios. In particular, the EWMAe

chart often has higher early false alarms than the Geometric distribution, especially under

Scenarios (I), (III), and (IV), while the CUSUM chart has considerably lower false alarms

than the Geometric distribution under Scenario (I).
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Figure 1: Comparison of IC run length distribution among the EWMAe, EWMAM, CUSUM and

EWMAG charts
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The IC ARLs with mis-specified models are reported in Table 3. Obviously, the observed

ARL0’s would deviate from the nominal one (370) to certain degrees when the distributional

model of population sizes does not match the reality. Even with appropriate models, mis-

specified parameters in the distribution function also result in poor IC performance. As

pointed out before, accurate information about future population sizes can rarely be obtained

in many applications. Therefore, control charts constructed on the basis that distribution

functions of varying population sizes are exactly known will result in an unacceptable run-

length distributions as shown in this table. This clearly indicates the advantage of our

EWMAG chart in practice.

4.2 OC performance

To investigate the OC performance, only the EWMAe chart is used for the comparison since

it has identical form as the EWMAG chart except the control limits. We assume that the

population sizes are known exactly here since it is unfair to compare different procedures in

terms of OC ARL when their IC run-length distributions differ significantly. In general, OC

run length distributions depend on the OC conditions (that is, the rate of event occurrence

changes from θ0 to θ1 at time τ) and the occurrence time τ . Therefore, in the following,

OC performance is studied under different values of θ1 and different occurrence time τ

successively.

Assuming τ = 21, Table 4 presents the OC ARLs of the EWMAG and EWMAe charts

with different values of θ1 under Scenarios (I)-(IV). It is easy to see that the OC performance

of the two control charts are comparable regardless of the population scenarios. This demon-

strates that the proposed EWMAG chart is able to ensure desired IC run length performance

without degradation of its change detection ability.

Setting θ1 = 1.2, Figure 2 shows the OC ARLs of the two charts under Scenarios (I)-(IV)

when the occurrence time τ ranges from 1 to 100. It shows that both charts are sensitive

to the occurrence time of the change, especially when population monotonely increases or

decreases. In general, the EWMAG chart always has smaller OC ARL values than the

EWMAe chart, except when τ is very small under Scenario (I).

It is worth to indicate that the main objective of the proposed dynamic procedure is to
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Table 4: OC ARL Comparison of the EWMAG chart and the EWMAe chart under Scenarios

(I)-(IV) with τ = 21

θ1 (I)[C=8] (II)[C=1] (III)[nt = 4.5] (IV)[U(1,4)]

EWMAe EWMAG EWMAe EWMAG EWMAe EWMAG EWMAe EWMAG

1.025 249 241 284 285 233 224 266 259

1.050 171 168 220 217 149 146 194 188

1.075 126 124 172 169 104 99.9 146 141

1.100 95.3 94.9 137 133 73.8 72.2 111 107

1.200 44.5 43.8 55.2 52.5 27.7 27.8 48.0 45.9

1.300 27.2 27.1 26.3 25.0 15.2 15.1 26.7 25.9

1.400 19.2 19.1 15.1 14.5 10.0 9.88 17.4 17.1

1.500 14.5 14.5 10.3 9.89 7.31 7.25 12.6 12.6

1.750 8.77 8.81 5.50 5.32 4.19 4.15 7.11 7.18

2.000 6.18 6.18 3.64 3.49 2.83 2.80 4.81 4.90

2.500 3.69 3.72 2.03 1.96 1.59 1.59 2.77 2.94

3.000 2.56 2.58 1.33 1.27 1.02 1.02 1.87 2.06

4.000 1.48 1.48 0.66 0.63 0.47 0.47 1.01 1.23

make the IC run length distribution of a control chart attaining the theoretical Geometric

distribution rather than to improve the detection ability of the chart. Therefore we suggest

to use the proposed EWMAG chart in practice due its desired IC run length performance

and competitive OC performance.

5 An Example in Healthcare Surveillance

In this section, an example of female thyroid cancer in healthcare surveillance is used to

demonstrate the application of the proposed EWMAG chart. According to the report from

the National Cancer Institute, there are about 37, 000 new cases of thyroid cancer each year

in the U.S. and females are most likely to have thyroid cancer at a ratio of three to one.

Thyroid cancer may occur in any age group, although it is most common after age 30, and

its aggressiveness increases significantly in older patients.
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Figure 2: OC comparison of the EWMAe and EWMAG charts with different τ

The data, provided by the New York State Cancer Registry through its official website1,

include the number of female thyroid cancer cases and the incidence rate each year in the

New York State. Based on the provided data, the corresponding population size each year

can be simply derived. In Figure 3, (a) and (b) show the time series plots of the counts (in

the units of 100 cases) and the incidence rates per 100 million population of female thyroid

cancer in the New York State respectively. It can be observed that the incidence rate remains

quite stable before year 1982 and exhibits a slight increase after 1983. The increase tendency

becomes more significant starting from 1990. In Figure 3 (c), the population size of female

increases from 8.95 million in 1976 to 9.88 million in 1995 significantly.

Based on the pattern of incidence rate discussed above, the period from 1976 to 1982

is chosen as the Phase-I reference sample and accordingly the nominal incidence rate is

1http://www.health.ny.gov/statistics/cancer/registry/table2/tb2thyroidnys.htm
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(a) Population (b) Case

(c) Incidence Rate (d) Estimated population

Figure 3: Female thyroid cancer incidence data and the expected population size estimated

by the fitted logistic model. (a) Female population (b) number of thyroid cancer cases (c)

incidence rate and (d) Estimated population sizes based on the fitted logistic model.

estimated as θ0 = 0.45. A calibration sample of this size may be smaller than ideal to

determine fully the in-control parameter but it suffices to illustrate the use of the method

in a real-world setting. Our target is to monitor the incidence rate of female thyroid cancer

from 1983 to 1995 and compare the performance of the EWMAG chart and that of the

EWMAe chart in this example.

Before the monitoring, we set α = 0.0027 or equivalently ARL0 = 370. We fit a logistic

model to the observed population sizes in Phase I by a nonlinear least square method (year

1975 is treated as time 0 and the population sizes are in the units of 1, 000, 000) and obtain

nt = 5.856/[0.5+exp{−(t+86.295)/45.645}] (Scenario I). Figure 3 (d) shows the real popu-

lation sizes and the expected population sizes well estimated by the fitted logistic regression

model with random variations. It indicates that in general the natural character of the pop-
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ulation growth can be well described by this logistic model. To show the adverse impacts

of inappropriately estimated population sizes, we further assume that the population sizes

are constant with nt = 9.0 (Scenario III) or uniformly distributed with nt ∼ U(7.0, 10.0)

(Scenario IV) for comparison.

Under the three different scenarios of population sizes discussed above, the control limits

of the EWMAe chart are determined as θ0 + Lσt with L(I) = 2.533, L(III) = 2.547, and

L(IV ) = 2.553 respectively. Figure 4 plots the charting statistics (the solid curves connecting

the dots) and the corresponding control limits (the dashed curves) of the EWMAG chart

and the EWMAe charts.

(a) EWMAG chart (b) EWMAe chart under Scenario I

(c) EWMAe chart under Scenario III (d) EWMAe chart under Scenario IV

Figure 4: The EWMAG chart and the EWMAe charts for monitoring the female thyroid

cancer incidence data set

A significant increase can be observed in incidence rate from 1990. Therefore an alarm

should be issued as soon as possible after 1990. From the plots, it can be seen that the

EWMAG chart exceeds its control limit in year 1994 and it remains above the control limit
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afterwards. The EWMAe chart in Scenario I also triggers a signal in the same year. It

is rational to have similar detection results from the two control charts since the natural

population sizes are appropriately modeled in Scenario I. On the other hand, the EWMAe

chart issues a delayed OC signal in year 1995 in both Scenarios III and IV, which is caused

by the inappropriate distributions of population sizes. The example justifies the usefulness of

the EWMAG chart in reality since its detection capability does not depend on the estimation

of population sizes, which is difficult to be determined in advance.

6 Conclusion

As indicated in Section 4, there is a significant shortage of traditional control charts for

monitoring Poisson count data with time-varying sample sizes. That is, their need for know-

ing the distribution or model of sample sizes before monitoring since we rarely have such

foreknowledge in real applications and an inappropriate assumption or estimation may lead

to poor run-length performance of the traditional control charts. To this end, we suggest to

use probability control limits, which are determined based on the observed real sample sizes

on-line, for traditional control charts so that the conditional probability that the charting

statistic exceeds the control limit at present given that there is no alarm before the current

time point can be guaranteed to attain a specified false alarm rate. In this paper, a EWMA-

type control chart with the probability control limits, termed EWMAG chart, is discussed in

detail. However, we should emphasize that the presented idea can be readily applied to any

effective control charts such as the CUSUM chart. The proposed EWMAG chart is able to

deliver robust and satisfactory IC and OC run-length performance under various situations,

which has been proved by the simulation studies in this paper.

For the future research, there are some valuable directions discussed as follows. First of

all, recall that in this paper we apply the proposed EWMAG chart to monitor the occur-

rence rate of adverse events assuming that the count of events follows a Poisson distribution

when given the sample size on-line. Clearly, the EWMAG chart can be also extended to

more general cases in which the observations follow a conditional distribution given some

related parameters/covariates whose information can be obtained and updated on-line as

well. For example, when monitoring and predicting shopping quantity in retail data min-

ing, frequency of purchase and other demographics play an important role to determine the
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baseline purchasing frequency and quantity (Rossi et al., 1996).

In addition, it is well recognized that the performance of the EWMA-type chart depends

on the smoothing parameter λ, which is simply set to a constant value in this paper. One

of our ongoing work is to sequentially determine optimal values of λ in the EWMAG chart.

Moreover, the occurrence rates, which correspond to different sample sizes, are regarded

as equally informative in the current study. That the EWMAG pays the same attention

to a ratio Ri based on a small at-risk ni as to one based on a large ni, even though the

later is more informative in some cases. A control chart with sample-size-varying smoothing

parameters would be more reasonable.

Finally, it requires more research to extend our method to Phase I analysis, in which

detection of outliers or change-points in a historical dataset and estimation of the baseline

incidence rate would be of great interest. Moreover, it is known that the performance of

all control charts is affected by the amount of data in the reference dataset. Thus, the

determination of required Phase I sample sizes to ensure reasonable performance of the

control charts with estimated parameters is needed. Furthermore, future research needs to

be directed to develop a self-starting version of the EWMAG chart which can simultaneously

update parameter estimates and check for OC conditions (Zantek and Nestler, 2009).
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