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Abstract

This paper develops a new multivariate nonparametric statistical process control

(SPC) control chart for monitoring shape parameters, which is based on integrating

a powerful multivariate spatial-sign test and exponentially weighted moving average

(EWMA) control scheme to on-line sequential monitoring. It has a strictly distribution-

free property over a broad class of population models, which implies the in-control run

length distribution can attain or is always very close to the nominal one when using the

same control limit designed for a multivariate normal distribution. This proposed con-

trol chart possesses some other positive features: its computation speed is fast with a

similar computation effort to the parametric multivariate EWMA (MEWMA) counter-

part; it is easy to implement because only the multivariate median and the associated

transformation matrix need to be estimated from the historical data before monitor-

ing; it is efficient in detecting small or moderate shifts, when the process distribution

is heavy-tailed or skewed; it is also able to handle the case when the sample size is

one and effective in downward shifts. Simulation comparisons and a real data example

from a white wine production process show that it performs quite well in applications.
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Matrix; Robustness; Statistical Process Control.
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1 Introduction

Statistical process control (SPC) has been widely used to monitor various industrial pro-

cesses. In modern SPC, it becomes common to monitor several quality characteristics of

a process simultaneously in the areas but not limited to signal processing, network secu-

rity, image processing, genetics, stock marketing and other economic problems. Woodall

and Montgomery (1999), Stoumbos et al. (2000) and Bersimis et al. (2007) point out that

multivariate control charts are one of the most rapidly developing areas of SPC and suggest

that basic and applied research is needed on methods for monitoring multiple parameters

that arise in models for the cases of single or multiple process variables. It is likely to be so

because in many applications, the quality of a product is often related to several correlated

quality characteristics. With newly developed advancement in data acquisition systems and

computing technologies, multivariate control charts can and should play a greater role in

monitoring and improving manufacturing processes.

Recent works have focused mostly on developing control charts for monitoring small

changes in the process mean vector and/or covariance matrix. For control schemes to monitor

process mean vector, see Crosier (1988), Lowry et al. (1992), and Zamba and Hawkins (2006);

for control schemes to monitor process covariance matrix, see Yeh et al. (2003; 2004; 2005)

and Hawkins and Maboudou-Tchao (2008); for control schemes to monitor process mean

vector and covariance matrix simultaneously, see Sullivan and Woodall (2000), Chen et al.

(2005), Reynolds and Cho (2006), Huwang et al. (2007), Reynolds and Stoumbos (2008)

and Zhang et al. (2010). All these works are based on an assumption that the process

distribution is completely known with multivariate normal distribution. However, it is well

recognized that, in many applications, the underlying process distribution is unknown and

not multivariate normal, so that statistical properties of these control charts, designed to

perform best under the normal distribution, could potentially be (highly) affected. The

problem of performance deterioration due to the non-normality is severe with small samples,

particularly individual observation cases (c.f., Montgomery 2005) since the central limit

theorem is no longer (approximately) valid. Nonparametric or robust charts may be useful

in such situations.

In the last several years, univariate nonparametric control charts have attracted much

attention from researchers and a nice overview of this topic was presented by Chakraborti
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et al. (2001). See Zou and Tsung (2010), Qiu and Li (2011) and the references therein

for some recent development. Some effort has been devoted to multivariate nonparametric

control schemes, such as the control schemes based on data-depth (Liu 1995), support vector

machines (Sun and Tsung 2003) or antiranks (Qiu and Hawkins 2001; 2003). Recently,

Zou and Tsung (2011) develop a multivariate control chart based on integrating spatial-

sign test of Randles (2000) and exponentially weighted moving average (EWMA) control

scheme. Note that all these nonparametric control schemes focus on multivariate location

detection. Moreover, the powerful performance of multivariate location detection schemes is

always based on the assumption that the shape or variability does not change. So we believe

monitoring process shape or variability is of great importance in any control procedure

just as Montgomery (2005) points out that “just as it is important to monitor the process

mean vector, it is also important to monitor process variability”. Despite the importance

of multivariate shape monitoring, nonparametric multivariate shape monitoring schemes are

scanty as far as we know. The aim of this paper is to establish a nonparametric multivariate

shape detecting scheme.

Stoumbos and Sullivan (2002) argue that multivariate nonparametric control charts “are

less powerful, more computationally intensive, and generally do not apply to skewed distri-

butions”. For monitoring location parameters, Stoumbos and Sullivan (2002) recommend

that the multivariate EWMA (MEWMA) chart (Lowry et al. 1992) should be more appeal-

ing than multivariate nonparametric schemes because with a large number of observation

vectors and a small smoothing parameter, a central limit theorem would ensure that the

accumulation vector has approximately a multinormal distribution, which ensures robust-

ness. However, this feature would not hold for most existing works on covariance matrix

monitoring because in such situation the accumulation is the sample covariance matrix (or

its inverse) rather than the observation vector (see some evidence in Section 3).

In general, constructing nonparametric multivariate shape monitoring schemes has some

challenges and issues that have not been thoroughly investigated: (i) Given a multivariate

process of interest, the process variability is usually monitored by charts based on the de-

terminant, trace or/and the inverse of the sample covariance matrix, which are no longer

applicable because they are highly sensitive to the in-control (IC) distribution; (ii) Most

existing univariate nonparametric SPC charts are based on rank of multiple observations

at each time point, which may not be proper in some applications where sampling may be
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expensive, destructive or time consuming so that the individual sampling may be more ap-

propriate. In addition, the definitions of univariate signs and ranks are based on the ordering

of the data. In the multivariate case there is no natural ordering of the data points; (iii) Some

computationally intensive nonparametric multivariate location detecting schemes, including

the control schemes based on data-depth and support vector machines hamper application

of nonparametric schemes in practice.

Motivated by Zou and Tsung (2011), this paper develops a new multivariate SPC

methodology for monitoring shape parameters. This methodology adapts spatial-sign co-

variance matrix to on-line sequential monitoring by incorporating the EWMA scheme. Our

proposed new chart has the following positive features: (i) It has distribution-free property

over a broad class of population models in the sense that the IC run length distribution

can attain or is always very close to the nominal one when using the same control limit

designed for a multivariate normal distribution; (ii) Its computation speed is fast with a

similar computation effort to the existing multivariate charts for covariance matrices; (iii) It

can be easily designed and constructed because only the multivariate median and the trans-

formation matrix need to be specified from the reference data set before monitoring; (iv)

It is affine-invariant when the process is IC; (v) It is also very efficient in detecting process

shifts, especially for downward shifts, small or moderate shifts when the process distribution

is heavy-tailed or skewed; (vi) It is able to handle the case when the sample size is one.

The rest of this paper is organized as follows: our proposed methodology is described

in detail in Section 2. Its numerical performance is thoroughly investigated in Section 3.

In Section 4, our proposed control chart is used to a real-data example from a white wine

production process. Conclusions and extensions are given in Section 5.

2 Methodology

Our proposed methodology is described in two parts. In Section 2.1, a brief introduction

to a test for the shape parameter based on spatial-sign covariance matrices is presented. In

Section 2.2, our new multivariate nonparametric EWMA control chart combined with the

multivariate spatial-sign covariance matrix is derived. Some practical guidelines regarding

its implementation issues are addressed as well.
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2.1 Tests for shape based on spatial sign covariance matrix

Like some existing nonparametric control charts, our charts do not assume the IC process

response cumulative distribution function (c.d.f) F0 to be known. Instead, we assume that

an IC reference sample of size m0 has been collected in the Phase I analysis, and it can be

used for estimating certain IC parameters. To be more specific, it is usually assumed that

there are m0 independent and identically distributed (i.i.d.) historical reference observations,

x−m0+1, . . . ,x0 ∈ Rp, for some integer, p ≥ 1, and the ith future observation, xi, is collected

over time from the following general multivariate change-point model

xi ∼
{

F0(x, θ,Σ0), if i = −m0 + 1, . . . , 0, 1, . . . , τ ;
F1(x, θ,Σ1), if i = τ + 1, . . . ,

(1)

where τ is the unknown change point, F0(·) 6= F1(·) are two unknown c.d.f., θ is the location

vector of parameters (mean, median or some percentile of the distribution), and Σ0 6= Σ1

are respectively the IC and out-of-control (OC) shape matrices of parameters. In this paper,

as we focus on monitoring of the shape parameter, it is assumed that θ would not change,

which is consistent with the literature.

The monitoring problem (1) is closely related to nonparametric statistical hypotheses

tests for the one-sample shape problem in the context of multivariate statistical analysis.

Hence, to facilitate the derivation of the proposed charting statistic, we start by assuming

that x1, . . . ,xn are i.i.d. from F (x, θ,Σ), where F (·) represents a continuous p-dimensional

distribution with location θ and shape Σ. We want to test the following hypothesis,

H0 : Σ = Σ0 versus H1 : Σ 6= Σ0.

Without loss of generality, we assume that θ = 0 and Σ0 = Ip, where 0 is a p-dimensional

vector of 0’s and Ip is the p× p identity matrix. Otherwise, we can use some transformation

of xi in place of xi as we will show later.

The approaches based on the regular covariance matrix are quite popular. In the normal

case the likelihood ratio test for testing the sphericity (Mauchly 1940) is

L =

{
det(S)

[tr(S)/p]p

}n/2

,

5



where S denotes the regular sample covariance matrix. John (1971) shows that the test

QJ =
np2

2
tr

(
S

tr(S)
− 1

p
Ip

)2

(2)

is the locally most powerful invariant test for sphericity under the multivariate normality

assumption. Many control charts are essentially developed based on L or QJ , see Yeh et al.

(2006) for a nice review.

In the nonparametric shape parameter setting, considerable efforts have been devoted

to this problem in the literature, see Tyler (1987a,b), Ghosh and Sengupta (2001), Marden

and Gao (2002), Hallin and Paindaveine (2006), and Sirkiä et al. (2009), etc. Most of the

tests proposed in those works are based on spatial-signs and the ranks of the norms of the

observations centered at θ (an estimate in practice), with test statistics that have structures

similar to QJ . Those statistics are distribution-free under sphericity and elliptically distri-

butional assumptions, or asymptotically so. Please refer to Hallin and Paindaveine (2006)

or Chapter 9 of Oja (2010) for a nice overview. Among them, due to its simplicity and

effectiveness, the test entirely based on spatial-signs is of particular interest and has been

detailedly discussed by Marden and Gao (2002), Hallin and Paindaveine (2006), and Sirkiä

et al. (2009).

As is well known, the definitions of univariate signs and ranks are based on the ordering

of the data. However, a natural ordering of the data points does not exist in the multivariate

case. The multivariate concept of a spatial sign has been developed accordingly in the

literature, see a recent book Oja (2010) for a comprehensive introduction. Some key points

are given in the following. In one dimension, the sign of an observation is basically its

direction (+1 or −1) from the origin. In higher dimensions, in this spirit, the spatial sign

function is defined as

U(x) =

{ ||x||−1x, x 6= 0,

0, x = 0.

The observed spatial-signs for xi’s are Ui = U(xi−θ), i = 1, . . . , n. Accordingly, the spatial-

sign covariance matrix is defined by Ω = n−1
∑n

i=1 UiU
′
i (Oja 2010). When F is a spherical

distribution we have E(Ω) = p−1Ip under the null hypothesis. Naturally, the spatial-sign

test statistic can be defined by mimicking John’s test (2) with the spatial-sign covariance
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matrix (Sirkiä et al. 2009)

QS = ptr

(
Ω

tr(Ω)
− 1

p
Ip

)2

= ptr

(
Ω− 1

p
Ip

)2

. (3)

It can be shown that under the null hypothesis and elliptical distributions (Hallin and Pain-

daveine 2006),

n(p + 2)

2
QS

d→χ2
(p+2)(p−1)/2.

Similar to their univariate counterparts, the spatial-signs-based methods have been shown to

be quite robust for various distributions since those methods use the direction of observations

from the origin rather than the original magnitudes of observations. Simulation comparisons

with QJ (Hallin and Paindaveine 2006; Sirkiä et al. 2009) show that this procedure has good

sizes and powers for a wide range of dimensions, sample sizes and distributions. Therefore,

we are interested in tackling the monitoring problem (1) using the test statistics QS (3).

2.2 A multivariate nonparametric EWMA control chart

Firstly, we elaborate on the individual observation model, which is an advantage of our

proposed control scheme because it is able to handle the case when the sample size is one.

The extension to the group case is presented at the end of this subsection. Although the

monitoring problem (1) is closely related to the standard hypothesis tests in Section 2.1, they

are completely different and distinguished by the fundamental difference between on-line and

off-line decision issues (c.f., Woodall and Montgomery 1999).

Following the idea of Zou and Tsung (2011), the proposed control scheme contains two

steps. The first step is to establish the baseline based on the reference sample, that is to

say, to extract information from the sample of size m0 by obtaining a multivariate center

vector θ0, and a transformation matrix, A0. This step is similar to that of constructing

traditional control charts in which µ0 and Σ0 are estimated from the historical data before

monitoring. We recommend using Hettmansperger and Randles’s (2002) affine equivariant

multivariate median which serves sign-based testing purpose and the by-product of finding

such median is just the desired transformation matrix (Zou and Tsung 2011). The affine

equivariant multivariate median vector, θ0, and the associated transformation matrix, A0,
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are defined by the solutions of the following equations:

E[U(A(xi − θ))] = 0, E[U(A(xi − θ))U ′(A(xi − θ))] = p−1Ip, (4)

and the corresponding sample version, (θ̂0, Â0), is defined by the solution of the sample

equations based on m0 historical observations,

1

m0

0∑
i=−m0+1

U(A(xi − θ)) = 0,
1

m0

0∑
i=−m0+1

U(A(xi − θ))U ′(A(xi − θ)) = p−1Ip, (5)

where A is a p×p upper triangular positive-definite matrix with a one in the upper left-hand

element. In a multivariate normal distribution with mean vector µ0 and variance-covariance

matrix Σ0, it is easily seen that θ0 = µ0 and A
′
0A0 = p−1tr(Σ0)Σ

−1
0 . In what follows, we

use (θ0,A0) rather than (θ̂0, Â0) unless indicated otherwise, as an SPC Phase II convention.

It should be emphasized that the simultaneous equations (4) aim to make the first two

moments of the transformed random vector xi match those of elliptical distributions. To be

more specific, as mentioned before, under elliptical distributions and assuming cov(xi) ∝ Ip,

E(Ui) = 0 and E(Ω) = p−1Ip. The equations in (4) are thus clearly to transform xi to

A(xi − θ) so that the corresponding spatial-sign vector U(A(xi − θ)) would perform like a

uniform sign vector (from the viewpoint of the first two moments). It does not use its distance

from the origin. Note that the sign-based test QS is orthogonal invariant, and thus is only

distribution-free for elliptically symmetric distributions (at least theoretically speaking). In

contrast, we will see later that our Phase II procedure is distribution-free when the process

is IC for the class of distributions with elliptical directions in which random variables are

generated via xi = riDui, where the ui’s are i.i.d. uniform on the unit p sphere, D is a

p × p nonsingular matrix, and the ri’s are positive scalars. The elliptical directions family

contains all the elliptically symmetric distributions, such as multinormal and multivariate t

distributions and certain skewed distributions. In other words, with such a transformation,

our proposed scheme will be applicable for broader class of population models. This is a

unique feature of on-line monitoring in which some reference samples are available to calibrate

the IC model (parameters).

In light of (4), after (θ0,A0) is specified or estimated, for on-line collected observations

xi, i = 1, 2, . . ., the second step is to standardize and transform them to obtain the unit

vector νi, i.e., the multivariate spatial sign, through νi = U(A0(xi−θ0)). With this choice,
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the unit vectors of the transformed data have a variance-covariance structure like that of a

random variable that is uniform on the unit p-sphere when the process is IC. Then, we define

an EWMA sequence based on spatial-sign covariance matrix defined with current individual

observation as

Ωi = (1− λ)Ωi−1 + λνiν
′
i, (6)

where the initial vector, Ω0, is usually taken to be E(νiν
′
i) and thus should be Ip/p due to

our definition in (4) and 0 < λ ≤ 1 is the smoothing constant. Finally, similar to QS, the

proposed control chart issues a signal if

Qi =

√
2− λ

λ
· tr((p ·Ωi − Ip)2) > L, (7)

where L > 0 is a control limit chosen to achieve a specific IC Average Run Length (ARL)

(ARL0). Note that the weighted average (6) reflects the relevance of the data: the more

recent observations are more informative for detecting the change and thus getting the larger

weights. Hereafter, this chart is referred to as the multivariate nonparametric shape EWMA

(MNSE).

Because our proposed MNSE chart is robust under IC with any weight, λ ∈ (0, 0.2],

except for very skewed distributions and high dimensional cases. In general, a smaller λ

leads to a quicker detection of smaller shifts (c.f., e.g., Lucas and Saccucci 1990), which is

still valid with MNSE. Based on our simulation results, we suggest choosing λ ∈ (0.025, 0.2],

which is a reasonable choice in practice, and using λ ∈ (0.025, 0.1] when there is evidence

that the underlying distribution is very skewed.

In what follows, we summarize some useful properties of the MNSE chart:

(1) When the process is IC, the MNSE chart is affine-invariant.

The invariant property here is in the sense that for any p × p nonsingular matrix D

and constant vector b, the run-length distribution of the MNSE stays the same if the IC

observations are distributed as Dx + b. This property is intuitively appealing, and it also

ensures that the performance of MNSE is the same for any initial location and variance-

covariance.

(2) The MNSE chart is strictly distribution free in the sense that its IC run length

distribution is the same for the class of distributions with elliptical directions.
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This result is particularly useful in determining the control limit, L, because, for any

continuous process distribution with elliptical directions, it is the same as achieving the

desired IC run-length distribution. The proof of these two results are straightforward based

on the proof of Propositions 1 and 2 in Zou and Tsung (2011) and omitted here.

Table 1: The control limits of the MNSE chart for ARL0=200, 370 and 500 and different λ under
p-variate distributions with elliptical directions.

ARL0 λ p = 2 p = 3 p = 4 p = 5 p = 7 p = 10 p = 15 p = 20 p = 30
0.5 2.256 3.607 4.831 5.961 8.212 11.44 16.63 21.77 31.91
0.2 2.794 4.101 5.282 6.402 8.597 11.74 16.89 21.97 32.06

200 0.1 2.830 4.077 5.220 6.321 8.465 11.58 16.68 21.72 31.78
0.05 2.681 3.912 5.020 6.113 8.215 11.29 16.41 21.43 31.45
0.025 2.428 3.620 4.723 5.808 7.861 10.92 15.95 20.97 30.99
0.5 2.291 3.676 4.928 6.111 8.374 11.64 16.90 22.06 32.24
0.2 2.929 4.282 5.495 6.664 8.835 12.02 17.18 22.29 32.40

370 0.1 3.029 4.309 5.479 6.595 8.745 11.88 17.00 22.07 32.13
0.05 2.936 4.174 5.316 6.401 8.528 11.64 16.73 21.78 31.83
0.025 2.716 3.945 5.057 6.149 8.255 11.32 16.39 21.44 31.47
0.5 2.302 3.708 4.973 6.142 8.456 11.73 17.03 22.20 32.38
0.2 2.988 4.363 5.581 6.747 8.953 12.15 17.33 22.44 32.55

500 0.1 3.117 4.410 5.588 6.713 8.870 11.99 17.14 22.19 32.27
0.05 3.045 4.289 5.445 6.549 8.679 11.80 16.88 21.93 31.97
0.025 2.853 4.084 5.221 6.301 8.403 11.50 16.57 21.62 31.65

Based on the distribution free result mentioned above, the control limits for distributions

with elliptical directions are the same. Hence, we use the standard multivariate normal

distribution to find the control limits. Note that for on-line detection, the computational

burden of the MNSE chart is similar to that of traditional control charts. Thus, once (θ0,A0)

are given, finding the control limits by some numerical search methods is quite trivial. Of

course, in Phase I analysis, estimating (θ0,A0) involves iterative routines. Please see Remark

1 for some discussions. Table 1 provides the control limits of the MNSE chart for various

commonly used combinations of (λ, p, ARL0), obtained using Monte Carlo simulation with

0.1 million runs. The Fortran code for implementing the proposed scheme, including the

procedures for finding (θ0,A0) and the control limits, are available from the homepage of

the corresponding author. The simulation results shown in Section 3 demonstrate that the

IC run length performance of MNSE is quite robust under various process distributions

including very skewed distributions. Therefore, the control limits tabulated in Table 1 are

10



recommended to be used for any continuous distribution.

When a group of g observations, say {xi1, . . . ,xig} are taken sequentially from the process

at each time point, the MNSE chart can be readily defined in a similar way to (7) by using

g−1
∑g

j=1 U(A0(xij − θ0))U
′(A0(xij − θ0)) instead of νi in (6).

Remark 1 Estimating (θ0,A0) involves iterative routines for MNSE and it is a little more

complicated than estimating (µ0,Σ0) for traditional parametric schemes. However, by using

some efficient algorithms (Hettmansperger and Randles 2002), convergence of (θ0,A0) from

the historical data with any practical p and m0 is guaranteed and the convergence is usually

quite fast. For example, given m0 = 100, 000 and p = 10, usually about one second is

required to complete the iterative procedure using a Pentium-M 2.2MHz CPU. We never

occur any nonconvergence in all our simulation studies and real-data analysis. The detailed

algorithm is provided in the Appendix of Zou and Tsung (2011). Please also refer to that

paper for some detailed discussions on computation.

Remark 2 As a Phase II SPC convention, it is usually assumed that the IC parameters are

known or, equivalently, that they are estimated from a sufficiently large reference dataset. It

should be pointed out that when m0 is not large (say, m0 ≤ 1000; see Table 3 in Section 3),

there would be considerable uncertainty in the parameter estimation, which in turn would

distort the IC run length distribution of the MNSE control chart. From the results, we can see

that, as long as m0 ≥ 2000, the ARL0 values are quite stable in various cases. Therefore, we

suggest collecting at least 2000 IC observations before Phase II process monitoring. To deal

with the situation when a sufficiently large reference data set is unavailable, one possible

method is to adjust the control limit of the chart properly by simulation to obtain the

desired ARL0 (cf., Jones 2002). That is, we can generate a pseudo reference sample of size

m0 and then obtain the corresponding run-length with a given control limit. Repeat this

procedure to approximate the ARL0 and then use the bisection search method to find the

control limit. Of course, the detection ability would still be severely compromised. This

is essentially analogous to the estimated parameters problem in the context of parametric

control charts (see Jensen et al. 2006 for an overview). Another alternative solution is the

use of self-starting methods that handle sequential monitoring by simultaneously updating

parameter estimates and checking for OC conditions and have been developed accordingly

(see, e.g., Sullivan and Jones 2002, Hawkins and Maboudou-Tchao 2007). Some studies on
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the development of corresponding self-starting charts are beyond the scope of this paper but

warrant future research. See some discussions in the last section.

3 Numerical performance

We present some simulation results in this section regarding the numerical performance of the

proposed MNSE chart and compare it with the multivariate exponentially weighted moving

covariance (MEWMC) chart proposed by Hawkins and Maboudou-Tchao (2008) because

there is no corresponding nonparametric multivariate shape detecting scheme as far as we

know and the MEWMC chart has shown to be quite competitive among all the existing

control charts for covariance matrix in parametric settings. To be more specific, the chart

statistic of MEWMC is given by

tr(Ti)− log |Ti| − p,

where Ti = (1 − λ)Ti−1 + λWiW
′
i, Wi = B(xi − µ0), B is a matrix with the property

BΣ0B
′
= Ip.

We start by assuming that m0 is sufficiently large, in this case 100,000. In all the

underlying distributions considered, we first generate m0 i.i.d. samples and then estimate

(µ0,Σ0) and (θ0,A0). Control limits of the MEWMC chart are determined by simulations

to attain the nominal ARL0 under the standard multivariate normal distribution, while the

control limits given in Table 1 are used for MNSE. Since the zero-state and steady-state

ARL (SSARL) comparison results are similar, only the SSARLs are provided. To evaluate

the SSARL behavior of each chart, any series in which a signal occurs before the (τ + 1)th

observation is discarded (c.f., Hawkins and Olwell 1998). We only present the results when

ARL0=200 and τ = 50 for illustration because similar conclusions hold for other cases.

All the ARL results in this section are obtained from 100,000 replications. Following the

robustness analysis in Stoumbos and Sullivan (2002), we consider the following distributions:

(i) multivariate normal, denoted as Np; (ii) multivariate t with ζ degrees of freedom, denoted

as Tp,ζ ; (iii) multivariate gamma with shape parameter ζ and scale parameter 1, denoted as

Γp,ζ . Details on the multivariate t and gamma distributions can be found in the Appendix

to Stoumbos and Sullivan (2002). In addition, the following two distributions are involved in

the comparison: (iv) measurement components are i.i.d. from t distributions with ζ degrees
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of freedom, denoted as tp,ζ ; (v) measurement components are i.i.d. from χ2 distributions

with ζ degrees of freedom, denoted as χ2
p,ζ .

As the number and variety of covariance matrices are too large to allow a comprehensive

comparison, and our goal is to show the effectiveness, robustness and sensitivity of the

MNSE chart, we only choose certain representative models for illustration. Specifically, for

the (i)-(iii) distribution, the three OC settings in Hawkins and Maboudou-Tchao (2008) are

employed and listed as below.

• Scenario 1: (“variance shift”) Change the covariance matrix from Ip to a matrix with

σ2 in the (1,1) position and the other elements unchanged.

• Scenario 2: (“correlation shift”) The covariance matrix is left as Ip, except for putting

a correlation ρ in the (1,2) and (2,1) positions.

• Scenario 3: (“simultaneous variance and correlation shift”) Modify Ip by putting ρ in

the (1,2) and (2,1) positions, and 1 + ρ2 in the (1,1) and (2,2) positions.

Note that there is no specific correlation structure for the (iv) and (v) distributions, therefore,

only Scenario 1 is considered for these two distributions. It should be emphasized again that

the distinction and connection between the testing methods of covariance matrix and spatial-

sign covariance matrix is far from clear in the literature of multivariate analysis (Sirkiä et al.

2009). Although these chosen models and parameters that are used to study the numerical

performance are quite common in applications and consistent with the literature, we must

bear in mind that the comparison conclusion here may not hold any more for some other

specific settings.

We firstly consider the multivariate normal distribution. A lower-dimensional case with

p = 3 and a higher-dimensional case p = 10 are involved. The simulation results for the

MNSE and MEWMC charts with λ = 0.2 and λ = 0.05 are presented in Figure 1. From this

figure, we observe that the MEWMC chart has superior efficiency as we would expect, since

the parametric hypothesis is the correct one in this case. The MNSE chart also offers quite

satisfactory performance and the difference between MNSE and MEWMC is not obvious,

when the shift is downward (σ < 1 in Figure 1 a,b), or when there is only correlation shift

(Figure 1 c,d), or when the shift size is small (ρ < 1 in Figure 1 e,f), or when p is large
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Figure 1: ARL values for MNSE and MEWMC with λ = 0.2 and 0.05, p = 3 and 10, ARL0=200
under Scenario 1-3 for Np.

(Figure 1 b,d,f). It should be pointed out that the superiority of MEWMC becomes more

obvious when σ > 2 for Scenario 1 and ρ > 1 under Scenario 3 with p = 3. The MNSE,

which is essentially based on signs rather than distances, shares a similar drawback as those

rank-based charts for univariate processes. That is, even though the shift is quite large, the
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ranks or signs of the observations may not be able to grow larger.
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Figure 2: ARL values for MNSE and MEWMC with λ = 0.2 and 0.05, p = 3 and 10, ARL0=200
under Scenario 1-3 for Tp,5.

Next, the multivariate t distribution Tp,5 is considered. As this distribution belongs to

the class of distributions with elliptical directions, we do not focus on the robustness of ARL0

performance of the MNSE chart but on its ARL1 comparison with MEWMC. However, it is
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not easy to give a fair comparison between the MNSE and MEWMC since the MNSE chart

can achieve the nominal ARL0 but the MEWMC has considerable bias in ARL0. When λ

is chosen as 0.05 and p is large (e.g., p = 10), the ARL0 of MEWMC is only about 20-30,

which means 7-10 times of false alarm rate when the process is in control. Even when p is

small (e.g., p = 3), the ARL0 of MEWMC is only about 35-45. Although when λ is much

smaller, the ARL0 of MEWMC can be a little larger, it is still far from satisfaction (these

results are omitted here but available from authors upon request). For a fair comparison,

we consider the MEWMC charts with the same value of λ as MNSE but their control limits

are adjusted to make the ARL0 equal to the nominal one. The corresponding ARL results

with λ = 0.2 and 0.05 are given in Figure 2 along with the ARL1 curves of MNSE. Note that

such a charting scheme with adjustment is only for comparison use in our simulations but

not applicable in practical applications since the underlying distribution is usually unknown

as we claimed before. Clearly, the MNSE chart is more efficient in detecting the small and

moderate shifts than the MEWMC chart with the same value of λ in the sense that its

ARL1 decreases much faster than that of the MEWMC. In particular, when p = 10, the

MNSE performs almost uniformly better than MEWMC does, and the difference is quite

remarkable.

Then, we turn to Table 2, which gives ARL0 values with multivariate gamma observations

to study the robustness of ARL0 performance of the MNSE chart. From this table, we can

see that the MNSE is quite satisfactorily robust to the skewed distribution as long as λ is

not too large (i.e., λ < 0.2). When λ ≤ 0.1, the MNSE’s ARL0 is always quite close to the

nominal one even for the extremely non-normal and high-dimensional distribution of Γ10,3.

In comparison, the MEWMC usually has a large bias in the ARL0 and the degradation

becomes more pronounced as the dimensionality increases. For the best case considered

here, an ARL0 of about 157 can only be achieved.

Figures 3 summarizes the ARL curves of the MNSE and MEWMC (with adjusted con-

trol limits) with multivariate gamma distributions Γp,5. From Figure 3, we can observe that

(i) with similar ARL0, the MNSE is generally better than MEWMC in detecting small and

moderate shifts while MEWMC has a certain advantage for the large shifts as expected;
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Table 2: ARL0 values with multivariate gamma distributions of Γp,ζ .

ζ MNSE MEWMC
λ λ

0.5 0.2 0.1 0.05 0.025 0.5 0.2 0.1 0.05 0.025
1 166 187 194 200 196 19.7 19.3 21.0 24.9 31.2
2 193 192 197 204 199 27.1 29.3 32.4 37.2 46.3
3 195 197 200 204 200 32.1 36.3 41.7 47.9 58.9
4 199 198 196 204 200 37.3 42.3 48.4 57.1 69.4

p = 3 5 199 199 201 204 199 42.8 47.6 55.0 64.4 77.7
10 202 199 197 202 200 61.3 69.9 80.0 93.1 108
15 200 196 199 204 200 76.3 84.5 98.0 108 128
30 202 194 195 205 200 103 114 130 138 155
1 83.6 117 134 146 168 15.3 16.8 20.3 26.1 35.1
2 134 162 172 177 188 21.1 24.2 28.6 37.3 51.0
3 156 174 183 184 192 26.1 30.6 36.3 46.7 62.2
4 173 185 188 190 196 31.4 36.5 43.3 55.0 72.3

p = 10 5 180 188 193 191 197 35.9 42.4 49.6 62.9 81.5
10 193 196 198 193 197 55.1 65.1 75.7 92.9 112
15 196 195 197 198 199 71.6 83.6 93.5 112 129
30 198 197 202 197 197 100 117 127 143 157

(ii) when p becomes larger, the benefit of using MNSE is more obvious. Figures 4-5 show

ARL comparisons of the MNSE and MEWMC charts with tp,5 and χ2
p,5 observations under

Scenario 1, respectively. Again, all the results for MEWMC are obtained with adjusted con-

trol limits to achieve the nominal ARL0. With the same smoothing parameters, the MNSE

has better performance than MEWMC except for monitoring the downward shifts for the

χ2
p,5 distribution. This demonstrates the fact that the MNSE chart is more sensitive to pro-

cess shifts from non-normal observations, especially for heavy-tailed (Figure 4) or extremely

skewed (Figure 5) distributions, compared with the conventional parametric MEWMC chart.

We conducted some other simulations with various combinations of (p, ARL0, λ, ζ) and

other OC settings, to check whether the above conclusions would change in other cases.

These simulation results, not reported here but available from the authors, show that the

MNSE chart works well for other correlation structures as well in terms of its ARL0 and

ARL1, and its good performance still holds for other choices of (p, ARL0, λ, ζ).

Finally, we study the effect of m0 on the performance of MNSE and MEWMC because

in all the foregoing numerical analysis, it is assumed that the IC parameters are estimated
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Figure 3: ARL values for MNSE and MEWMC with λ = 0.2 and 0.05, p = 3 and 10, ARL0=200
under Scenario 1-3 for Γp,5.

from a sufficiently large reference data set. To this end, we use the multivariate normal and

multivariate gamma distributions with two degrees of freedom. Only the case p = 5 and

ARL0=200 is considered. Table 3 shows the IC ARL and standard deviation of the run

length (SDRL) values of MNSE and MEWMC when the IC parameters (θ0,A0) for MNSE
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Figure 4: ARL values for MNSE and MEWMC with λ = 0.2 and 0.05, p = 3 and 10, ARL0=200
under Scenario 1 for tp,5.

and (µ0,Σ0) for MEWMC are computed from an IC data set with various historical sample

sizes, m0. From this table, it can be seen that (i) when m0 is relatively small, the actual

ARL0 and SDRL values of the two charts are both quite far away from the nominal level of

200, (ii) when m0 increases, such biases decrease, (iii) the biases in ARL0 of MNSE is smaller

than MEWMC with the same λ, although it appears that the chart with the smaller λ has

a little larger bias in ARL0, and (iv) for different m0, there are no clear results on whether

smaller λ will reduce biases in ARL0.

4 A real-data example

We illustrate the proposed method using a real data example from a white wine production

process from May 2004 to February 2007. The data contains totally 4898 observations, and

is publicly available in the “Wine Quality Data Set” of the UCI Machine Learning Repository

and can be downloaded from the web site http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
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Figure 5: ARL values for MNSE and MEWMC with λ = 0.2 and 0.05, p = 3 and 10, ARL0=200
under Scenario 1 for χ2

p,5.

The data were recorded by a computerized system, which automatically manages the process

of wine sample testing from producer requests to laboratory and sensory analysis. For each

of these observations, there are eleven continuous measurements (based on physicochemical

tests) including fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur

dioxide, total sulfur dioxide, density, pH, sulphates and alcohol (denoted by y1,y2, . . . ,y11,

respectively). Another categorical variable, quality, indicating the wine quality between 0

(very bad) and 10 (very excellent), is also provided based on sensory analysis. The goal of

this data analysis is mainly to model and monitor wine quality based on physicochemical

tests. Interested readers are referred to Cortez et al. (2009) for more detail about this

example and data set.

As pointed out by Cortez et al. (2009), it is desirable to setup an on-line detection

system to monitor the production process of Vinho Verde wine to guarantee its quality. A

natural method may use some univariate control charts to monitor the categorical observa-

tions obtained from sensory analysis. However, it will be quite time consuming to collect

those observations. Therefore, it could be interesting to consider applying some multivari-
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Table 3: IC ARL and SDRL values with various Phase I sample sizes, m0. Numbers in parentheses
are SDRL values.

N5(0, I5) Γ5,2

MNSE MEWMC MNSE MEWMC
m0 λ λ

0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.025

200 77.0(55.0) 100(65.0) 74.0(51.6) 80.5(50.1) 97.6(75.3) 99.6(64.1) 25.8(18.5) 29.0(19.4)
500 136(113) 123(86.7) 100(80.3) 120(82.9) 154(135) 148(109) 29.3(20.7) 33.6(25.7)

1000 166(143) 158(120) 153(131) 144(106) 172(152) 170(133) 32.6(22.0) 41.8(26.0)
2000 189(169) 196(160) 172(151) 177(134) 178(157) 179(143) 34.4(23.1) 42.1(28.1)
5000 194(173) 198(163) 189(166) 187(150) 187(164) 192(155) 35.1(24.3) 43.8(28.6)

10000 196(178) 201(165) 191(172) 193(154) 191(172) 197(159) 35.2(24.4) 45.4(28.7)
100000 200(184) 201(164) 200(178) 201(162) 200(184) 201(164) 35.3(24.6) 45.6(28.7)

ate control charts to those eleven continuous measurements collected automatically from

physicochemical tests.

Under the SPC context of sequential monitoring the wine production process, we suppose

that the standard quality level is the index “seven” (LV7; as also suggested by Cortez et al.

2009). The sample correlation matrix of this data (not reported here) contains several large

entries (e.g., the correlation between y6 and y7 can be as large as 0.533), which implies that

the variables have considerable interrelationships and consequently a multivariate control

chart is likely to be more appropriate than a univariate control chart. Figure 6 (a)-(c) show

the scatter plots of the raw data for the three measurements, volatile acidity (y2), citric acid

(y3) and sulphates (y10), based on totally 880 vectors belonging to LV7. From Figure 6 (a)-

(c), the joint distributions of each two variables are far from bivariate normal distribution.

Furthermore, the normal Q-Q plots for these three measurements are shown in Figure 6

(d)-(f), which clearly indicate that the marginal distributions of these measurements are not

normal, either. The P-values of the Shapiro-Wilk goodness-of-fit tests for normality of these

three variables are smaller than 1× 10−14, demonstrating that this data set are significantly

not multivariate normally distributed. All these tests together with Figure 6 (a)-(f) suggest

that the multivariate normality assumption is not valid and thus we could expect that the

MNSE chart would be more robust and powerful than normal-based approaches for this data

set.
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Figure 6: The scatter plots of the white wine data for (a) y2 and y3; (b) y3 and y10; (c) y10

and y2 and the normal Q-Q plots for variables (d) y2; (e) y3 and (f) y10, respectively.

Then, we begin to monitor the first 100 observations categorized as the level “six” (LV6)

sequentially. Cortez et al. (2009) study the location parameters and we are interested in

shape parameters here. Because our proposed MNSE is location invariant, we can construct

the MNSE control chart to monitor the wine quality. The ARL0 is fixed at 200, and the

value of λ is chosen to be 0.025. Figure 7 shows the resulting Qi statistics of MNSE chart

(solid curve connecting the dots) along with its control limit L = 11.94 (the horizontal

dashed line). From Figure 7, it can be seen that the Qi statistics of MNSE chart exceed

its control limit at around the 24th observation and the subsequent Qi statistics are all well

above the control limit. Therefore, these signals are convincing enough, suggesting that a

22



0 20 40 60 80 100

5
10

15
20

i

Q i

L=11.94

i=24

Figure 7: The MNSE control chart for monitoring the white wine production process. The hori-
zontal dashed line indicates its control limit.

significant shape-change has occurred. Although requiring more computational effort, the

MNSE should be a reasonable alternative for non-multivariate normal processes by taking

its efficiency, convenience and robustness into account.

5 Conclusions and extensions

In this paper, we propose a multivariate nonparametric control scheme for monitoring mul-

tivariate shape parameters. Following Zou and Tsung (2011), we propose to obtain the

multivariate affine-equivariant median, θ0, and an associated transformation matrix, A0.

Then, the proposed MNSE chart is developed based on a test, which is based on spatial sign

covariance matrix motivated by Randles’ (2000) powerful transformation-retransformation

sign test, with EWMA process monitoring. This nonparametric chart shares some appealing

properties: 1) It has an exact distribution-free property over a broad class of population

models in the sense that the IC run length distribution can attain or is always very close to
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the nominal one when using the same control limit designed for multivariate normal distri-

bution; 2) Its computation speed is fast with a similar computation effort to the MEWMA

chart; 3) It can be easily designed and constructed because only the multivariate median and

the transformation matrix need to be specified from the reference data set before monitoring;

4) It is translation-invariant when the process is IC; 5) It is also very efficient in detecting

process shifts, especially for downward shifts, small or moderate shifts when the process

distribution is heavy-tailed or skewed. 6) It is able to handle the case when the sample size

is one.

We should also point out that our proposed MNSE chart also has some drawbacks. 1) As

it only uses the direction of observations from the origin, it is not as efficient as MEWMC for

very large shifts, which is common to almost all rank-based nonparametric charts. Certainly,

this disadvantage is mainly due to the trade-off between robustness and sensitivity; 2) As it

does not assume the IC process distribution, relatively a large initial sample size is needed

to reflect the information of the IC process distribution; 3) It needs generating the control

limits by simulation method and thus requires some additional computational effort.

The proposed methodology can be extended to some other topics in the field of multi-

variate SPC. The basic idea is to use spatial-signs or some similar robust statistics instead of

the original observations xi’s in traditional control schemes. First, the current version of the

proposed chart is designed for detecting shape shifts only. After certain modifications, the

proposed method should be able to handle cases in which monitoring both the location and

covariance structure is of interest. In this situation, using νi = U(A0(xi − θ0)) to construct

the sequence Ωi is inappropriate because the location parameter θ would change in the pro-

cess. A natural way is to use νi = U(A0(xi − γi)) instead, where γi = (1− λ)γi−1 + λνi is

the EWMA-sequence of the location parameter defined by Zou and Tsung (2011). Then, we

will have two test statistics, Qi defined in (7) and (2−λ)p/λγT
i γi defined by Zou and Tsung

(2011), for monitoring the scale and location parameters respectively. We may normalize

these two statistics using their IC expectations and variances and then construct a single

control chart with their sum or maximum.

Second, much future research is also needed to construct a self-starting version of the

MNSE chart (cf., Sullivan and Jones 2002 and Hawkins and Maboudou-Tchao 2007). Follow-

ing a similar idea to self-starting schemes, we could consider replacing the estimators (θ̂0, Â0)
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with an updating version. However, this seems computationally infeasible for MNSE because

estimating (θ0,A0) involves a complicated iterative routine. Rather than spatial-signs, Zou

et al. (2012) propose a self-starting chart with spatial-ranks for monitoring location param-

eters, which well serves the self-starting purpose because the spatial-rank is automatically

centered (Oja 2010). Such a procedure can be readily generalized to the monitoring of scale

parameters.

Third, this paper focuses on Phase II monitoring only and presumes that all of the his-

torical observations used for estimating the IC parameters are i.i.d. In practical applications,

there is no such assurance. Hence, it requires much future research to extend our method to

Phase I analysis, in which detection of outliers or change-points in a historical data set would

be of interest. Take the change-points analysis as an example. Finally, this methodology

also needs to be extended to accommodating the problem of determining which variables are

contributing to a signal. Traditionally, statistical methods for accomplishing this task are

usually based on interpretation and decomposition of Hotelling’s T 2-type statistic, which es-

sentially captures the relationships among different process parameters, e.g., see Sullivan et

al. (2007) and the references therein. A robust procedure to nonnormality can be developed

by using some spatial-sign test statistics to replace the Hotelling’s T 2-type statistics.
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