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Abstract

Profile monitoring is for checking the stability of some functional relationships between

response variables and one or more explanatory variables over time. In many appli-

cations, categorical response variables are common and the generalized linear model

is usually utilized to model this kind of profiles for quality improvement. In practice,

different profiles often have random covariates and these variables require careful mon-

itoring as well. Statistical process control is important and challenging for monitoring

profiles in such situations. A novel control chart is proposed by integrating the EWMA

scheme and the likelihood ratio test based on logistic regression. This new scheme not

only provides the ability to monitor the functional relationship of the profile but also

detects the mean shift in explanatory variables. The proposed chart is fast to compute,

easy to implement, and efficient in detecting shifts. The simulation results show that

it performs almost always better than the standard benchmarks in the literatures. A

real example from the electronic industries is used to illustrate the implementation of

the proposed approach.
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Introduction

Statistical process control (SPC) schemes have been widely applied in various industries. In

most applications, the quality of a process can be characterized by the distribution of a single

variable or multiple variables, and a variety of univariate and multivariate control schemes

have been developed to monitor the process. However, in some applications, the quality of

a process must be characterized by a function or relationship between the response variable

and one or more explanatory variables instead of the distribution of variables. Therefore,

studies on profile monitoring have been popularly conducted in recent years. An extensive

discussion of research problems on this topic has been given by Woodall et al. (2004).

Studies focused on simple linear profiles have been particularly prospering, for instance,

Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004), Zou et al.

(2006; 2007b), among several others. Multiple and polynomial regression profile models are

considered by Zou et al. (2007a), Kazemzadeh et al. (2008), Mahmoud (2008), Jensen et al.

(2008), and Jensen and Birch (2009). Nonlinear profile models are investigated by Williams

et al. (2007). Recently, profile monitoring for general profile model has also attracted much

attention. The reader is referred to Zou et al. (2008; 2009) and Qiu et al. (2010) for the Phase

II methods based on nonparametric regression; Ding et al. (2006), Colosimo et al. (2008),

Chicken et al. (2009) and Zhang and Albin (2009) for procedures using various dimension-

reduction techniques, such as wavelet transformations and independent component analysis.

A recent review of the literature has been given by Woodall (2007).

All the above mentioned control schemes for monitoring linear and/or nonlinear pro-

files require the fundamental assumption that the measurements of response variables are

continuous. However, due to some practical restrictions, e.g., time, cost or intrinsic charac-

teristics of the variables, only qualitative response measurements rather than quantitative

measurements can be directly or promptly collected for on-line monitoring. For instance,

on a production line each item is inspected and classified as conforming or nonconforming,

according to some predefined specification of its quality characteristic. Similarly, a service
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level can also be assessed as satisfactory or unsatisfactory. In such situations, the observed

qualitative responses are typically related to some quantitative predictor variables. The pro-

file to be investigated is therefore between a binary (or binomial) response variable and one

or more continuous predictor variables (see the following motivating example in next section

for detailed illustration).

With respect to the monitoring of categorical data, besides conventional charts, such as p

and np charts, various types of charting schemes have been developed, such as Steiner (1998),

Reynolds and Stoumbos (2000), and Somerville et al. (2002), etc. However, regarding the

profile monitoring schemes for categorical data, few studies have been conducted recently. In

the literature, we have not found any research on Phase II profile monitoring in cases where

the response variables are categorical. Yeh et al. (2009) proposed Phase I profile monitoring

schemes for binary responses that could be represented by the logistic regression model.

They modeled the relationship between the binary response and explanatory variables by

using the logistic regression model, and studied how to extend the classical T 2 chart for

monitoring profiles with continuous data to logistic regression profiles.

In Phase I, a set of process data is gathered and analyzed. Any unusual “patterns” in

the data lead to adjustments and fine tuning of the process. Once all such assignable causes

are accounted for, we are left with a clean set of data, gathered under stable operating

conditions and illustrative of the actual process performance. This dataset, which is referred

to as the in-control (IC) dataset, is then used for estimating certain IC parameters of the

process. In Phase II SPC, the estimated IC process parameters are used, and the major

goal of this phase is to detect any change in the profiles. Besides the fundamental difference

between the Phase I profile monitoring considered in their paper and the Phase II monitoring

considered here, their approach assumes that the explanatory variables are fixed from profile

to profile. These assumptions are (approximately) valid in certain calibration applications

of the manufacturing industry. In some other applications, however, they may be invalid

(Qiu and Zou 2009). Specifically, when data acquisition adopts the random design scheme,

design points within a profile would be i.i.d. random variables from a given density (Qiu

and Zou 2009). In the random design scheme, the values of predictors in each profile sample

would be different. Therefore, the existing schemes may not be efficient in such a case, and

how to efficiently use the data from random design scheme in the Phase II stage need to
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be studied. Moreover, in such situations, these covariates observations themselves require

careful monitoring and control along with the monitoring of profile. This is a unique issue in

such a random design profile problem. Phase II profile monitoring in such cases is particularly

challenging, and is the focus of this paper.

In this paper, we utilize a generalized linear model (GLM), logistic regression model, to

represent the function or relationship between the binary response and explanatory variables

which are not deterministic and have given distributions. Under this premise, a control

scheme is proposed based on exponential weighted moving average (EWMA) process control

schemes. This control scheme is able to simultaneously monitor the parameters’ shifts in the

profile and mean shifts from explanatory variables. The remainder of this paper is organized

as follows: We introduce an example from the electrolytic capacitor industry that motivates

this research in the next section. After that, our proposed methodology is described in

detail. And then its numerical performance is thoroughly investigated. Following that, the

motivating example, which has a profile that fits a logistic regression model well, is used to

illustrate the implementation of the proposed approach step by step. Finally, several remarks

conclude the article. The technical details are provided in the Appendix.

The motivating example: monitoring an aluminium elec-

trolytic capacitors’ manufacturing process

We use an example taken from the manufacturing process of an aluminium electrolytic ca-

pacitor (provided by ENW Electronics Ltd, see Figure 1) to illustrate the motivation for this

research. During the process, raw materials including anode aluminum foil, cathode alu-

minum foil, guiding pin, electrolyte sheet, plastic cover, aluminum shell and plastic tube are

transformed into aluminium electrolytic capacitors (AECs) with given specifications. The

quality of the unfinished AEC products (or capacitor elements) in terms of appearance and

functional performance will be inspected by sampling. The inspection result will either be

“pass” or “fail”. During the process, some important characteristics in the specification of

AECs, such as the Leakage Current (LC) and Dissipation Factor (DF), are automatically

calibrated by an electronic device at some given measuring voltage, frequency and temper-

ature.
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Figure 1: Aluminium Electrolytic Capacitors

The number of defective capacitors in a certain sample size n, denoted as y, is an obvious

quality measurement. The current industrial practice is usually to monitor the mean change

of this variable. However, as mentioned above, in the on-line process, two variables, the

DF and LC are also collected for each capacitor. These two variables are usually random

distributed, and both of them affect the defective rate of AECs to a certain extent. Hence,

in this example, n = 1 and y = 1 or 0. If we denote DF and LC as the predictor variables,

x1 and x2, the dataset is collected as (y, x1, x2). The relationship between y and x1, x2 can

be modeled as a classical GLM with binary response:

logit(p) = α + β1x1 + β2x2,

where p is the defect rate and it is assumed that y ∼ Bernoulli(p). To estimate the model

parameters, α, β1 and β2, a dataset of size N , {yi, x1i, x2i}N
i=1 are required. The changes

in the mean of x1 and x2 indicate the changes of DF and LC values of products, and the

changes in α, β1 and β2 reflect that the relationship between the defect rate and the DF and

LC of products changes, which indicates the special causes may occur. Therefore, jointly

monitoring the relationship between y and x1, x2 and the mean change of x1, x2 may give

more complete information for effective monitoring and diagnosis and may result in better

quality improvement. However, how to implement SPC monitoring for such a profile, to

a problem which the methods currently available in the literatures apparently cannot help

solve, still remains a challenge. In the remainder of this paper, we propose an SPC scheme

to monitor such a profile and give a step-by-step demonstration of how to implement the
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proposed scheme in practice in a later section.

Methodology

Profile model and assumptions

In this subsection, we describe the modeling of the profile with a GLM regression model and

random predictor variables. In what follows, we elaborate on binary (binomial) responses

and the corresponding logistic regression because it is of greatest interest in our applications

and suffices to illustrate our method. The extension to general cases will be discussed in the

last section.

Assume that for the jth (j ≥ 1) random profile sample collected over time, we have the

observations (X̃j,yj), where yj = (yj1, . . . , yjN) is an N -variate response vector and X̃j is

an N ×q regressor matrix. N is the sample size of profiles, which is consistent with the work

of Kang and Albin (2000), Kim et al. (2003) and Zou et al. (2007a). It is assumed that the

process observations are collected over time from the following profile model

logit(pji) = αj + xT
jiβj, i = 1, · · · , N, j = 1, . . . , τ, τ + 1, . . . , (1)

where τ is the unknown change-point, yji is the ith response observation of the jth random

profile, xT
ji denotes the ith row of X̃j (such as the x1 and x2 in the above example), αj is the

intercept parameter, βj = (β1j, . . . , βqj)
T is a q-dimensional coefficient vector. Here yji is

assumed to be drawn from a Binomial (or Bernoulli) distribution with the parameter pji, say

yji ∼ Binomial(nji, pji), where nji is the sample size for the ith observation of the jth profile.

Note that in the AEC example, nji = 1 and yji is a binary response. pji represents the ith

defect rate of the products in the jth profile sample. Typically, when one group or batch

of products are produced at a particular setting of predictor variables such as temperature

and pressure (say xji), nji would be greater than one; when the setting of predictor variables

are along with one product as that in the motivating example, nji = 1. In addition, we also

assume xji ∼ Nq(µj,Σ) in this paper.

It is supposed that after some unknown change-point τ , there is a change in the intercept,
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and/or coefficient and/or the mean vector of covariates. Say,

αj = α(0), βj = β(0), µj = µ(0) for j ≤ τ,

αj = α(1), βj = β(1), µj = µ(1) for j > τ,

and α(0) 6= α(1) and/or β(0) 6= β(1) and/or µ(0) 6= µ(1). Here we shall assume that N > q + 1

which is not restrictive and can easily be satisfied in practical applications.

The maximum likelihood estimations (MLEs) of the model parameters ξ = (α, βT )T

can be obtained via the standard GLM procedure by using iterative weighted least square

(IWLS) method. Details of obtaining the MLE ξ̂ are presented in Appendix A. The index

“j” is suppressed here for ease of exposition. It can be seen that under IC model, ξ̂|X
asymptotically follows the multivariate normal distribution

ξ̂|X L−→ Nq+1

(
ξ0, (X

TWX)−1
)
,

in which ξ0 = (α(0), β
T
(0))

T , X = (x́1, . . . , x́N)T is N × (q +1) matrix and x́i = (1,xT
i )T , and

W = diag{w1, . . . , wN} denote the GLM weight functions, where wi = [nipi(1− pi)].

Control schemes for monitoring the profile model (1)

In this section, we propose a control scheme based on the model (1), in which (q +1)-variate

parameter vector ξ and q-variate mean vector µ can be simultaneously monitored. Recall

the model (1) and associated notation. The joint log-likelihood of (X̃j,yj) can be expressed

as (see Appendix B for details):

lj =
N∑

i=1

log Cyji
nji

+ yji(αj + xT
jiβj)− nji log

[
1 + exp{(αj + xT

jiβj)}
]

− 1

2
log |2πΣ| − 1

2
(xji − µj)

TΣ−1(xji − µj). (2)

Then, the MLEs of the profile parameters and the mean of explanatory variables based on

Eq.(2) can be obtained, defined as (ξ̃j, µ̃j) = arg maxξ,µ lj. It is straightforward to see that

the MLE of µ is µ̃j =
N∑

i=1

xji/N and ξ̃j can be obtained via the procedure in Appendix A.

Based on the MLEs, one naive method that comes to mind for on-line detection is to

use the current profile estimates to construct two charts for model parameter ξ and µ
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respectively. However, each chart has a statistic that must be updated and plotted, and has

a control limit and type I error to be decided. Therefore, the setup of the scheme including

one more charts is complicated and difficult (Zou et al. 2007a). Another naive method

is to construct a single Shewhart-type T 2 chart. However, this would be very inefficient

with moderate and small changes since it completely ignores the profile samples. As an

alternative, we may consider the EWMA chart as in Kim et al. (2003), Zou et al. (2007a),

etc. A natural idea is to first obtain estimates of (ξ, µ) for each profile, and then apply

the multivariate EWMA chart (Lowry et al. 1992) to those estimates. However, this naive

approach may not be efficient either, since only N random explanatory observations are

used for estimating parameters in individual profiles, and thus the estimators would have

considerably large bias and variance.

Alternatively, in order to monitor the profile or the relationship and the mean of the

explanatory variables efficiently, we propose a new scheme for monitoring the profile, based

on the exponentially weighted joint log-likelihood at time t

lt,λ(ξ, µ) =λ
t∑

j=1

(1− λ)(t−j)

N∑
i=1

log Cyji
nji

+ yji(α + xT
jiβ)− nji log

[
1 + exp{(α + xT

jiβ)}]

− 1

2
log |2πΣ| − 1

2
(xji − µ)TΣ−1(xji − µ), (3)

where λ is a weighting parameter. Obviously, the lt,λ(ξ, µ) in Eq.(3) makes use of all available

profile samples up to the current time, t, and different profiles are weighted as in an EWMA

chart (i.e., more recent profiles have more weight and the weight changes exponentially over

time). Then the maximum weighted likelihood estimator (MWLE), defined as (ξ̂t, µ̂t) =

arg maxξ,µ lt,λ(ξ, µ), can be obtaind via IWLS method (see Appendix C).

After obtaining the MWLE (ξ̂t, µ̂t), the charting statistics is defined as follows:

lrt = (ξ̂t − ξ0)
TΣ−1

ξ̂t

(ξ̂t − ξ0) +
N(2− λ)

λ
(Et − µ0)

TΣ−1(Et − µ0), (4)

where

Σξ̂t
=

λ

2− λ
(X̂T

t ŴtX̂t)
−1,

X̂t = (XT
1 , . . . ,XT

t )T , ẑt = (zT
1 , . . . , zT

t )T , Ŵt = diag{ŵ1, . . . , ŵt}
ŵj = diag{ŵj1, . . . , ŵjN}, ŵji = λ(1− λ)t−jnjipji(1− pji),

Et = λx̄t + (1− λ)Et−1, t = 1, 2, . . . ,
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E0 = µ0 is the starting vector, and xt =
N∑

i=1

xti/N . The chart signals when lrt > LM ,

where LM is the control limit according to a specific IC average run length (ARL), ARL0.

This charting statistic is an approximation to the likelihood ratio test statistic based on

weighted likelihood function (3). Details for the derivation are presented in Appendix C.

After detecting the shift, the hypothesis testing methods can be used to diagnose where the

shift occurs. The detailed diagnosis scheme is not considered in this paper but certainly

deserves future research. Hereafter, this chart is referred to as the EWMA-GLM control

chart.

Performance assessment

In this section, we investigate the performance of this new scheme (EWMA-GLM) in detect-

ing the shifts of profile parameters and the mean of random explanatory variables through

Monte Carlo simulations. It is challenging to compare the proposed method with alternative

methods, since there is no obvious comparable method in the literature. Here, we consider

the Shewhart-type T 2 scheme mentioned at the beginning of the previous subsection. To be

specific, we define the charting statistic as

T 2
St = (ξ̃t − ξ0)

TΣ−1

ξ̃t
(ξ̃t − ξ0) + N(xt − µ0)

TΣ−1(xt − µ0), t = 1, 2, . . . (5)

where ξ̃t is the MLE obtained as Appendix B, Σξ̃t
= (XT

t WtXt)
−1, and XT

t and Wt are the

corresponding matrices defined at the beginning of the previous section for the tth profile

sample. The chart signals when T 2
St > LS, where LS is the control limit chosen to achieve a

specific ARL0. This chart will be called Shewhart-GLM chart.

Another possible alternative to compare against is the naive EWMA chart mentioned in

the above subsection, which is described as follows:

T 2
NEt = (Eξt − ξ0)

T Σ−1
Eξt

(Eξt − ξ0) +
N(2− λ)

λ
(Et − µ0)

TΣ−1(Et − µ0), t = 1, 2, . . .

where

ΣEξt
= λ2Σξ̃t

+ (1− λ)2ΣEξ(t−1)
,

Eξt = λξ̃t + (1− λ)Eξ(t−1),
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where Σξ̃t is defined as for Eq.(5). We call this naive EWMA scheme NEWMA-GLM for

abbreviation hereafter.

Table 1: ARL comparisons between EWMA-GLM with λ = 0.2 and Shewhart-GLM scheme
in detecting various shifts

δ in α

Chart 0.05 0.06 0.07 0.10 0.20 0.30 0.50

EWMA-GLM 68.3 52.4 39.5 19.5 5.68 3.23 1.78

(65.3) (49.4) (35.3) (15.1) (2.87) (1.28) (0.61)

Shewhart-GLM 126 113 100.8 65.6 16.1 4.79 1.31

(125) (112) (101) (64.2) (15.5) (4.22) (0.64)

δ in β1

Chart 0.15 0.20 0.25 0.30 0.50 1.00 1.50

EWMA-GLM 79.0 52.3 34.8 23.8 6.66 3.31 2.13

(74.9) (48.6) (30.3) (19.2) (3.62) (1.45) (0.86)

Shewhart-GLM 168 146 119 98.6 24.2 5.27 1.85

(170) (146) (119) (97.1) (23.5) (4.66) (1.23)

δ in µ1

Chart 0.025 0.030 0.035 0.07 0.12 0.15 0.20

EWMA-GLM 85.2 66.4 50.8 13.3 5.44 4.04 2.88

(80.4) (62.4) (47.1) (9.10) (2.51) (1.65) (1.02)

Shewhart-GLM 171 164 149 71.6 20.9 10.4 4.02

(171) (167) (151) (70.1) (20.3) (10.1) (3.45)

Note: values in parentheses are the standard deviations of ARLs

The monitoring performance of the control schemes in this section is evaluated through

ARL comparisons. Three cases are studied here: 1) the performance of EWMA-GLM is

compared with that of Shewhart-GLM in detecting shifts in model parameters and explana-

tory variables; 2) the performance of EWMA-GLM is investigated for different smoothing

parameters λ; 3) the performance of EWMA-GLM is compared with that of NEWMA-GLM

in detecting shifts in different parameters. Without loss of generality, we assume the time

τ at which the shifts initially occur is 40 and only consider the sustained shifts for the re-

maining samples after the changepoint τ . In this section, only the case of ARL0 = 200 is

considered. In addition, the underlying IC model considered here is model (1) with the two

explanatory variables µ0 = (0, 0)T , and Σ =

(
0.1 0
0 0.1

)
. The other parameters are assumed
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to be β = (1.0, 1.0)T and α = −2.2 that make the expectation of defective rate pi approxi-

mately equal to 0.1. For the parameter ni in the binomial distribution and N in the profile,

the values 30 and 20 are used respectively. The control limits of different control schemes are

obtained by simulation to roughly achieve the given IC ARL. The out-of-control (OC) ARL

results for detecting different magnitudes of shifts in different parameters are evaluated, and

all of the results are obtained by running 5,000 simulations.

We compare the OC ARLs of the proposed EWMA-GLM scheme with that of Shewhart-

GLM for detecting shifts in α, β1 and µ1. The smoothing constant λ in EWMA-GLM is fixed

to 0.2 as in Zou et al. (2007a). As shown in Table 1, our proposed EWMA-GLM control

scheme performs much better than the Shewhart-GLM scheme in detecting the small and

moderate shifts δ in any parameter, while Shewhart-GLM has a slight advantage when shifts

are very large.

Next, we study the effect of λ on the performance of EWMA-GLM. The OC ARL results

of three EWMA-GLM schemes with different smoothing parameters are compared, i.e. λ =

0.1, 0.2 and 0.3. As shown in Figure 2, for those small and moderate shifts, the EWMA-

GLM scheme with smaller λ is superior to the one with larger λ in terms of detecting shifts

in parameter α, while the EWMA-GLM scheme with larger λ is better than the one with

smaller λ for detecting large shifts. This property is consistent with that of the classical

EWMA schemes in the literatures (Lucas and Saccucci 1990; Lowry et al. 1992). Based on

Figure 2 and other simulation results (available from authors), the same conclusion can be

reached when the shift occurs in other parameters, e.g., β and/or µ.

Table 2 shows the comparison results between the EWMA-GLM scheme and the NEWMA-

GLM scheme for different values of smoothing parameter λ. Here we consider three types of

shift settings: (i) shift occurs in α; (ii) shift occurs in β1; (iii) shift occurs in µ1. As we can see

from this table, our proposed EWMA-GLM performs much better than the NEWMA-GLM

in detecting any given magnitude of shift in parameters α and β. When the shift occurs in

the mean of random variable, say µ, the performance of the EWMA-GLM scheme is almost

the same as that of the NEWMA-GLM scheme for the same parameter λ.

Same with the shift settings in Table 2, those three types of settings are also considered

in Table 3. As shown in Table 3, the parameters N and ni affect the performance of the chart

in detecting the shifts. Larger N and/or ni makes the EWMA-GLM chart performing better
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Figure 2: ARL comparison of EWMA-GLM scheme with different smoothing weights λ. The
solid, dash-dotted and long-dashed lines represent the OC ARL curves of the EWMA-GLM
charts with λ = 0.1, 0.2 and 0.3, respectively.

in detecting the shift of the model parameters α and β, and larger N makes its performance

better in detecting the shift in the mean of predictor varaibles as the magnitude of ni is

not too small. Therefore, the magnitude of N and ni can be decided based on the practical

problem. If the industry has a high production rate, then large sample size can be used and

the proposed method performs well, while if the industry has a low production rate and/or

low defect rates, only small sample size can be used and the proposed method may have bad

performance.

Although the performance of the EWMA-GLM chart declines as the parameters N and

ni are small, it always performs much better than the NEWMA-GLM in detecting the shift

in parameters α and β, and has almost the same performance as the NEWMA-GLM chart
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Table 2: ARL comparisons between EWMA-GLM and NEWMA-GLM schemes with differ-
ent λ in detecting various shifts

λ = 0.1 λ = 0.3

δ EWMA-GLM NEWMA-GLM EWMA-GLM NEWMA-GLM

0.050 52.5 (46.6) 117 (111) 81.0 (79.5) 112 (112)

0.060 39.1 (31.9) 84.4 (75.3) 62.7 (60.7) 90.2 (88.4)

0.070 30.1 (23.2) 61.7 (51.6) 48.4 (46.0) 69.0 (65.7)

(i) 0.100 16.9 (10.6) 29.3 (20.1) 24.2 (21.1) 33.8 (30.3)

0.200 6.24 (2.79) 9.04 (3.74) 5.74 (3.38) 7.20 (4.30)

0.300 3.82 (1.44) 5.40 (1.81) 3.01 (1.32) 3.61 (1.50)

0.500 2.18 (0.73) 3.12 (0.89) 1.59 (0.57) 1.97 (0.62)

0.150 59.2 (52.4) 77.8 (71.2) 94.8 (92.8) 109 (103)

0.200 37.6 (30.2) 50.6 (43.3) 65.1 (61.6) 77.0 (72.3)

0.250 26.2 (19.1) 35.0 (26.8) 44.7 (42.2) 53.1 (49.5)

(ii) 0.300 19.0 (12.5) 25.4 (17.7) 30.2 (27.1) 37.3 (33.8)

0.600 7.11 (3.35) 8.85 (4.13) 6.98 (4.45) 8.47 (5.66)

1.000 3.87 (1.62) 4.78 (1.81) 3.09 (1.46) 3.60 (1.61)

1.500 2.56 (1.04) 3.14 (1.05) 1.94 (0.82) 2.22 (0.80)

0.025 63.1 (57.3) 64.3 (56.9) 101 (97.2) 100 (98.0)

0.030 47.0 (40.7) 49.5 (42.6) 82.7 (78.3) 79.7 (76.8)

0.035 36.6 (29.5) 38.6 (31.3) 66.4 (62.9) 64.3 (61.5)

(iii) 0.070 11.7 (6.25) 12.4 (6.77) 16.2 (12.9) 15.7 (12.6)

0.120 5.96 (2.45) 6.06 (2.49) 5.49 (2.98) 5.44 (2.94)

0.150 4.66 (1.75) 4.70 (1.78) 3.87 (1.77) 3.82 (1.73)

0.200 3.43 (1.18) 3.45 (1.19) 2.64 (0.99) 2.62 (0.98)

Note: values in parentheses are the standard deviations of OC ARLs

in detecting the shift in the mean of the predictor variables. Especially when ni is very

small (e.g. ni = 1), the EWMA-GLM chart outperforms NEWMA-GLM chart by a quite

substantial margin. The reason is that NEMWA-GLM chart only uses the current profiles’

data which results in bad estimations based on the deficient information, while EWMA-GLM

chart pools the previous and current profiles’ data, which is the major difference between

EWMA-GLM chart and NEWMA-GLM and Shewhart-GLM charts. Therefore, based on

the simulation results in Tables 1-3 and Figure 2, we conclude that our proposed EWMA-

GLM scheme, which incorporates the data at different times with different weights, is always
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Table 3: ARL comparisons between EWMA-GLM and NEWMA-GLM schemes under dif-
ferent N and ni in detecting various shifts (λ=0.2)

(N,ni) = (20, 30) (N,ni) = (10, 30)

δ EWMA-GLM NWEMA-GLM δ EWMA-GLM NWEMA-GLM

0.050 68.3 (65.3) 114 (113) 0.050 96.4 (94.1) 171 (164)

0.060 52.4 (49.4) 87.4 (83.4) 0.060 79.2 (77.8) 151 (148)

(i) 0.070 39.5 (35.3) 66.4 (61.2) 0.070 64.3 (61.4) 130 (127)

0.100 19.5 (15.1) 31.0 (25.5) 0.100 35.7 (31.5) 77.1 (72.5)

0.200 5.68 (2.87) 7.50 (3.78) 0.200 9.9 (6.40) 16.6 (11.4)

0.150 79.0 (75.0) 96.0 (89.4) 0.150 118 (116) 140 (134)

0.200 52.3 (48.6) 64.8 (59.2) 0.200 84.9 (81.7) 114 (113)

(ii) 0.250 34.9 (30.3) 44.3 (40.1) 0.250 60.8 (58.2) 89.7 (87.6)

0.300 23.8 (19.2) 30.6 (25.3) 0.300 45.1 (41.8) 69.6 (66.6)

0.600 6.66 (3.62) 8.22 (4.56) 0.600 11.9 (8.18) 18.8 (14.0)

0.025 85.2 (80.4) 84.1 (79.8) 0.025 121 (114) 120 (116)

0.030 66.4 (62.4) 65.7 (60.9) 0.030 103 (99.4) 99.8 (97.4)

(iii) 0.035 50.8 (47.1) 51.3 (47.5) 0.035 83.7 (83.3) 83.6 (81.8)

0.070 13.3 (9.10) 13.2 (9.00) 0.070 26.6 (22.0) 25.4 (20.5)

0.150 4.04 (1.65) 4.04 (1.63) 0.150 6.52 (3.29) 6.39 (3.21)

(N,ni) = (20, 15) (N,ni) = (20, 1)

δ EWMA-GLM NWEMA-GLM δ EWMA-GLM NWEMA-GLM

0.050 96.7 (91.7) 172 (169) 0.100 118 (116) 223 (231)

0.060 79.5 (74.5) 149 (148) 0.200 65.5 (62.9) 262 (265)

(i) 0.070 65.7 (60.9) 127 (123) 0.300 38.2 (34.8) 319 (319)

0.100 37.2 (33.8) 71.3 (65.9) 0.500 15.4 (12.4) 488 (482)

0.200 9.72 (6.22) 15.0 (10.0) 0.800 6.38 (3.79) 830 (722)

0.150 116 (111) 134 (131) 0.600 108 (104) 174 (176)

0.200 86.5 (81.2) 104 (99.1) 0.800 78.8 (75.1) 168 (171)

(ii) 0.250 63.3 (58.6) 79.3 (74.7) 1.000 56.9 (52.3) 161 (162)

0.300 46.3 (42.9) 60.2 (55.3) 1.500 25.2 (21.3) 136 (139)

0.600 11.8 (7.95) 15.4 (10.7) 2.500 9.57 (5.93) 99.8 (104)

0.025 85.3 (81.0) 84.0 (80.4) 0.025 87.5 (82.5) 175 (180)

0.030 67.0 (62.9) 64.9 (61.2) 0.030 69.3 (66.80) 164 (169)

(iii) 0.035 51.8 (48.6) 51.0 (47.3) 0.035 53.7 (50.50) 152 (155)

0.070 13.3 (9.16) 13.0 (8.86) 0.070 13.6 (9.44) 78.4 (75.5)

0.150 4.05 (1.65) 4.02 (1.63) 0.150 4.01 (1.64) 11.3 (6.57)

Note: values in parentheses are the standard deviations of OC ARLs
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superior to the Shewhart-GLM scheme in detecting small and moderate shifts and also better

than the traditional EWMA scheme (NEWMA-GLM) in detecting any magnitude of shifts

occurring in the model parameters.

A real-data application: the AEC profile monitoring

case revisited

In this section, we use the data from the aluminum electrolytic capacitors (AECs) manufac-

turing industry to demonstrate the implementation of our proposed EWMA-GLM scheme.

Note that in the modeling, LC measurements x2 are replaced by x∗2 which equals to x2/10.

Then the model is rewritten as follows:

logit(p) = α + β1x1 + β2x
∗
2.

Based on 200 historical observations y and predictor variable values x (available from au-

thors), the estimated parameters are α = −3.955, (β1, β2) = (−2.049, 0.835). The estimated

mean of the predictor variables is (0.1027, 0.1066), and the estimated variance-covariance

matrix Σ of the predictor variables is the following:

Σ =

(
17.77× 10−4 7.33× 10−4

7.33× 10−4 52.71× 10−4

)

Note that a calibration sample of this size might be smaller than one would like to fully

determine the IC distribution, but suffices to illustrate the use of the method in a real-world

setting.

Based on this estimated process model, we simulate new profiles, and in each profile

sample, we have 100 observations y and 100 predictor variable vectors x, which means

N = 100 here. In addition, n = 1 in this example. The first 20 profiles are from in-control

normal operational condition and the remaining profiles are from the OC condition. Two

cases are considered here to illustrate the implementation of the proposed chart: 1) the

shift δ = 0.1 occurs in β1; 2) the shift δ = 0.05 occurs in the mean of x1. The smoothing

constant λ is set as 0.2. We illustrate how to implement our proposed EWMA-GLM scheme

to monitor the profiles:
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Figure 3: The EWMA-GLM control chart for the AEC example: (a) shift in β1 (b) shift in
µ1
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1. Obtain the control limits LM for the EWMA-GLM control chart by simulation to

acheive the desired IC ARL. Here, we obtain the control limit CL = 17.7 for ARL0=200

and then construct the control chart as seen in Figure 3.

2. Start monitoring the profiles. After obtaining the new observations, we calculate the

control statistics with Eq.(4), and then plot these control statistics in the control chart

and compare them with the control limit. From Figure 3, we can see that the EWMA-

GLM chart signals at the fifth OC profile for the first case and at the first OC profile

for the second case.

3. Identify and remove root causes after detecting the shift, and then go back to step 1.

Monitor the profiles continuously based on the revised control limit.

Conclusion

Statistical process control is important and challenging for monitoring profiles with categor-

ical data and random predictor variables. In this paper, we used the GLM for modeling the

relationship between the binary response variable and the random predictor variables. We

proposed a novel control scheme, EWMA-GLM, for monitoring profiles with binary data and

random explanatory variables. The EWMA-GLM scheme integrates the EWMA scheme and

the logistic regression likelihood ratio test. As shown by the simulation results in this paper,

the EWMA-GLM scheme performs almost always better than the Shewhart-GLM scheme

and the NEWMA-GLM scheme, which are developed as the benchmark for performance

comparison based on the existing research.

There are a number of issues not thoroughly addressed here that could be topics of

future research. First, this paper focuses on Phase II monitoring only and presumes that

the number od historical observations used for estimating the IC parameters is sufficiently

large. In practical applications, the performance of EWMA-GLM is affected by the amount

of data in the reference dataset (Jensen et al. 2006). Thus, determination of required Phase I

sample sizes to reduce the effects of estimated parameters and a general recommendation are

needed. Secind, this new control scheme is proposed for the profile with logistic regression

model. However, in real industries, different types of categorical data, e.g., multinomial data,

exist. Therefore, new control schemes for monitoring profiles with other types of categorical
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data are interesting topics for further research. In fact, this amounts to adapting the general

GLM model fitting to the proposed weighted likelihood ratio test. Moreover, our proposed

scheme assumes that the observations are independent within and between profiles. When

observations are dependent, this scheme will not be applicable. Therefore, how to develop

new schemes for dealing with this correlation is another future research topic.

Appendix

Appendix A: Derivation of the MLE ξ̂

The MLE of the model parameters ξ = (α, βT )T can be obtained via the standard GLM

procedure with the augmented dependent variable zi, as briefly described in the following.

Here we will suppress the index “j” for ease of exposition. Denote

zi = ηi + (yi − µyi)
∂ηi

∂µyi

= ηi +
yi − µyi

nipi(1− pi)
,

ηi = α + xT
i β,

where i = 1, . . . , N , ηi is defined as the linear predictor, and µyi is the mean of yi, say

nipi. Moreover, the GLM weight functions are denoted as W = diag{w1, . . . , wN}, where

wi = [nipi(1− pi)]. Then the GLM augmented dependent variable vector is written as

z = η + W−1(y − µy),

where z = (z1, . . . , zN)T , η = (η1, . . . , ηN)T , and µy = (µy1, . . . , µyN)T . Let X = (x́1, . . . , x́N)T ,

which is a N × (q + 1) matrix and x́i = (1,xT
i )T . By McCullagh and Nelder (1989), the

MLEs of model parameters ξ̂ can be obtained by using the following iterative weighted least

square (IWLS):

1. Start with the initial values of ξ̂, denoted as ξ̂
(0)

.

2. At the lth iteration, for l ≥ 0, calculate z(l) and W(l) based on ξ̂
(l)

.

3. Update the estimation of ξ as follows,

ξ̂
(l+1)

= (XTW(l)X)−1XTW(l)z(l).
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4. Repeat Steps 2 and 3 until the following condition is satisfied:

‖ξ̂(l) − ξ̂
(l−1)

)‖1

/
‖ξ̂(l−1)‖1 ≤ ε,

where ε is a given small positive value (e.g., ε = 10−4), and ||ξ||1 denotes the sum of

absolute values of all elements of ξ. Then, the algorithm stops at the lth iteration.

Appendix B: Derivation of the joint log-likelihood

The joint log-likelihood of (X̃j,yj) is

lj = log f(yj, X̃j) = log f(yj|X̃j)f(X̃j) = log f(yj|X̃j) + log f(X̃j),

and

log f(yj|X̃j) = log
N∏

i=1

Cyji
nji

pji
yji(1− pji)

nji−yji

=
N∑

i=1

log Cyji
nji

+ yji log pji + (nji − yji) log (1− pji)

=
N∑

i=1

log Cyji
nji

+ yji(αj + xT
jiβj)− nji log

[
1 + exp{(αj + xT

jiβj)}
]
,

log f(X̃j) =− 1

2
log |2πΣ| − 1

2
(xji − µj)

TΣ−1(xji − µj).

Thus, we have

lj =
N∑

i=1

log Cyji
nji

+ yji(αj + xT
jiβj)− nji log

[
1 + exp{(αj + xT

jiβj)}
]

− 1

2
log |2πΣ| − 1

2
(xji − µj)

TΣ−1(xji − µj).

Appendix C: Obtain the EWMA-GLM charting statistic

The MWLEs of ξ and µ satisfy the following simultaneous score equations:

∂lt,λ/∂ξ = 0, ∂lt,λ/∂µ = 0.

The MWLE of µ can be simply expressed as:

µ̂t =
t∑

j=1

λ(1− λ)t−j

N∑
i=1

xji/N.
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On the other hand, the MWLE of ξ can be similarly obtained via GLM procedure with the

augmented dependent variables via the following procedure. To alleviate the computation

burden, we denote m as a sufficiently large integer to make (1 − λ)m close to 0. Let X̂t =

(XT
t−m+1, . . . ,X

T
t )T be an mN × (q + 1) matrix, which includes the most recent m sets of

explanatory variable values, ẑt = (zT
t−m+1, . . . , z

T
t )T be mN -dimensional vector, and Ŵt =

diag{ŵt−m+1, . . . , ŵt} be an mN ×mN matrix. Xj and zj are defined in a similar fashion

to the notations in the above subsection, and ŵj = diag{ŵj1, . . . , ŵjN},where ŵji = λ(1 −
λ)t−jnjipji(1−pji). The MWLEs ξ̂t can be immediately obtained by implementing the IWLS

procedure in Appendix A, replacing X,W, z with X̂t,Ŵt, ẑt.

After obtaining the MWLE (ξ̂t, µ̂t), the corresponding log-likelihood ratio test can be

defined as

lrt = −2[lt,λ(ξ0, µ0)− lt,λ(ξ̂t, µ̂t)].

Using standard Taylor’s expansion arguments of likelihood functions (Serfling 1980), the

expansion of lrt leads to asymptotically equivalent Wald-type charting statistics

lrt ≈ (ξ̂t − ξ0)
TΣ−1

ξ̂t

(ξ̂t − ξ0) +
N(2− λ)

λ
(Et − µ0)

TΣ−1(Et − µ),

where

Σξ̂t
=

λ

2− λ
(X̂T

t ŴtX̂t)
−1,

Et = λx̄t + (1− λ)Et−1, t = 1, 2, . . . ,

E0 = µ0 is the starting vector, and xt =
∑N

i=1 xti/N .
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