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Abstract

Nonparametric control charts are useful in statistical process control (SPC)
when there is a lack of or limited knowledge about the underlying process dis-
tribution, especially when the process measurement is multivariate. This paper
develops a new multivariate SPC methodology for monitoring location param-
eters. It is based on adapting a powerful multivariate sign test proposed by
Randles (2000) to on-line sequential monitoring. The weighted version of the
sign test is used to formulate the charting statistic by incorporating the expo-
nentially weighted moving average control (EWMA) scheme, which results in a
nonparametric counterpart of the classical multivariate EWMA (MEWMA). It
is affine-invariant and has a strictly distribution-free property over a broad class
of population models. That is, the in-control (IC) run length distribution can
attain (or is always very close to) the nominal one when using the same control
limit designed for a multivariate normal distribution. Moreover, when the pro-
cess distribution comes from the elliptical direction class, the IC average run
length can be calculated via a one-dimensional Markov chain model. This con-
trol chart possesses some other favorable features: its computation speed is fast
with a similar computation effort to the MEWMA chart; it is easy to implement
because only the multivariate median and the associated transformation matrix
need to be specified (estimated) from the historical data before monitoring; it
is also very efficient in detecting process shifts, particularly small or moderate
shifts when the process distribution is heavy-tailed or skewed. Two real-data
examples from manufacturing show that it performs quite well in applications.
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1 Introduction

In modern quality control, it is common to monitor several quality characteristics of a

process simultaneously (Stoumbos et al. 2000). This is called multivariate statistical

process control (MSPC) in the literature and it is the focus of this paper. One of the

tasks of MSPC is to detect the change in a multivariate process location parameter

θ (mean, median or some percentile of the distribution) as quickly as possible. To

be more specific, it is usually assumed that there are m0 independent and identically

distributed (i.i.d.) historical (reference) observations, x−m0+1, . . . , x0 ∈ Rp, for some

integer, p ≥ 1, and the ith future observation, xi, is collected over time from the

following multivariate change-point model

xi
i.i.d.∼





F0(x− µ0), for i = −m0 + 1, . . . , 0, 1, . . . , τ,

F0(x− µ1), for i = τ + 1, . . . ,
(1)

where τ is the unknown change point and µ0 6= µ1.

Methods for accomplishing the monitoring task are usually based on the following

quadratic formulation of the test statistics:

(xi − µ̂0)
′Σ̂

−1

0 (xi − µ̂0), (2)

where µ̂0 and Σ̂0 are, respectively the mean vector and covariance matrix estimated

from the IC reference sample of size m0. It is often called a Shewhart χ2 chart when

we use exact µ0 and Σ0 instead of µ̂0 and Σ̂0. In the literature, to accumulate

information from past observations, many MSPC control charts are constructed in

two steps. First, a sequence of multivariate vectors is constructed in the framework of

a cumulative sum (CUSUM) or an exponentially weighted moving average (EWMA).

Then, the charting statistic takes the quadratic form of the multivariate vectors in a

similar way to (2) (cf., for instance, Healy 1987; Croisier 1988; Pignatiello and Runger

1990; Lowry et al. 1992; Runger and Prabhu 1996; and Zamba and Hawkins 2006).

In particular, the multivariate EWMA (MEWMA) chart, proposed by Lowry et al.

(1992), is powerful in detecting small or moderate sustained shifts in µ with small or

moderate weighting parameters. Its charting statistic is defined by

T 2
i =

2− λ

λ
z′iΣ

−1
0 zi, (3)
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where λ ∈ (0, 1] is a weighting parameter and zi is a vector operating in a recursive

form,

zi = λ(xi − µ0) + (1− λ)zi−1. (4)

The above mentioned MSPC research is mostly based on a fundamental assump-

tion that the process data have multinormal distributions. However, it is well recog-

nized that, in many applications, the underlying process distribution is unknown and

not multinormal, so that statistical properties of commonly used charts, designed to

perform best under the normal distribution, could potentially be (highly) affected.

The problem of degraded statistical performance due to the non-normality is severe

with small samples, particularly individual observation cases (c.f., Montgomery 2005)

since the cental limit theorem is no longer (approximately) valid. Nonparametric or

robust charts may be useful in such situations. In the last several years, univariate

nonparametric control charts have attracted much attention from researchers and a

nice overview on this topic was presented by Chakraborti et al. (2001). The need for

robust multivariate SPC has been noted in a number of articles, see, e.g., Woodall

and Montgomery (1999) and references therein. Some effort has been devoted to this

problem, such as the control schemes based on data-depth (see, e.g., Liu 1995; Liu

et al. 2004) or support vector machines (Sun and Tsung 2003). However, Stoum-

bos and Sullivan (2002) argued that multivariate nonparametric control charts “are

less powerful, more computationally intensive, and generally do not apply to skewed

distributions”. See Stoumbos and Jones (2000) for a nice analysis of the method

presented by Liu (1995). Alternatively, Qiu and Hawkins (2001; 2003) suggested a

computationally trivial nonparametric multivariate CUSUM procedure based on the

antiranks of the measurement components. Both papers discuss only the case when

the IC distribution is assumed to be known.

It needs to be emphasized that although the closed-forms of cumulative distribu-

tion functions (c.d.f.) or density functions may not be available, the statement that

the IC distribution is assumed to be known is essentially equivalent to saying that m0

is sufficiently large because we can always use various estimation approaches, such as

empirical distribution functions or multivariate kernel density estimations, to obtain

corresponding consistent estimators. Even the Shewhart χ2 chart can then be re-

garded as “distribution-free”. That is, the IC run length distribution for non-normal

processes could be designed to achieve the nominal one by means of simulations
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through resampling from the IC distribution or from the m0 IC historical samples

directly. However, how large m0 should be depends on the dimension p and it is

always difficult to estimate a high-dimensional distribution because of the “curse of

dimensionality” (Eaton 1983). Recently, Qiu (2008) proposed a distribution-free mul-

tivariate CUSUM procedure based on log-linear modeling, which presents us a new

methodology for estimating the multivariate IC distribution from an IC reference

dataset.

Stoumbos and Sullivan (2002) recommended that the MEWMA chart should be

more appealing than multivariate nonparametric schemes because MEWMA charts

can be quite robust in the sense that the IC run length distribution for a continuous

non-normal process is quite close to the distribution for a multivariate normal pro-

cess with the same control limit if the weighting parameter, λ, is small. With a large

number of observations and a small smoothing parameter, a central limit theorem

would ensure that the accumulation vector has approximately a multinormal distri-

bution, which ensures robustness. Note that only µ0 and Σ0 need to be estimated in

MEWMA rather than the entire distribution, which relaxes the requirement of m0.

However, how small λ should be relies on the deviation of the actual measurement

distribution from the multinormal distribution, which is difficult to measure in prac-

tice. Also, when λ is too small, the corresponding procedure would not be sensitive

to relatively large shifts.

This paper develops a new multivariate SPC methodology for monitoring loca-

tion parameters. This methodology adapts a powerful multivariate sign test proposed

by Randles (2000) to on-line sequential monitoring by incorporating the EWMA

scheme, which results in a nonparametric counterpart of the MEWMA chart. It is

affine-invariant and it has an exact distribution-free property over a broad class of

population models in the sense that the IC run length distribution can attain (or is

always very close to) the nominal one when using the same control limit designed for

a multinormal distribution. Moreover, when the process distribution comes from the

elliptical direction class (including the multinormal distribution), the IC average run

length (ARL) can be calculated via a one-dimensional Markov chain model. In ad-

dition, this control chart possesses some other favorable features: unlike some other

nonparametric schemes such as data-depth-based charts, its computation speed is

fast with a similar computation effort to the MEWMA chart. It is easy to implement
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because only the multivariate median and the transformation matrix need to be spec-

ified from the reference dataset before monitoring. It is also very efficient in detecting

process shifts, especially for small or moderate shifts when the process distribution

is heavy-tailed or skewed. The remainder of this paper is organized as follows: our

proposed methodology is described in detail in Section 2. Its numerical performance

is thoroughly investigated in Section 3. In Section 4, we demonstrate the method

using two real-data examples from manufacturing industries. Several remarks draw

the paper to its conclusion in Section 5. The IC ARL calibrations of MSEWMA via

a Markov chain model are provided in the Appendix. Some other technical details,

including proofs of some propositions, are provided in another appendix, which is

available online as supplementary materials.

2 Methodology

Our proposed methodology is described in three parts. In Section 2.1, a brief in-

troduction to Randles’s (2000) multivariate sign test is presented. In Section 2.2,

a new multivariate nonparametric EWMA control chart combined with multivariate

sign test is derived. Its control limits, practical guidelines regarding its design and

computational issues are addressed in Section 2.3.

2.1 A Brief Review of Multivariate Sign Test

Recall model (1) and associated notation. In what follows, we elaborate on the

individual observation model. The extension to the group case is presented at the

end of Section 2.2. The monitoring problem (1) is closely related to nonparametric

statistical tests of hypotheses for the one-sample location problem in the context of

multivariate statistical analysis. Hence, to facilitate the derivation of the proposed

charting statistic, we start by assuming that x1, . . . , xn are i.i.d. from F (x−θ), where

F (·) represents a continuous p-dimensional distribution “located” at the vector θ. We

want to test the null hypothesis, H0, that θ = θ0 against H1 that θ 6= θ0. Without loss

of generality, we assume that θ0 = 0. Otherwise, we substitute xi−θ0 in place of xi.

In creating tests for this problem, different levels of assumption have been proposed

for the distribution of the xi’s. The classical parametric test, Hotelling’s T 2, rejects
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H0 if T 2 = nx̄′S−1x̄ is large, where x̄ and S are the sample mean vector and sample

covariance matrix, respectively. In the nonparametric setting, many efforts have

been devoted to this problem in the literature, such as Randles (1989), Chakraborty

et al. (1998), etc. A nice overview on this topic and related references can be found

in Oja (1999) and Oja and Randles (2004). Specially, Randles (2000) develops a

simple multivariate sign test based on the transformation-retransformation approach

(Chakraborty et al. 1998) together with the directional transformation proposed by

Tyler (1987). Tyler’s transformation is to find a data-driven transformation, Vx, that

is the positive-definite symmetric p× p matrix with trace(Vx) = p and satisfies that,

for any A′
xAx = V−1

x ,

1

n

n∑
i=1

(
Axxi

||Axxi||
)(

Axxi

||Axxi||
)′

=
1

p
Ip, (5)

where || · || is the Euclidean norm and Ip denotes the p× p identity matrix. Such Vx

is unique as Tyler showed, if the sample is drawn from a continuous p-dimensional

distribution and n > p(p− 1). After obtaining Vx, Randles (2000) proposes to use

Q = nv̄′[Ĉov(v)]−1v̄ = npv̄′v̄, (6)

as a test statistic and H0 is rejected for large values, where

vi =
Axxi

||Axxi|| , v̄ =
1

n

n∑
i=1

vi,

and we use the fact that [Ĉov(v)] = n−1
∑n

i=1 viv
′
i = p−1Ip. This test is affine-

invariant and it uses only the direction of an observation from the origin and does

not use its distance from the origin. Randles (2000) shows that the Q is distribution-

free under H0 for the class of distributions with elliptical directions in which random

variables are generated via xi = riDui, where the ui’s are i.i.d. uniform on the

unit p sphere, D is a p × p nonsingular matrix, and the ri’s are positive scalars.

The elliptical directions family contains all the elliptically symmetric distributions,

such as multinormal and multivariate t distributions and certain skew distributions.

This test not only has a small-sample distribution-free property over a broad class of

distributions, but it also performs very well in comparison with Hotelling’s T 2 and

other multivariate nonparametric tests on non-normal distributions. Therefore, we

are interested in tackling the monitoring problem (1) using this sign test.
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2.2 A Multivariate Sign EWMA Control Chart

Firstly, it is worth pointing out that although the monitoring problem (1) is closely

related to the standard hypothesis tests in Section 2.1, they are completely different

and distinguished by the fundamental difference between on-line and off-line decision

issues (c.f., Woodall and Montgomery 1999). This difference will become clear after

the derivation of the proposed charting statistic.

The proposed control scheme contains two steps. The first step is to extract

information from the reference sample of size m0 by obtaining, say, a multivariate

median, θ0, and a transformation matrix, A0. This step is similar to that of con-

structing the MEWMA chart in which µ0 and Σ0 are estimated from the historical

data before monitoring. Various definitions of multivariate median have been pro-

posed to robustly describe “multivariate center”, such as the most well-known one,

the multivariate L1 median (Gower 1974; Brown 1983), defined by the minimizer of∑0
i=−m0+1 ||xi−θ|| using the associated notation of model (1). We recommend using

Hettmansperger and Randles’s (2002) affine equivariant multivariate median, called

the AEM-median for short. This definition of the median is more ideal than the L1

median because it serves the sign test purpose and the by-product of finding such

median is just the desired transformation matrix. The AEM-median, θ0, and the

associated transformation matrix, A0, are defined by the solutions of the following

equations:

E

(
A(x− θ)

||A(x− θ)||
)

= 0, (7)

E

(
A(x− θ)(x− θ)′A′

||A(x− θ)||2
)

=
1

p
Ip, (8)

and the corresponding sample version, (θ̂0, Â0), is defined by the solution of the

sample equations based on m0 historical observations,

1

m0

0∑
i=−m0+1

(
A(xi − θ)

||A(xi − θ)||
)

= 0, (9)

1

m0

0∑
i=−m0+1

(
A(xi − θ)(xi − θ)′A′

||A(xi − θ)||2
)

=
1

p
Ip, (10)

in which A is a p × p upper triangular positive-definite matrix with a one in the

upper left-hand element. Note that Eq.(10) is essentially equivalent to Eq.(5) when
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θ is given and Eq.(8) is simply the population (asymptotical) version. The existence

and uniqueness of (θ0,A0) are shown by Hettmansperger and Randles (2002) under

the assumption that the population is directionally symmetric, which is a weaker

assumption than elliptical directions (see Randles 2000 for detailed comparisons of

various assumptions). The convergence rate of (θ̂0, Â0) is the same as other classical

descriptive statistics, say m
−1/2
0 . Hettmansperger and Randles (2002) also present

an iterative procedure to solve (9) and (10) simultaneously which is quite efficient in

obtaining (θ̂0, Â0) from a given sample. As a side note, in a multinormal distribution

with mean µ0 and variance-covariance matrix Σ0, it is easily seen that θ0 = µ0 and

A′
0A0 = p−1trace(Σ0)Σ

−1
0 . In what follows, we use (θ0,A0) rather than (θ̂0, Â0)

unless indicated otherwise, as a SPC Phase II convention.

In light of (5) and (6), after (θ0,A0) is specified or estimated, for on-line collected

observations xi, i = 1, 2, . . ., it is straightforward to standardize and transform them

to obtain the unit vector vi through

vi =
A0(xi − θ0)

||A0(xi − θ0)|| . (11)

With this choice, the unit vectors of the transformed data have a variance-covariance

structure like that of a random variable that is uniform on the unit p-sphere. Then,

we define an EWMA sequence similar to (4)

wi = (1− λ)wi−1 + λvi, (12)

where the initial vector, v0, is usually taken to be E(vi) and thus should be 0 due to

our definition in (7). Finally, the proposed control chart triggers a signal if

Qi =
2− λ

λ
pw′

iwi > L, (13)

where L > 0 is a control limit chosen to achieve a specific IC ARL. Note that according

to the multivariate sign test (6), we use Cov(wi) ≈ λCov(vi)/(2−λ) = p−1λIp/(2−λ),

which yields (13). The weighted average sum (12) plays a similar role to that of v̄

but reflects the relevance of the data: the more recent observations are more informa-

tive for detecting the change and thus getting the larger weights. Another difference

between (6) and (13) is that the former involves a current data-driven transforma-

tion, Ax, but the latter uses a population (or deemed as historically data driven)

transformation matrix, A0. This is analogous to the difference between Hotelling’s
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T 2 statistic and the quadratic statistic (3). Hereafter, this chart is referred to as the

multivariate sign EWMA (MSEWMA) control chart. In what follows, we show some

useful properties of the MSEWMA chart and the proofs are given in the supplemental

file.

Proposition 1 The MSEWMA chart is affine-invariant.

This proposition says that if the data points are rotated or if they are reflected around

a p−1 dimensional hyperplane or if the scales of measurement are altered, the value of

the charting statistic stays the same. This property is intuitively appealing, and it also

ensures that the performance of MSEWMA is the same for any variance-covariance.

Proposition 2 The MSEWMA chart is strictly distribution free in the sense that

its in-control run length distribution is the same for the class of distributions with

elliptical directions.

This proposition is particularly useful in determining the control limit, L, because,

for any continuous process distribution with elliptical directions, it is the same as

achieving the desired IC run-length distribution.

Proposition 3 The Qi process is a Markov chain if the underlying distribution is

from the class of distributions with elliptical directions.

By this result and some similar arguments in Runger and Prabhu (1996), the MSEWMA

shares a similar key property with its parametric counterpart, MEWMA. That is, the

IC ARL of MSEWMA for distributions with elliptical directions can be calculated

via the Markov chain model. The details are presented in the Appendix. Although

the two-dimensional Markov chain model developed by Runger and Prabhu (1996)

can be extended to the MSEWMA chart to evaluate its OC ARL, this is not of great

interest here because different distributions and OC models have different represen-

tations of the transition probability matrices and it seems quite difficult to present

a unified framework. Hence, we choose to use simulation to evaluate the OC ARL

performance in the next section.

Finally, by Theorem 1 of Randles (2000) and the arguments in Tyler (1987) we

can obtain the following asymptotic results without much difficulty.
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Proposition 4 Under the IC model, Qi
d−→ χ2

p as λ → 0, i →∞ and λi →∞.

To end this subsection, we note that when a group of g observations, say {xi1, . . . , xig},
are taken sequentially from the process at each time point, the MSEWMA chart can

be readily defined in a similar way to (13) by using

vi =
1

g

g∑
j=1

A0(xij − θ0)

||A0(xij − θ0)|| .

2.3 Design and Implementation of the Proposed Scheme

On computation: For on-line detection, the computation burden of the MSEWMA

chart is similar to that of MEWMA since both of them only require computing a

working EWMA sequence and a quadratic form. Of course, unlike the MEWMA

chart, in Phase I analysis, estimating (θ0,A0) involves iterative routines and thus

it is a bit more complicated than estimating (µ0,Σ0). However, by using some effi-

cient algorithms provided by Tyler (1987) and Hettmansperger and Randles (2002),

convergence of (θ0,A0) from the historical data with any practical p and m0 is guar-

anteed and the convergence is usually quite fast. The computation task is trivial by

virtue of the massive computing and data storage capabilities of modern computers.

For instance, given m0 = 20, 000, for p = 10, 100 and 1000, usually about 0.1 second,

1.2 minute and 130 minutes are required to complete the iterative procedure using

a Pentium-M 2.1MHz CPU, respectively. The detailed algorithm is provided in the

supplemental file.

On the control limits and robustness: Based on Proposition 2, the control limits

for distributions with elliptical directions are the same. Hence, we use the standard

multivariate normal distribution to find the control limit (see the supplemental file

for details). Table 1 provides the control limits of the MSEWMA chart for various

commonly used combinations of λ, p and IC ARL’s, obtained using a Markov chain

with m = 200 transition states. We have conducted simulations to verify the accuracy

of the Markov chain approximation, and the results are very satisfactory as long as

m > 50. The Fortran code for implementing the proposed scheme, including the

procedures for finding (θ0,A0) and the control limits, are available from the authors

upon request. The simulation results shown in Section 3 demonstrate that the IC run-

length performance of MSEWMA is quite robust under various process distributions

10



including very skewed distributions. Therefore, the control limits tabulated in Table

1 can be used for any continuous distribution.

Table 1: The control limits of the MSEWMA chart for IC ARL=200, 370 and 500

under p-variate distributions with elliptical directions.

IC ARL λ p = 2 p = 3 p = 4 p = 5 p = 7 p = 10

0.4 6.009 7.920 9.668 11.321 14.448 18.841

0.2 7.831 9.830 11.674 13.414 16.708 21.329

200 0.1 8.043 10.052 11.896 13.636 16.911 21.532

0.05 7.225 9.177 10.963 12.646 15.819 20.288

0.025 5.895 7.691 9.345 10.906 13.864 18.066

0.4 6.276 8.294 10.125 11.847 15.083 19.628

0.2 8.567 10.687 12.626 14.448 17.876 22.649

370 0.1 9.183 11.303 13.249 15.077 18.511 23.310

0.05 8.605 10.700 12.607 14.404 17.774 22.472

0.025 7.399 9.392 11.205 12.918 16.124 20.644

0.4 6.390 8.459 10.329 12.083 15.388 19.983

0.2 8.904 11.074 13.058 14.924 18.409 23.284

500 0.1 9.716 11.887 13.877 15.750 19.247 24.147

0.05 9.265 11.417 13.375 15.216 18.663 23.462

0.025 8.126 10.198 12.081 13.852 17.165 21.812

It should be pointed out that when m0 is not large, there would be considerable

uncertainty in the parameter estimation, which in turn would distort the IC run length

distribution of the MSEWMA control chart. Even if the control limit of the chart were

adjusted properly to obtain the desired IC run length behavior, its OC run length

would still be severely compromised (cf., Jones 2002). This is essentially analogous

to the estimated parameters problem in the context of parametric control charts (see

Jensen et al. 2006 for an overview). We use simulated examples to show that the

performances of MSEWMA and MEWMA are similarly affected when m0 is not large.

To deal with the situation when a sufficiently large reference dataset is unavailable,

self-starting methods that handle sequential monitoring by simultaneously updating

parameter estimates and checking for OC conditions have been developed accordingly

(see, e.g., Quesenberry 1995). The further studies, including thorough investigations
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of the effect of m0 on the MSEWMA chart and the development of corresponding

self-starting charts, are beyond the scope of this paper but should be subjects of

future research.

On choosing the smoothing weight, λ:

Unlike the MEWMA chart in which the choice of λ should be chosen to balance

the robustness to non-normality and the detection ability to various shift magnitudes

(c.f., Stoumbos and Sullivan 2002), the MSEWMA chart is robust under IC with

any weight, λ ∈ (0, 0.2], except for very skewed distributions and high dimensional

cases. In general, a smaller λ leads to a quicker detection of smaller shifts (c.f., e.g.,

Lucas and Saccucci 1990; Prabhu and Runger 1997). This statement is still valid

with MSEWMA. Based on our simulation results, we suggest choosing λ ∈ [0.05, 0.2],

which is a reasonable choice in practice, and using λ ∈ [0.05, 0.1] when a priori

indicates the underlying distribution is very skewed.

3 Numerical Performance Assessment

We present some simulation results in this section regarding the numerical perfor-

mance of the proposed MSEWMA chart and compare it with some other procedures

in the literature. The MEWMA chart (defined by Eqs.(3)-(4)) and the CUSUM chart

of the first antirank (denoted as ARCUSUM) proposed by Qiu and Hawkins (2001)

are considered. The ARCUSUM is briefly reviewed as follows. Define Ai as the first

antirank of xi and ξi = (ξi,1, . . . , ξi,p)
T with a single nonzero component 1 located in

the jth position if Ai = j. The charting statistic of ARCUSUM, yi, is defined by

yi = (S
(1)
i − S

(2)
i )T diag{1/S(2)

i,1 , . . . , 1/S
(2)
i,p }(S(1)

i − S
(2)
i ),

where S
(1)
i = S

(2)
i = 0 if Ci ≤ k (a reference constant); otherwise,

S
(1)
i = (S

(1)
i−1 + ξi)(Ci − k)/Ci,

S
(2)
i = (S

(2)
i−1 + g)(Ci − k)/Ci.

Here S
(1)
0 = S

(2)
0 = 0, g = (g1, . . . , gp)

T = EH0(ξi) and

Ci =[(S
(1)
i − S

(2)
i ) + (ξi − g)]T diag{(S(2)

i−1,1 + g1)
−1, . . . , (S

(2)
i−1,p + gp)

−1}
× [(S

(1)
i − S

(2)
i ) + (ξi − g)].
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We start by assuming that m0 is sufficiently large, in this case thirty thousand.

In all the underlying distributions considered, we first generate m0 i.i.d. samples and

then estimate (µ0,Σ0) and (θ0,A0). For the ARCUSUM chart, the Phase II obser-

vations are firstly standardized through Σ
−1/2
0 (xi −µ0) following Qiu and Hawkins’s

(2001) suggestion. Control limits of the MEWMA and ARCUSUM charts are deter-

mined by simulations to attain the nominal IC ARL under the standard multinormal

distribution, while the control limits given in Table 1 are used for MSEWMA. Since

the zero-state and steady-state ARL (SSARL) comparison results are similar, only

the SSARLs are provided. To evaluate the SSARL behavior of each chart, any series

in which a signal occurs before the (τ + 1)-th observation is discarded (c.f., Hawkins

and Olwell 1998). Because a similar conclusion holds for other cases, here we only

present the results when IC ARL=200 and τ = 50 for illustration. All the ARL

results in this section are obtained from 100,000 replications.

Following the robustness analyses in Stoumbos and Sullivan (2002), we consider

the following distributions: (i) multinormal; (ii) multivariate t with ζ degrees of free-

dom, denoted as tp,ζ ; (iii) multivariate gamma with shape parameter ζ and scale

parameter 1, denoted as Gamp,ζ . Details on the multivariate t and gamma distribu-

tions can be found in the Appendix to Stoumbos and Sullivan (2002). In addition, the

following two distributions are involved in the comparison: (iv) measurement com-

ponents are i.i.d. from chi-square distributions with ζ degrees of freedom, denoted as

χ2
p,ζ ; (v) measurement components are i.i.d. from the Cauchy distribution, denoted as

Caup. As discussed by Stoumbos and Sullivan (2002), since the multivariate normal

and t distributions are elliptically symmetrical, the MEWMA’s OC performance de-

pends on a shift in the process mean vector only through a noncentrality parameter.

This is still true for the MSEWMA chart because of its affine invariance. However,

with the other distributions, such as multivariate gamma, the performance is not

invariant to the covariance matrix of the “implicit” multivariate normal observation.

The number and variety of covariance matrices and shift directions are too large to

allow a comprehensive, all-encompassing comparison. Our goal is to show the effec-

tiveness, robustness and sensitivity of the MSEWMA chart, and thus we only choose

certain representative models for illustration. Specifically, for the (i)-(iii) distribution

cases, the covariance matrix Σ0 = (σij) is chosen to be σii = 1 and σij = 0.5|i−j|, for

i, j = 1, 2, . . . , p. In the interest of brevity, a shift of size δ in only the first component

is used, say, xi + δe1 with e1 = (1, 0, . . . , 0)′, unless stated otherwise.
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Table 2: ARL and SDRL values with multinormal distributions.

δ MSEWMA MEWMA ARCUSUM

λ = 0.2 λ = 0.05 λ = 0.2 λ = 0.05 k = 1.0 k = 0.5

ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 199 194 200 187 200 194 199 183 201 197 200 204

0.25 96.8 93.4 63.9 52.9 93.4 90.4 59.4 48.2 151 150 144 143

0.50 35.4 29.9 26.5 15.9 31.5 26.8 23.4 14.1 98.6 96.5 88.5 86.6

0.75 17.6 12.1 16.5 7.90 14.6 10.4 14.0 6.93 68.1 66.4 59.9 56.9

p = 3 1.00 11.3 6.15 12.5 5.11 8.81 5.21 9.90 4.40 51.4 49.2 44.0 40.4

1.50 7.06 2.56 9.12 3.08 4.80 2.15 6.38 2.49 34.6 31.9 27.8 22.8

2.00 5.72 1.61 7.85 2.41 3.34 1.27 4.72 1.72 26.4 23.5 21.0 15.5

3.00 4.91 1.15 6.96 2.03 2.17 0.71 3.23 1.08 17.7 14.3 14.7 9.85

control limit 9.830 9.177 11.865 9.376 4.202 6.000

0.00 200 192 201 178 200 194 199 174 200 227 199 246

0.25 126 123 78.1 66.5 128 125 77.8 65.7 209 209 222 225

0.50 53.0 48.3 32.2 20.1 52.4 47.4 30.1 19.7 185 185 184 184

0.75 24.5 18.7 19.3 9.39 23.2 18.3 18.3 8.79 161 161 154 154

p = 10 1.00 14.3 8.75 13.9 5.84 12.7 8.10 12.5 5.51 140 138 127 126

1.50 7.72 3.18 9.45 3.28 6.38 3.01 7.88 3.00 99.9 97.5 83.1 77.8

2.00 5.65 1.78 7.55 2.33 4.25 1.66 5.83 2.06 67.4 63.5 54.7 47.8

3.00 4.24 1.00 6.00 1.68 2.65 0.85 3.90 1.25 31.6 26.9 27.3 20.3

control limit 21.329 20.288 24.059 20.701 14.097 13.675

We first consider the multinormal distribution. A low-dimensional case with p = 3

and a higher-dimensional case p = 10 are involved. The simulation results for the

MEWMA and MSEWMA charts with λ = 0.05 and λ = 0.2 and the ARCUSUM

with reference values k = 0.5 and 1.0 are presented in Table 2. Besides the ARLs,

the corresponding standard deviations of the run lengths (SDRL) are also included

in this table to give a broader picture of the run-length distribution. From this

table, we observe that the MEWMA chart has superior efficiency as we would expect,

since the parametric hypothesis is the correct one in this case. The MSEWMA chart

also offers quite satisfactory performance and the difference between MSEWMA and

MEWMA is not significant, even when p is large. It should be pointed out that the

14



Table 3: ARL values with a multivariate t distribution of tp,5.

δ MSEWMA MEWMA ARCUSUM

λ = 0.2 λ = 0.05 λ = 0.01 λ = 0.2 λ = 0.05 λ = 0.01 k = 1.0 k = 0.5

0.00 201 200 199 91.6 177 204 200 201

0.25 100 66.5 60.2 72.7 78.2 68.7 155 147

0.50 38.7 28.1 31.9 43.3 32.9 35.3 102 93.6

0.75 19.7 17.7 22.4 23.9 19.3 23.5 72.2 63.1

p = 3 1.00 12.7 13.4 17.9 14.1 13.4 17.6 54.9 47.8

1.50 7.88 9.79 13.8 7.10 8.34 11.8 36.8 31.3

2.00 6.31 8.36 12.0 4.62 6.10 8.81 27.5 23.4

3.00 5.21 7.27 10.6 2.82 4.05 6.02 18.3 15.6

control limit 9.830 9.177 5.333 11.865 9.376 5.304 4.202 6.000

0.00 200 200 199 47.0 133 197 200 199

0.25 130 82.4 71.6 43.1 82.7 83.5 212 222

0.50 56.9 34.6 39.1 35.6 42.9 46.2 188 189

0.75 26.8 20.8 27.3 26.6 25.2 31.2 166 160

p = 10 1.00 15.9 15.0 21.1 18.6 17.5 23.7 146 134

1.50 8.54 10.3 15.4 9.84 10.7 15.9 104 87.8

2.00 6.24 8.19 12.7 6.23 7.79 12.1 71.5 57.9

3.00 4.60 6.45 10.1 3.59 5.08 8.23 33.7 28.4

control limit 21.329 20.288 13.966 24.059 20.701 13.968 14.097 13.675

superiority of MEWMA becomes more significant when δ is quite large, say δ ≥ 3.

The analogous phenomenon for univariate nonparametric charts has been mentioned

in the literature, e.g., by Hackel and Ledolter (1991) and Zhou et al. (2009). The

MSEWMA, which is essentially based on signs rather than distances, shares a similar

drawback as those rank-based charts for univariate processes. That is, even though

the shift is quite large, the ranks or signs of the observations may not be able to

grow larger. In addition, both the MEWMA and MSEWMA significantly outperform

the ARCUSUM chart. Note that in some cases, such as p = 10 and δ = 0.25, the

ARCUSUM is even not ARL-unbiased.

Next, the multivariate t distribution is considered. As this distribution belongs to
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Figure 1: OC ARL comparison of the MSEWMA and MEWMA charts using λ = 0.05 and

0.1 with a shift in the first component under: (a) t5,3; (b) t5,10.

the class of distributions with elliptical directions, we do not focus on the robustness

of IC ARL performance of the MSEWMA chart but on its OC ARL comparison with

the other two procedures. Table 3 shows the ARL comparison with a shift in the

first component of multivariate t measurements with five degrees of freedom when

p = 3 or p = 10. For the two EWMA charts, besides 0.2 and 0.05, the ARLs with

λ = 0.01 are also reported. Obviously, the MSEWMA and ARCUSUM charts can

achieve the nominal IC ARL but the MEWMA has considerable bias in IC ARL

except for λ = 0.01. The MSEWMA chart is more efficient in detecting the small

and moderate shifts than is the MEWMA chart with the same value of λ in the sense

that even when the IC ARL is much larger than that of the MEWMA, the OC ARLs

decrease much faster than with the MEWMA. When λ is small, say λ = 0.01 in

this example, the MEWMA chart is robust to non-normality under the IC situation;

however, its ability to detect moderate and large shifts is largely compromised. In

particular, when p = 10, the MSEWMA with λ = 0.05 performs uniformly better

than MEWMA does, and the difference is quite remarkable. Again, although it is

robust to multivariate t distribution for IC performance, the ARCUSUM chart is not

as sensitive to the process shift as the other two charts are.

Certainly, the superiority of MSEWMA over MEWMA depends on the degrees
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Table 4: IC ARL values with multivariate gamma distributions of Gamp,ζ .

ζ MSEWMA MEWMA ARCUSUM

λ λ k

0.4 0.2 0.1 0.05 0.025 0.4 0.2 0.1 0.05 0.025 0.5

1 152 179 187 190 191 34.1 62.2 105 167 206 200(196)

2 176 191 196 197 196 42.6 76.8 129 175 204 202(201)

3 184 194 197 198 197 49.7 88.3 140 183 204 201(200)

4 188 194 199 199 197 56.2 96.7 148 185 199 203(202)

p = 3 5 192 197 198 202 200 62.7 105 158 189 198 199(197)

10 195 200 200 201 198 85.7 135 175 194 199 202(200)

15 198 199 199 200 202 105 155 183 201 203 200(200)

30 199 200 199 199 199 130 168 188 195 199 199(198)

1 133 165 183 189 192 26.7 50.0 91.5 147 194 200(208)

2 158 181 192 198 198 35.6 66.4 109 168 202 199(210)

3 168 187 196 199 198 42.3 77.6 129 174 197 200(207)

4 174 190 197 198 199 47.9 85.9 137 177 196 200(208)

p = 5 5 179 193 198 199 198 53.6 94.1 144 179 196 201(210)

10 188 196 198 200 197 76.9 127 165 192 200 200(206)

15 191 199 201 197 198 92.2 138 176 193 199 199(208)

30 196 202 200 199 201 122 160 187 196 200 201(210)

1 116 158 185 191 196 20.7 40.3 76.1 130 178 198(241)

2 136 170 191 194 197 28.6 56.3 101 153 188 200(245)

3 154 178 193 197 199 34.6 67.6 112 164 190 200(242)

4 164 184 195 198 200 41.7 77.4 128 173 195 199(245)

p = 10 5 167 186 196 200 200 47.2 87.2 137 177 196 201(246)

10 181 197 199 199 201 70.5 114 163 188 196 200(246)

15 186 199 201 200 200 85.8 133 171 190 198 199(245)

30 191 200 199 200 199 117 164 192 193 199 199(241)
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of freedom, ζ; that is the deviation from multinormality. This can be clearly seen

in Figure 1, which shows the ARL curves (in the log scale) of the MEWMA and

MSEWMA charts in the left and right panels for ζ = 3 and ζ = 10, respectively,

when p = 5. The MSEWMA chart can maintain the desired IC ARL with any λ and

it outperforms the corresponding MEWMA chart except for very large shifts when

ζ = 3. This advantage reduces when ζ = 10, however. We can expect that the

performance comparison between them will become more similar to that of Table 1

where the multinormal distribution is considered as ζ becomes larger.

Now, we turn to Table 4, which gives IC ARL values with multivariate gamma

observations. As before, various cases with combinations of dimensionality, λ and

degrees of freedom ζ are considered. From this table, we can see that the MSEWMA

is quite satisfactorily robust to the skewed distribution as long as λ is not too large

(i.e., λ > 0.2). When λ ≤ 0.1, the MSEWMA’s IC ARL is always quite close to the

nominal one even for the extremely non-normal and high-dimensional distribution

of Gam10,1. In comparison, the MEWMA usually has a large bias in the IC ARL

and the degradation becomes more pronounced as the dimensionality increases. For

ζ ≤ 5, only when λ is 0.025 will the MEWMA chart maintain a desired IC ARL.

The ARCUSUM chart is still robust in this case from the viewpoint of ARL. We

also observe that the ARCUSUM may have an increase in its SDRL with increasing

dimension, which is partly due to excessive false alarms in short runs.

Figures 2 and 3 respectively summarize the ARL curves of the MSEWMA and

MEWMA with a shift of size δ in the first component and equal shifts of size δ in

the first two components, with multivariate gamma distributions. In both figures, we

set ζ = 2 and the results of p = 5 and p = 10 are shown in left and right panels,

respectively. We do not consider the ARCUSUM because it has been shown to be not

as efficient as the other two procedures in the preceding examples and some additional

simulations (not reported here). Note that for a fair comparison, the MSEWMA with

λ = 0.1 or 0.05 and the MEWMA with λ = 0.025 or 0.01 are considered. Figures 2

and 3 present similar results: (i) with similar IC ARL, the MSEWMA is much better

than MEWMA in detecting small and moderate shifts when p = 5 while MEWMA

has a certain advantage for the large shifts as expected; (ii) when p becomes larger,

the improvement in MSEWMA over MEWMA is tremendous.

Figure 4 shows ARL comparisons of the MSEWMA and MEWMA charts in mon-
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Figure 2: OC ARL comparison of the MSEWMA and MEWMA charts with a shift of

size δ in the first component of multivariate gamma observations under (a) Gam5,2 and (b)

Gam10,2.

itoring a shift in the first component with χ2
p,1 and Caup observations. We present

only the results for p = 5 in this example and a similar conclusion holds for other

cases. Clearly, with an appropriate value of λ, say 0.1 or 0.05, the MSEWMA chart

not only attains the desired IC ARL, but it also outperforms the MEWMA chart in

detecting small and moderate shifts by a quite large margin. This demonstrates the

fact that the MSEWMA chart is more sensitive to process shifts from non-normal

observations, especially for extremely skewed or heavy-tailed distributions, compared

with the conventional parametric MEWMA chart. Interestingly, the MEWMA chart

completely fails with the Caup observations. It has a much larger IC ARL than the

nominal one and it hardly changes as δ increases. This is not surprising since this

observation is consistent with findings on the advantage of rank-based tests or esti-

mations over the associated parametric methods in the contexts of robust statistics,

e.g., see Hettmansperger and McKean (1998). We should emphasize that the physical

measurement for which the mean is not finite is rarely seen in practical applications

and this Cauchy numerical example is just used for illustration of the robustness of

MSEWMA.

We conducted some other simulations with various correlation structures, p and
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Figure 3: OC ARL comparison of the MSEWMA and MEWMA charts with equal shifts of

size δ in the first two components with multivariate gamma observations under (a) Gam5,2

and (b) Gam10,2.

IC ARL, to check whether the above conclusions would change in other cases. These

simulation results, not reported here but available from the authors, show that the

MSEWMA chart works well for other correlation structures as well in terms of its

OC ARL, and its good performance still holds for other choices of p and IC ARL.

In all the foregoing examples, it is assumed that the IC parameters are known

or, equivalently, that they are estimated from a sufficiently large reference dataset.

Finally, we study the performance of MSEWMA when this assumption is violated.

To this end, we use the multinormal and multivariate gamma distributions with two

degrees of freedom. Only the case p = 5 is considered and the nominal IC ARL is fixed

as 200. Table 5 shows the IC ARLs and SDRLs of MSEWMA and MEWMA when

the IC parameters (θ0,A0) for MSEWMA and (µ0,Σ0) for MEWMA are computed

from an IC dataset with various historical sample sizes, m0. In each replication, a

sample of size m0 is firstly generated and the IC parameters are estimated from this

sample. Then, an independent sequence of multivariate observations is generated

and both charts are used to obtain the corresponding run lengths. From this table,

it can be seen that (i) when the sample size of the IC dataset is relatively small,

the actual IC ARLs and SDRLs of the two charts are both quite far away from the
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Figure 4: OC ARL comparison of the MSEWMA and MEWMA charts with a shift

in the first component under: (a) five-dimensional chi-square distribution, χ2
5,1; (b) five-

dimensional Cauchy distribution with 1 degree of freedom, Caup.

nominal level of 200, (ii) when the sample size of the IC dataset increases, such biases

decrease, and (iii) the biases in IC ARL of the two charts are similar, although it

appears that the chart with the smaller λ has a little larger bias in IC ARL, which

is consistent with the findings in the studies of the univariate EWMA chart with

estimated parameters (Jones et al. 2001). In this paper, we make no attempt to

further analyze this problem, but we think that the designs with estimated parameters

for both the MEWMA and MSEWMA charts certainly warrant future research.

4 Real Data Applications

In this section, we demonstrate the proposed methodology by applying it to two

datasets: one is from an aluminium electrolytic capacitor manufacturing process;

the other is the aluminum smelter example used by Qiu and Hawkins (2001). We

elaborate on the first one and use it to illustrate the implementation of MSEWMA

step by step. The application on the latter dataset will be briefly presented since that

dataset is discussed in several papers (c.f., Zamba and Hawkins 2006; Hawkins and
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Table 5: IC ARL and SDRL values with various Phase I sample sizes, m0. Numbers

in parentheses are SDRL values.

Np(0,Σ) Gamp,2

MSEWMA MEWMA MSEWMA MEWMA

m0 λ λ

0.1 0.05 0.025 0.01 0.1 0.05 0.025 0.01

300 155(148) 145(130) 133(111) 134(94.1) 157(146) 152(136) 130(114) 134(96.6)

400 165(157) 155(138) 144(120) 144(100) 163(154) 160(143) 140(123) 141(100)

500 168(163) 163(146) 152(124) 153(110) 170(160) 165(147) 149(131) 152(113)

750 180(170) 174(154) 165(139) 163(117) 179(168) 175(159) 163(144) 165(121)

1000 184(173) 180(163) 173(146) 171(127) 181(172) 178(162) 172(154) 172(128)

1500 189(177) 185(166) 180(153) 178(131) 184(173) 186(167) 176(154) 182(138)

2000 193(186) 190(170) 183(157) 184(137) 187(175) 188(168) 183(161) 188(141)

4000 197(188) 194(175) 190(163) 194(147) 191(180) 193(174) 190(167) 192(146)

Maboudou-Tchao 2007).

The aim of an aluminium electrolytic capacitor (AEC) process is to transform the

raw materials (anode aluminum foil, cathode aluminum foil, guiding pin, electrolyte

sheet, plastic cover, aluminum shell and plastic tube) into AECs. The whole process

includes a sequence of operations, such as clenching, rolling, soaking, assembly, clean-

ing, aging and classifying. Before packing, a careful monitoring (or inspection) step

is required by sampling from a production batch. The three most important charac-

teristics in the specification of an AEC, the capacitance, loss tangent (or equivalently

dissipation factor) and leakage current level (labeled as x1, x2 and x3), are automat-

ically measured by an electronic device at some given measuring voltage, frequency

and temperature.

The dataset comprises 200 vectors (included in the supplemental file). Figure 5

(a)-(c) show the time series plots of the raw data. We use the first 170 vectors as

the historical sample to calibrate the necessary parameters and the others for test.

A calibration sample of this size may be smaller than ideal to determine fully the in-

control distribution (c.f., Table 5) but it suffices to illustrate the use of the method in a

real-world setting. The normal Q-Q plots for the three measurements based on those
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Figure 5: (a)-(c): The time series plots of the aluminium electrolytic capacitors data;

(d)-(f): the normal Q-Q plots for x1, x2 and x3 respectively.

170 vectors are shown in Figure 5 (d)-(f) which clearly indicate that the marginals

are not normal, especially for x1 and x2. Both the Kolmogorov-Smirnov and Shapiro-

Wilk goodness-of-fit tests for normality conclude that all the three variables in this

dataset are not normally distributed (all the p-values are smaller than 1 × 10−5).

Mardia’s (1970) multivariate normality test is also performed and the p-value is about

1.73×10−7. All these tests together with Figure 5 (d)-(f) suggest that the multivariate

normality assumption is not valid and thus we could expect that the MSEWMA chart

would be more robust and powerful than normal-based approaches for this dataset.

The estimated mean vectors, correlation matrices, and (θ0,A0) are presented in Table

6. In Table 6, it can be seen that the correlation matrices contain several large

entries, which demonstrate that the variables have considerable interrelationships

and consequently a multivariate control chart is likely to be more appropriate than a

univariate control chart.

After computing all necessary estimates from the IC data, we are ready to con-

struct the proposed chart for Phase II analysis. Its IC ARL is fixed at 200, and λ is
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Table 6: The estimated mean vector, correlation matrix, multivariate median θ0 and

transformation matrix A0 for the AEC data

Sample mean vector Sample multivariate median, θ0

449.82 4.535 23.41 448.27 4.457 22.48

Sample correlation matrix Sample transformation matrix, A0

1.000 -0.239 0.173 1.000 3.661 -0.179

-0.239 1.000 0.121 0.000 15.265 -0.367

0.173 0.121 1.000 0.000 0.000 1.130

chosen to be 0.1. The control limit is 10.052 given in Table 1. Figure 6 shows the

resulting MSEWMA chart (solid curve connecting the dots) along with its control

limit (the solid horizontal line). The corresponding MEWMA with λ = 0.05 (dashed

curve connecting circles) and ARCUSUM with k = 0.5 (dotted curve connecting di-

amonds) are also presented in the figure, along with their control limits of 9.376 and

6.000 by dashed and dotted horizontal lines, respectively. Note that λ = 0.05 is used

in MEWMA to make it robust to this non-normal data. From the plot, it can be seen

that the MSEWMA chart passes control limit at around the 187th observation and it

remains above the control limit for a while until the 195th observation. This excursion

suggests that a marked step-change has occurred. The process may be adjusted after

(or near) the end of this dataset and thus the MSEWMA charting statistics soon drop

below the control limit. In comparison, the MEWMA chart does not give any signal

until the 191st observation and the ARCUSUM statistics remain below the control

limit throughout.

Finally, we apply the proposed MSEWMA chart to the aluminum smelter process

dataset (kindly supplied to us by Peihua Qiu). The dataset contains five variables,

the contents of SiO2, Fe2O3, MgO, CaO, and Al2O3 and is comprised of 185 vec-

tors. Similar to Qiu and Hawkins (2001), we use the first 95 vectors to estimate the

parameters and the others for the test. Also, we first pre-whiten the dataset into

residual vectors because the original measurements are substantially autocorrelated.

Readers may refer to Section 4.3 of Qiu (2008) for the specifics of the pre-whiten

process. Then the three charts with the same parameters as in the AEC example are

applied to these residual vectors. Figure 7 shows the resulting MSEWMA, MEWMA

and ARCUSUM charts along with their control limits of 13.636, 12.938 and 9.45.
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Figure 6: The MSEWMA, MEWMA and ARCUSUM control charts for monitoring the

aluminium electrolytic capacitor process. The solid, dashed and dotted horizontal lines

indicate their control limits, respectively.

The MSEWMA triggers an alarm at around the 133th observation (after the 38th

test observation is collected) and remains above its control limit for ten observations.

The MEWMA chart also gives a signal at the 146th observation. Once again, the

ARCUSUM chart of the first antirank fails to signal, which is consistent with the

analysis in Qiu and Hawkins (2001). Perhaps some other combined versions, such

as the first-and-last-combined antiranks used in Qiu and Hawkins (2001) are more

appropriate for this dataset. However, the choice of antiranks depends heavily on the

shift directions, which are usually unknown before monitoring. Therefore, designing

an effective ARCUSUM involves more undetermined parameters than MSEWMA,

and the MSEWMA should be a reasonable alternative for non-multinormal processes

by taking its convenience and robustness into account.

5 Concluding Remarks

In this paper, we propose a multivariate nonparametric control scheme. Instead of

estimating the mean, µ0, and covariance matrix, Σ0, from the IC historical dataset
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Figure 7: The MSEWMA, MEWMA and ARCUSUM control charts for monitoring the

aluminum smelter process. The solid, dashed and dotted horizontal lines indicate their

control limits, respectively.

as in the construction of the conventional MEWMA chart, we propose to obtain the

multivariate affine-equivariant median, θ0, first and an associated transformation ma-

trix, A0. Then, the proposed chart is developed based on integrating Randle’s (2002)

powerful transformation-retransformation sign test with EWMA process monitoring.

This nonparametric chart shares some appealing properties with its parametric coun-

terpart MEWMA: (1) its computation speed is fast; (2) it is affine-invariant; (3) for

the distributions with elliptical directions, the charting sequence is a Markov chain

process and correspondingly its IC ARL can be easily calculated through a one-

dimensional Markov chain model. In comparison with MEWMA, it is not only much

more robust in IC performance, but it is also generally more sensitive to the small

and moderate shifts in location parameters for skewed and heavy-tailed multivariate

observations. In many cases, the improvement is quite remarkable. The drawback

of the MSEWMA chart, which is common to almost all rank-based nonparametric

charts, is that it is not as efficient as MEWMA for very large shifts because it only

uses the direction of observations from the origin. Certainly, this disadvantage is

mainly due to the trade-off between robustness and sensitivity.

There are a number of issues not thoroughly addressed here that could be topics
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of future research. First, this paper focuses on Phase II monitoring only and pre-

sumes that all of the historical observations used for estimating the IC parameters

are i.i.d. In practical applications, there is no such assurance. Hence, it requires

much future research to extend our method to Phase I analysis, in which detection

of outliers or change-points in a historical dataset would be of interest. Second, the

performance of both MEWMA and MSEWMA is affected by the amount of data in

the reference dataset. Thus, determination of required Phase I sample sizes to re-

duce the effects of estimated parameters and a general recommendation are needed.

Third, the current version of the proposed chart is designed for detecting location

shifts only. In real multivariate processes, changes affecting only the location vector

are very rare. We believe that, after certain modifications, the proposed method

should be able to handle cases in which monitoring both the location and covari-

ance structure is of interest (cf., e.g., Huwang et al. 2007). Much future research is

also needed to propose a self-starting version of the MSEWMA chart (cf., Hawkins

and Maboudou-Tchao 2007). Finally, statistical monitoring and surveillance of high-

dimensional data stream involving dozens or even hundreds of variables have been

widely recognized as important and critical tools for detection of abnormal behavior

and quality improvement. Note that in such cases, the estimated parameters problem

would become more prominent because estimated covariance matrices would be even

rank-deficient if m0 < p + 1. It is of interest to study the performance of MSEWMA

in such monitoring environments and to investigate how to improve its efficiency by

using some variable selection techniques (Zou and Qiu 2009).
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Appendix: IC ARL Calibrations of MSEWMA via

a Markov Chain Model

Based on Propositions 2 and 3, without loss of generality, we assume that xi are i.i.d.

standard p-dimensional multinormal variables, which will facilitate the derivation

of the transition probabilities as shown later. The Markov chain model described

here can be regarded as an extension of Brook and Evans (1972) and Runger and

Prabhu (1996) to MSEWMA, and hence we only briefly describe the approximation

method, but highlight some necessary modifications and formulas. For more details on

the Markov chain approximation for the conventional EWMA and MEWMA charts,

readers may refer to Lucas and Saccucci (1990) and again Runger and Prabhu (1996).

A one-dimensional Markov chain is used to approximate the IC ARL. Define the

(m + 1) by (m + 1) transition probability matrix, P = (pij), where the element pij

denotes the probability of a transition from state i to j, and (m + 1) is the number

of transition states. Denote g = 2[Lλ/(p(2 − λ))]
1
2 /(2m + 1). Now, we have for

i = 0, 1, 2, · · · , where m and j are not equal to 0, that

pij = Pr
{
(j − 0.5)g < ||λvt + (1− λ)wt−1|| < (j + 0.5)g

∣∣||wt−1|| = ig
}

= Pr {(j − 0.5)g < ||λvt + (1− λ)igu|| < (j + 0.5)g}
= Pr {(j − 0.5)g/λ < ||vt + (1− λ)igep/λ|| < (j + 0.5)g/λ} ,

where we use the arguments from the proof of Proposition 3 that the distribution of

wt−1 given ||wt−1|| = ig is uniformly distributed on S(||wt−1||), say as igu. The last

equality comes from the fact that vi and u are independent. Let ξ = [(1 − λ)ig/λ].

By noting that ||vt|| = 1, simple calculation yields that

pij = Pr
{
(j − 0.5)2g2/λ2 < 1 + ξ2 + 2ξe′pvt < (j + 0.5)2g2/λ2

}
.

Then, for i = 0 and j = 1, . . . , m,

p0j = I{1∈[(j−0.5)2g2/λ2,(j+0.5)2g2/λ2]},

where I{·} is the indicator function. For i, j = 1, . . . , m, we have

pij = G

(
1

2
[(j + 0.5)2g2/λ2 − 1− ξ2]/ξ

)
−G

(
1

2
[(j − 0.5)2g2/λ2 − 1− ξ2]/ξ

)
,
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where G(·) denotes the c.d.f. of the random variable, y1/
√

y2
1 + . . . , y2

p and yi, i =

1, . . . , p are i.i.d. from the standard normal distribution. It is easy to verify that G(·)
has the following closed form,

G(x) =





1− 1
2
Fp−1,1

(
x−2−1
p−1

)
, for x ≥ 0,

1
2
Fp−1,1

(
x−2−1
p−1

)
, for x < 0,

where Fp−1,1(·) is the c.d.f. of the F distribution with (p − 1, 1) degrees of freedom.

The remaining case is that for j = 0,

pij = G

(
1

2
[0.25g2/λ2 − 1− ξ2]/ξ

)
.

Finally, the IC ARL can then be evaluated by

ARL = e′m+1(Im+1 −P)−11,

where 1 is a vector of ones.
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