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The statistical process control of multivariate categorical processes is considered.

A Phase II log-linear directional control chart is proposed which exploits directional

shift information and integrates the monitoring of multivariate categorical processes

into the unified framework of multivariate binomial and multivariate multinomial

distributions. A diagnostic scheme is suggested for identifying the shift direction.

Both the control chart and the diagnostic approach are simple and quick to compute.

Numerical simulations and practical guided applications are presented to demonstrate

their effectiveness.
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Introduction

The overall quality of most modern processes is best described in terms of multiple char-

acteristics. Multivariate statistical process control (SPC) is applied in practical situations

where several quality characteristics have to be monitored simultaneously. Much effort has
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been devoted to the monitoring problem in settings where all the observed variables are

numerical and continuous. For instance, tensile strength and diameter are two important

quality characteristics of a textile fiber, which must be jointly controlled and have been

assumed to follow a bivariate normal distribution. Refer to Lowry and Montgomery (1995)

and Bersimis et al. (2007) for thorough reviews of monitoring multivariate continuous

processes.

In manufacturing and especially the service industry, however, there are more and

more quality characteristics whose values cannot be measured numerically. Obtaining their

continuous values is expensive, unnecessary, or even impossible, however, collecting some

attribute levels of them may be available and may be a low cost. These classification levels

are rough and do not need precise measurements. Examples include items on a production

line whose several quality characteristics each are evaluated as conforming or nonconforming

to predefined specifications, and multiple indexes in a service flow that may be assessed as

excellent, acceptable, or unacceptable. The characteristics all have two or more attribute

levels, and the processes are multivariate categorical. Note that this is similar to multiple

factors in Design of Experiments (DOE), where each factor also has several specific levels.

Here for simplicity we use “factor” to represent a categorical characteristic.

The p-chart and the np-chart for binomial distributed variables, together with the c-

chart and the u-chart for Poisson processes are typical SPC tools used with univariate

categorical processes. To monitor multiple factors, we may employ multiple univariate

categorical control charts as a multi-chart (see Woodall and Ncube (1985)). However,

it is usually an unwise choice. The reason is, first, that it is difficult to determine the

control limit given a desired average run length (ARL), which is defined as the average

number of samples needed for the control chart to signal. The control limits of the separate

univariate charts need to be set such that each chart achieves a specific individual in-control

(IC) ARL, and the overall IC ARL of the multi-chart therefore attains a pre-specified

value. But determining these control limits is nontrivial even for the low-dimensional case

of a small number of categorical factors, let alone for a general multivariate categorical

distribution. This complexity also increases remarkably when the marginal distributions of

categorical factors are not identical, since the individual charts have different run length
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distributions. Also, a multi-chart considers individual categorical factors in parallel, and

therefore is unable to account for any correlations among them. Naturally, it is desirable

to introduce multivariate categorical control charts that can appropriately describe and

exploit the relationships among multiple categorical factors.

Woodall (1997) summarized many aspects of the control charts for attribute data, but

most of them are univariate categorical ones. In the literature, some efforts have been

devoted to the monitoring of multinomial and multiattribute processes. See Topalidou

and Psarakis (2009) for a nice overview. Among others, Patel (1973) suggested a χ2-

chart for multivariate binomial or multivariate Poisson populations, which is based on the

assumption that the joint distribution of the correlated binomial or Poisson variables can

be approximated by a multivariate normal distribution given a sufficiently large sample

size. More recent developments include the Shewhart-type mnp-chart proposed by Lu et

al. (1998) using the weighted sum of the number of nonconforming units with respect to

each quality characteristic. There is also the mp-chart designed by Chiu and Kuo (2008)

for multivariate Poisson count data. However, as with Patel’s χ2-chart, these two charts

can only deal with factors with two levels. On the other hand, some methods also focus on

monitoring multinomial processes that have only one factor with more than two levels, such

as the generalized p-chart developed by Marcucci (1985). This chart extends the traditional

p-chart by adopting the Pearson chi-square statistic. The multinomial cumulative sum

(CUSUM) chart proposed by Ryan et al. (2011) can also deal with problem, which is

based on the likelihood ratio statistic equipped with the CUSUM scheme. Note that the

methods of monitoring multinomial processes are actually univariate charts, since only

one factor is involved. With several factors where at least one of them has more than two

levels, there are no appropriate approaches available. Aside from this deficiency, most of the

existing methods focus entirely on the marginal sums with respect to each categorical factor,

neglecting the cross-classifications between factors. If some cross-classification probabilities

shift to out-of-control (OC) states, these charts may not detect them quickly. To sum up,

a general monitoring methodology for multivariate categorical processes is required.

Multi-way analysis of variance (ANOVA) models in DOE may provide some assistance

if the observations are assumed to be linearly dependent on the levels of several factors. In
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particular, an observation relies on main factor effects and interaction effects. As with the

observations in an ANOVA model, the logarithms of the cross-classification probabilities

may also depend linearly on the levels of these multiple factors, which forms a log-linear

model (see Bishop et al. (2007)). The log-linear model characterizes the association and

interaction patterns among the categorical factors appropriately, and therefore can be used

to develop multivariate categorical control charts. This is not the first time log-linear models

have been applied in SPC. Qiu (2008) dealt with distribution-free monitoring schemes

for multivariate continuous processes by dichotomizing continuous multivariate data into

categorical data. He then estimated the IC factor distribution using log-linear models in

Phase I of SPC, and proposed a Phase II multivariate cumulative sum (CUSUM) chart by

employing the Pearson chi-square statistic.

In our study, a systematic directional monitoring mechanism and a diagnostic scheme

for multivariate categorical processes were developed based on log-linear models. By anal-

ogy with multi-way ANOVA, the cross-classification probabilities are expressed in terms

of main factor effects and factor interaction effects. The log-linear model can then be

equivalently rewritten as a regression model, leading to one-to-one correspondence between

factor effects and coefficient subvectors. The potential shifts to OC states that arise in

factor effects therefore appear in their corresponding coefficient subvectors. To monitor a

process as efficiently as possible, such practical information formulated as shift directions

should be exploited. A Phase II control chart was accordingly developed based on the log-

likelihood function of the log-linear model, and an exponentially weighted moving average

(EWMA) scheme. The suggested control chart promises to incorporate a unified framework

of multiple factors with at least one with more than two levels. Applying some reliable

approximations, the resulting chart is easy to construct and convenient to implement. Fur-

thermore, a diagnostic scheme was developed to identify the shift direction once there is an

OC signal. Some implementation guidelines are provided and illustrated using a practical

example. Monte Carlo simulations were performed to demonstrate the effectiveness of the

proposed chart and diagnostic approach.
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Multivariate Categorical Processes and Conventional

Monitoring Approaches

Multivariate Categorical Processes

We first illustrate the multivariate categorical process with two motivating examples. The

aluminium electrolytic capacitor (AEC) manufacturing is a multi-stage process, and the

quality of the semi-finished AECs is inspected immediately after each stage. Here for il-

lustration, we concentrate on the quality after the aging stage, which is assessed mainly

in terms of leakage current (LC), dissipation factor (DF), and capacity (CAP). Each char-

acteristic is classified automatically as conforming or nonconforming to the specifications

by an electronic device at a very high speed. So engineers are reluctant to obtain their

specific continuous or numerical values (not impossible but requires more cost). This is a

multivariate categorical process with three factors LC, DF and CAP, each with two levels

and therefore 23 = 8 level combinations. Without loss of generality, for each factor −1

represents “conforming” and 1 “nonconforming”. For example, the combination (−1, 1,

−1) means an AEC with conforming LC and CAP and nonconforming DF.

Another example is the quality control of welding rods. One of the key aspects of weld-

ing rod inspection is the appearance, which directly reflects the integrated level of welding

rod manufacturing and influences the welding performance. The welding rod is composed

of a cylindrical metallic core wire and a coating composition (flux) covering the circum-

ference of the metallic core wire. Its appearance has some important indexes, including

eccentricity of the core wire, moisture resistance of coating, strength of coating, and rod

bend. During testing, each of them is simply evaluated as conforming or nonconforming,

and their (latent) continuous values are not considered. With the four factors: eccentricity,

moisture resistance, strength, and bend, each two attribute levels, this is also a multivari-

ate categorical process with 24 = 16 cross-classification level combinations. Such processes

with multiple categorical factors do not have numerical values, and the existing methods

for monitoring multivariate continuous data cannot apply to them.

Now we turn to a general multivariate categorical process. Suppose that there are p
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factors C1, . . . , Cp, and that each classification factor Ci takes a number, say hi, of possible

levels. The overall cross-classifications among all the level combinations of these factors

form a p-way h1× . . .× hp contingency table with h =
∏p

i=1 hi cells. Each cell corresponds

to one level combination of the p factors and stores the count under this level combination.

For a simple h1×h2×h3 three-way table, denote the observed count by nijk in cell(i, j, k)

(i = 1, . . . , h1; j = 1, . . . , h2; k = 1, . . . , h3), the expected count by mijk. If observations are

made over a period of time without a priori knowledge of the total number of observations,

it is reasonable to assume that each cell follows an independent Poisson distribution (see

Bishop et al. (2007)). During the monitoring process in Phase II of SPC, the total number

N of observations is usually fixed. Conditional on this total sample size N , a series of

independent Poisson distributions result in a multinomial distribution. So the cell counts in

the three-way contingency table therefore follow the multinomial distribution MN(N ; pijk)

(i = 1, . . . , h1; j = 1, . . . , h2; k = 1, . . . , h3). Here pijk = mijk/N is the probability of an

observation falling into cell(i, j, k), and these probabilities must sum up to 1.

To generalize the three-way table to a general p-way h1 × . . . × hp contingency table

(see Johnson et al. (1997)), let the probability of obtaining the combination of factor levels

a1, . . . , ap be pa1...ap (ai = 1, . . . , hi and i = 1, . . . , p). Furthermore, denote the count of

observations among a sample of size N with the combination a1 . . . ap by na1...ap . Clearly,

the cell counts na1...ap jointly follow MN(N ; pa1...ap). Furthermore, consider for example the

group of marginal counts n(i)1, . . . , n(i)hi
of the factor Ci, which are actually the sums of

the cell counts na1...ap adding along the attribute levels of all the other factors except Ci. It

is easy to understand that this group of marginal sums follow the multinomial distribution

MN(N ; p(i)1, . . . , p(i)hi
). Here p(i)1, . . . , p(i)hi

are the marginal probabilities of the factor Ci,

which can be calculated in a similar way to n(i)1, . . . , n(i)hi
based on the cell probabilities

pa1...ap . The joint distribution of the p groups of variables n(i)1, . . . , n(i)hi
(i = 1, . . . , p), each

being a multinomial distribution, is defined to be a multivariate multinomial distribution

(see Johnson et al. (1997)). When each factor has two levels, this reduces naturally to the

multivariate binomial distribution. So by applying multivariate binomial or multivariate

multinomial distributions and a cross-classified contingency table, multivariate categorical

processes can be studied.

6



Conventional Monitoring Approaches

Generally, statistical process control involves two phases (Montgomery (2009)). In Phase

I, a set of process data are collected and examined. Any unusual patterns in the data are

identified, and based on this, the data and the process may be adjusted, resulting in a clean

dataset collected from stable conditions of the process. This dataset is called the IC dataset

and used for estimating the IC parameters representative of the IC operating conditions.

Phase I analysis primarily assists in bringing the process into a state of statistical control.

Given the IC parameters, in Phase II the process is monitored with control charts to detect

and diagnose any deviations from the IC state. Let us review some typical methods for

monitoring multivariate binomial and multivariate multinomial processes. Hereafter we use

the superscript “(0)” and “(1)” to denote the IC and OC states, respectively.

With a multivariate binomial process, each factor has two levels, shaping a p-way

contingency table with 2p cells for p factors. Denote the two levels of each factor by 1 and

0. Given a sample size N in Phase II, if the process is IC, the Level 1 count of the factor Ci

(i = 1, . . . , p) is binomially distributed as the binomial distribution with the total size N

and its IC Level 1 probability. So the IC mean of this count is known, and the IC covariance

between any two factors Ci and Cj (i, j = 1, . . . , p and i 6= j) can also be calculated, hence

the IC mean vector and the IC covariance matrix of the Level 1 counts of the p factors.

Based on these, Patel (1973) constructed the χ2 charting statistic of the Hotelling’s T 2

form, the expression of which can be found in Appendix A in the supplemental file.

Factors with three or more levels are also common in production and service appli-

cations, and they can be treated as multivariate multinomial processes. Take customer

attitudes towards a service for instance. Suppose that there are four indexes, each of which

may take the values of excellent, acceptable, or unacceptable. This forms a four-way con-

tingency table with 34 cells. No appropriate monitoring methods exist that incorporate

the cross-classifications among the p factors when at least one of them has more than two

attribute levels.

The only feasible approach of monitoring multivariate multinomial processes, albeit a

naive one, might be to monitor the p groups of marginal sums of each factor by adopting
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p individual charts. If we consider only the group of marginal sums of the factor Ci

(i = 1, . . . , p), it is a multinomial process, which could be tackled by applying Marcucci’s

(1985) generalized p-chart. For the kth sample, the generalized p-chart employs the Pearson

chi-square statistic as the charting statistic for the factor Ci, and its expression is also listed

in Appendix A in the supplemental file. Finally, there would be p separate charts, which

jointly form a multi-chart. Such a multi-chart would signal whenever at least one of the p

individual charts signals.

Clearly, the χ2-chart applies to only multivariate binomial processes, and the multi-

chart developed for multivariate multinomial processes is troublesome. Besides, both of

them pay sufficient attention to only the one-way marginal sums of each factor, and they

almost neglect to a large extent the cross-classification interactions among factors.

New Methodologies for Monitoring and Diagnosis

Log-Linear Models

There is a clear need to model the relationship between each cell count and factor levels

associated with it. The cell counts are stored in a multi-way contingency table. As in

the multi-way ANOVA where responses to all factor level combinations are also placed

in a multi-way table. The ANOVA is based on the assumption that the responses are

normally distributed, and it aims to quantify how the responses are influenced by the main

factor effects and the factor interaction effects. Take for illustration a three-way ANOVA

model, where the three factors take h1, h2, and h3 levels, respectively. Denote the expected

response with the first factor at its ith level, the second factor at its jth level, and the third

factor at its kth level as yijk (i = 1, . . . , h1; j = 1, . . . , h2; k = 1, . . . , h3). The three-way

ANOVA model is

yijk = u(0) + u
(1)
i + u

(2)
j + u

(3)
k + u

(1,2)
i,j + u

(1,3)
i,k + u

(2,3)
j,k + u

(1,2,3)
i,j,k ,

where u(0) is the overall mean, u(1), u(2), u(3) are the main effects, u(1,2), u(1,3), u(2,3) are the

two-factor interaction effects, and u(1,2,3) is the three-factor interaction effect. Furthermore,
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identifiability requires constraints such as

∑
i

u
(1)
i =

∑
i

u
(1,2)
i,j =

∑
i

u
(1,3)
i,k =

∑
i

u
(1,2,3)
i,j,k = 0

for the first factor along its index i. Similar equations describe the second and third factors

along with their indexes j and k, respectively. Therefore, the ANOVA can be represented

as a linear regression model. From the generalized linear model (GLM) point of view, a

linear regression model where the response is normally distributed has a canonical link

function of unity (see McCullagh and Nelder (1989)).

By analogy with the ANOVA, it is possible to build a similar regression model re-

lating the cell counts and their corresponding factor levels in the multi-way contingency

table. Note that the response (the cell count) is no longer normally distributed. With no

restriction on the total sample size, each cell count is independently Poisson distributed,

and a GLM where the response follows a Poisson distribution has a canonical link function

of logarithm (see McCullagh and Nelder (1989)). Therefore, the log-linear model can be

introduced. For a three-way contingency table of size h1 × h2 × h3, the log-linear model

characterizing the relationship between the expectation mijk (i = 1, . . . , h1; j = 1, . . . , h2;

k = 1, . . . , h3) of the count in cell(i, j, k) and the factor levels indexed with i, j, k, is

ln mijk = u(0) + u
(1)
i + u

(2)
j + u

(3)
k + u

(1,2)
i,j + u

(1,3)
i,k + u

(2,3)
j,k + u

(1,2,3)
i,j,k ,

where the u-terms are the main or factor interaction effects defined as in the ANOVA model

(see Bishop et al. (2007)). They also satisfy the identifiability constraints. When the total

sample size N is fixed, the cell counts jointly follow a multinomial distribution, and it is

more convenient to focus on the probability pijk instead of the expectation mijk = Npijk.

In this case, the log-linear model will be

ln pijk = u(0) + u
(1)
i + u

(2)
j + u

(3)
k + u

(1,2)
i,j + u

(1,3)
i,k + u

(2,3)
j,k + u

(1,2,3)
i,j,k , (1)

where the probabilities must satisfy
∑

i,j,k pijk = 1. Obviously, the interaction terms such

as u(1,2) reflect the dependence among the factors, and for a log-linear model without any

interaction effects, the factors are independent.

The identifiability constraints applicable to a log-linear model in the form of Equation

(1) are somewhat inconvenient to write out, but they can be rewritten equivalently as an-
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other form, which is illustrated by a 2×3 contingency table. The identifiability constraints

allow setting

u(0) = β0, u
(1)
1 = β1, u

(1)
2 = −β1,

u
(2)
1 = β2, u

(2)
2 = β3, u

(2)
3 = −β2 − β3,

u
(1,2)
1,1 = β4, u

(1,2)
1,2 = β5, u

(1,2)
1,3 = −β4 − β5,

u
(1,2)
2,1 = −β4, u

(1,2)
2,2 = −β5, u

(1,2)
2,3 = β4 + β5.

Therefore, the logarithms of the probabilities pij (i = 1, 2; j = 1, 2, 3) can be expressed as

a linear combination of the coefficients βk (k = 0, 1, . . . , 5). Clearly, β1 measures the main

effect u(1) of the first factor, [β2, β3]
T measures the main effect u(2) of the second factor, and

[β4, β5]
T measures the interaction effect u(1,2) of the two factors. That these factor effects

can be represented totally by coefficients can be extended to a general scenario.

Actually, the identifiability constraints dictate that the log-linear model for a p-way

contingency table where p factors are considered in the form of Equation (1) can be ex-

pressed in the following regression form (see Dahinden et al. (2007))

lnp = 1β0 +
2p−1∑
i=1

X iβi, (2)

where p is the h × 1 probability vector corresponding to the h cells of the contingency

table, 1 is a column vector consisting of 1 as all its entries with appropriate dimensions,

X i is an h × qi design submatrix corresponding to the ith main or interaction effect and

containing 1, 0, or −1 as its elements, and βi is the coefficient subvector of size qi× 1. Still

take the above two-way contingency table of size 2× 3 with p = 2 factors for illustration.

Here p = [p11, p12, p13, p21, p22, p23]
T and 1 = 16 are both of size 6 × 1, and β1 = β1,

β2 = [β2, β3]
T , β3 = [β4, β5]

T , together with the design submatrixes

X1 =

[
13

−13

]
, X2 =

[
J3

J3

]
, and X3 =

[
J3

−J3

]
,

where

J2 =

[
1

−1

]
and J3 =




1 0
0 1

−1 −1


 =

[
I2

−1T
2

]
.

Note that the column sums of J2 and J3 are all zeros, which assures identifiability.
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Denote the design matrix by X̃ = [1, X] with X = [X1, . . . , X2p−1] and the coefficient

vector by β̃ = [β0, β
T ]T with β = [βT

1 , . . . , βT
2p−1]

T . So Equation (2) can be rewritten as

lnp = X̃β̃. Actually, the log-linear model (2) is at the effect level, and there are in total

2p − 1 effects from the main effects up to the p-factor interaction effect. Clearly, we have

pT1 = 1, and β0 is a scalar representing the intercept. If β is known, the first entry β0 is

determined. Therefore, only h− 1 coefficients are free to vary independently, and β0 exists

merely for accommodating the constraint pT1 = 1. Hereafter, attention will mainly be

paid to the coefficient subvectors βi (i = 1, . . . , 2p − 1). In the case of factors all with two

levels, the derivation of the design matrix X̃ is identical to that of the design matrix of 2k

full factorial experiment with 1 and −1 representing the high and low levels, respectively.

However, this becomes a little complex if at least one factor has more than two levels. Refer

to the additional File 1 in Dahinden et al. (2007) for the general result of deriving X̃. For

convenience of practitioners, we provide the Fortran code for deriving it once the number

of factors and their levels are known, which is available from the authors upon request. In

addition, an example of four factors is given in Appendix B in the supplemental file.

The design submatrixes, together with their corresponding coefficient subvectors, are

arranged from the overall mean, the main effects, up to the effect of the highest order. For

three factors C1, C2, and C3 with 2, 3, and 3 levels, respectively, the sequence is 1, C1, C2,

C3, C1C2, C1C3, C2C3, and C1C2C3. Hence, the coefficient vector

β̃ = [ β0 β(1) β(21) β(22) β(31) β(32)

β(1,21) β(1,22) β(1,31) β(1,32) β(21,31) β(21,32)

β(22,31) β(22,32) β(1,21,31) β(1,21,32) β(1,22,31) β(1,22,32) ]T .

Following the above arrangement of coefficients, we see that, for example, β3 = [β(31), β(32)]
T

measures the main effect of the factor C3, β5 = [β(1,31), β(1,32)]
T measures the two-factor

interaction effect of C1 and C3, and β7 = [β(1,21,31), β(1,21,32), β(1,22,31), β(1,22,32)]
T measures

the three-factor interaction effect of C1, C2, and C3. Obviously, the ith main or interaction

effect, the design submatrix X i, and the coefficient subvector βi (i = 1, . . . , 2p − 1) are

related. Therefore, the probability vector is essentially determined by the magnitudes of

these coefficient subvectors.

The log-linear model (2) is at the effect level, but it can be rewritten equivalently at
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the coefficient level as

lnp = 1β0 +
h−1∑
i=1

xiβi, (3)

where xi is the ith column vector of the matrix X, and βi as a scalar is its correspond-

ing coefficient. For instance, in the above three-way contingency table of size 2 × 3 × 3,

β1 = β(1), β9 = β(1,32), and β17 = β(1,22,32). Obviously, we see X = [X1, . . . , X2p−1] =

[x1,x2, . . . ,xh−1] and β = [βT
1 , . . . , βT

2p−1]
T = [β1, β2, . . . , βh−1]

T . There is also correspon-

dence between the ith column xi of X and the ith coefficient βi (i = 1, . . . , h − 1). By

analogy with a linear regression model, the log-linear model is also essentially a regression

model with the probabilities as the responses, the coefficients as the regressors, and the

column vectors composing the design matrix.

Proposing a Phase II control chart requires that the IC process parameters be known,

which requires estimation of the coefficient vector β̃ in the log-linear model (2) or (3) from

an IC dataset. But some simple approximations allow using only the probability vector p

in the IC state, skipping the estimation of the coefficient vector β̃. Once the IC dataset

is known, the IC probability vector p(0) can be obtained immediately by dividing the cell

counts by the IC dataset size.

Log-Linear Directional Monitoring

In a log-linear model, the marginal distribution of one factor is mainly determined by

its main effect, whereas the dependence among multiple factors is represented by their

interaction effect. This provides the explanation of shifts in multivariate categorical pro-

cesses. According to the one-to-one correspondence between factor effects and coefficient

subvectors in a log-linear model, shifts in the marginal distribution of one factor lead to

deviations of the coefficient subvector corresponding to its main effect, and shifts in the de-

pendence among multiple factors result in deviations of the coefficient subvector reflecting

their interaction effect.

The pre-specified log-linear model can be summarized as

lnp = X̃β̃ and pT1 = 1.
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Denote this model as F
(
X̃; β̃

)
. It is reasonable to assume that the jth on-line multivariate

sampling observation vector nj, of size h×1 and subject to a multinomial distribution with

a total size N , is collected over time from the change-point model

nj
i.i.d.∼





F
(
X̃; β̃

(0))
, for j = 1, . . . , τ,

F
(
X̃; β̃

(1))
, for j = τ + 1, . . . ,

(4)

where τ is the unknown change point, and β̃
(0) 6= β̃

(1)
are the known IC and unknown OC

process coefficient vectors, respectively.

Since β0 can be determined from β = [β1, . . . , βh−1]
T , the monitoring problem can be

formulated as a hypothesis testing problem:

H0 : β = β(0) versus H1 : β 6= β(0). (5)

A natural test for the hypothesis (5) can be constructed by using the idea of a generalized

likelihood ratio test (GLRT; Anderson (2003)), which incorporates all possible shifts in

β(0), and thus is general and robust.

There is correspondence between the ith main or interaction effect and the coefficient

subvector βi. In practical applications, it is usually reasonable to assume that any changes

involve only a few coefficient subvectors, or only a few coefficients in the appropriate model.

Suppose, however, that we have some a priori knowledge that in the OC state only the

coefficient βi (1 ≤ i ≤ h − 1) is incremented by an unknown constant δi. The hypothesis

then becomes

H0 : β = β(0) versus H1 : β = β(0) + diδi,

where di is the direction vector of size (h − 1) × 1 with 1 at its ith component and 0

elsewhere. Note that here the direction is in terms of the coefficient vector β, which stands

for the index i of the coefficient βi that shifts. This is different from the multivariate normal

distribution, say N(µ,Ω), where the direction is in terms of the multivariate mean vector

µ, and it represents the index i of the shifted mean µi.

Next consider the more practical case that in the OC state only one coefficient changes,

but its location is unknown. The original alternative in the hypothesis (5) reduces to

H1 : β = β(0) + d1δ1 or β = β(0) + d2δ2 . . . or β = β(0) + dh−1δh−1, (6)
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where δi (i = 1, 2, . . . , h − 1) are the unknown shift magnitudes, and the possible shift

directions d1, d2, . . . , dh−1 are defined in a similar way, applying to β1, β2, . . . , βh−1,

respectively. The GLRT derived from the hypothesis (6) should be better than that from the

hypothesis (5) because it makes full use of more constructive information about potential

shift directions. In fact, a GLRT based on the hypothesis (6) that incorporates directional

knowledge about potential changes is very much like the GLRTs used in multistage process

monitoring and diagnosis which exploit the information of shift directions from the first

stage to the last one (see Zou and Tsung (2008) and Zou et al. (2008)).

The hypothesis (6) may be further generalized. Since deviations involving fewer factors

may appear more frequently, it is reasonable to believe that in applications most shifts

involve lower-order effects rather than higher-order ones. Unlike the hypothesis (6), which

considers all one-coefficient-shifts from the main factor effects up to the highest p-factor

interaction effect, instead we may focus on effects involving the first few, say q, orders.

Denote g as the number of coefficients corresponding to effects of the first q orders. Then

the hypothesis (6) can be further extended as

H1 : β = β(0) + d1δ1 or β = β(0) + d2δ2 . . . or β = β(0) + dgδg, (7)

With q = p, the hypothesis (7) becomes the hypothesis (6). Take the case that all p factors

have two levels to illustrate the advantage of considering effects of the first two orders

instead of all coefficients. With the first two orders, only g = C1
p + C2

p = p(p + 1)/2 one-

coefficient-shifts are taken into account. However, this number becomes 2p−1 for effects of

all p orders, increasing exponentially with p. Since shifts to OC states usually involve low-

order effects, it is not difficult to understand that the larger q is, the less powerful the GLRT

will be. This follows because the alternative hypothesis will always take into consideration

undesired high-order shift directions. If the real shift indeed arises from effects of the first

q orders, the GLRT based on the hypothesis (7) should certainly be powerful. Even if a

shift occurs in an effect of an order higher than q, however, this change may be reflected to

a large extent on the charting statistic indexed by the first q orders. So a GLRT derived

from the hypothesis (7) may still be powerful, as we will show later.

Now we give the GLRT statistic for testing the hypothesis (7). For simplicity, we first
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define the following quadratic form

D(y,p,x,Σ) =
1

N

(
y −Np

)T
x
(
xTΣx

)−1
xT

(
y −Np

)

for y,p,x of size h × 1 and Σ of size h × h. With the Phase II sample size N and the

observation vector n of size h × 1 satisfying nT1 = N , the −2LRT statistic for testing

the hypothesis (7) is Q = maxi∈{1,...,g} D(n,p(0),xi,Σ
(0)). Its derivation can be found in

Appendix C in the supplemental file. Here p(0) is the IC probability vector, and Σ(0) =

diag
(
p(0)

) − p(0)(p(0))T is the IC covariance matrix (see Agresti (2002)), where diag(a) is

the diagonal square matrix with its diagonal elements as the column vector a. Note that g

is the number of coefficients corresponding to effects of the first q orders in the log-linear

model. The test will reject the null hypothesis if Q is larger than a pre-specified value.

The test statistic Q can be used to construct a Shewhart-type control chart for on-line

monitoring. However, this method merely utilizes the information in the current sample,

and it will be very inefficient for moderate and small changes. To be more efficient, we

combine the hypothesis (7) with an EWMA scheme to properly exploit the information

in past and current samples. Denote the observation vector of the jth sample of size N

in Phase II by nj. For any time point k, consider the following recursive exponentially

weighted sum of the previous observation vectors nj (j = 1, . . . , k)

zk = (1− λ)zk−1 + λnk,

where λ is a smoothing parameter. We see that zk actually makes full use of all available

samples up to the current time point k, and that different samples are weighted as in an

EWMA chart (i.e., the more recent samples have larger weights, and the weights decay

exponentially over time). Thus the EWMA counterpart of the GLRT statistic Q is

Rk = max
i∈{1,...,g}

D(zk,p
(0),xi,Σ

(0)). (8)

Here Rk can be regarded as the maximum of a series of quadratic D-forms D(·) indexed

by the set {1, . . . , g}, and it takes into account all the combined directions of potential shifts

as well as the exponentially weighted past and current on-line samples. Analogous to Q, a

large value of Rk will reject the null hypothesis in (7). Therefore, Rk can be the charting
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statistic for a control chart, which will trigger an OC signal if Rk > L for some k ≥ 1,

where L > 0 is a control limit chosen to attain a specific IC ARL. Note that by equipping

the EWMA scheme, the steady-state covariance Σ(0) should be changed into λ
2−λ

Σ(0), and

correspondingly the charting statistic Rk should be modified as R′
k = 2−λ

λ
Rk. However,

since Rk and R′
k differs only in a constant, and the control limit L will be selected by

simulation, this does not have an effect. We still take Rk as the charting statistic.

Since such chart combines the one-coefficient-shifts, it represents the directional changes

of multivariate categorical processes, and we call it a log-linear directional (LLD) control

chart hereafter. The charting statistic for an LLD chart requires no estimate of the IC log-

linear model coefficient vector β̃
(0)

. Only the IC probability vector p(0) is needed, which

is easy to estimate. In addition, from the derivation of the charting statistic Rk of the

LLD chart, we see that it can also be modified as a robust one for detecting other types

of shifts, such as general shifts arising in all coefficients in the log-linear model. With only

one factor, this robust chart is actually the same as the generalized p-chart proposed by

Marcucci (1985) for univariate multinomial processes.

Diagnostic Schemes

Assume that at most one coefficient β
(0)
i in β(0) will change. This can be detected efficiently

by the proposed LLD chart. Once the LLD chart triggers an OC alarm, the question natu-

rally arises which coefficient shift is responsible for this signal. This diagnosis is especially

important for multivariate categorical processes, identifying the shift direction quickly and

accurately.

Diagnosis is required only when there is an OC indication. Here the null hypothesis in

(7) has been rejected, and the diagnosis relies on the alternative hypothesis. This alternative

hypothesis considers the one-coefficient-shifts of the first q orders (1 ≤ q ≤ p), and the LLD

chart monitors the process by checking the charting statistic (8) indexed by g or q, but it is

still possible that the real shift occurs in an effect of an order higher than q. In other words,

a coefficient β
(0)
i (i /∈ {1, . . . , g}) may deviate. Diagnosis attempts to find the actual fault

location, unlike monitoring, which only reports whether the process remains IC or not. In
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diagnosis, therefore, it is necessary to choose a candidate set of diagnostic shift direction

indexes larger than that in monitoring, lest the real shift direction is left out. Thus, we

consider one-coefficient-shifts in effects of the first q′ orders (1 ≤ q ≤ q′ ≤ p) for identifying

the shift direction. Let g′ be the number of coefficients corresponding to effects of the first

q′ orders. Note that q′ should be at least as large as q, and therefore g′ is also equal to or

larger than g. As with q, the choice of q′ will be described later.

Note that in the OC state, the true probability vector and the corresponding covariance

matrix are no longer p(0) and Σ(0). Suppose that it is only the deviation of the coefficient

β
(0)
i in β(0) that brings the process into OC. Since the change-point model (4) is assumed

to represent the on-line samples, the samples in the OC state are therefore acquired from

F
(
X̃; β̃

(1,i))
, where β̃

(1,i)
is the OC coefficient vector that deviates from the IC coefficient

vector β̃
(0)

only in βi. This OC model is indexed by i ∈ {1, . . . , g′}. Denote also the

OC probability vector by p(1,i) and the corresponding OC covariance matrix by Σ(1,i) =

diag
(
p(1,i)

)− p(1,i)
(
p(1,i)

)T
.

To recognize the shift direction, one intuition is that some D-forms D(·) indexed by

the set {1, . . . , g′}, which are similar to those in Equation (8) for monitoring, may help

with the identification. Since diagnosis is performed in the OC state, the covariance matrix

term contained in these D-forms should be Σ(1,i) instead of Σ(0). If among these forms, the

ith one has some kind of property, some one-to-one correspondence may be built between

the ith D-form and the current i-indexed OC state model F
(
X̃; β̃

(1,i))
. The diagnosis

can then exploit this relationship. Suppose that n is an observation vector of size N

collected from F
(
X̃; β̃

(1,i))
. Define Sj = D(n,p(0),xj,Σ

(1,i)). It is shown in Appendix D

in the supplemental file that the arg maxj∈{1,...,g′} Sj will be consistent with the real shift

direction index i. So there is indeed a probable correspondence between the largest D-form

Si (i ∈ {1, . . . , g′}) and the real shift direction di, and this provides some guidelines for

diagnosis.

In applications, the OC probability vector p(1,i) and the covariance matrix Σ(1,i) are

unknown and need to be estimated. Suppose that the LLD chart triggers an alarm at time

η. From the change point τ (but not including) to the signal point η, there have already

been observation vectors collected from F
(
X̃; β̃

(1,i))
. The best estimation of p(1,i) seems to
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be the average of these observation vectors divided by the sample size N . This, however,

relates to estimating the change point τ , which will not be discussed here. Therefore, the

exponentially weighted sum of observation vectors zη at η, which efficiently exploits the

information in the OC state, seems to be a reasonable choice for estimating p(1,i). To this

end, the diagnostic procedures can be finalized as

Step 1 Define p̂ = zη/N and Σ̂ = diag
(
p̂
) − p̂p̂T as the estimates of p(1,i) and Σ(1,i),

respectively.

Step 2 Replace Σ(1,i) with Σ̂ and n with zη in the D-forms Sj (j = 1, . . . , g′), calculate

their values, and denote them as sj (j = 1, . . . , g′).

Step 3 Find the maximum among these sj, and its index will be the recognized direction

index ζ.

Practical Implementation and Application

Design Parameter Settings

On the parameters q and q′: The most possible shift directions are confined in effects

of the first q orders (1 ≤ q ≤ p) when there are p factors. The GLRT (8) will be less

powerful if more shift directions are included if indeed most shifts occur in lower-order

effects. If q is selected as 1, however, only main effect deviations are considered, ignoring

correlations between factors, which is obviously inappropriate. In most real applications,

one cares about only means and variances, moments of the first two orders. Furthermore,

the monitoring task is to only answer “yes” or “no” about whether the process is IC, rather

than specifying shifted effects. Here we should pay attention only to the main effects and

two-factor interactions and choose q as 2, focusing on coefficients corresponding to effects of

the first two orders. If the shift indeed arises in a main or two-factor interaction effect, the

GLRT (8) with q = 2 should definitely be powerful. Even if a shift arises in a three-factor

or higher-order interaction effect, the effects of the first two orders will be influenced to a

fairly large extent, so the OC may still be detected quickly by the LLD chart.
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The choice of the diagnostic parameter q′ should be considered in combination with the

monitoring parameter q. As has been indicated earlier, q′ should be at least as large as q

with q′ ≥ q, for fear that important shift directions might be missed. Since q = 2 has been

recommended, should q′ be at least 3, confining the candidate subset of diagnostic shift

directions to effects in the first three orders. This will still be safe in case a shift appears in

a three-factor interaction effect, and it is believed that shifts in four-factor or even higher-

order interaction effects are rare. As in monitoring, as q′ increases, the diagnostic accuracy

will decrease. Therefore, q′ = 3 is an ideal choice.

In fact, by going one step further, we can choose these index sets for monitoring and

diagnosis to contain only the factor effects or coefficients we are interested in. Generally,

any subset of the index set {1, . . . , h} can be introduced, with its elements corresponding

to the coefficients in which a shift may occur the most likely. The only thing that must

be kept in mind is that the index set for diagnosis must be at least as large as the one for

monitoring.

On the smoothing parameter λ: Generally, a smaller λ assists in detecting smaller shifts

more quickly, while a larger λ leads to quicker detection of larger shifts (see Lucas and

Saccucci (1990) and Lowry et al. (1992)). This still applies to LLD charts, as will be

confirmed by Figure 2 in the next section. In diagnosis, a smaller λ results in better

diagnostic consistency for smaller shifts, while a larger λ helps in identifying the locations

of larger shifts. This will also be illustrated in Figure 3 below. Empirical results show that

λ between 0.05 and 0.2 is probably a reasonable choice.

On the sample size N : With a small sample size N , to achieve a small OC ARL, a very

large magnitude δ is required. This can be seen by comparing Table 1 below and Table A1

in the supplemental file. On the other hand, a large sample size contains more information

about observation vectors such as nk. To detect a small shift as quickly as possible, a very

large sample size is needed. Therefore, based on permissible costs or other considerations,

we should select a sample size N as large as possible.

In fact, the sample size for multivariate categorical processes cannot be compared with

that of multivariate continuous processes, which is relatively small, say, only several or
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decades. This follows because the data in multivariate categorical processes are actually

the proportions in each cell of a multi-way contingency table, which are acquired by aggre-

gating multivariate categorical observations. Therefore, multivariate categorical processes

are different in nature from multivariate continuous ones. Since there is no need of accu-

rate measurements for collecting categorical data, it usually does not cost as much. So a

relatively large sample size in multivariate categorical processes is acceptable.

In this paper, for simplicity we assume that the sample size N is fixed. For time-varying

sample sizes, we will deal with it in future work. In short, if the distribution of sample

sizes can be specified or their trend can be predicted, we can calculate the control limit by

simulation before monitoring. Otherwise, it seems that a time-varying control limit that

depends on the on-line sample size Nk is required. We can determine the control limit

for each sample point k with Monte Carlo simulation by drawing large samples from the

multinomial distribution MN(Nk;nk/Nk), making the conditional probability (given there

is no alarm up to time point k − 1) attain 1/ARL0.

On computation: Once the IC probability vector p(0) has been chosen, the charting statistic

Rk of the LLD chart is very simple to compute, entailing only basic arithmetic. Finding

the control limit L for a given IC ARL (denoted ARL0) is trivial. Using a Pentium 3.0GHz

CPU the search procedure based on 10,000 replicated simulations takes only a few minutes

by bisection search when ARL0 = 370, h = 32, λ = 0.1, and N = 1, 000.

Implementation — a Practical Example

Implementation of the proposed methodology is demonstrated in this subsection by revisit-

ing the AEC manufacturing process as the example. This is a multivariate binomial process

with three factors LC, DF and CAP, each with two levels. A three-way contingency table

can represent the cross-classifications of the three factors in eight cells. The relationship

between the cell counts and the factor level combinations can be well characterized by a

log-linear model. An LLD chart can be used to monitor the three quality characteristics si-

multaneously, and the suggested diagnostic method can identify the fault location whenever

there is an OC alarm.
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Step 1: Define the multivariate categorical process and derive the design matrix X̃. This

AEC manufacturing process has p = 3 factors each with 2 levels. Denote the three factors

LC, DF, and CAP as C1, C2, and C3, respectively. The matrix X̃ can be formulated in the

manner of performing a 23 full factorial experiment, and then arranged in the sequence of

1, C1, C2, C3, C1C2, . . ., C1C2C3.

Step 2: Obtain the Phase I IC probability vector p(0). Every day thousands of AECs pass

through each workbench in the aging stage, and their LC, DF, and CAP is inspected and

classified as conforming or nonconforming. The IC probability vector p(0) is calculated

using an IC dataset of about sixty thousand observations (given in another supplemental

file), where the eight level combination counts are summarized as [9, 6, 65, 43, 8, 259, 1830,

61038]. So p(0) is obtained from the proportions of the eight cell counts in this IC dataset

p(0) = [1.423, 0.9485, 10.28, 6.798, 1.265, 40.94, 289.3, 9649]T × 10−4.

The IC covariance matrix is then Σ(0) = diag
(
p(0)

)− p(0)(p(0))T .

Step 3: Find the control limit L for a given ARL0. Usually, an ARL0 of 370 is used in the

AEC process. The LLD chart monitors the process by focusing on shifts in the main effects

and two-factor interaction effects (q = 2 and g = 6). An EWMA smoothing parameter

λ = 0.1 and a Phase II sample size N = 500 are considered appropriate. The control

limit L is set to 0.56 through a bisection search based on 10,000 simulations, achieving

ARL0 = 370.

Step 4: Phase II monitoring. The cell counts of the eight level combinations are tabulated

for each sample of 500. For the kth sample, the eight cell counts are recorded in the

observation vector nk, and based on the observation vectors up to time k, the exponentially

weighted sum zk is calculated with the smoothing parameter 0.1. The charting statistic Rk

of zk is then calculated using Equation (8). As the process proceeds, the charting statistics

Rk (k = 1, 2, . . .) are plotted in a control chart and compared with the control limit L. A

typical plot is shown in Figure 1. In the example the chart signals OC at the 35th sample

and remains above the control limit for the remainder of the sequence.

Step 5: Identify the shift direction once an OC signal is triggered. We follow the three
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Figure 1: An LLD chart monitoring the AEC process

diagnostic steps stated previously. Based on z35, the OC probability vector is estimated as

p̂ =
z35

N
= [1.253, 0.2422, 7.838, 1.967, 0.2236, 22.41, 314.9, 9651]T × 10−4,

so the OC covariance matrix may be estimated as Σ̂ = diag
(
p̂
) − p̂p̂T . As recommended

before, the candidate subset of the fault directions is selected as coefficients in the effects of

the first three orders with q′ = 3 and g′ = 7. The direction estimator chooses the maximum

among the values of the seven D-forms, which are 0.29, 0.87, 0.08, 1.11, 0.06, 0.00, and

0.00 corresponding to the seven coefficients β(1), β(2), β(3), β(1,2), β(1,3), β(2,3), and β(1,2,3),

respectively. Apparently, there has been a shift associated with coefficient β(1,2), namely in

the interaction effect of the two factors C1 and C2, i.e., the interaction of LC and DF.

Performance Comparison and Assessment

Let us now test the performance of the proposed LLD chart and the diagnostic approach

through Monte Carlo simulations. Both multivariate binomial processes and multivariate

multinomial processes are simulated and the performance of the LLD chart is compared
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with competing techniques. Throughout the simulations, ARL0 is fixed at 370, and all

ARL values are averages of 10,000 replicated simulations.

Monitoring a Multivariate Binomial Process

With a multivariate binomial process, the LLD chart can be compared with the χ2-chart

proposed by Patel (1973), which has been introduced as a typical control chart for mon-

itoring multivariate binomial data. Totally ignoring past information, the Shewhart-type

χ2-chart is inadequate for detecting moderate and small shifts. For fair comparison, we

extend the χ2-chart to its EWMA version by replacing the observation vectors in its chart-

ing statistic with their exponentially weighted sum vectors. We refer to this chart as the

multivariate binomial EWMA (MBE) control chart.

Assume that during a production process five quality characteristics are each assessed

as conforming or nonconforming, yielding a multivariate binomial process, which can be

arranged into a five-way contingency table with two levels for each factor. The IC log-linear

model has the coefficient vector

β̃
(0)

= [ β0 0.72 0.93 0.49 0.25 0.47 −0.57 0.22
0.11 −0.14 0.15 −0.16 0.41 0.16 −0.19 0.33
0.39 0.10 0.07 −0.05 0.21 −0.02 0.45 0.33
0.08 0.27 0.04 −0.13 0.07 −0.07 0.03 0.00 ]T ,

where β0 is the intercept accommodating the constraint pT1 = 1. Based on β̃
(0)

, the

IC probability vector p(0) can be further calculated. It is believed that possible shifts to

OC appear in factor effects, and correspondingly in coefficients of the IC log-linear model.

According to the design recommendation, construct the LLD chart with q = 2 and g = 15

in its charting statistic (8), again assuming that most shifts will arise in the main effects

or the two-factor interaction effects.

The OC ARLs of the LLD and MBE charts for various shifts of magnitude δ are

summarized in Table 1 when the EWMA smoothing parameter λ = 0.1 and the Phase

II sample size N = 1, 000. Due to space limitations, only some representative results are

tabulated (Additional results are available from the authors on request). Table 1 shows
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Table 1: OC ARLs for LLD and MBE control charts monitoring one-coefficient-shifts of
the first two orders

δ LLD MBE LLD MBE LLD MBE

β(3) β(5) β(1,4)

0.01 201 (1.99) 199 (1.90) 241 (2.37) 222 (2.16) 176 (1.67) 249 (2.48)

0.02 71.6 (0.63) 70.5 (0.61) 95.9 (0.86) 86.1 (0.77) 53.0 (0.43) 117 (1.07)

0.05 13.2 (0.07) 13.6 (0.07) 16.3 (0.09) 16.5 (0.09) 10.3 (0.05) 21.6 (0.13)

0.20 2.82 (0.01) 2.90 (0.01) 3.22 (0.01) 3.25 (0.01) 2.39 (0.01) 3.79 (0.01)

−0.01 172 (1.69) 176 (1.69) 200 (1.94) 193 (1.88) 155 (1.50) 230 (2.24)

−0.02 60.5 (0.51) 61.5 (0.52) 79.0 (0.70) 74.3 (0.66) 46.8 (0.38) 101 (0.93)

−0.05 11.6 (0.06) 12.0 (0.06) 14.1 (0.07) 14.2 (0.08) 9.35 (0.04) 18.9 (0.11)

−0.20 2.18 (0.01) 2.23 (0.01) 2.40 (0.01) 2.42 (0.01) 1.96 (0.01) 2.96 (0.01)

β(2,3) β(2,5) β(3,4)

0.01 193 (1.87) 247 (2.44) 262 (2.55) 318 (3.15) 216 (2.07) 290 (2.85)

0.02 66.0 (0.56) 108 (1.00) 110 (1.00) 201 (1.90) 77.0 (0.67) 158 (1.50)

0.05 12.7 (0.06) 20.2 (0.12) 18.0 (0.10) 47.3 (0.38) 13.8 (0.07) 32.2 (0.23)

0.20 2.76 (0.01) 3.69 (0.01) 3.39 (0.01) 6.14 (0.02) 2.90 (0.01) 4.79 (0.02)

−0.01 167 (1.60) 210 (2.03) 219 (2.15) 279 (2.77) 183 (1.77) 249 (2.44)

−0.02 58.0 (0.50) 93.3 (0.86) 90.1 (0.82) 165 (1.59) 66.0 (0.57) 129 (1.22)

−0.05 11.3 (0.06) 17.2 (0.10) 15.2 (0.08) 36.4 (0.28) 12.0 (0.06) 25.9 (0.18)

−0.20 2.15 (0.01) 2.75 (0.01) 2.50 (0.01) 4.16 (0.01) 2.22 (0.01) 3.48 (0.01)

NOTE: Standard errors are in parentheses. λ = 0.1. N = 1, 000.

that the MBE chart outperforms the LLD chart only for small shifts in the main effects

such as β(3) and β(5), which represent the main effects of the factors C3 and C5, respectively.

This is partly because the MBE chart is based on collecting one-way marginal sums for

each factor, whose changes are directly echoed by shifts in the main effects or coefficients of

the first order. The LLD chart is developed especially for detecting one-coefficient-shifts, so

this superiority of the MBE chart over the LLD chart is not very significant. For the shifts

in the main effects, as the magnitudes increase, the situation is reversed, and the LLD chart

triggers an OC indication faster than the MBE chart for larger shifts. To say the least, if

we select q = 1 with its corresponding g = 5, the LLD chart is indeed uniformly superior

over the MBE chart in detecting one-coefficient-shifts in main effects. These simulation
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results are available from the authors.

When it comes to shifts in the two-factor interaction effects, including β(1,4) representing

the interaction effect of the factors C1 and C4, β(2,3), β(2,5), and β(3,4), the LLD chart behaves

consistently better than the MBE chart. Additionally, in most situations this advantage is

quite substantial. The changes in the high-order interaction effects reflect fewer shifts of

the one-way marginal sums, which are usually neglected by the MBE chart. However, the

LLD chart is still able to detect possible changes attributable to higher-order interactions

effectively.

The OC performance of the LLD and MBE charts for the same coefficients as in Table

1 but with some other λ and N settings is demonstrated in Table A1 in the supplemental

file. The results of using shift magnitudes of δ = 0.02 and δ = 0.20 are reported. Table A1

shows patterns similar to those of Table 1 for various changes in the coefficients. With λ

fixed, for the same shifts, both charts have greater power when the sample size N increases.

For a fixed sample size N and the same coefficients, LLD charts with a smaller λ signal

faster for smaller shifts, and those with a larger λ signal faster for larger shifts. This mimics

the properties of the conventional EWMA chart (see Lucas and Saccucci (1990) and Lowry

et al. (1992)). Figures 2-(a) and -(b) confirm this further. They show the OC ARL curves

of the LLD chart for λ values of 0.05, 0.1, 0.2, and 0.5 when there are shifts in β(5) and

β(3,4), respectively.

The LLD chart was constructed by checking the GLRT statistic in Equation (8) indexed

by q = 2. However, as indicated earlier, shifts may indeed occur in the effects of the third

or even higher order. Although such cases should be infrequent, they are considered in

Table 2 to test robustness. The OC ARLs of LLD and MBE charts are compared for one-

coefficient-shifts in the three-factor interactions β(1,2,4), β(2,3,4), and β(3,4,5) when λ = 0.1

and N = 1, 000. Apparently, the advantage of the LLD chart over the MBE chart is

maintained, implying that the LLD chart can still deal with higher-order interactions well.

As implied earlier, besides considering cross-classifications among factors, another note-

worthy characteristic of the LLD chart is power in discovering one-coefficient-shifts, which

is perhaps not robust when dealing with general changes. Therefore, some representative
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Figure 2: OC ARL curves for the LLD chart with N = 1, 000 and various values of λ for
monitoring multivariate binomial processes when there are shifts in: (a) β(5); (b) β(3,4)

two-coefficient-shift cases are summarized in Table 3 to show that the LLD chart is still

powerful in this situation. Table 3 with λ = 0.1 and N = 1, 000 contains shifts in two co-

efficients of the first or second orders, adding magnitudes δ1 and δ2. According to Table 3,

if the two shifts both appear in main effects of the first order, such as (β(1), β(5)), the MBE

chart performs better than the LLD chart. However, as the two shifts begin to include

more effects of the second order. The LLD chart outperforms the MBE chart.

Monitoring a Multivariate Multinomial Process

With a multivariate multinomial process, the LLD can be compared with only the somewhat

naive multi-chart described earlier. Similar to the χ2-chart, the multi-chart should be

equipped with the EWMA scheme by replacing the observation vectors in the charting

statistic with their exponentially weighted sums. We refer to this new multi-chart as the

multivariate multinomial EWMA (MME) chart.

Take a case involving factors with mixed levels for illustration. A service flow has

four quality characteristics being monitored, with the first two judged as satisfactory or

unsatisfactory and the other two assessed as either excellent, acceptable, or unacceptable.
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Table 2: OC ARLs comparing LLD and MBE control charts for cases of one-coefficient-
shifts of the third order

δ LLD MBE LLD MBE LLD MBE

β(1,2,4) β(2,3,4) β(3,4,5)

0.01 189 (1.84) 262 (2.55) 289 (2.85) 334 (3.32) 275 (2.72) 328 (3.30)

0.02 63.2 (0.54) 125 (1.17) 162 (1.59) 245 (2.44) 144 (1.35) 233 (2.26)

0.05 12.5 (0.06) 24.1 (0.15) 32.9 (0.24) 71.8 (0.61) 29.4 (0.20) 62.0 (0.52)

0.20 2.72 (0.01) 3.99 (0.01) 4.89 (0.02) 8.04 (0.03) 4.77 (0.02) 7.27 (0.03)

−0.01 160 (1.53) 232 (2.26) 251 (2.49) 298 (2.99) 236 (2.30) 290 (2.88)

−0.02 55.5 (0.47) 110 (1.03) 132 (1.25) 200 (1.95) 115 (1.05) 187 (1.81)

−0.05 11.3 (0.05) 20.6 (0.13) 26.5 (0.18) 55.8 (0.47) 24.1 (0.16) 47.8 (0.38)

−0.20 2.22 (0.01) 3.14 (0.01) 3.50 (0.01) 5.34 (0.02) 3.41 (0.01) 4.91 (0.02)

NOTE: Standard errors are in parentheses. λ = 0.1. N = 1, 000.

This yield a four-way 2× 2× 3× 3 contingency table. The IC log-linear model is described

by the coefficient vector

β̃
(0)

= [ β0 0.73 0.72 0.70 0.12 0.71 0.10 0.17 0.12
−0.15 0.19 −0.14 0.23 0.07 0.16 −0.14 0.23 −0.30
−0.17 0.14 0.10 0.06 0.09 −0.12 0.19 −0.15 0.11

0.22 0.24 0.24 −0.08 −0.16 0.07 −0.11 0.05 0.03 ]T ,

where β0 is the intercept accommodating the constraint pT1 = 1. Since the service flow

process has four factors, the MME chart here is composed of four individual charts. Their

IC ARLs are selected by simulation in order to be identical and jointly achieve an overall

ARL0 370.

Before comparison, we should note that in a log-linear model all the elements of a

coefficient subvector as a whole represent the corresponding main or interaction effect, and

that they should change simultaneously if there is a shift in this effect. In other words, a

shift should occur at the effect or coefficient subvector level, instead of the coefficient level.

However, here in the simulations about multivariate multinomial processes, for convenience

we still consider shifts in only one coefficient. They may be a special type of shifts at the

effect level, with the assumption that only one element in the coefficient subvector deviates

whereas all the other ones remain unchanged. Even for a shift at the effect level, that
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Table 3: OC ARL comparison between the LLD and MBE charts in cases of two-coefficient-
shifts of the first two orders, λ = 0.1 and N = 1, 000

δ1 δ2 LLD MBE LLD MBE

β(1) + δ1 β(5) + δ2 β(2) + δ1 β(1,3) + δ2

0.02 0.02 31.9 (0.23) 31.8 (0.22) 35.1 (0.25) 45.9 (0.36)

0.02 −0.02 43.4 (0.33) 31.3 (0.22) 66.9 (0.57) 81.3 (0.74)

−0.02 0.02 43.1 (0.33) 31.1 (0.22) 70.1 (0.60) 80.2 (0.72)

−0.02 −0.02 29.1 (0.21) 28.4 (0.20) 30.6 (0.22) 39.2 (0.30)

0.20 0.20 2.04 (0.01) 2.01 (0.01) 2.19 (0.01) 2.46 (0.01)

0.20 −0.20 2.10 (0.01) 1.82 (0.01) 2.29 (0.01) 2.67 (0.01)

−0.20 0.20 1.95 (0.01) 1.79 (0.01) 2.74 (0.01) 2.90 (0.01)

−0.20 −0.20 1.71 (0.01) 1.62 (0.01) 1.63 (0.01) 1.76 (0.01)

β(1,4) + δ1 β(4,5) + δ2 β(1,5) + δ1 β(2,3) + δ2

0.02 0.02 26.9 (0.18) 45.6 (0.36) 18.7 (0.11) 25.4 (0.17)

0.02 −0.02 47.6 (0.37) 101 (0.93) 76.6 (0.67) 96.8 (0.87)

−0.02 0.02 46.8 (0.37) 100 (0.91) 71.8 (0.64) 88.6 (0.80)

−0.02 −0.02 24.4 (0.16) 40.9 (0.32) 17.0 (0.10) 23.0 (0.15)

0.20 0.20 1.93 (0.01) 2.32 (0.01) 1.69 (0.00) 1.88 (0.01)

0.20 −0.20 2.13 (0.01) 3.23 (0.01) 2.88 (0.01) 3.40 (0.01)

−0.20 0.20 2.07 (0.01) 2.91 (0.01) 2.38 (0.01) 2.73 (0.01)

−0.20 −0.20 1.55 (0.01) 1.91 (0.01) 1.22 (0.00) 1.43 (0.00)

NOTE: Standard errors are in parentheses.

all the elements of its corresponding coefficient subvector shift simultaneously can still be

detected powerfully by the LLD chart, which checks individually whether each element in

βi shifts or not. The simulation results about this are available from the authors.

Similar to the comparison between the LLD and MBE charts, the OC ARLs when only

one coefficient changes by δ are reported in Table 4 with λ = 0.1 and N = 1, 000. When the

one-coefficient-shifts comes from one of the main effects, for instance, β(1), β(32), or β(41),

the MME chart shows better performance than the LLD chart in terms of giving rise to an

OC alert faster. This is not surprising, as each of the four individual charts summarizes

efficiently the one-way marginal sums for one of the four factors, and these are decided by
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Table 4: OC ARLs of LLD and MME charts in cases of one-coefficient-shifts of the first
two orders

δ LLD MME LLD MME LLD MME

β(1) β(32) β(41)

0.02 128 (1.20) 88.2 (0.80) 145 (1.36) 148 (1.39) 110 (0.99) 104 (0.95)

0.05 19.8 (0.11) 15.8 (0.09) 24.5 (0.16) 24.4 (0.16) 17.6 (0.10) 17.2 (0.09)

0.20 3.55 (0.01) 3.17 (0.01) 3.54 (0.01) 3.50 (0.01) 3.27 (0.01) 3.20 (0.01)

−0.02 103 (0.94) 72.7 (0.66) 153 (1.45) 150 (1.43) 92.4 (0.85) 86.5 (0.77)

−0.05 16.5 (0.09) 13.6 (0.07) 25.5 (0.17) 24.6 (0.16) 15.8 (0.09) 15.3 (0.08)

−0.20 2.61 (0.01) 2.35 (0.01) 3.69 (0.01) 3.63 (0.01) 2.64 (0.01) 2.58 (0.01)

β(1,2) β(1,32) β(2,31)

0.02 86.3 (0.78) 105 (0.96) 149 (1.41) 224 (2.18) 102 (0.92) 140 (1.25)

0.05 14.3 (0.07) 21.1 (0.13) 24.5 (0.16) 51.7 (0.42) 16.6 (0.09) 26.4 (0.18)

0.20 2.95 (0.01) 3.84 (0.01) 3.51 (0.01) 5.15 (0.02) 3.10 (0.01) 4.11 (0.01)

−0.02 71.7 (0.63) 85.7 (0.77) 148 (1.39) 217 (2.13) 86.7 (0.79) 115 (1.10)

−0.05 12.6 (0.06) 17.1 (0.10) 24.9 (0.16) 53.1 (0.43) 14.9 (0.08) 22.8 (0.15)

−0.20 2.26 (0.01) 2.80 (0.01) 3.62 (0.01) 5.75 (0.02) 2.58 (0.01) 3.42 (0.01)

β(2,42) β(31,41) β(32,42)

0.02 165 (1.58) 245 (2.43) 94.6 (0.85) 136 (1.25) 259 (2.54) 338 (3.33)

0.05 27.2 (0.18) 63.3 (0.53) 15.7 (0.08) 25.0 (0.17) 64.7 (0.54) 235 (2.25)

0.20 3.71 (0.01) 5.89 (0.02) 2.98 (0.01) 3.94 (0.01) 5.79 (0.02) 23.7 (0.15)

−0.02 165 (1.61) 235 (2.32) 82.2 (0.75) 114 (1.05) 261 (2.55) 332 (3.31)

−0.05 27.8 (0.19) 62.9 (0.54) 14.5 (0.08) 22.1 (0.14) 68.3 (0.57) 244 (2.45)

−0.20 3.81 (0.01) 6.28 (0.02) 2.59 (0.01) 3.44 (0.01) 5.96 (0.02) 31.1 (0.22)

NOTE: Standard errors are in parentheses. λ = 0.1. N = 1, 000.

the coefficients of the first order. When two-factor interaction effects such as β(1,2), β(1,32),

β(2,31), β(2,42), β(31,41), and β(32,42) are the focus, the superiority of the LLD chart over the

MME chart becomes clear. The advantage of the LLD chart lies partly in signalling shifts

in higher-order interaction effects and partly in one-coefficient-shifts.

Similar results with other parameter settings for λ and N are presented in Table A2 in

the supplemental file. These data exhibit the same trends as in Table 4. The effects of the

smoothing parameter λ and the Phase II sample size N on the LLD chart resemble those

for the multivariate binomial data in Table A1.
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Diagnostic Performance Analysis

The performance of our suggested diagnostic method using the proposed diagnostic proce-

dures is reported in this subsection. In the simulations, the change point τ was set at 50,

and 10,000 independent series were generated. Any series for which an OC indication was

triggered before time point τ + 1 was discarded. An IC log-linear model was used with the

same coefficient vector as in the subsection on monitoring multivariate binomial processes,

dealing with five factors, each with two levels.

According to the design recommendation of the diagnostic method, the candidate subset

for potential shift directions was selected as coefficients in effects of the first three orders

with q′ = 3 and g′ = 25, with the assumption that no effect of an order larger than three

would deviate. Therefore, in the simulations the real one-coefficient-shifts considered were

confined to the first three orders, in particular the main effects β(2) and β(4), the two-

factor interaction effects β(1,3), β(1,5), β(2,3), and β(4,5), as well as the three-factor interaction

effects β(1,4,5) and β(2,3,5). The diagnostic performance was investigated for various shift

magnitudes δ and different combinations of the EWMA smoothing parameter λ and the

sample size N . Table 5 lists the results in terms of the observed matching probability

P (ζ̂ = ζ), where ζ̂ ∈ {1, . . . , g′} is the estimated shift direction index and ζ ∈ {1, . . . , g′}
is the real one-coefficient-shift direction index when λ = 0.1 and N = 1, 000. For instance,

in the case of λ = 0.1 and N = 1, 000, when only the coefficient β(2) shifted by δ = 0.02,

the diagnostic scheme provided a correct prescription in 48% of the simulations, and this

percentage rose to 84% if the magnitude δ was 0.05.

The diagnostic performance with other values of λ and N is listed in Table A3 in the

supplemental file. At least three conclusions can be drawn with respect to the effects of the

shift magnitudes δ, the EWMA smoothing parameter λ, and the sample size N . First, for

one coefficient of the first three orders with fixed λ and N , as the magnitude of δ increases,

the diagnostic consistency improves progressively with the observed matching probability

approaching 1, as might be expected. Second, while keeping λ and δ unchanged, a larger

sample size N will improve diagnostic performance, which is also to be expected. Third,

a larger λ will be beneficial for identifying larger shifts while a smaller one can assist in
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recognizing smaller deviations. Figure 3 further demonstrates this pattern.

Table 5: Observed matching probability in cases of one-coefficient-shifts of the first three
orders

Case δ β(2) β(4) β(1,3) β(1,5) β(2,3) β(4,5) β(1,4,5) β(2,3,5)

0.02 0.48 0.46 0.52 0.43 0.46 0.50 0.23 0.18

λ = 0.1 0.05 0.84 0.71 0.73 0.62 0.73 0.73 0.71 0.64

0.20 0.95 0.84 0.84 0.77 0.86 0.86 0.87 0.85

−0.02 0.51 0.46 0.53 0.43 0.46 0.50 0.24 0.20

N = 1, 000 −0.05 0.82 0.69 0.71 0.61 0.71 0.71 0.71 0.63

−0.20 0.94 0.85 0.84 0.79 0.86 0.86 0.87 0.85

NOTE: λ = 0.1. N = 1, 000.
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Figure 3: Matching probability curves for the diagnostic scheme with N = 1, 000 and various
values of λ for identifying the real shifts in: (a) β(2,3); (b) β(4,5).

Conclusion

This study has developed a new log-linear directional control chart for monitoring process

shifts with high efficiency based on the integration of the log-likelihood of log-linear mod-

els and the EWMA scheme. As well, a post-signal diagnostic scheme for recognizing the
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shift direction was formulated. The LLD chart was shown to work well with multivariate

categorical processes, including multivariate binomial and multivariate multinomial distri-

butions, and to incorporate factor interactions among the multiple categorical variables

successfully. Such LLD charts are easy to construct and to implement in practice. Fur-

thermore, the diagnostic method shows good performance in estimating fault directions.

Practical guidelines for parameter settings have been provided along with an illustration

of implementing the monitoring and diagnostic methodology.

Proceeding from this, future work will address monitoring schemes that can adapt

themselves to shifts in more effects or coefficients with a reasonably simple computation.

Corresponding diagnostic approaches that can identify the shift directions automatically

will also be sought. In addition, instead of treating a multi-level factor as nominal data,

the ordinal information of the factor levels (e.g., excellent-acceptable-unacceptable) may

also be taken into account, and better performance of the constructed control chart could

be expected.
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This pdf file provides certain technical details, including some derivations in Section
New Methodologies for Monitoring and Diagnosis, the proof of the diagnostic consistency,
and some other simulation results.

Appendix

A. Expressions of GMB,k and GMM,(i)k

For the kth sample nMB,k in a multivariate binomial process with p factors, the χ2 charting

statistic given by Patel (1973) is

GMB,k =
1

N

(
nMB,k −Np

(0)
MB

)T
Σ−1

MB

(
nMB,k −Np

(0)
MB

)
.

Here ΣMB has the elements

ΣMB ij =

{
p

(0)
(i)

(
1− p

(0)
(i)

)
if i = j

p
(0)
(ij) − p

(0)
(i) p

(0)
(j) if i 6= j

,

where p
(0)
(ij) is the IC probability of the factors Ci and Cj both taking Level 1.

For the kth sample in a multivariate multinomial process with p factors, if we focus on

only the marginal sums nMM,(i)k of the factor Ci, the chi-square charting statistic given by

Marcucci (1985) is

GMM,(i)k =
1

N

(
nMM,(i)k −Np

(0)
MM,(i)

)T
Σ−1

MM,(i)

(
nMM,(i)k −Np

(0)
MM,(i)

)
,

1



where ΣMM,(i) has the elements

ΣMM,(i) uv =

{
p

(0)
(i,u)

(
1− p

(0)
(i,u)

)
if u = v

−p
(0)
(i,u)p

(0)
(i,v) if u 6= v

u, v = 1, . . . , hi − 1.

B. An Example of Deriving the Design Matrix X̃

Take four factors C1, C2, C3, and C4 with 2, 2, 3 and 3 levels, respectively, for illustration.

Let

12 =

[
1
1

]
, 13 =




1
1
1


 , J2 =

[
1

−1

]
, J3 =




1 0
0 1

−1 −1


 =

[
I2

−1T
2

]
.

Note that the column sums of matrixes J2 and J3 are all zeros, which assures identifiability.

For instance, the design submatrix corresponding to the main effect of C3 is 12⊗12⊗J3⊗13,

where ⊗ is Kronecker product operator. The design submatrix corresponding to the two-

factor interaction effect of C2C4 is 12⊗J2⊗13⊗J3, and the design submatrix corresponding

to the three-factor interaction effect of C1C3C4 is J2 ⊗ 12 ⊗ J3 ⊗ J3. All the other design

submatrixes can be constructed similarly. In a word, given 12 ⊗ 12 ⊗ 13 ⊗ 13, the design

submatrix corresponding to an effect is obtained by replacing 1 with J at all the positions

where the factors are contained in this effect.

C. Derivation of the GLRT statistic for testing the hypothesis (7)

Denote the IC coefficient vector by β̃
(0)

=
[
β

(0)
0 ,

(
β(0)

)T ]T
, and the IC probability vector

p(0) satisfies

p(0) = exp
([

1, X
][

β
(0)
0 ,

(
β(0)

)T ]T
)
.

Consider the log-likelihood function for the log-linear model (5), which can be written from

the probability mass function (PMF) of the multinomial distribution as

l
(
β̃

)
= nT lnp + ln N !− (lnn!)T1 = nT X̃β̃ + ln N !− (lnn!)T1.

Both the logarithm and the factorial operators on the column vectors operate on each of

their entries.

Without loss of generality, assume that in the OC state only the ith (i ∈ {1, . . . , g})
coefficient β

(0)
i in β(0) is incremented by an amount δi, and that all the other β

(0)
j (j ∈

2



{1, . . . , h − 1} and j 6= i) remain unchanged. Here g is the number of coefficients corre-

sponding to effects of the first q orders. The log-likelihood of the observation vector n in

Phase II can be expressed as

l(δi) = nT [1, X]
[
β

(0)
0 + αi,

(
β(0) + diδi

)T
]T

+ ln N !− (lnn!)T1,

where αi is the variation of β
(0)
0 induced by the constraint 1Tp = 1. The MLE δ̂i of δi is

actually the solution to l′(δi) = 0. Solving this equation needs a numerical iteration such

as that of Newton-Raphson. However, by some approximations, the MLE δ̂i of δi can be

expressed as a simple form, which is shown below.

If only β
(0)
i in β(0) adds by a magnitude δi, the variation αi of β

(0)
0 must satisfy the

constraint

1T exp
(
1β

(0)
0 + Xβ(0) + 1αi + xiδi

)
= 1, (A.1)

and αi is calculated as

αi = − ln
(
1T exp

(
1β

(0)
0 + Xβ(0) + xiδi

))
. (A.2)

Therefore, l(δi) can be further rewritten as

l(δi) = nT
[
1β

(0)
0 + Xβ(0) − 1 ln

(
1T exp

(
1β

(0)
0 + Xβ(0) + xiδi

))
+ xiδi

]
+

ln N !− (lnn!)T1.

The first-order derivative of l(δi) with respect to δi is

s(δi) =
dl(δi)

dδi

= xT
i n−NxT

i exp
[
1β

(0)
0 + Xβ(0) + xiδi−

1 ln
(
1T exp

(
1β

(0)
0 + Xβ(0) + xiδi

))]
.

Let

k(δi) = exp
[
1β

(0)
0 + Xβ(0) + xiδi − 1 ln

(
1T exp

(
1β

(0)
0 + Xβ(0) + xiδi

))]
.

We can further formulate the second-order derivative l(δi) with respect to δi as

s′(δi) =
d2l(δi)

dδ2
i

= −NxT
i diag

(
k(δi)

)
xi + NxT

i k(δi)k
T (δi)xi.

Clearly,

s(0) = xT
i n−NxT

i exp
(
1β

(0)
0 + Xβ(0)

)
= xT

i (n−Np(0)),

s′(0) = −NxT
i diag

(
p(0)

)
xi + NxT

i p(0)(p(0))Txi = −NxT
i Σ(0)xi.
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By performing the first-order Taylor expansion of s(δi) at δi = 0, we have

s(δi) ≈ s(0) + s′(0)δi.

Note that the MLE δ̂i of δi should be the solution to s(δi) = 0, and therefore, the MLE δ̂i

can be approximated as

δ̂i ≈ − s(0)

s′(0)
=

1

N

(
n−Np(0)

)T
xi

(
xT

i Σ(0)xi

)−1
. (A.3)

In the IC state, the log-likelihood function of the observation vector n in Phase II is

l0 = nT
[
1, X

][
β

(0)
0 ,

(
β(0)

)T ]T
+ ln N !− (lnn!)T1.

The −2LRT statistic will then be Qi(δ̂i) = 2(l(δ̂i)− l0). Here Qi(δ̂i) also has a simple form

by some approximations, which is shown below.

From (A.2), Qi(δi) can be further rewritten as

Qi(δi) = 2nT (1αi + xiδi)

= − 2N ln
(
1T exp

(
1β

(0)
0 + Xβ(0) + xiδi

))
+ 2nTxiδi.

By the second-order Taylor expansion of Qi(δi) at δi = 0, we have

Qi(δi) ≈ Qi(0) + Q′
i(0)δi +

1

2
Q′′

i (0)δ2
i . (A.4)

In a similar way to the formulation of s(0) and s′(0), the following results hold:

Qi(0) = 0,

Q′
i(0) = 2xT

i

(
n−Np(0)

)
,

Q′′
i (0) = −2NxT

i Σ(0)xi.

By substituting these terms as well as δ̂i in (A.3) into (A.4) and some algebra, we obtain

Qi(δ̂i) ≈ 1

N

(
n−Np(0)

)T
xi

(
xT

i Σ(0)xi

)−1
xT

i

(
n−Np(0)

)
.

Up to now, it has been assumed that at most one coefficient β
(0)
i in β(0) will deviate, but

its location is unknown. Therefore, for each β
(0)
i (i ∈ {1, . . . , g}), calculate its corresponding

−2LRT statistic Qi(δ̂i) and then combine them into the following GLRT statistic

Q = max
i∈{1,...,g}

( 1

N

(
n−Np(0)

)T
xi

(
xT

i Σ(0)xi

)−1
xT

i

(
n−Np(0)

))
.
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D. Proof of the consistency of arg maxj∈{1,...,g′} Sj

Without loss of generality, we follow the assumption used in Appendix B that β
(0)
i in β(0)

adds by a magnitude δi. In β̃
(1,i)

, β(1,i) = β(0) + diδi and β
(1,i)
0 = β

(0)
0 + αi, and the OC

probability vector satisfies

p(1,i) = exp
([

1, X
][

β
(1,i)
0 ,

(
β(1,i)

)T ]T
)
.

To prove the consistency of this estimator is equivalent to showing that

Pr

{⋃

j 6=i

[Sj > Si]

}
→ 0 as N →∞.

By Bonferroni inequality, it further suffices to show that

∑

j 6=i

Pr {Sj > Si} → 0 as N →∞.

Denote zj = Sj − Si. For any ε > 0,

∑

j 6=i

Pr {zj > ε}

≤
∑

j 6=i

Pr
{

zj − E(zj) >
ε

2

}
+

∑

j 6=i

Pr
{

E(zj) >
ε

2

}
(A.5)

Firstly, we handle the second term in (A.5). Note that the constraint (A.1) can also be

rewritten as

1T exp
(
1β

(1,i)
0 + Xβ(1,i) − 1αi − xiδi

)
= 1,

and correspondingly we have

αi = ln
(
1T exp

(
1β

(1,i)
0 + Xβ(1,i) − xiδi

))
.

Moreover, the IC probability vector

p(0) = exp
(
1β

(0)
0 + Xβ(0)

)

= exp
(
1β

(1,i)
0 + Xβ(1,i) − 1αi − xiδi

)

= exp
(
1β

(1,i)
0 + Xβ(1,i) − 1 ln

(
1T exp

(
1β

(1,i)
0 + Xβ(1,i) − xiδi

))− xiδi

)
.
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Since diagnosis is considered in the OC state, we perform the first-order Taylor expansion

of p(0) at p(1,i) (i.e., δi = 0 in the above equation), and obtain

p(0) ≈ exp
(
1β

(1,i)
0 + Xβ(1,i)

)− (
diag

(
p(1,i)

)
xi − p(1,i)(p(1,i))Txi

)
δi

= p(1,i) −Σ(1,i)xiδi.

Since n is an observation vector of size N collected from F
(
X̃; β̃

(1,i))
, its expectation and

covariance matrix satisfy

E
(
n−Np(0)

)
= Np(1,i) −Np(0) = NΣ(1,i)xiδi,

Cov
(
n−Np(0)

)
= Cov

(
n
)

= N2Σ(1,i).

Let

Ai = xi

(
xT

i Σ(1,i)xi

)−1
xT

i , i ∈ {1, . . . , g′}
Aj = xj

(
xT

j Σ(1,i)xj

)−1
xT

j , j ∈ {1, . . . , g′} and j 6= i.

Taking the expectation of Si and Sj, we have

ESi =
1

N
tr

(
AiCov

(
n−Np(0)

))
+

1

N
ET

(
n−Np(0)

)
AiE

(
n−Np(0)

)

= Ntr
((

xT
i Σ(1,i)xi

)−1(
xT

i Σ(1,i)xi

))
+ NxT

i Σ(1,i)AiΣ
(1,i)xiδ

2
i

= N + NxT
i Σ(1,i)xiδ

2
i ,

ESj =
1

N
tr

(
AjCov

(
n−Np(0)

))
+

1

N
ET

(
n−Np(0)

)
AjE

(
n−Np(0)

)

= Ntr
((

xT
j Σ(1,i)xj

)−1(
xT

j Σ(1,i)xj

))
+ NxT

i Σ(1,i)AjΣ
(1,i)xiδ

2
i

= N + N
(
xT

i Σ(1,i)xj

)(
xT

j Σ(1,i)xj

)−1(
xT

j Σ(1,i)xi

)
δ2
i .

From the Cauchy-Schwarz inequality, it follows clearly that

ESi > ESj,

say, E(zj) < 0 and thus it immediately follows that the second term of (A.5) equals to zero.

On the other hand, it is not hard to verify that zj → E(zj) as N →∞ and Var(zj) =

O(N−1). Thus, by the Chebychev inequality, the first term of (A.5) tends to zero as

N →∞. Taking all these results together, (A.5) tends to zero as N →∞, which establishes

the consistency of diagnostic statistic arg maxj∈{1,...,g′} Sj.
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Table A1. OC ARL comparison between the LLD and MBE charts in cases of
one-coefficient-shifts of the first two orders under other parameter settings

Case δ LLD MBE LLD MBE LLD MBE

β(3) β(5) β(1,4)

λ = 0.2 0.02 122 (1.16) 116 (1.11) 165 (1.60) 142 (1.38) 91.2 (0.83) 180 (1.76)

N = 1, 000 0.20 2.30 (0.01) 2.38 (0.01) 2.62 (0.01) 2.68 (0.01) 1.94 (0.01) 3.19 (0.01)

λ = 0.1 0.02 34.8 (0.26) 35.6 (0.27) 46.2 (0.36) 43.2 (0.34) 26.4 (0.17) 60.9 (0.52)

N = 2, 000 0.20 2.09 (0.01) 2.14 (0.01) 2.33 (0.01) 2.36 (0.01) 1.82 (0.00) 2.68 (0.01)

λ = 0.2 0.02 54.7 (0.49) 53.8 (0.49) 78.4 (0.72) 69.9 (0.65) 39.2 (0.33) 97.7 (0.93)

N = 2, 000 0.20 1.71 (0.00) 1.74 (0.01) 1.89 (0.01) 1.92 (0.01) 1.44 (0.00) 2.19 (0.01)

β(2,3) β(2,5) β(3,4)

λ = 0.2 0.02 113 (1.08) 173 (1.69) 188 (1.84) 280 (2.75) 135 (1.30) 235 (2.30)

N = 1, 000 0.20 2.24 (0.01) 3.08 (0.01) 2.78 (0.01) 5.60 (0.02) 2.34 (0.01) 4.16 (0.02)

λ = 0.1 0.02 34.0 (0.25) 57.7 (0.49) 53.9 (0.44) 123 (1.15) 38.3 (0.28) 88.6 (0.80)

N = 2, 000 0.20 2.04 (0.01) 2.63 (0.01) 2.45 (0.01) 4.13 (0.01) 2.13 (0.01) 3.35 (0.01)

λ = 0.2 0.02 51.6 (0.46) 92.6 (0.86) 96.0 (0.90) 186 (1.81) 61.7 (0.57) 141 (1.40)

N = 2, 000 0.20 1.68 (0.00) 2.15 (0.01) 1.99 (0.01) 3.45 (0.01) 1.75 (0.00) 2.76 (0.01)

NOTE: Standard errors are in parentheses.
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Table A2. OC ARL comparison between the LLD and MME charts in cases of
one-coefficient-shifts of the first two orders under other parameter settings

Case δ LLD MME LLD MME LLD MME

β(1) β(32) β(41)

λ = 0.2 0.02 205 (2.04) 145 (1.42) 203 (2.01) 216 (2.16) 177 (1.71) 169 (1.61)

N = 1, 000 0.20 2.89 (0.01) 2.60 (0.01) 2.89 (0.01) 2.89 (0.01) 2.65 (0.01) 2.58 (0.01)

λ = 0.1 0.02 60.1 (0.49) 41.5 (0.32) 78.1 (0.69) 77.3 (0.66) 52.6 (0.42) 50.3 (0.40)

N = 2, 000 0.20 2.54 (0.01) 2.29 (0.01) 2.53 (0.01) 2.50 (0.01) 2.37 (0.01) 2.32 (0.01)

λ = 0.2 0.02 107 (1.02) 65.1 (0.60) 125 (1.20) 125 (1.19) 89.4 (0.83) 91.0 (0.86)

N = 2, 000 0.20 2.06 (0.01) 1.85 (0.01) 2.06 (0.01) 2.01 (0.01) 1.90 (0.01) 1.90 (0.01)

β(1,2) β(1,32) β(2,31)

λ = 0.2 0.02 149 (1.45) 165 (1.58) 211 (2.11) 286 (2.82) 167 (1.63) 216 (2.11)

N = 1, 000 0.20 2.38 (0.01) 3.24 (0.01) 2.88 (0.01) 4.46 (0.02) 2.50 (0.01) 3.45 (0.01)

λ = 0.1 0.02 40.5 (0.30) 54.2 (0.44) 80.9 (0.71) 149 (1.42) 48.9 (0.39) 76.9 (0.68)

N = 2, 000 0.20 2.16 (0.01) 2.73 (0.01) 2.52 (0.01) 3.51 (0.01) 2.25 (0.01) 2.87 (0.01)

λ = 0.2 0.02 68.3 (0.62) 86.9 (0.81) 131 (1.28) 211 (2.06) 81.6 (0.77) 124 (1.16)

N = 2, 000 0.20 1.77 (0.00) 2.22 (0.01) 2.03 (0.01) 2.87 (0.01) 1.83 (0.00) 2.34 (0.01)

β(2,42) β(31,41) β(32,42)

λ = 0.2 0.02 227 (2.26) 293 (2.89) 153 (1.46) 207 (2.07) 296 (2.95) 356 (3.55)

N = 1, 000 0.20 3.07 (0.01) 5.14 (0.02) 2.41 (0.01) 3.31 (0.01) 5.03 (0.02) 32.5 (0.27)

λ = 0.1 0.02 90.3 (0.81) 172 (1.69) 45.4 (0.35) 73.5 (0.63) 180 (1.74) 318 (3.21)

N = 2, 000 0.20 2.65 (0.01) 4.00 (0.01) 2.18 (0.01) 2.79 (0.01) 3.87 (0.01) 13.3 (0.07)

λ = 0.2 0.02 147 (1.44) 246 (2.43) 76.4 (0.71) 123 (1.17) 246 (2.45) 349 (3.49)

N = 2, 000 0.20 2.14 (0.01) 3.35 (0.01) 1.78 (0.00) 2.29 (0.01) 3.21 (0.01) 15.5 (0.10)

NOTE: Standard errors are in parentheses.
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Table A3. Observed matching probability in cases of one-coefficient-shifts of the first
three orders under other parameter settings

Case δ β(2) β(4) β(1,3) β(1,5) β(2,3) β(4,5) β(1,4,5) β(2,3,5)

0.02 0.33 0.36 0.44 0.37 0.35 0.41 0.11 0.09

λ = 0.2 0.05 0.78 0.69 0.74 0.62 0.70 0.73 0.57 0.48

0.20 0.96 0.87 0.88 0.81 0.90 0.89 0.90 0.88

−0.02 0.40 0.36 0.44 0.35 0.37 0.40 0.12 0.11

N = 1, 000 −0.05 0.78 0.67 0.72 0.62 0.69 0.70 0.58 0.49

−0.20 0.95 0.88 0.87 0.82 0.89 0.89 0.89 0.88

0.02 0.65 0.58 0.64 0.53 0.58 0.61 0.43 0.34

λ = 0.1 0.05 0.89 0.75 0.76 0.66 0.78 0.78 0.78 0.74

0.20 0.96 0.88 0.88 0.81 0.89 0.88 0.90 0.88

−0.02 0.66 0.56 0.62 0.52 0.59 0.61 0.43 0.35

N = 2, 000 −0.05 0.88 0.74 0.75 0.66 0.76 0.76 0.77 0.73

−0.20 0.96 0.88 0.88 0.81 0.90 0.89 0.90 0.88

0.02 0.51 0.50 0.58 0.48 0.50 0.54 0.23 0.18

λ = 0.2 0.05 0.88 0.76 0.78 0.69 0.77 0.78 0.75 0.68

0.20 0.97 0.90 0.91 0.85 0.92 0.91 0.92 0.90

−0.02 0.54 0.48 0.57 0.46 0.49 0.53 0.24 0.20

N = 2, 000 −0.05 0.87 0.75 0.76 0.67 0.76 0.77 0.75 0.68

−0.20 0.97 0.90 0.89 0.87 0.91 0.90 0.93 0.90
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