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Abstract

This paper considers statistical process control for multivariate categorical pro-

cesses. In particular, we focus on multivariate binomial and multivariate multinomial

processes. More and more real applications involve categorical quality characteristics,

which cannot be measured on a continuous scale. These characteristic factors usu-

ally correlate with each other, indicating a must for multivariate charting techniques.

However, there is a scarcity of research on monitoring multivariate categorical data,

and most existing methods lack robustness for some deficiencies. We employ log-linear

models for characterizing the relationship among categorical factors, which are adapted

into a framework of multivariate binomial and multivariate multinomial distributions.

A Phase II control chart is proposed, which is robust to detect various shifts efficiently,

especially those in interaction effects representing the dependence among factors. Nu-

merical simulations and a real-data example demonstrate the effectiveness of the chart.
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1 Introduction

Statistical process control (SPC) has been demonstrated to be an important tool for monitor-

ing process or product quality in manufacturing and service industries. In many applications,

quality characteristics that are measured by attribute levels have become increasingly com-

mon. This is because having their continuous values is usually expensive or even infeasible.

In addition, the attribute levels are often sufficient to represent their values, and such rough

measurements do not cost much. For instance, on a production line each item is inspected

and classified as conforming or nonconforming to its predefined quality specification. Sim-

ilarly, a service level can be assessed as excellent, acceptable, or unacceptable. Since the

characteristic variables or factors involved usually have two or more attribute levels, they

are categorical rather than continuous.

The well known charts for monitoring categorical processes are the p-chart and the np-

chart for binomial distributed variables as well as the c-chart and the u-chart for Poisson

distributed processes. See Woodall (1997) for a detailed review. Recent results include Huang

et al. (2012) for monitoring a binomial process using a moving window. These control charts

provide a seemingly satisfactory framework for identifying the existence of assignable causes

in categorical processes. However, they highlight out-of-control (OC) signals by taking only

one quality characteristic into account. In situations where the overall quality of a product

or service needs to be evaluated by simultaneously checking multiple correlated variables,

multivariate control charts must be considered.

There are at least two reasons for introducing a multivariate control procedure. First,

monitoring several variables independently requires a multi-chart to be handled in parallel,

where each separate chart has a statistic to be updated and plotted from sample to sample

(Woodall and Ncube, 1985). The control limits of the separate charts composing the multi-

chart must be chosen, so that they each have a specified individual in-control (IC) average

run length (ARL) and jointly achieve a specified overall IC ARL of the multi-chart. Here,

the ARL is the average number of samples needed for a control chart to signal. However, the

marginal distributions of variables are not necessarily identical. This may make determining

the control limits by simulation quite complicated and infeasible even for a general multi-
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variate categorical distribution. Second, multivariate control charts appropriately describe

and exploit the correlations among multiple variables and therefore provide general tools for

monitoring multivariate processes.

A large amount of literature has been dedicated to monitoring multivariate continuous

variables. Refer to Lowry and Montgomery (1995) and Bersimis et al. (2007) for an overview.

However, this is not the case for multivariate categorical processes, and to the best of our

knowledge, available work on their SPC is fairly rare. Patel (1973) proposed a Hotelling’s T 2

type χ2-chart for multivariate binomial or multivariate Poisson populations, by the assump-

tion that given a large sample size, the joint distribution of correlated binomial or Poisson

variables can be approximated by a multivariate normal distribution. Lu et al. (1998) de-

signed a Shewhart-type mnp-chart for monitoring multivariate attribute processes, which

uses the weighted sum of the number of nonconforming units of each quality characteristic.

In a very similar way to the mnp-chart, an mp-chart was proposed by Chiu and Kuo (2008)

to monitor multivariate Poisson count data. It is noted that all the above charts can merely

treat factors with two attribute levels. In Marcucci (1985), a generalized p-chart was devel-

oped for multinomial processes, which extends the p-chart from two attribute levels to three

or more by adopting the Pearson chi-square statistic. However, it applies to only one factor.

Similarly, there is also the multinomial cumulative sum (CUSUM) chart proposed by Ryan

et al. (2011), which still applies to one factor based on the likelihood ratio statistic. Recent

developed charting techniques for multinomial data also include Chen et al. (2011), Li et al.

(2012), Weiss (2012), and Yashchin (2012). Topalidou and Psarakis (2009) provided a review

of surveillance methods for multivariate attribute data, but except the aforementioned ones,

most of them are not in the framework of SPC for multivariate categorical processes.

As discussed above, there is no appropriate method for the case of multiple factors, in

which at least one has more than two attribute levels. In addition, most of the existing

methods suffer from a drawback, in that they focus on only the attribute levels of each

factor and neglect the cross-classifications among multiple factors. This makes these methods

insensitive to some types of shifts such as changes in two-factor or higher-order interaction

effects. There seems to be a severe lack of general methodologies for monitoring multivariate

categorical processes.

3



In this paper, we study monitoring multivariate categorical processes in the systematic

framework of multivariate binomial and multivariate multinomial processes, which include

the cases of several factors all with two attribute levels and at least one with more than two

levels. Here, the categorical data can be summarized in a multi-way contingency table and

formulated in terms of log-linear models, which characterize the association patterns among

categorical factors. Simply put, a log-linear model relates the logarithms of the expected cell

counts in the contingency table to a linear model that is similar to an analysis of variance

(ANOVA) model. A detailed discussion of log-linear models and their applications was given

by Bishop et al. (2007). The introduction of log-linear models to SPC also appeared in Qiu

(2008), which designed a distribution-free monitoring scheme for multivariate continuous

processes by dichotomizing numerical data and applying log-linear models to the resultant

binary data for estimating the IC categorical distribution.

Analogous to multi-way ANOVA, the cross-classification cell counts are determined by

main effects and interaction effects. The main effect of one factor reflects mainly its marginal

distribution, and the interaction effects of multiple factors represent the dependence among

them, which play the same role as the correlation coefficients in multivariate normal distri-

butions. For a log-linear model that has only main effects, no dependence exists among the

involved factors, and they are independent of each other. Furthermore, log-linear models

can be equivalently rewritten as a regression form, resulting in a one-to-one correspondence

between factor effects and coefficient subvectors. Therefore, shifts to OC states, which arise

in factor effects, equivalently result in deviations of coefficient subvectors. This provides

a practical explanation of shifts in such processes. Based on log-linear models, a Phase

II control chart is proposed, which utilizes the log-likelihood function of log-linear models

and the exponentially weighted moving average (EWMA) control scheme. It incorporates

properly the exponential weights used at different time points in the EWMA scheme into

the log-likelihood function, leading to an exponentially weighted log-likelihood ratio testing

statistic. This chart is fast to compute and convenient to use, and it applies to the unified

framework of multivariate binomial and multivariate multinomial processes. Numerical re-

sults further confirm its effectiveness under various conditions, as well as its superiority over

existing charts in the literature in detecting shifts in interaction effects that reflect depen-

4



dence among factors. Therefore, it can be implemented reliably within a diverse range of

scenarios.

The remainder of this paper is organized as follows. First, the log-linear modeling for

multivariate binomial and multivariate multinomial processes is introduced in Section 2.

Our proposed control chart is described in detail in Section 3. Its numerical performance is

investigated in Section 4. In Section 5, we demonstrate the method using a manufacturing

example, followed by several concluding remarks in Section 6. Some proofs are given in the

appendix.

2 Multivariate Binomial/Multinomial Modeling

Statistical process control generally consists of two phases. In Phase I, a set of process data

is gathered and analyzed. Any unusual patterns such as outliers or change-points in the data

will lead to adjustments and fine tuning of the process. Once all such assignable causes are

accounted for, we are left with a clean set of data, gathered under stable operating conditions.

This dataset, referred to as the IC dataset hereafter, is then used for estimating the IC

parameters of processes. In Phase II SPC, the estimated IC process parameters are used,

and the major goal is to detect any changes after an unknown time point. The performance of

a Phase II procedure is often measured by the ARL. In this section, we introduce multivariate

binomial and multivariate multinomial processes and then their modeling based on log-linear

models, which is the basis for proposing the control chart.

2.1 Multivariate Binomial/Multinomial Processes

In the context of multivariate categorical processes, suppose that there are p categorical

variables or factors C = {C1, C2, . . . , Cp}, with each classification factor Ci taking a number,

say hi, of possible attribute levels. Consider all the cross-classifications among all the level

combinations of these factors, which form a p-way h1×h2×. . .×hp cross-classified contingency

table with h =
∏p

i=1 hi cells. Therefore, each cell corresponds to one level combination of the

p factors. For instance, in taking measurements on wooden boxes sampled from a production
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line, the classification factors may be the quality characteristics of the length, the width,

and the height, each assessed as conforming or nonconforming. Here we have p = 3 and

h1 = h2 = h3 = 2. Without loss of generality, for each factor, −1 and 1 are used to represent

the two levels “conforming” and “nonconforming”, respectively. Therefore, 23 = 8 cells are

arranged into a 2 × 2 × 2 cube, and each cell count in this cube represents the count with

a certain level combination. For example, (−1, 1, −1) represents a box with conforming

length and height and nonconforming width.

Now we turn to a general p-way contingency table of size h1 × h2 × . . .× hp (Johnson et

al., 1997). Let the probability of obtaining the combination of factor levels a1, a2, . . . , ap be

pa1a2...ap (ai = 1, . . . , hi and i = 1, . . . , p). Furthermore, denote the count of observations with

the level combination a1a2 . . . ap among a total sample of size N by na1a2...ap . The marginal

counts for the ith factor, which are denoted by n(i)1, n(i)2, . . . , n(i)hi
and calculated as

n(i)v =
∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

na1a2...ai−1vai+1...ap−1ap , v = 1, . . . , hi,

will follow the multinomial distribution MN(N ; p(i)1, p(i)2, . . . , p(i)hi
), where

p(i)v =
∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

pa1a2...ai−1vai+1...ap−1ap , v = 1, . . . , hi.

Thus, consider the joint distribution of the p sets of variables

n(i)1, n(i)2, . . . , n(i)hi
, i = 1, . . . , p,

each being a multinomial distribution. This joint distribution is the multivariate multinomial

distribution (Johnson et al., 1997), MMN(N ; π), where π is the h-variate vector of true cell

probabilities. For instance, the pijk (i = 1, . . . , h1; j = 1, . . . , h2; k = 1, . . . , h3) in Equation

(1) compose the cell probability vector π of size h × 1 and h = h1 × h2 × h3. When

each factor has two levels, it reduces naturally to the multivariate binomial distribution.

Therefore, based on the framework of multivariate binomial and multivariate multinomial

distributions, multiple categorical variables can be studied.
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2.2 Log-Linear Modeling

To characterize the relationship between each cell count and the factor levels determining

it, the log-linear model can be employed to model the cell counts in the contingency table.

Before illustrating this, we first turn to multi-way ANOVA, where responses to all factor

level combinations are also in a multi-way table. The responses in ANOVA are assumed

to have normal distributions and dependent on main factor effects and factor interaction

effects. For a simple three-way ANOVA model with its three factors taking h1, h2, and h3

levels, denote the expected response with the first factor at its ith level, the second factor

at its jth level, and the third factor at its kth level as yijk (i = 1, . . . , h1; j = 1, . . . , h2;

k = 1, . . . , h3). The three-way ANOVA model is

yijk = u(0) + u
(1)
i + u

(2)
j + u

(3)
k + u

(1,2)
i,j + u

(1,3)
i,k + u

(2,3)
j,k + u

(1,2,3)
i,j,k ,

where u(0) is the overall mean, u(1), u(2), u(3) are the main effects, u(1,2), u(1,3), u(2,3) are the

two-factor interaction effects, and u(1,2,3) is the three-factor interaction effect. Identifiability

requires constraints such as

∑
i

u
(1)
i =

∑
i

u
(1,2)
i,j =

∑
i

u
(1,3)
i,k =

∑
i

u
(1,2,3)
i,j,k = 0

for the first factor along its index i. Similar equations exist for the second and third factors

along their indexes j and k, respectively.

We are now ready to consider log-linear models. The total number N of observations is

usually fixed, for example, as a convention during the monitoring process in Phase II SPC.

So the cell counts collected in a sample are reasonably assumed to follow a multinomial

distribution. For simplicity, we take a three-way contingency table for illustration. For

an h1 × h2 × h3 table, denote the observed count by nijk in Cell(i, j, k) (i = 1, . . . , h1;

j = 1, . . . , h2; k = 1, . . . , h3), the expected count by mijk. We assume here that the cell

counts follow a multinomial distribution and have the probability mass function (PMF)

f({nijk}) =
N !∏

i,j,k nijk!

∏

i,j,k

p
nijk

ijk , (1)

where pijk = mijk/N is the probability of a random observation being in Cell(i, j, k). Thus,

there is a constraint
∑

i,j,k pijk = 1.
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On the other hand, we know that the ANOVA model is a linear model with normally

distributed responses. It has a canonical link function of unity from the view of generalized

linear models (GLM). For Poisson distributed responses, the corresponding canonical link

function in GLM is the logarithm (McCullagh and Nelder, 1989), which naturally leads to log-

linear models. In addition, there is the fact that a series of independent Poisson distributed

variables result in a multinomial distribution given the sum of these variables. Therefore, we

can employ log-linear models to model the cell counts in a multi-way contingency table. For

the above three-way contingency table, the log-linear model for describing the relationship

between the expected cell count mijk and the factor levels indexed with i, j, k is (Bishop et

al., 2007)

ln mijk = u(0) + u
(1)
i + u

(2)
j + u

(3)
k + u

(1,2)
i,j + u

(1,3)
i,k + u

(2,3)
j,k + u

(1,2,3)
i,j,k . (2)

For a log-linear model without any interaction effects, the factors involved are independent

of each other. Therefore, dependence among factors is reflected by their interaction effects.

The log-linear model (2) and its identifiability constraints are somewhat wordy and incon-

venient. However, it can be rewritten equivalently as a regression form, which is illustrated

by a 2× 3 contingency table. The identifiability constraints allow setting

u(0) = β0, u
(1)
1 = β1, u

(1)
2 = −β1,

u
(2)
1 = β2, u

(2)
2 = β3, u

(2)
3 = −β2 − β3,

u
(1,2)
1,1 = β4, u

(1,2)
1,2 = β5, u

(1,2)
1,3 = −β4 − β5,

u
(1,2)
2,1 = −β4, u

(1,2)
2,2 = −β5, u

(1,2)
2,3 = β4 + β5.

Therefore, the cell count expectation mij (i = 1, 2; j = 1, 2, 3) will be ln mij = β0 +
∑5

k=1 βkxk, and xk (k = 1, 2, . . . , 5) takes values on 1, 0, or −1 where appropriate. Obviously,

β1 measures the main effect u(1) of the first factor, [β2, β3]
T measures the main effect u(2)

of the second factor, and [β4, β5]
T measures the interaction effect u(1,2) of the two factors.

In a word, the factor effects can be represented explicitly by their corresponding coefficient

subvectors, and this can be extended to a general case.

By imposing the identifiability constraints, the log-linear model (2) for a p-way contin-

gency table can be expressed as the following regression form

lnm = 1β0 +
2p−1∑
i=1

X iβi, (3)
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where m is the expectation vector of size h × 1, 1 is a column vector with appropriate

dimensions and 1 as all its elements, X i is the design submatrix corresponding to the ith

main or interaction effect and of size h× qi with elements 1, or 0, or −1 where appropriate,

and βi is the coefficient subvector of size qi×1. In addition, a function such as the logarithm

ln and the factorial ! applied to a vector means the vector of the function applied to

each of the elements of this vector. Obviously, β0 is a scalar representing the intercept.

By denoting the design matrix by X = (1, X1, . . . , X2p−1) and the coefficient vector by

β = (β0, β
T
1 , . . . , βT

2p−1)
T , model (3) can be rewritten as lnm = Xβ. The design matrix X

can guarantee the identifiability conditions, and its derivation can be found in the additional

File 1 of Dahinden et al. (2007). For convenience, we provide in Appendix A a list of some

important notations that appear above for describing log-linear models.

The design submatrices and their corresponding coefficient subvectors are usually ar-

ranged in the sequence of the overall mean, the main effects, the two-factor interaction

effects, and so on. Take three factors C1, C2, and C3 with 2, 3, and 3 levels, respectively, for

illustration. We follow the order of 1, C1, C2, C3, C1C2, C1C3, C2C3, C1C2C3. Hence, the

coefficient vector is

β = [ β0 β1 β21 β22 β31 β32

β1,21 β1,22 β1,31 β1,32 β21,31 β21,32

β22,31 β22,32 β1,21,31 β1,21,32 β1,22,31 β1,22,32 ]T .

We will use β arranged in similar sequences as above in later numerical simulations. Note

that for the multinomial sampling with a fixed sample size N , given all the other entries in

the coefficient vector β, the first entry β0 can be determined by N , which is guaranteed by

the constraint that the cell probabilities in the contingency table sum up to one. Therefore,

attention may be paid to only the coefficient subvectors βi (i = 1, . . . , 2p− 1). According to

the above sequence, it is clear that, for example, β3 = [β31 , β32 ]
T measures the main effect

of the factor C3, and β6 = [β21,31 , β21,32 , β22,31 , β22,32 ]
T measures the two-factor interaction

effect of C2 and C3. In summary, there is a one-to-one correspondence among the ith

main or interaction effect, the design submatrix X i, and the coefficient subvector βi (i =

1, . . . , 2p − 1). Therefore, the cell count expectation vector is essentially determined by the

magnitudes of these coefficient subvectors.

A log-linear model for a p-way contingency table is saturated if it involves all the effects
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of all orders from 1 up to p. In other words, from the main effects to the p-factor interaction

effect, they are all included in the log-linear model. See model (2) for a saturated log-linear

model example. Usually, a reduced model can be obtained via variable selection. It means

that some effects in the saturated model can be dropped while others are retained. Therefore,

some of the coefficient subvectors βi together with their corresponding design submatrices

X i in model (3) may be dropped.

For the reduced models, the hierarchy principle should be followed. It means that all

the lower-order effects have to be included if a higher-order interaction effect containing

them appears in the model. For instance, in a three-way contingency table, if the effect

u(2,3) is in the model, u(2) and u(3) should also be adopted. The hierarchical models can be

denoted in a simple way, such as [13][23] representing the model without the effects u(1,2)

or u(1,2,3) as well as [123] representing the saturated model (2). In the log-linear model, the

design matrix X may actually be constructed in other ways. If the hierarchical log-linear

model is reparametrized using a different design matrix, all the zero terms in the coefficient

vector still remain zero. However, this cannot apply to non-hierarchical ones. In other words,

hierarchy is preserved after reparametrization, and all the zero coefficients can be interpreted

in terms of conditional independence (Dahinden et al., 2007). This is the main advantage of

hierarchical models over non-hierarchical ones.

3 Multivariate Binomial/Multinomial Monitoring

3.1 Online Detection Problem

This paper focuses on Phase II monitoring only and presumes that the coefficient vector β in

the log-linear model (3) has already been estimated from an IC dataset by variable selection

and parameter estimation. Refer to Christensen (1997) to see the stepwise procedures for

variable selection and the Newton-Raphson iterative algorithm for parameter estimation. In

addition, it should be noted that all of the historical observations used for estimating the IC

model are i.i.d.. However, in practical applications there is no such assurance. So it requires

much future research to extend our method to Phase I analysis, in which detecting unusual
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patterns in a historical dataset would be of interest.

Based on the IC coefficient vector in the log-linear model, we present in this section

a Phase II monitoring scheme, which is able to detect various shifts among the multiple

categorical variables in the systematic framework of multivariate binomial and multivariate

multinomial distributions. For simplicity, let F (X; β) represent the pre-specified log-linear

model

lnm = Xβ and 1Tm = N, (4)

where X is an h× s matrix with rank s, and N is the sample size in Phase II. It is usually

reasonable to assume that the jth online multivariate sampling observation vector, nj of size

h× 1, is collected over time from the following change-point model

nj
i.i.d.∼

{
F (X; β(0)), for j = 1, . . . , τ,

F (X; β(1)), for j = τ + 1, . . . ,

where τ is the unknown change-point, and β(0) 6= β(1) are the known IC and unknown OC

process coefficient vectors, respectively. Thus, the monitoring problem is closely related to

the goodness-of-fit test in the context of multinomial analysis (Bishop et al., 2007). More-

over, the coefficient vector β summarizes the relationship between the response m and the

explanatory variable X, which is essentially a profile. Therefore, model (4) has certain links

with the parametric profile monitoring, in which checking the stability of a linear or nonlinear

regression model over time is of interest (Zou et al., 2007).

There is a one-to-one correspondence between factor effects and coefficient subvectors.

Therefore, shifts of marginal distributions of factors or dependence among multiple factors

to OC states, which appear in the form of deviations of their main effects or interaction

effects, respectively, are reflected in the changes of the corresponding coefficient subvectors.

As a result, the monitoring task is to test if β = β(0). Based on the likelihood ratio test

(LRT) (Christensen, 1997), a naive method that comes to mind for online detection is to

use the current sampling observation vector to construct a Shewhart-type chart. However,

this would be very inefficient for moderate and small changes, since it completely ignores

the past samples. As an alternative, we may consider an EWMA scheme. A natural idea

is to first obtain the estimate of the coefficient vector β for each sample, and then apply
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the multivariate EWMA chart (Lowry et al., 1992) and some modifications of the LRT

to these estimates of β at different time points. However, this naive approach may still

be inefficient, since for each sample the coefficient vector β is estimated based on only N

random observations.

3.2 Log-Linear Multivariate Binomial/Multinomial Chart

Based on the above analysis, we propose an EWMA-type control chart by using the idea of

weighted likelihood. The log-likelihood of the observation vector nj in the jth sample of size

N in Phase II can be written from the PMF of the multinomial distribution and expressed

as

lj(β) =
∑

a1,a2,...,ap

na1a2...ap,j ln ma1a2...ap −
∑

a1,a2,...,ap

na1a2...ap,j ln N

+ ln(N !)−
∑

a1,a2,...,ap

ln(na1a2...ap,j!)

=nT
j lnm− nT

j 1 ln N + ln(N !)− 1T ln(nj!)

=nT
j Xβ −N ln N + ln(N !)− 1T ln(nj!).

For any time point k, consider the following exponentially weighted log-likelihood over sam-

ples 1 to k,

wk(β; λ) = a−1
0,k,λ

k∑
j=1

(1− λ)k−jlj(β),

where λ ∈ (0, 1] is a smoothing parameter, and at0,t1,λ =
∑t1

j=t0+1(1− λ)t1−j is a sequence of

constants to ensure that all the weights sum up to 1. Obviously, wk(β; λ) makes full use of

all available samples up to the current time point k, and different samples are weighted as

in an EWMA chart (i.e., the more recent sample has more weight, and the weight changes

exponentially over time). Then given λ, the maximum weighted likelihood estimate of β at

the time point k, β̂k, is defined as the solution to the following maximization problem,

β̂k = arg max
β

wk(β; λ), subject to 1T (exp(Xβ)) = N. (5)
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Therefore, the weighted likelihoods under the alternative and null hypotheses, evaluated at

β̂k and β(0), respectively, are given by

w1,k = a−1
0,k,λ

k∑
j=1

(1− λ)k−jlj(β̂k),

w0,k = a−1
0,k,λ

k∑
j=1

(1− λ)k−jlj(β
(0)).

Consequently, the −2LRT statistic will be

Rk = 2(w1,k − w0,k)

= 2(zT
k (Xβ̂k −Xβ(0)), (6)

where

zk = a−1
0,k,λ

k∑
j=1

(1− λ)k−jnj. (7)

Clearly, zk is the exponentially weighted average of the observation vectors nj (j = 1, . . . , k)

over time. Before proceeding, we need to calculate the weighted likelihood w1,k in which

zT
k Xβ̂k is involved. Although computing power has greatly improved, and it is computa-

tionally trivial to perform log-linear model estimation for individual sampling observation

vectors, for online process monitoring which generally handles a large amount of samples,

fast implementation is important, and some computational issues deserve our careful ex-

amination. At first glance, to obtain β̂k by solving the maximization problem (5) directly

requires a considerable amount of computing time especially when k is large. However, no-

tice that the core of the exponentially weighted log-likelihood wk(β; λ) over samples 1 to k,

which contains β, is a−1
0,k,λ

∑k
j=1(1− λ)k−jnjXβ, and that the log-likelihood of zk is zkXβ

by ignoring some constants. According to Equation (7), these two parts are equal, which

concludes the following proposition.

Proposition 1 The β̂k is the maximum likelihood estimation (MLE) of the log-linear model

(4) with a pseudo-observation vector zk in Equation (7).

We call zk the pseudo-observation vector, because its components are not integers so that

it cannot be observed in practice. Proposition 1 provides an easy way to evaluate w1,k.
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Furthermore, since 1Tzk = N and the constraint in Equation (5) is identical to that in the

log-linear model (4), the maximization in Equation (5) is exactly the same as solving the

MLE for model (4) with zk. Therefore, we can rewrite Rk in Equation (6) as

Rk = 2zT
k (ln ŷk − lnm(0)), (8)

where ŷk is the MLE of the cell count expectation vector over zk, and m(0) is the cell count

expectation vector in the IC state. Note that the expectation vector ŷk in Equation (8)

can be obtained by performing the iterative proportional fitting (IPF) algorithm (Bishop

et al., 2007), which is efficient in calculating the MLE of cell count expectations under

any hierarchical log-linear models and is included in major statistical softwares such as the

subroutine “PRPFT” in Fortran with the IMSL library.

By using Equation (8), a large value of Rk rejects the null hypothesis, and hence our

proposed chart triggers an OC signal if

Rk > L, for k ≥ 1,

where L > 0 is a control limit chosen to achieve a specific IC ARL, denoted by ARL0. Here-

after, this chart is referred to as the log-linear multivariate binomial/multinomial (LMBM)

control chart. The control limit L can be searched by simulation based on the IC model.

For a given λ, model F (X; β), and a desired ARL0, the computation involved in finding L is

not difficult, partly due to the fact that the IPF algorithm used in the MLE computation is

efficient. For the searching procedure, some numerical searching algorithms, such as the bi-

section search, can be applied. For instance, when ARL0=370, it requires about 30 minutes

to complete the bisection searching procedure based on 10,000 simulations when h = 32,

s = 21, and N = 1, 000 using a Pentium 3.0GHz CPU. The Fortran codes for implementing

the proposed procedure are available from the authors upon request.

We now discuss the diagnostic issue of multivariate binomial and multivariate multi-

nomial processes. According to the one-to-one correspondence between factor effects and

coefficient subvectors in a log-linear model, shifts in the marginal distribution of one factor

lead to deviations of the coefficient subvector corresponding to its main effect, and shifts

in the dependence among multiple factors result in deviations of the coefficient subvector
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reflecting their interaction effect. Possible diagnostic procedures should focus on separating

the shifted coefficient subvector once an OC signal is triggered. The least absolute shrink-

age and selection operator (LASSO) could be employed to identify this. In particular, Zou

et al. (2011) provided a general framework for diagnosis, and the log-linear model can be

formulated to adapt this framework.

Finally, some asymptotic properties of the charting statistic Rk are given, which can be

used theoretically to study the property of the charting statistic, justify the performance of

the LMBM chart to a certain degree, and therefore shed some light on the practical design

of this chart as well. Theorem 1 below gives the asymptotic behavior of Rk under both the

IC and OC models, and its proof is provided in Appendix B. Note that this is an asymptotic

result, so it cannot be used in simulations to determine the control limit nor in real examples.

Denote bt0,t1,λ =
∑t1

i=t0+1(1 − λ)2(t1−i) and ct0,t1,λ = a2
t0,t1,λ/bt0,t1,λ. Suppose that π(0) is the

true IC cell probability vector in the process, and when the process is OC, the true cell

probability vector is π(1) = π(0) + µ(c0,k,λN)−1/2.

Theorem 1 As N →∞, or λ → 0 and k →∞, we have

(i) When the process is IC, c0,k,λRk
L−→ χ2

s−1.

(ii) When the process is OC, c0,k,λRk
L−→ χ2

s−1(µ
TD−1

π(0)µ), where µTD−1
π(0)µ is the non-

centrality parameter, and Dπ(0) is an h× h diagonal matrix with π(0) on its diagonal.

Remark 1. If some cells in the contingency table have very small probabilities or the sample

size is not large enough, there will be no observations in these cells, and they have zero

counts and are noninformative. This is the sparsity phenomenon, which may lead to the

nonexistence of MLEs (Fienberg and Rinaldo, 2007). For each observation vector nj, it is

possible that some of its entries have zero counts. However, the locations of these zero cells

may differ from sample to sample. By combining the collected samples in an exponentially

weighted way, the probability that the pseudo-observation vector zk still has exact zero

cells is low, especially when k increases as the process proceeds. Therefore, the sparsity is

mitigated to a large extent or even eliminated by the EWMA scheme, and the nonexistence

of MLEs is avoided.
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Remark 2. The IPF method proportionally adjusts the cell counts of a sample to fit a set

of margins (e.g., the factor association or interaction structure). Once given the hierarchical

structure of log-linear models, this successive proportional adjustment can obtain directly

the MLE of the cell count expectation vector m by skipping the estimation of the coefficient

vector β. In addition, it has the following properties (Biship et al., 2007): (1) converging

to the required unique set of MLE; (2) a stopping rule that ensures accuracy to any desired

degree in the elementary cell estimates; (3) depending only on the sufficient configurations

and no special provision for sporadic cells with no observations (this relates to the sparsity

phenomenon above); (4) any set of starting values; (5) yielding the exact estimates in one

cycle if direct estimates exist. The IPF algorithm possesses these advantages over the earlier

techniques proposed, such as the Newton-Raphson which fails to have properties (3) and (5)

above. Therefore, we adopt the IPF for online estimation in Phase II.

4 Simulation Studies

In this section, the performance of the proposed LMBM chart is investigated through some

numerical simulations. The simulations are made in scenarios of both multivariate binomial

and multivariate multinomial processes. In both cases, the LMBM chart is compared with

its counterparts in various cases of shifts, and the advantages of the LMBM chart over others

are verified. Throughout the simulation, for fair comparison, the IC ARL is fixed at 370 for

each control chart, and all ARL values reported are averages of 10,000 replicated simulations.

If the process is OC, a smaller OC ARL of a chart means that it gives rise to an OC signal

faster, and that this chart therefore performs better.

4.1 Monitoring a Multivariate Binomial Process

For monitoring multivariate binomial processes, a natural competitive method is Patel’s

(1973) Hotelling’s T 2 type χ2-chart. However, since the χ2-chart is the Shewhart-type, and

the LMBM chart is the EWMA-type, the comparison may not be fair to the Shewhart-type

as we could expect its deficiency in detecting small and moderate shifts due to the fact

that it completely ignores the past information. Hence, the EWMA version of the χ2-chart,
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which is a typical competitor of the LMBM chart for monitoring the multivariate binomial

processes, is developed accordingly for fair comparison.

In this context, only factors with two levels, hence a p-way contingency table with 2p

cells for p factors, are considered. Without loss of generality, we denote the two levels by

1 and 0. For the ith factor, suppose that in the IC state P (1) = p
(0)
(i) and P (0) = 1 − p

(0)
(i)

(i = 1, . . . , p). Given the sample size N in Phase II, if the process is IC, the Level 1 count

n(i) of the ith factor is subject to a binomial distribution BN
(
N ; p

(0)
(i)

)
. Therefore, the joint

distribution of these p binomial distributions is a multivariate binomial distribution. By

assuming that the IC cell probability combination p
(0)
a1a2...ap (ai = 0 or 1, i = 1, . . . , p) is

known or has been estimated from an IC dataset, we have

p
(0)
(i) =

∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

p
(0)
a1a2...ai−11ai+1...ap−1ap

.

Also by assuming i < j without loss of generality, let

p
(0)
(ij) =

∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
aj−1

∑
aj+1

. . .
∑
ap−1

∑
ap

p
(0)
a1a2...ai−11ai+1...aj−11aj+1...ap−1ap

.

Actually, p
(0)
(ij) is the IC probability of both the ith and the jth factors taking Level 1. For

the kth sample in Phase II, denote each cell count by na1a2...ap,k. The Level 1 count of the

ith factor should be

n(i)k =
∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

na1a2...ai−11ai+1...ap−1ap,k.

Let nMB,k =
[
n(1)k, . . . , n(p)k

]T
and p

(0)
MB =

[
p

(0)
(1), . . . , p

(0)
(p)

]T
. By employing the EWMA

framework, we consider the statistic

GMB,k =
1

N

(
zMB,k −Np

(0)
MB

)T
Σ−1

MB

(
zMB,k −Np

(0)
MB

)
,

where

zMB,k = a−1
0,k,λ

k∑
j=1

(1− λ)k−jnMB,j,

ΣMB uv =

{
p

(0)
(u)

(
1− p

(0)
(u)

)
if u = v

p
(0)
(uv) − p

(0)
(u)p

(0)
(v) if u 6= v

.
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Note that when λ = 1, this charting statistic reduces to the one employed by Patel (1973).

We refer to this chart as the multivariate binomial EWMA (MBE) control chart, and compare

it with the LMBM chart in monitoring multivariate binomial processes.

Suppose that during a production process, five quality characteristics each labeled as

conforming or nonconforming are being monitored, hence we have a five-way contingency

table with 25 cells. After model estimation from an IC dataset, we obtain the IC model hier-

archy structure [14][123][135][234][235][345] and the IC log-linear model with the coefficient

vector

β(0) = [ β0 0.72 0.93 0.49 0.25 0.47 −0.57 0.22
0.11 −0.14 0.15 −0.16 0.41 0.16 −0.19 0.33
0.39 0 0 0 0.21 0 0.45 0.33

0 0.27 0 0 0 0 0 0 ]T .

Here, β0 is the intercept accommodating the Phase II sample size N because of the constraint

that all cell counts sum up to N as expressed in Equation (4). Note that the zeros here mean

that the corresponding effect terms are excluded.

It is believed that the possible shifts to OC states arise in the main effect of one factor

reflecting its marginal distribution or in interaction effects of multiple factors representing

their dependence. According to the one-to-one correspondence between factor effects and

coefficient subvectors, shifts to OC states reflect the changes of the corresponding coefficient

subvectors in the IC log-linear model. For simplicity, we consider the case where only one

coefficient of the log-linear model changes by adding a magnitude δ and study the OC ARL

performance. Note that the models before and after the change have the same hierarchy

structure, and that the change only occurs on the coefficient magnitude of one retained term.

The OC ARLs of the LMBM and MBE charts for various shift magnitudes are presented in

Table 1 with the smoothing parameter λ = 0.1 and the Phase II sample size N = 1, 000. To

save space, not all coefficients are listed. According to Table 1, for the main factor effects,

e.g., β1 and β4, the MBE chart outperforms the LMBM chart almost uniformly. The MBE

chart exactly and completely summarizes the one-way marginal sums for each factor, which

are mostly determined by the main effects. Therefore, it is more sensitive than the LMBM

chart to the change of each main effect, which reflects the shifts of the one-way marginal sums

directly. For the two-factor interaction effects such as β1,2, β2,3, β2,5, and β3,4 as well as the
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Table 1: OC ARL comparison between the LMBM and MBE charts when only one coefficient
changes, λ = 0.1 and N = 1, 000

δ LMBM MBE LMBM MBE LMBM MBE

β1 β4 β1,2

0.01 232 (2.30) 160 (1.52) 246 (2.40) 172 (1.65) 210 (2.02) 156 (1.51)

0.02 87.8 (0.77) 49.0 (0.39) 100 (0.92) 56.7 (0.47) 71.0 (0.61) 45.4 (0.36)

0.05 14.8 (0.07) 10.2 (0.05) 16.6 (0.08) 11.3 (0.05) 12.5 (0.06) 9.61 (0.04)

0.20 2.99 (0.01) 2.38 (0.01) 3.24 (0.01) 2.56 (0.01) 2.67 (0.01) 2.27 (0.01)

−0.01 224 (2.19) 146 (1.40) 240 (2.37) 156 (1.50) 205 (1.96) 139 (1.34)

−0.02 81.7 (0.72) 44.1 (0.36) 94.8 (0.87) 50.2 (0.42) 67.7 (0.59) 41.6 (0.33)

−0.05 13.5 (0.07) 9.21 (0.04) 15.1 (0.08) 10.2 (0.05) 11.7 (0.05) 8.87 (0.04)

−0.20 2.41 (0.01) 1.95 (0.01) 2.54 (0.01) 2.04 (0.01) 2.26 (0.01) 1.94 (0.01)

β2,3 β2,5 β3,4

0.01 259 (2.55) 248 (2.41) 289 (2.88) 322 (3.28) 262 (2.62) 305 (3.01)

0.02 110 (1.01) 106 (0.97) 148 (1.42) 199 (1.93) 114 (1.04) 156 (1.50)

0.05 18.3 (0.10) 19.2 (0.11) 25.9 (0.16) 44.4 (0.35) 19.0 (0.10) 30.3 (0.21)

0.20 3.42 (0.01) 3.54 (0.01) 4.21 (0.01) 5.86 (0.02) 3.49 (0.01) 4.61 (0.02)

−0.01 248 (2.47) 221 (2.20) 279 (2.79) 287 (2.84) 249 (2.47) 259 (2.56)

−0.02 101 (0.91) 89.3 (0.81) 139 (1.29) 170 (1.63) 106 (0.99) 131 (1.24)

−0.05 16.3 (0.09) 16.4 (0.10) 22.4 (0.14) 34.9 (0.26) 16.9 (0.09) 24.5 (0.17)

−0.20 2.63 (0.01) 2.66 (0.01) 3.07 (0.01) 4.01 (0.01) 2.67 (0.01) 3.37 (0.01)

β1,3,5 β2,3,4 β3,4,5

0.01 232 (2.33) 252 (2.43) 273 (2.70) 339 (3.38) 264 (2.62) 343 (3.38)

0.02 84.7 (0.74) 109 (1.01) 132 (1.23) 239 (2.33) 118 (1.10) 233 (2.32)

0.05 14.4 (0.07) 20.0 (0.12) 21.7 (0.13) 64.5 (0.56) 19.1 (0.10) 59.7 (0.50)

0.20 2.95 (0.01) 3.56 (0.01) 3.80 (0.01) 7.41 (0.03) 3.55 (0.01) 6.91 (0.03)

−0.01 227 (2.24) 227 (2.21) 267 (2.65) 314 (3.14) 251 (2.46) 302 (2.97)

−0.02 79.6 (0.70) 94.7 (0.87) 120 (1.11) 204 (1.99) 109 (1.03) 194 (1.88)

−0.05 13.2 (0.06) 17.4 (0.10) 19.3 (0.11) 51.3 (0.42) 17.1 (0.09) 46.5 (0.37)

−0.20 2.41 (0.01) 2.82 (0.01) 2.85 (0.01) 5.03 (0.02) 2.70 (0.01) 4.81 (0.02)

NOTE: Standard errors are in parentheses.
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three-factor interaction effects including β1,3,5, β2,3,4, and β3,4,5, as the effect order increases,

the LMBM chart shows more and more significant superiority over the MBE chart. The

change occurring in the high-order interaction effect leads to little shifts of the one-way

marginal sums, which are difficult for the MBE chart to detect. However, the LMBM chart

is still capable of capturing the potential change of a high-order interaction effect powerfully

via the log-likelihood ratio.

The OC ARLs of the LMBM and MBE charts for the same coefficient shift magnitudes

as Table 1 under some other choices of the λ and N combination are omitted here for saving

space, and they are available from the authors upon request. Generally, they exhibit the

same patterns as in Table 1 for various changes of the coefficients, and similar conclusions

can be drawn. With a fixed λ, for the same changes, both charts become more powerful

when the sample size N increases. Moreover, for a fixed sample size N and the same

coefficient, the LMBM chart with a smaller λ detects smaller shifts faster, whereas it has a

better performance when detecting larger shifts with a larger λ. This is consistent with the

properties of the conventional EWMA chart (Lucas and Saccucci, 1990), and it is further

confirmed by Figure 1-(a) and -(b) which show the OC ARL curves (in log-scale) of the

LMBM chart with the λ values of 0.05, 0.1, 0.2, and 0.5 when there are shifts in β2,5 and

β2,3,4, respectively. The above property can in fact guide the selection of λ, and our empirical

results show that a reasonable suggestion of λ may be between 0.05 and 0.2.

We assume in the above that the model hierarchy structure in both the IC and OC states

are identical. Recall that the IC model hierarchy structure is [14][123][135][234][235][345].

This means the IC log-linear model does not contain the terms β1,2,4, β1,2,5, β1,3,4, β1,4,5,

β2,4,5, β1,2,3,4, β1,2,3,5, β1,2,4,5, β1,3,4,5, β2,3,4,5, β1,2,3,4,5, which leads to the absence of the three-

factor interaction effects C1C2C4, C1C2C5, C1C3C4, C1C4C5, and C2C4C5, as well as all the

four-factor interaction effects and the five-factor interaction effect. However, sometimes the

model structure itself changes when the process is OC. Compared to the IC model, the OC

model may be either reduced or extended. In either case, the hierarchy principle should not

be violated. After model extension by only one term, one nonexistent effect term emerges,

such as β1,2,4, β1,3,4, and β1,4,5 with some magnitude δ, and the original IC model does not

encompass the current model any longer. Hence, the LMBM chart may not be necessarily
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Figure 1: OC ARL curves of the LMBM chart with various values of λ when there are shifts in:
(a) β2,5; (b) β2,3,4

superior over the MBE chart. The simulation results are illustrated in the upper half of

Table 2. On the other hand, after model reduction by only one term, one effect becomes

zero or disappears, and the original IC model can still include the reduced model. Therefore,

the LMBM chart may still outperform the MBE chart. Some cases of removing merely one

existent effect, for instance, β1,3,5, β2,3,4, and β3,4,5, are listed in the lower half of Table 2.

The above simulation results are based on the assumption that the IC parameters are

known or have been estimated from a sufficiently large reference dataset, which is not always

practical. Here we investigate the effects of the Phase I reference sample size on the IC ARL,

which violates this assumption. In this setting, the IC parameters are obtained from an IC

reference dataset of size N0. In particular, in each replication, first an IC sample of size N0

is generated, and then the IC parameters are computed based on this sample. Finally, an

independent sequence of online multivariate observation vectors are generated, and therefore

we obtain the run lengths. With the same setting as Table 1, Table 3 lists the IC ARLs

and standard deviations of run lengths (SDRL, in parentheses) when the IC parameters are

computed from IC historical datasets of various size N0, and the nominal IC ARL is 370.

Here we see that when the reference sample size is relatively small, the actual IC ARL is far

away from its nominal level 370. In addition, as the Phase I sample size N0 increases, this
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Table 2: OC ARL comparison between the LMBM and MBE charts for model misspecifica-
tion, λ = 0.1, N = 1, 000

δ LMBM MBE LMBM MBE LMBM MBE

β1,2,4 β1,3,4 β1,4,5

0.01 231 (2.31) 275 (2.74) 233 (2.25) 207 (2.02) 249 (2.49) 267 (2.65)

0.02 87.6 (0.77) 132 (1.27) 89.4 (0.79) 71.8 (0.64) 107 (0.98) 124 (1.17)

0.05 14.8 (0.07) 24.6 (0.16) 15.2 (0.07) 13.4 (0.04) 17.7 (0.09) 22.9 (0.15)

0.20 2.96 (0.01) 3.99 (0.01) 2.97 (0.01) 2.78 (0.01) 3.30 (0.01) 3.84 (0.01)

−0.01 224 (2.17) 239 (2.29) 232 (2.29) 179 (1.74) 248 (2.45) 240 (2.36)

−0.02 83.9 (0.75) 113 (1.06) 86.2 (0.77) 63.2 (0.54) 102 (0.92) 109 (1.01)

−0.05 13.7 (0.07) 21.3 (0.14) 14.1 (0.07) 12.2 (0.06) 16.1 (0.08) 19.8 (0.12)

−0.20 2.47 (0.01) 3.18 (0.01) 2.52 (0.01) 2.32 (0.01) 2.69 (0.01) 3.05 (0.01)

β1,3,5 β2,3,4 β3,4,5

2.26 (0.01) 2.64 (0.01) 1.20 (0.00) 1.94 (0.01) 1.99 (0.01) 3.30 (0.01)

NOTE: Standard errors are in parentheses.

bias decreases.

Table 3: IC ARLs of models estimated from a Phase I sample, N = 1, 000

N0 λ = 0.1 λ = 0.2

2,000 910 (845) 916 (862)

3,000 729 (707) 750 (733)

5,000 573 (574) 572 (579)

8,000 485 (484) 492 (494)

10,000 458 (464) 452 (457)

20,000 404 (388) 400 (396)

50,000 375 (360) 376 (372)

100,000 367 (351) 372 (371)

4.2 Monitoring a Multivariate Multinomial Process

Apart from all the factors with two levels, factors at least one with three or more levels may

exist in real production or services. A simple example is the attitude of a customer towards
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a service, which may take on the values of excellent, acceptable, or unacceptable. If four

service indexes are taken into account, there will be a four-way contingency table with 34

cells for the four factors. In such complex cases, it is challenging to compare the proposed

approach with alternative methods. This is because to the best of our knowledge, there is

currently no appropriate monitoring approach incorporating the cross-classifications among

multiple factors, among which at least one has more than two attribute levels. A naive

method that comes into mind for comparison is to monitor the p groups of marginal sums

of a p-way contingency table by introducing p individual charts separately.

If only the group of marginal sums for the ith factor (i = 1, . . . , p) is considered, we

face the same situation as Marcucci (1985), which treated the monitoring of univariate

multinomial processes with the Pearson chi-square statistic. Actually, provided that the IC

cell probability combination p
(0)
a1a2...ap (ai = 1, . . . , hi and i = 1, . . . , p) has been established,

in the kth sample of size N in Phase II, the group of marginal sums for the ith factor

n(i,v)k =
∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

na1a2...ai−1vai+1...ap−1ap,k, v = 1, . . . , hi,

where na1a2...ap,k is the cell count in the jth sample, follow a multinomial distribution

MN
(
N ; p

(0)
(i,1), p

(0)
(i,2), . . . , p

(0)
(i,hi)

)
,

where

p
(0)
(i,v) =

∑
a1

∑
a2

. . .
∑
ai−1

∑
ai+1

. . .
∑
ap−1

∑
ap

p(0)
a1a2...ai−1vai+1...ap−1ap

, v = 1, . . . , hi.

The EWMA version of the Pearson chi-square statistic can be defined as

GMM,(i)k =
1

N

(
zMM,(i)k −Np

(0)
MM,(i)

)T
Σ−1

MM,(i)

(
zMM,(i)k −Np

(0)
MM,(i)

)
,

where

zMM,(i)k = a−1
0,k,λ

k∑
j=1

(1− λ)k−jnMM,(i)j,

nMM,(i)j =
[
n(i,1)j, n(i,2)j, . . . , n(i,hi−1)j

]T
,

p
(0)
MM,(i) =

[
p

(0)
(i,1), p

(0)
(i,2), . . . , p

(0)
(i,hi−1)

]T
,

ΣMM,(i) uv =

{
p

(0)
(i,u)

(
1− p

(0)
(i,u)

)
if u = v

−p
(0)
(i,u)p

(0)
(i,v) if u 6= v

.
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Consequently, for each of the p factors, we construct an individual chart to monitor its

marginal sums, and hence p charting statistics GMM,(i)k (i = 1, . . . , p) are obtained. By

adopting these p separate charts for the p factors, we establish a multi-chart, namely the

multivariate multinomial EWMA (MME) chart, in the sense that it signals whenever at least

one of these p charts constituting the MME chart does. We compare the LMBM and MME

charts in monitoring multivariate multinomial processes.

Assume that a service flow has four quality characteristics under surveillance, with the

first two evaluated as satisfactory or dissatisfactory and the last two assessed as excellent,

acceptable, or unacceptable. This is a case of factors with mixed levels, and it forms a four-

way contingency table of size 2 × 2 × 3 × 3 with 36 cells. After model estimation from an

IC dataset, we obtain the IC model hierarchy structure [12][134][234] and the IC log-linear

model with the coefficient vector

β(0) = [ β0 0.73 0.72 0.70 0.12 0.72 0.11 0.17 0.12
−0.15 0.19 −0.14 0.23 0.07 0.16 −0.14 0.23 −0.30
−0.17 0.14 0 0 0 0 0.19 −0.15 0.11

0.22 0.24 0.24 −0.08 −0.16 0 0 0 0 ]T ,

where β0 is the intercept accommodating the Phase II sample size N , and the zeros represent

the removed effect terms.

The control limits of the MME chart are chosen by simulation so that each individual

chart has an identical IC ARL, jointly yielding the overall ARL0 = 370. Similar to the

comparison between the LMBM and MBE charts, we also present the results where only one

coefficient changes by adding a shift magnitude of δ and study the OC ARL performance.

Some simulation results are listed in Table 4 in the case of λ = 0.1 and N = 1, 000. The

results for the other coefficients are available from the authors upon request. From Table 4,

we see that the MME chart shows better performance than the LMBM chart when the main

effects, e.g., β2 and β42 , change as we would expect. This is easy to understand, since each

of the four individual charts constituting the MME chart collects adequately the one-way

marginal sums, which result directly from the main effects. Therefore, the MME chart stands

out with a higher sensitivity to the main effects than the LMBM chart. The superiority of

the LMBM chart over the MME chart becomes remarkable when the two-factor interaction

effects such as β1,31 , β1,42 , β2,32 , β2,41 , β32,41 , and β32,42 are focused on, and especially in the
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Table 4: OC ARL comparison between LMBM and MME charts when only one coefficient
changes, λ = 0.1, N = 1, 000

δ LMBM MME LMBM MME LMBM MME

β2 β42 β1,31

0.02 172 (1.66) 79.7 (0.68) 200 (1.99) 134 (1.25) 132 (1.24) 111 (1.04)

0.05 30.4 (0.20) 14.7 (0.08) 41.6 (0.31) 22.4 (0.14) 21.8 (0.13) 20.4 (0.12)

0.20 4.57 (0.01) 3.02 (0.01) 4.73 (0.01) 3.36 (0.01) 3.66 (0.01) 3.56 (0.01)

−0.02 153 (1.48) 68.4 (0.61) 205 (1.97) 141 (1.34) 125 (1.16) 93.6 (0.85)

−0.05 25.7 (0.17) 12.5 (0.07) 42.8 (0.32) 23.1 (0.14) 19.8 (0.11) 17.8 (0.11)

−0.20 3.26 (0.01) 2.26 (0.01) 4.85 (0.01) 3.46 (0.01) 3.00 (0.01) 2.97 (0.01)

β1,42 β2,32 β2,41

0.02 201 (1.96) 243 (2.39) 198 (1.90) 230 (2.26) 134 (1.26) 114 (1.09)

0.05 41.0 (0.30) 61.6 (0.52) 39.5 (0.29) 52.8 (0.43) 22.2 (0.13) 20.7 (0.13)

0.20 4.68 (0.01) 5.75 (0.02) 4.57 (0.01) 5.19 (0.02) 3.71 (0.01) 3.59 (0.01)

−0.02 201 (2.00) 242 (2.40) 197 (1.92) 230 (2.25) 123 (1.17) 95.1 (0.87)

−0.05 41.9 (0.31) 64.2 (0.55) 39.6 (0.29) 55.0 (0.45) 20.0 (0.12) 18.1 (0.11)

−0.20 4.72 (0.01) 6.31 (0.02) 4.66 (0.01) 5.96 (0.02) 3.00 (0.01) 2.97 (0.01)

β32,41 β32,42 β1,31,42

0.02 234 (2.30) 291 (2.84) 276 (2.74) 343 (3.46) 241 (2.37) 342 (3.42)

0.05 55.4 (0.45) 103 (0.95) 90.8 (0.82) 228 (2.22) 62.7 (0.51) 222 (2.14)

0.20 5.47 (0.02) 7.88 (0.03) 7.32 (0.03) 20.8 (0.13) 5.90 (0.02) 17.5 (0.10)

−0.02 234 (2.38) 278 (2.78) 277 (2.70) 339 (3.41) 243 (2.36) 335 (3.34)

−0.05 56.6 (0.47) 106 (0.99) 92.4 (0.84) 238 (2.34) 63.8 (0.54) 217 (2.12)

−0.20 5.64 (0.02) 9.23 (0.04) 7.58 (0.03) 27.6 (0.18) 5.96 (0.02) 22.0 (0.14)

β1,32,42 β2,31,41 β2,32,42

0.02 271 (2.67) 359 (3.58) 143 (1.36) 156 (1.51) 274 (2.69) 362 (3.69)

0.05 90.2 (0.80) 286 (2.81) 23.8 (0.14) 30.6 (0.21) 92.5 (0.83) 300 (3.04)

0.20 7.34 (0.03) 39.6 (0.30) 3.77 (0.01) 4.39 (0.01) 7.36 (0.03) 44.5 (0.35)

−0.02 271 (2.70) 359 (3.62) 136 (1.30) 131 (1.24) 273 (2.74) 367 (3.66)

−0.05 91.4 (0.81) 314 (3.17) 21.9 (0.13) 26.8 (0.19) 91.8 (0.82) 296 (2.92)

−0.20 7.60 (0.03) 102 (0.94) 3.25 (0.01) 3.98 (0.01) 7.48 (0.03) 59.7 (0.51)

NOTE: Standard errors are in parentheses.
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cases of changes in the three-factor interaction effects, including β1,31,42 , β1,32,42 , β2,31,41 , and

β2,32,42 , where the MME chart is outperformed by the LMBM chart by quite a large margin.

Like the comparison between the LMBM chart and the MBE chart, simulations under some

other parameter settings also exhibit the same trends as in Table 4. The effects of the Phase

II sample size N and the EWMA smoothing parameter λ on the LMBM chart are similar

to those in the multivariate binomial processes.

Combined with the comparison between the LMBM and MBE charts, it is affirmed again

that the superiority of the LMBM chart lies in shifts in the interaction effects of multiple

factors that represent the dependence among them. In addition, it should be noted that

when there is only one factor, the LMBM chart reduces to the EWMA version of the log-

likelihood ratio statistic, and the MME chart simplifies to the EWMA version of the Pearson

chi-square statistic. Their performance should be more or less the same, since they enjoy the

same asymptotic distribution under the null hypothesis as a central χ2 with an appropriate

degree of freedom. Hence, the LMBM chart can work well within the unified framework of

the univariate/multivariate binomial/multinomial processes.

5 A Real Application

In this section, the proposed methodology is implemented in an aluminium electrolytic capac-

itor (AEC) manufacturing process to demonstrate its real utilization. This may be regarded

as a typical example to apply the LMBM chart in practice. The process comprises a series of

stages, from cutting, winding, drying, impregnating, and assembling, to sleeving, washing,

aging, and packaging. The production line manufactures AECs from various raw materials,

including anode aluminum foil, cathode aluminum foil, guiding pin, electrolyte sheet, plastic

cover, aluminum shell, and plastic tube. Right after each stage, the quality of the stagewise

AEC products, namely capacitor elements in terms of appearance condition and functional

performance, will be inspected by sampling in order to meet the specifications.

We consider the quality in the aging stage, where the AEC quality monitoring is concen-

trated on three most important quality characteristics: capacity (CAP), dissipation factor

(DF), and leakage current (LC). Each characteristic can be evaluated as conforming or non-
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conforming to its specification by an electronic device at a very high speed. Obtaining their

precise numerical values is possible, but this will cost too much. To this end, for a specific

sample size in Phase II, this can be regarded as a multivariate binomial process, which has

three factors including CAP, DF, and LC all with two levels. The cross-classification counts

with all factor level combinations are stored in a three-way contingency table with 23 = 8

cells. Based on the above information, the log-linear model

ln mijk = β0 + β1x1 + β2x2 + β3x3 + β1,2x1x2 + β1,3x1x3 + β2,3x2x3 + β1,2,3x1x2x3,

where i = 1, 2; j = 1, 2; k = 1, 2, all the expected counts mijk sum up to the sample size N ,

and x1, x2, x3 take 1 or −1 representing the two levels of three factors CAP, DF, and LC,

respectively, can adequately characterize the relationship between the cell counts and these

level combinations. Therefore, the proposed LMBM chart can be adopted to monitor the

three quality characteristics simultaneously in the aging stage.

It is known that each workbench in the aging stage manufactures at least 6,000 AEC el-

ements every day, and that the three quality characteristics CAP, DF, and LC for each AEC

element are then inspected automatically as conforming or nonconforming by some electronic

devices. We perform model estimation from a historical IC dataset [2,1,19,12,1,75,732,39447]

with about 40,000 observations, which contains the 8 cell counts and could have been com-

pleted by one workbench within only a few days. Consequently, the IC model has a hier-

archy structure [CAP DF][CAP LC]. Furthermore, the estimated coefficient vector is given

by β(0)=[β0, 1.91, 2.11, 0.88, 1.02, 1.11, 0.00, 0.00]T . In addition, the AECs are usually

inspected in a batch of 500, hence we have a Phase II sample size N = 500. Based on this,

the IC cell count expectation vector m(0) is

m(0) = [2.2996, 1.4235, 23.762, 14.710, 1.7174, 92.601, 907.96, 48956]T × 10−2.

In Phase II, the EWMA smoothing parameter λ is chosen to be 0.1. We obtain the

control limit of the LMBM chart, which is 0.83, by simulation, such that the IC ARL is 370.

Now the LMBM chart is ready to be constructed to monitor the process. After obtaining

new observations, we calculate the charting statistics Rk for each sample, then plot them in

the control chart, and compare them with the control limit. The original observation vectors
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nk for each sample are available from the authors upon request. We take the 9th point for

example to illustrate the calculation of charting statistics. Based on m(0) and the original

observation vectors n1, . . . ,n9, for example, n9 = [0, 0, 0, 0, 0, 6, 10, 484]T , we first calculate

the pseudo-observation vector

z9 = [0.89090, 0.55151, 22.598, 26.403, 0.66537, 133.15, 873.51, 48942]T × 10−2

using Equation (7). Then we use the IPF algorithm based on the hierarchy structure [CAP

DF][CAP LC] to get the MLE of the cell count expectation vector over z9, which is

ŷ9 = [0.67165, 0.77075, 22.817, 26.184, 2.3419, 131.47, 871.83, 48944]T × 10−2.

Finally, by Equation (8), its charting statistic R9 is calculated as 0.25332. Figure 2 shows

the resulting LMBM chart (solid curve connecting the dots), along with its control limit

(solid horizontal line). The LMBM chart signals at the 28th observation and remains above

the control limit in the remainder of the sequence.
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Figure 2: The LMBM control chart for monitoring the AEC process. The solid horizontal
line indicates its control limit.

By comparison, we also adopt the MBE chart to monitor the AEC process with ARL0 =

370, N = 1, 000, and λ = 0.1, which is shown in Figure 3. The MBE chart also triggers an OC
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signal at the 28th sample. However, it is difficult to say which chart performs better based on

only this single run. The MBE chart enjoys a charting statistic of a simpler form, but it can-

not provide the practical interpretation of shifts according to the one-to-one correspondence

between factor effects and coefficient subvectors in a log-linear model. As indicated earlier,

this correspondence may exploit insights into multivariate binomial/multinomial processes

and assist in further diagnosis.
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Figure 3: The MBE control chart for monitoring the AEC process. The solid horizontal line
indicates its control limit.

6 Conclusion

This paper proposes a Phase II control chart, namely the log-linear multivariate bino-

mial/multinomial control chart, which can be actualized as a general SPC tool for the moni-

toring of multivariate/univariate binomial/multinomial distributed data. The LMBM chart

adopts the EWMA control scheme in terms of the exponentially weighted pseudo-observation

vector in Phase II, which exploits the information of the past and current sampling cells ad-

equately and distinguishingly as well as mitigates the potential tendency of sparsity in the
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multi-way contingency table. In comparison with the existing approaches, numerical sim-

ulations demonstrate that at certain expenses of sensitivity to the changes in main effects,

the LMBM chart is much more robust than traditional ones, which take only the marginal

cell probabilities into account. Instead, the LMBM chart provides much higher detection

ability to possible shifts in interaction effects of multiple factors which represent their depen-

dence. In addition, the AEC application shows that the LMBM chart can be implemented

effortlessly into real manufacturing and even service industries.

As pointed out previously, we assume in this work that the model hierarchy structures

under the IC and OC conditions are the same. However, this is not always the case. Our

ongoing research focuses on monitoring simultaneously the possible changes of both the

model hierarchy structure and the coefficient vector, such that the potential shifts can be

detected and diagnosed more accurately and efficiently. Moreover, the log-linear model may

explode when the numbers of factors or their levels are large. As mentioned in Section 2,

a reduced model via variable selection is desired accordingly. In such cases, our proposed

procedure is still applicable. As shown in Table 3, the performance of the proposed chart

is affected by the amount of data in the reference dataset, especially for a large number of

factors or their levels. Very large Phase I samples must be collected for the LMBM chart

to perform as well as those with known parameters. So determining the Phase I sample

size required to remove the effects of estimated parameters is critical and warrants future

research.

In addition, the considered log-linear model is related to the so-called context-tree model,

which describes dependent categorical data with finite attribute levels in terms of context

dependency (Ben-Gal et al., 2003; Brice and Jiang, 2009). Such dependency means that the

statistical distribution of a new sample is conditional on a set of the most recent samples

that precedes it in a data stream (Brice et al., 2011). We know that the multivariate

binomial/multinomial data in this paper are assumed to be temporally independent, but the

context dependency should also apply to a multi-way contingency table in that at a time

point a cell count may depend spatially on the counts in its neighborhood cells. This may

be another point of view that characterizes a multi-way contingency table and deserves the

development of a control chart based on it.
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The sparsity phenomenon mentioned previously is somewhat similar to that in high-

quality processes (e.g., Nelson, 1994; McCool and Joyner-Motley, 1998), where the propor-

tion of nonconforming products is extremely small, say, in the level of parts-per-million.

Consequently, the p-chart will be of little use, since the estimated nonconforming fraction is

mostly zero. Therefore, it is important to use a dataset large enough to achieve a reasonably

accurate estimate of parameters. We refer to Yang et al. (2002) for a discussion on the

effect of the dataset size in Phase I on estimating the control limits of a geometric chart

(Kaminsky et al., 1992), which is developed particularly for monitoring high-quality pro-

cesses. Based on log-linear models, the LMBM chart should also be conveniently modified

to monitor multivariate categorical high-quality processes (Niaki and Abbasi, 2007), which

is our future research.
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Appendix

A. Some Notations in Log-Linear Models

Table A.1 below lists important notations that are useful for describing log-linear models.

B. Proof of Theorem 1

Throughout the appendix, we use the following additional notations.

p̂ = zk/N, π̂ = exp{Xβ̂k}/N, Aπ = X(XTDπX)−1XT

A diagonal matrix with the elements of the vector x on its diagonal will be written as Dx.

Moreover, for notational convenience, we will use the subscript πi instead of π(i) for i = 0, 1

in this section which should not cause any confusion.
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Table A.1: Important notations in log-linear models

Notation Meaning

N the sample size

p the number of factors in a general contingency table

hi the number of levels of the ith factor

h the total number of cells in a p-way contingency table

ai the index of the level of the ith factor, ai = 1, . . . , hi

na1a2...ap the count of observations in the cell(a1, a2, . . . , ap)

ma1a2...ap the expectation of na1a2...ap

pa1a2...ap the probability of an observation in the cell(a1, a2, . . . , ap)

n the vector of cell counts in a p-way contingency table, of size h× 1

m the expectation of n, of size h× 1

p the vector of cell probabilities in a p-way contingency table, of size h× 1

βi the coefficient subvector corresponding to the ith main or interaction effect

X i the design submatrix corresponding to βi

β the coefficient vector

X the design matrix

To prove Theorem 1 in Section 2, we need the following lemmas.

Lemma 1 Suppose π0 is the vector of true cell probabilities in the process. Under the

conditions in Theorem 1, we have

√
c0,k,λN(p̂− π0)

L−→ Nh(0,Dπ0 − π0π
T
0 ).

Proof. When N → ∞, this lemma can be directly obtained by using Theorem 14.8-2 in

Bishop et al. (2007) and the independence of ni for i = 1, . . . , k; When N is fixed, it is

sufficient to prove that, as λ → 0 and k →∞, for any h-dimensional vector θ,

√
c0,k,λNθT (p̂− π0)

L−→ N1(0, θ
T (Dπ0 − π0π

T
0 )θ).

Rewrite θT (p̂− π0) = a−1
0,k,λ

∑k
i=1(1− λ)k−iθT (n/N − π0). Obviously,

max
1≤i≤k

λ2(k−i)

∑k
i=1(1− λ)2(k−i)

→ 0 as n →∞,
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and θT (ni/N − π0) for i = 1, . . . , k are i.i.d. random variables with mean 0 and variance

N−1θT (Dπ0 −π0π
T
0 )θ. By using the Hájek-Sidak central limit theorem (Serfling, 1980), we

know θT (p̂− π0)
L−→ N1(0, (c0,k,λN)−1θT (Dπ0 − π0π

T
0 )θ) from which the lemma follows.

Lemma 2 Suppose π0 is the vector of true cell probabilities in the process. Under the

conditions in Theorem 1, we have

π̂ − π0 = Dπ0Aπ0(p̂− π0) + op((c0,k,λN)−
1
2 ).

Proof. This lemma can be proved in a similar fashion to Theorem 12.3.3-(3) in Christensen

(1997). By the Lagrange multiplier method we can verify that the maximum weighted

likelihood estimator β̂k is a function of zk which is defined implicitly as the solution to

[zk − exp{Xβ}]T X = 0.

Thus, we can write a function µ(n) = Xβ(n). Next, the first-order Taylor’s expansion of

µ(zk/N) at m(0)/N gives

µ(zk/N)− µ(m(0)/N)− dµ(π0)(p̂− π0) = o(||p̂− π0||). (A.1)

By Lemmas 12.5.2 and 12.5.3 of Christensen (1997), we can show that

µ(zk/N)− µ(m(0)/N) = Xβ̂k −Xβ(0). (A.2)

On the other hand, using similar arguments in the proof of Lemma 12.3.2 of Christensen

(1997), we can have

dµ(π0) = X[XTDπ0X]−1XT . (A.3)

Combining Equations (A.1)-(A.3) and using Lemma 1 lead to

(Xβ̂k −Xβ(0)) = A(p̂− π0) + o((c0,k,λN)−
1
2 ). (A.4)

Then, by Taylor’s expansions, we have

π̂ − π0 = N−1(exp{Xβ̂k} − exp{Xβ(0)})
= N−1D(exp{Xβ(0)})(Xβ̂k −Xβ(0)) + o((c0,k,λN)−

1
2 )

= Dπ0Aπ0(p̂− π0) + o((c0,k,λN)−
1
2 ).
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Proof of Theorem 1: (i) Rewrite

Rk = 2zT
k (ln ŷk − lnm(0))

= 2N(p̂− π0)
T (ln π̂ − ln π0) + 2NπT

0 (ln π̂ − ln π0).

By the second-order Taylor expansions, we know

c0,k,λRk =c0,k,λN [2(p̂− π0)
TD−1

π0
(π̂ − π0) + o(||p̂− π0|| · ||π̂ − π0||)

+ 21T (π̂ − π0)− (π̂ − π0)
TD−1

π0
(π̂ − π0) + o(||π̂ − π0|| · ||π̂ − π0||)].

Using Lemmas 1 and 2 yields

c0,k,λRk = 2c0,k,λN(p̂− π0)
TAπ0(p̂− π0)− c0,k,λN(p̂− π0)

TAπ0Dπ0Aπ0(p̂− π0) + op(1)

= c0,k,λN(p̂− π0)
TAπ0(p̂− π0) + op(1), (A.5)

where we use the fact Aπ0Dπ0Aπ0 = Aπ0 . By Lemma 1,
√

c0,k,λN(p̂−π0) is asymptotically

distributed as Nh(0,Dπ0−π0π
T
0 ). As a consequence, it follows from the Cochran’s theorem

that 2c0,k,λRk has a limiting χ2 distribution (Anderson, 2003) if

(Dπ0−π0π
T
0 )Aπ0(Dπ0−π0π

T
0 )Aπ0(Dπ0−π0π

T
0 ) = (Dπ0−π0π

T
0 )Aπ0(Dπ0−π0π

T
0 ). (A.6)

By noting that

(I−D1/2
π0

Aπ0D
1/2
π0

)D1/2
π0

X = 0, (A.7)

Equation (A.6) can be verified with some straightforward algebra.

Finally, Theorem 1-(i) follows immediately from

tr{(Dπ0 − π0π
T
0 )A} = tr{Dπ0Aπ} − tr{Dπ011TDπ0Aπ0}

= s− tr{11TDπ0} = s− 1,

where we use 1T π0 = 1 and Equation (A.7) once again.

(ii) When π1 = π0 + µ(c0,k,λN)−1/2, by Lemma 1,
√

c0,k,λN(p̂ − π0) is asymptotically

distributed as Nh(µ,Dπ1 − π1π
T
1 ). Similar to Equation (A.5), we have

c0,k,λRk = c0,k,λN(p̂− π0)
TAπ1(p̂− π0) + op(1).
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From the first part of the proof, we know c0,k,λRk has a limiting noncentral χ2 distribution

with s− 1 degrees of freedom and the noncentrality parameter

ψ2 = µTD−1
π1

µ = µTD−1
π0

µ + op(1).
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