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Abstract

This paper develops a new multivariate statistical process control (SPC)

methodology based on adapting the LASSO variable selection method to the

SPC problem. The LASSO method has the sparsity property that it can select

exactly the set of nonzero regression coefficients in multivariate regression mod-

eling, which is especially useful in cases when the number of nonzero coefficients

is small. In multivariate SPC applications, process mean vectors often shift in

a small number of components. Our major goal is to detect such a shift as soon

as it occurs and identify the shifted mean components. Using this connection

between the two problems, a LASSO-based multivariate test statistic is pro-

posed, which is then integrated into the multivariate EWMA charting scheme

for Phase II multivariate process monitoring. It is shown that this approach

balances protection against various shift levels and shift directions, and hence

provides an effective tool for multivariate SPC applications.

Keywords: Hotelling’s T 2 statistic; Model selection; Multivariate statistical

process control; Penalized likelihood; Regression-adjusted variables.
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1 Introduction

In multivariate statistical process control (MSPC), one monitors several quality char-

acteristics of a process. The fundamental tasks of MSPC are to determine whether a

multivariate process mean µ has changed; to identify when a detected shift in µ oc-

curred; and to isolate the shifted components of µ. Methods for accomplishing these

tasks are usually derived under the assumption that the observed measurement vec-

tors X i = (X1i, . . . , Xpi)
′ are distributed Np(µ0,Σ) for i = 1, 2, . . . , τ , and Np(µ1,Σ)

for i = τ+1, . . . , n, with µ0 and Σ known. Throughout we take µ0 = 0 without loss of

generality. Then a portmanteau test for detecting a mean shift occurring at τ is based

on testing H0 : µ = 0 versus H1 : µ 6= 0, using the likelihood ratio test (LRT) statis-

tic nX̄
′
Σ−1X̄ where X̄ =

∑n

i=1 X i/n. This procedure assumes that the covariance

matrix does not change. Replacing Σ with the sample covariance matrix S results in

the Hotelling’s T 2 statistic. Based on such test statistics, several MSPC control charts

have been proposed, in the framework of cumulative sum (CUSUM) or exponentially

weighted moving average (EWMA). Most charting statistics take quadratic forms

of the related test statistics; for instance, Healy (1987), Croisier (1988), Pignatiello

and Runger (1990), Hawkins (1991, 1993), Lowry et al. (1992), Runger and Prabhu

(1996), Zamba and Hawkins (2006), and Hawkins and Maboudou-Tchao (2007). Af-

ter a control chart signals a mean shift, a separate diagnostic procedure is often used

for identifying the shift time and the component(s) of µ that shifted. Commonly used

diagnostic procedures include the ones based on decomposition of T 2 (e.g., Mason et

al. 1995, 1997; Li et al. 2008) and various step-down procedures (e.g., Hawkins 1993;

Mason and Young 2002; Sullivan et al. 2007).

MSPC control charts with quadratic charting statistics are powerful when one is

interested in detecting shifts that occur in majority components of µ. In practice,
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however, shifts often occur in only a few of the mean components. In such cases, more

powerful control charts are possible. To be specific, if we know that the potential

shift is in one specific direction d, then the corresponding hypothesis testing problem

becomes H0 : µ = 0 versus H ′
1 : µ = δd, where δ is an unknown constant. The

corresponding LRT statistic is n(d′Σ−1X̄)2/d′Σ−1d
H0∼ χ2

1. In the case when only

one measurement component shifts but the component index is unknown, the testing

problem becomes

H0 : µ = 0 versus H ′′
1 : µ = δd1 or µ = δd2 or . . . or µ = δdp,

where dj is the p-dimensional vector with 1 at the j-th element and 0 elsewhere. In

this case, likelihood ratio arguments would lead to the following p test statistics:

Vj =
√

n(d′
jΣ

−1X̄)/(d′
jΣ

−1dj)
1

2 , for j = 1, . . . , p. (1)

It can be checked that Vjs are just the regression-adjusted variables defined in Hawkins

(1991). Hawkins (1991; 1993) suggested a MSPC control chart using maxj=1,...,p |Vj|

as a charting statistic, and showed that this chart was more effective than the one

based on T 2 when the potential shift occurs in only one measurement component.

Furthermore, after a shift is signaled, arg maxj |Vj| can be used as a diagnostic tool

to specify the shifted component. On the other hand, as noted by Hawkins (1991),

the chart based on V = (V1, . . . , Vp) can perform poorly, as when the shift occurs in

several highly correlated components and when the shift is proportional to the two

leading principal components of the covariance matrix. These findings are consistent

with the properties of LRT with misspecified alternatives. Moreover, when the shift

occurs in more than one component, diagnosis based on V could be misleading,

because it cannot indicate multiple shift components correctly.

Based on the above discussion, it is natural to consider more directions as a

priori alternatives and to construct corresponding test statistics. For instance, we
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can assume that two or more measurement components may shift; the resulting

control charts would alleviate certain problems mentioned above. However, such

control charts are infeasible when the dimension p is large, since the total number

of possible shift directions would increase exponentially with p. Furthermore, their

shift-detection power would decline substantially when p increases, due to the well-

known problem of multiple tests. Regarding post-detection diagnosis, conventional

approaches (e.g., the decomposition of T 2 procedure and the step-down test) are the-

oretically sound, but are inefficient when p is large. For instance, the decomposition

of T 2 procedure considers p! different decompositions of T 2, which is computationally

expensive in such cases. Certain parameters in these approaches (e.g., the thresh-

old values) affect their diagnostic ability significantly, but are generally difficult to

determine. See Sullivan et al. (2007) for related discussion.

In this paper, we propose a MSPC chart that has three features: (1) It is ca-

pable of detecting shifts in one or more components efficiently; (2) its computation

is reasonably simple; and (3) it provides an effective post-signal diagnostic tool for

identifying shifted measurement components. By adapting certain recent results on

variable selection in multiple regression to the SPC problem, we propose a novel

MSPC approach that has all these three properties. This approach integrates a least

absolute shrinkage and selection operator (LASSO) test statistic (cf., Tibshirani 1996)

into a multivariate EWMA charting scheme for on-line process monitoring, which is

easy to implement using the least angle regression (LARS) algorithm (cf., Efron et

al. 2004). Because of certain good properties of LASSO, it can determine the shift

direction “automatically,” and can offer balanced protection against various possible

shifts. Moreover, due to the sparsity property of LASSO estimators that some of

their components would be exactly zero after certain tuning parameters are chosen

properly, the proposed control chart can provide an effective diagnostic tool as well.
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We describe in detail the proposed MSPC control chart in Section 2, and in-

vestigate its numerical performance in Section 3. In Section 4, we demonstrate the

proposed method using a real-data example from manufacturing. Several remarks

conclude the article in Section 5. Technical details are included in an appendix,

available online as supplementary materials.

2 Methodology

Our proposed MSPC methodology is described in four parts. Subsection 2.1 provides

a brief introduction to the LASSO in the context of variable selection in multiple

regression. We demonstrate its connection to the MSPC problem and propose a

LASSO-based test statistic in Subsection 2.2. In Subsection 2.3, a Phase II control

chart is constructed by integrating the LASSO-based test statistic into the EWMA

charting scheme. Finally, its diagnostic property is discussed in Subsection 2.4.

2.1 LASSO for regression variable selection

Consider the following multiple linear regression model:

yi = Ziβ + εi, for i = 1, 2, . . . , n,

where yi, Zi, and β are the response variable, vector of predictors, and vector of

regression coefficients, respectively, and εi are i.i.d. random errors with distribution

N(0, σ2). In practice, some predictors do not provide much useful information about

the response, given the remaining predictors; thus, they can be deleted from the

model. To this end, stepwise or all subset selection procedures along with a model

selection criterion (e.g., AIC or BIC) are usually used. Such model selection pro-

cedures are practically useful; but they have several limitations, including lack of
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stability (cf., Breiman 1996), lack of theoretical properties (cf., Fan and Li 2001), and

extensive computation (cf., Tibshirani 1996). To overcome these limitations, some

authors suggest using the following penalized least squares method (or equivalently,

the penalized likelihood method in the normal error distribution case):

n∑

i=1

(yi − Ziβ)2 + n

p∑

j=1

gγj

(
|β(j)|

)
,

where β(j) denotes the j-th component of β, γj are the penalty parameters (or

called the regularization parameters, see Bickel and Li 2006), and gγj
are the penalty

functions. When gγj
(|β(j)|) = γ|β(j)| where γ is a constant parameter, the corre-

sponding penalized least squares method is called LASSO (cf., Tibshirani 1996). Be-

sides LASSO, another major penalized least squares method is the so-called smoothly

clipped absolute deviation method (SCAD, Fan and Li 2001). See Fan and Li (2006),

Wang and Leng (2007), and Zou and Li (2008) for related discussion. Among other

good properties, Fan and Li (2001) have shown that, with the proper choice of the

penalty functions and regularization parameters, the penalized likelihood estimators

would perform asymptotically as well as if the correct submodel was known, which is

referred to as the oracle property in the literature. When the penalty functions are

chosen to be continuous, the coefficient estimates that correspond to insignificant pre-

dictors would shrink towards 0 as γ increases, and these coefficient estimates could be

exactly 0 if γ is sufficiently large. In addition, the penalized likelihood approach, es-

pecially those with LASSO-type penalty functions, enjoys efficient computation using

Efron et al.’s (2004) LARS algorithm. See Zou and Li (2008) for detailed discussion

about computational issues of LASSO and SCAD.
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2.2 LASSO-based testing

In the variable selection problem discussed in the previous subsection, an a priori

assumption is that some components of the coefficient vector β are zero. In high-

dimensional cases, it is often reasonable to assume that only a few coefficients are

non-zero, which is the so-called sparsity characteristic. Analogously, in the process

monitoring problem, we assume in MSPC that only a few components in the shift

vector δ = µ1 are expected to be non-zero when a shift occurs. Therefore, the

penalized likelihood method should have a potential in solving the MSPC problem,

which is investigated below.

As described in Section 1, we are interested in testing H0 : µ = 0 versus H1 : µ 6=

0 in the MSPC testing problem. After a constant term is ignored, the corresponding

penalized likelihood function can be written as

PL(µ) = n(X̄ − µ)′Σ−1(X̄ − µ) + n

p∑

j=1

gγj

(
|µ(j)|

)
.

If the adaptive LASSO (ALASSO) penalty function (cf., Zou 2006) is used, then it

becomes

PL(µ) = n(X̄ − µ)′Σ−1(X̄ − µ) + nγ

p∑

j=1

1

|X̄(j)|a
|µ(j)|, (2)

where a > 0 is a pre-specified constant and µ(j) is the j-th component of µ. As

recommended by Zou (2006) and Wang and Leng (2007), we fix a = 1 in this paper.

The ALASSO penalty used in (2) is slightly different from the traditional one by

Tibshirani (1996). The latter uses the same amount of shrinkage for each regression

coefficient. Because of that, its coefficient estimator cannot be as efficient as the oracle

estimator (Fan and Li 2001), and its model selection results could be inconsistent in

certain cases. As a comparison, the ALASSO applies different amount of shrinkage to

different regression coefficients. Consequently, its LASSO estimator is asymptotically
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unbiased and has certain oracle properties. See Fan and Li (2001), Zou (2006), and

Zhao and Yu (2006) for related discussion. The ALASSO estimator of µ is defined

by

µ̂γ = arg min PL(µ).

It can be checked that µ̂γ is the same as the one-step sparse estimator in Zou and

Li (2008) (see also Bühlmann and Meier 2008), and it is also the same as the least

squares approximation estimator in Wang and Leng (2007). Because of its sparsity

assumption (i.e., some of its components are exactly zero after γ is properly chosen),

it is an ideal estimator of the shift direction in the MSPC problem. Then, a LASSO-

based test statistic can be defined as

T̃γ =
n(µ̂′

γΣ
−1X̄)2

µ̂
′
γΣ

−1µ̂γ

.

Theoretically, µ̂γ 6= 0 almost surely. For completeness, T̃γ can be defined to be any

negative number when µ̂γ = 0. Obviously, T̃γ can be regarded as a data-driven

version of the test statistics in (1), with the shift direction estimator µ̂γ substituting

for the pre-specified shift directions dj .

Before T̃γ can be used for MSPC, the regularization parameter γ should be chosen

properly, since it plays an important role in balancing robustness and sensitivity of T̃γ

to various shifts. By Theorem 1 in Wang and Leng (2007) and Theorem 5 in Zou and

Li (2008), we can obtain results in the following proposition without much difficulty,

which provide us some insights about selection of γ. Without loss of generality,

hereafter we assume that, under H1, the first p0 components of µ are nonzero and

the remaining p − p0 components are all zero, where 0 < p0 ≤ p.

Proposition 1 Assume that there are two regularization parameters γ1n and γ2n sat-

isfying the conditions that 1/(nγjn) = o(1), for j = 1, 2, and γ1n/γ2n = o(1). Then,
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(i) under H0, P (T̃γ2n
≥ 0)/P (T̃γ1n

≥ 0) = o(1), and

(ii) under H1, if µ satisfies min{µ(j), j ≤ p0} = O(ns) and max{µ(j), j ≤ p0} =

O(nt), where −1
2

< s ≤ t < 0, then P (T̃γjn
≥ 0) − 1 = o(1) if and only if

n−2tγjn = o(1), for j = 1 or 2. Furthermore, when n−s+ 1

2 γ2n = o(1), T̃γ1n
and

T̃γ2n
converge to infinity with the same rate.

By this proposition, from an asymptotic viewpoint, selection of γ should depend

on the shift size. For detecting a large shift (i.e., t is large in part (ii) of the propo-

sition), γ should be chosen large, and small for detecting a small shift. One can

choose γ is to use CV, GCV, AIC, BIC, or other model selection criteria. However,

our simulation results show that these criteria tailored for estimation often do not

produce a powerful test. This finding is not surprising because similar conclusions

have been made in the nonparametric regression testing problem. There, the power

and size of a typical test would depend on the bandwidth used in regression function

estimation (cf., Bickel and Li 2006), and it is recognized that optimal bandwidth for

nonparametric curve estimation may not be optimal for testing (cf., Hart 1997).

To overcome this difficulty, we follow the approach proposed by Horowitz and

Spokoiny (2001) in the nonparametric testing setup, by combining several values of

γ to make the resulting test nearly optimal. Let Γq = {γj, j = 1, . . . , q} be a set of

penalty parameters, where q is a pre-specified constant. Then, the modified penalized

test statistic is defined as

T̃ = max
j=1,...,q

T̃γj
− E(T̃γj

)
√

Var(T̃γj
)

,

where E(T̃γj
) and Var(T̃γj

) are respectively the mean and variance of T̃γj
under H0.

Ideally, q should be chosen to be the number of non-zero components of µ, and γj to

be the penalty parameter that is good for detecting µ with j non-zero components.
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In practice, however, µ is unknown. To overcome this difficulty, we propose a simple

and efficient method to determine Γq, as described below.

Let us first rewrite the ALASSO-type penalized likelihood (2) as

PL(α) = n(X̄ −Λα)′Σ−1(X̄ − Λα) + nγ

p∑

i=1

|α(i)|, (3)

where α(i) = µ(i)/|X̄(i)| and Λ = diag(|X̄(1)|, . . . , |X̄(p)|). This is exactly a LASSO-

type penalized likelihood function. According to Zou et al. (2007), for given X̄ in

(3), there is a finite sequence

γ̃0 > γ̃1 > . . . > γ̃K = 0 (4)

such that (1) for all γ > γ̃0, α̂γ = 0, and (2) in the interval (γ̃m+1, γ̃m), the active

set B(γ) = {j : sgn[α
(j)
γ ] 6= 0} and the sign vector S(γ) = {sgn[α

(1)
γ ], . . . , sgn[α

(p)
γ ]}

are unchanged with γ. These γ̃m’s are called transition points because the active set

changes at each γ̃m. By Efron et al. (2004), the random integer K can be larger than

p. Thus, we suggest using γ̃mlast

j
, for j = 1, . . . , q, to construct Γq, where mlast

j is the

index of last γ̃ in the sequence {γ̃0, γ̃1, . . . , γ̃K} defined in (4) that the corresponding

active set contains exactly j elements. By Lemma 7 in Zou et al. (2007), T̃γ̃
mlast

j

are

well defined, because the “one at a time” condition (cf., Efron et al. 2004) holds almost

everywhere, where “one at a time” means that two active sets of two consecutive γ̃s

differ on at most a single index. The following asymptotic result provides some insight

about the use of the transition points for constructing Γq.

Proposition 2 Under H1, assume that min{µ(j), j ≤ p0} = O(ns), where −1
2

< s <

0. Then, the test using T̃γ̃
mlast

p0

as a testing statistic would be asymptotically more

powerful than the test using T 2.

In practice, p0 is often unknown. So, we suggest combining all γ̃mlast

j
, for j =
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1, . . . , q, in our test. The resulting test statistic is

T̃L = max
j=1,...,q

T̃γ̃
mlast

j

− E(T̃γ̃
mlast

j

)
√

Var(T̃γ̃
mlast

j

)
. (5)

Note that T̃γ̃
mlast

p

is exactly the T 2 test statistic. Therefore, test (5) should share

certain properties of the T 2 test and certain properties of the likelihood ratio tests

constructed when the potential shift has some specific structures (cf., expression (1)).

Next, we make several remarks about the transition points used in (5). First, γ̃m

can be easily determined by the LARS algorithm (cf., Efron et al. 2004). The whole

testing procedure (5) involves O(np+ p3) computations, which are about the same as

the computational cost of a least squares regression with p covariates. This property

is especially desirable for on-line process monitoring. Second, each γ̃m corresponds

to a different active set Bγ̃m
. Thus, by combining different γ̃m’s, test (5) actually

combines some cases with different numbers of shifted components, and these cases

are determined by the observed data. Third, based on Lemma 1 in Appendix, for any

γ ∈ (γ̃mlast

j
, γ̃mlast

j −1), we have l(µ̂γ) > l(µ̂γ̃
mlast

j

), where l(µ) = n(X̄ −µ)′Σ−1(X̄ −µ)

and µ̂γ = Λα̂γ. That is, in the interval [γ̃mlast

j
, γ̃mlast

j −1), µ̂γ̃
mlast

j

is the “optimal”

estimator in terms of the likelihood value in the case when j components are shifted,

which provides a strong evidence that the transition points should be used in our test.

2.3 Phase II MSPC

In this part, we propose a framework to construct Phase II MSPC control charts using

the LASSO-based test statistic (5). We consider EWMA-type control charts only in

this paper; but, other types of control charts (e.g., CUSUM) can be developed in a

similar way.

Let Xj be the j-th observed measurement vector collected over time. Then, a
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multivariate EWMA (MEWMA) sequence of statistics (cf., Lowry et al. 1992) is often

defined as

U j = λXj + (1 − λ)U j−1, for j = 1, 2, . . . , (6)

where U 0 = 0 and λ is a weighting parameter in (0, 1]. For each U j, we suggest com-

puting q LASSO estimators µ̂j,γ̃
mlast

k

, for k = 1, 2, . . . , q, from the penalized likelihood

function

(U j − µ)′Σ−1(U j − µ) + γ

p∑

k=1

1

|U (k)
j |

|µ(k)|. (7)

Our proposed control chart signals a shift if

Qj = max
k=1,...,q

Wj,γ̃
mlast

k

− E(Wj,γ̃
mlast

k

)
√

Var(Wj,γ̃
mlast

k

)
> L, (8)

where

Wj,γ =
2 − λ

λ[1 − (1 − λ)2j ]

(U ′
jΣ

−1µ̂γ)
2

µ̂
′
γΣ

−1µ̂γ

,

and L > 0 is a control limit chosen to achieve a given in-control (IC) average run

length (ARL). In practice, (2 − λ)/{λ[1 − (1 − λ)2j ]} can be replaced by its asymp-

totic form (2− λ)/λ, as conventionally done in the EWMA literature. Hereafter, the

above control chart is called LASSO-based multivariate EWMA (LEWMA) chart.

In LEWMA (6)–(8), selection of λ mainly depends on a target shift (cf. Proposi-

tion 1). It should be chosen large if the target shift is large and small otherwise, as in

conventional EWMA charts (e.g., Lucas and Saccucci 1990; Prabhu and Runger 1997).

Regarding q, recall that an implicit a priori assumption underlying the LEWMA chart

is that a potential shift occurs only in a small number of measurement components. If

prior information indicating potential shifts in at most r components, with 1 ≤ r ≤ p,

then our numerical studies show that using q = r + 1 or q = r + 2 provides satisfac-

tory performance in practice (cf., Section 3). When prior information is unavailable,
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numerical results (Section 3) show that the LEWMA chart with q = p performs

reasonably well in all cases considered there.

In (8), quantities E(Wj,γ̃
mlast

k

) and Var(Wj,γ̃
mlast

k

) are usually unknown. The fol-

lowing result suggests replacing them by their approximations.

Proposition 3 When the process is IC, E(Wj,γ̃
mlast

k

) and Var(Wj,γ̃
mlast

k

) do not depend

on λ and j.

By Proposition 3, E(Wj,γ̃
mlast

k

) and Var(Wj,γ̃
mlast

k

) can be approximated by the

empirical expectation and variance of Wj,γ̃
mlast

k

computed from simulated IC measure-

ment vectors, since U j would be the same as Xj when λ = 1. The control limit L

in (8) can also be determined by simulation as follows. First, choose an initial value

for L. Then, compute the IC ARL of the LEWMA chart based on a large number

of replicated simulation runs in which the IC observations are generated from the

IC distribution of the process. If the computed IC ARL value is smaller than the

nominal IC ARL value, then increase the value of L. Otherwise, choose a smaller

L value. The above process is repeated until the nominal IC ARL is reached and is

within a desired precision. In this process, some numerical searching algorithms, such

as the bisection search, can be applied (cf., e.g., Qiu 2008). For given λ, Σ and a

desired IC ARL, computation involved in finding L is not difficult, partly due to the

fact that the LARS algorithm used in LASSO computation is efficient. For instance,

when IC ARL=200 and p = 15, it requires about 15 minutes to complete the bisection

searching procedure based on 25,000 simulations, using a Pentium-M 1.6MHz CPU.

Since this is a one-time computation before the Phase II online process monitoring, it

is convenient to accomplish. Fortran code for implementing the proposed procedure

is available from the authors upon request.
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2.4 Post-signal diagnostic

Assume that the LEWMA chart (6)–(8) triggers a mean shift signal at the k-th obser-

vation. Estimates of the shift locations and identification of the specific measurement

components that have shifted will help engineers to eliminate the root causes of the

shift in a timely fashion. With respect to the shift location, the generalized maxi-

mum likelihood estimation approach for change-point detection can be used (cf., e.g.,

Zamba and Hawkins 2006). After an estimate of the shift location is obtained, which

is denoted as τ̂ , we have (k− τ̂ ) out-of-control (OC) observations in which a few mea-

surement components have shifts in their means. Among these (k − τ̂ ) observations,

a few might actually be IC observations, because τ̂ is only an estimator of the true

shift location τ . After a mean shift is detected and the shift location is estimated, the

LASSO methodology can be used for specifying the shifted components, by choosing

one of the LASSO estimators (cf., (4)) with a model selection criterion (e.g., Cp,

GCV, AIC, or BIC). To be specific, our proposed diagnostic algorithm tries to find

µ̂γ∗

γ∗ = arg min
γ

(k − τ̂)(X̄bτ ,k − µ̂γ)
′Σ−1(X̄bτ ,k − µ̂γ) + η · d̂f(µ̂γ), (9)

X̄bτ ,k =
∑k

i=bτ+1 X i/(k− τ̂ ), µ̂γ is the ALASSO estimator from X̄bτ ,k, η is a parameter,

and d̂f(µ̂γ) is the number of nonzero coefficients in µ̂γ. If AIC is used, then η = 2.

It equals ln(k − τ̂ ) if BIC is used. By Theorem 3 in Zou et al. (2007), µ̂γ∗ is one of

µ̂γ̃1
, . . . , µ̂γ̃K

.

In the literature, it is well demonstrated that BIC tends to identify the true sparse

model well if the true model is included in the candidate set (cf., e.g., Yang 2005;

Zou et al. 2007; Wang et al. 2007). However, unlike the fixed sample case, in the

current SPC problem, we usually do not have a large sample (relative to the shift

magnitude) to implement the diagnostic procedure, because the whole point of SPC
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is to detect the shift (and hence stop the process) as quickly as possible. Based on

extensive simulations, we find that the conventional BIC criterion does not perform

well in certain cases (not reported here). Instead, the diagnostic procedure (9) would

perform well if it uses the risk inflation criterion (RIC) proposed by George and Foster

(1994) based on the minimax principle, in which η = 2 ln(p). Since some components

of µ̂γ∗ would be exactly zero, we can simply take its nonzero components as the

shifted measurement components, without making any extra tests that are necessary

in most existing diagnostic methods, such as the decomposition of T 2 method and

the step-down method. As a side note, in cases when estimation of the shift location

τ is not our major concern, after the LEWMA chart gives an OC signal at the k-th

observation, we can use U k directly to implement the diagnostic procedure. Namely,

we can find µ̂γ∗ so that

γ∗ = arg min
γ

2 − λ

λ[1 − (1 − λ)2k]
(U k − µ̂γ)

′Σ−1(U k − µ̂γ) + η · d̂f(µ̂γ), (10)

where as before, η = 2 ln(p). Compared to (9), procedure (10) is more convenient to

use and is faster as well because the LASSO estimators from U k have been computed

in the monitoring process. Our numerical studies show that (9) and (10) provide

similar diagnostic results.

3 A Simulation Study

We present some simulation results in this section regarding the numerical perfor-

mance of the proposed LEWMA control chart and the corresponding diagnostic pro-

cedure. In the LEWMA chart, the parameter q needs to be chosen, although q = p

is always an option. We first investigate the potential effect of q on the performance

of the LEWMA chart in the following setting. Let p = 15 and the IC measurement

distribution be Np(0,Σ), where Σ = (σij) is chosen to be σii = 1 and σij = 0.75|i−j|,
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for i, j = 1, 2, . . . , p. In the LEWMA chart, λ is chosen to be 0.2, and its IC ARL

is fixed at 500. Two representative shifts are considered. The first one has three

shifted components δ2 = 0.25, δ3 = 0.25 and δ8 = 0.50, where δj denotes the shift

size of the j-th component, and the second one has all eight odd components shifted

of the same size 0.25. The two plots in Figure 1 show the OC ARLs of the LEWMA

chart when it is used for detecting the two shifts and when q changes. The plots

show that the LEWMA chart performs the best when q = 5 and q = 10, respectively,

and its performance is close to optimal when q = p. Therefore, q = p is indeed a

reasonable choice when no prior information is available about the number of shifted

components.
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Figure 1: OC ARLs of the LEWMA chart when q changes, p = 15 and two represen-

tative shifts are detected. Plot (a): the shift has three shifted components δ2 = 0.25,

δ3 = 0.25 and δ8 = 0.50. Plot (b): all eight odd components are shifted of 0.25.

Next, we compare the LEWMA chart with the conventional MEWMA chart (i.e.,

the multivariate EWMA chart using a quadratic charting statistic) and REWMA

chart (i.e., the multivariate EWMA chart using V ). We first consider a low-dimensional

case when p = 5 that was discussed in Hawkins (1991). In all three charts, λ = 0.2

and the IC ARL is fixed at 500. The true shift location τ is fixed at 25, and any
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simulations in which shift signals occur before τ are discarded. In the LEWMA chart,

to investigate its sensitivity to selection of q, we consider two different q values: q = 3

and q = p = 5. Twenty different shifts are considered, which include the following

cases: shifts in a single component, equal shifts in a pair of components, and shifts in

the principle component directions of X. As was done in Hawkins (1991), all shifts

are scaled so that the largest displacement in V equals one. The simulation results

over 20,000 replications are presented in Table 1. Control limits L of the three con-

trol charts are included in the last row of this table. In order to assess the overall

performance of the charts, besides OC ARLs, we also compute their relative mean

index (RMI) values. The RMI index of a control chart is suggested by Han and Tsung

(2006), and is defined as

RMI =
1

N

N∑

l=1

ARLδl
− MARLδl

MARLδl

, (11)

where N is the total number of shifts considered, ARLδl
is the OC ARL of the given

control chart when detecting shift δl, and MARLδl
is the smallest OC ARL among all

OC ARL values of the charts considered when detecting shift δl. So,
ARLδl

−MARLδl

MARLδl

can be considered as a relative efficiency measure of the given control chart, compared

to the best chart, when detecting shift δl, and RMI is the average of all such relative

efficiency values. By this index, a control chart with a smaller RMI value is considered

better in its overall performance. From Table 1, we observe the following results.

First, LEWMA offers a good balance between sensitivity and robustness to potential

shifts. This can be seen from cases when REWMA outperforms MEWMA in quite

large margins or vice versa. In such cases, LEWMA may not be best, but it is always

close to the best. Second, in several cases in which LEWMA performs the best,

the margins are generally quite small. Third, in terms of the RMI index, LEWMA

performs the best overall. Fourth, the OC ARL values of the LEWMA chart when

q = 3 are close to those when q = 5, although the LEWMA chart with q = 3
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performs slightly better when the number of shifted components is small and slightly

worse when the number of shifted components is large. Fifth, the last shift considered

in the table is large in magnitude and MEWMA performs the best as expected. The

LEWMA chart with q = p also performs well in this case. In Table 1, λ is fixed

at 0.2 for all three charts. To diminish the possible effect of λ on the performance

of the three charts, we also compute the optimal OC ARLs with respect to λ (i.e.,

the smallest OC ARLs when λ changes) for all three charts in the cases considered

in Table 1. The results are presented in Table S1 given in the online supplementary

materials. They are slightly better than those in Table 1, as expected; but, the

conclusions made from Table 1 are also true in Table S1.

Table 1: OC ARL values of control charts MEWMA, REWMA, and LEWMA in the
case when p = 5, λ = 0.2, and IC ARL=500. Numbers in parentheses are standard
errors. They are shown as “.00” when they are smaller than 0.01.

shifts MEWMA REWMA LEWMA

X1 X2 X3 X4 X5 q = 3 q = 5
0.91 0.00 0.00 0.00 0.00 17.3 (.09) 14.4 (.07) 14.6 (.07) 14.9 (.07)
0.00 0.36 0.00 0.00 0.00 17.0 (.08) 13.3 (.06) 13.9 (.06) 14.3 (.07)
0.00 0.00 0.48 0.00 0.00 17.3 (.09) 13.8 (.07) 14.6 (.07) 15.0 (.07)
0.00 0.00 0.00 0.34 0.00 17.2 (.09) 13.4 (.06) 14.2 (.07) 14.6 (.07)
0.00 0.00 0.00 0.00 0.46 17.9 (.09) 14.1 (.07) 14.9 (.07) 15.2 (.07)
0.36 0.36 0.00 0.00 0.00 15.0 (.07) 13.5 (.06) 13.4 (.06) 13.7 (.06)
0.54 0.00 0.54 0.00 0.00 12.8 (.06) 12.9 (.06) 12.4 (.05) 12.4 (.05)
0.32 0.00 0.00 0.32 0.00 15.2 (.07) 13.1 (.06) 13.4 (.06) 13.6 (.06)
0.49 0.00 0.00 0.00 0.49 13.2 (.06) 12.6 (.06) 12.4 (.06) 12.5 (.06)
0.00 0.54 0.54 0.00 0.00 8.79 (.03) 12.3 (.06) 8.75 (.03) 8.88 (.03)
0.00 1.60 0.00 1.60 0.00 3.48 (.00) 9.03 (.03) 3.59 (.00) 3.57 (.00)
0.00 0.28 0.00 0.00 0.28 13.0 (.06) 10.5 (.05) 11.1 (.05) 11.3 (.05)
0.00 0.00 0.28 0.28 0.00 13.0 (.06) 10.5 (.05) 11.3 (.05) 11.4 (.05)
0.00 0.00 1.26 0.00 1.26 4.28 (.01) 8.70 (.03) 4.41 (.01) 4.34 (.01)
0.00 0.00 0.00 0.56 0.56 8.60 (.03) 12.2 (.06) 8.60 (.03) 8.70 (.03)
0.01 -0.15 0.07 0.17 -0.09 15.0 (.07) 11.5 (.05) 12.3 (.06) 12.5 (.06)
0.07 -0.13 -0.40 0.19 0.35 10.1 (.04) 12.4 (.06) 10.0 (.04) 10.1 (.04)
0.40 0.63 -0.57 0.47 -0.68 4.74 (.01) 9.28 (.04) 4.97 (.01) 4.94 (.01)
-1.11 0.26 -0.17 0.34 -0.04 11.8 (.05) 14.6 (.07) 12.5 (.05) 12.2 (.05)
2.51 7.11 7.05 7.11 7.08 1.19 (.00) 7.52 (.02) 2.88 (.00) 1.30 (.00)

RMI 0.123 0.514 0.103 0.046

Control Limit 18.13 3.425 5.181 5.262
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Next, we consider the case when p = 15 and all IC parameters are chosen to

be the same as those in the example of Figure 1. In this example, besides the OC

ARL, the “worst case” OC ARL is also evaluated. The “worst case” scenario is

that, immediately before a shift occurs, the control charting statistic is at the value

that would maximize the OC ARL (cf., e.g., Yashchin 1993; Woodall and Mahmoud

2005). The “worst case” OC ARL reflects the worst case performance of a given

control chart. The simulation results based on 10,000 replications are presented in

Table 2, where 27 shifts with various numbers of shifted components are considered.

In this example, we simply choose q = p in the LEWMA chart. The results show that

the LEWMA chart is either the best or near the best in all cases, in terms of both

OC ARL and “worst case” OC ARL. Even in the last two cases with large shifts in

all fifteen components, the LEWMA chart still performs reasonably well. RMI values

in the table confirm the claimed advantage of the LEWMA chart that it does offer a

balanced protection against various shifts.

In all previous examples, shifts are pre-specified. For a more objective compar-

ison of different control charts, next we consider an example in which r indices are

randomly generated from {1, . . . , p} without replacement as the indices of the shifted

components, and r shift magnitudes are randomly generated from N(δ, σ2). A se-

quence of multivariate normal vectors are generated, with the shift vector specified

above. We generate control charts to this sequence and obtain their corresponding

run-lengths. This simulation is repeated N times, and we compute the RMI value

for each control chart using (11), except that ARLs in that formula are replaced by

those run-lengths. The resulting performance measure is referred to as relative run

length index (RRLI). By properly choosing δ, σ2 and a large N , this index would

be a good measure of the relative run length performance of the considered control

charts. Figure 2 shows the RRLI values (in log-scale) of the LEWMA, REWMA and
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Table 2: OC ARL and “worst case” OC ARL values of control charts MEWMA,
REWMA, and LEWMA in the case when p = 15, λ = 0.2, and IC ARL=500.
All numbers in parentheses are standard errors. For a given shift, components not
specified are all 0.

OC ARL “worst case” OC ARL
shifts MEWMA REWMA LEWMA MEWMA REWMA LEWMA

δ1 = 0.50 62.5 (.58) 39.8 (.35) 40.8 (.35) 66.3 (.58) 43.1 (.35) 44.7 (.36)
δ1 = 1.00 11.2 (.06) 7.84 (.04) 8.11 (.04) 14.9 (.06) 10.6 (.04) 10.9 (.04)
δ3 = 0.50 34.1 (.29) 21.5 (.16) 22.5 (.17) 38.6 (.29) 24.9 (.16) 26.4 (.20)
δ3 = 1.00 7.26 (.03) 5.41 (.02) 5.62 (.02) 10.6 (.03) 7.72 (.02) 8.02 (.02)
δ1 = 0.50; δ2 = 0.25 106 (1.01) 138 (1.30) 109 (1.00) 110 (1.02) 143 (1.34) 114 (1.03)
δ1 = 0.50; δ2 = 0.50 57.3 (.52) 91.0 (.88) 57.7 (.51) 61.5 (.53) 93.4 (.89) 62.3 (.50)
δ1 = 0.50; δ2 = 0.75 21.2 (.16) 19.7 (.14) 17.8 (.12) 25.5 (.16) 23.2 (.14) 21.3 (.12)
δ1 = 0.50; δ3 = 0.25 39.3 (.34) 29.9 (.24) 30.2 (.23) 43.8 (.34) 33.1 (.25) 33.9 (.25)
δ1 = 0.50; δ3 = 0.50 18.0 (.13) 14.9 (.10) 14.8 (.09) 22.2 (.13) 18.3 (.10) 18.3 (.10)
δ1 = 0.50; δ3 = 0.75 9.78 (.05) 7.92 (.04) 8.02 (.04) 13.4 (.05) 10.8 (.04) 10.9 (.04)
δ3 = 0.50; δ8 = 0.25 25.5 (.19) 20.3 (.15) 20.0 (.14) 29.9 (.20) 23.7 (.15) 23.4 (.14)
δ3 = 0.50; δ8 = 0.50 14.4 (.09) 13.8 (.09) 12.7 (.07) 18.5 (.09) 17.1 (.09) 16.1 (.08)
δ3 = 0.50; δ8 = 0.75 8.78 (.04) 8.04 (.04) 7.70 (.03) 12.3 (.04) 10.9 (.04) 10.5 (.04)
δ1 = 0.50; δ2 = 0.25; δ3 = 0.25 103 (.99) 127 (1.23) 104 (1.01) 106 (.99) 130 (.24) 107 (1.02)
δ1 = 0.25; δ2 = 0.25; δ3 = 0.50 55.9 (.52) 44.0 (.39) 44.1 (.37) 60.5 (.53) 47.3 (.39) 47.5 (.39)
δ2 = 0.50; δ3 = 0.25; δ8 = 0.25 33.5 (.28) 34.5 (.29) 30.2 (.24) 37.7 (.28) 38.2 (.30) 34.1 (.24)
δ2 = 0.25; δ3 = 0.25; δ8 = 0.50 25.4 (.20) 21.1 (.16) 20.6 (.14) 29.8 (.20) 24.6 (.16) 24.0 (.15)
δ7 = 0.50; δ8 = 0.25; δ9 = 0.50 24.3 (.18) 25.4 (.20) 22.4 (.16) 28.5 (.19) 28.5 (.20) 26.3 (.17)
δ7 = 0.25; δ8 = 0.75; δ9 = 0.50 23.1 (.18) 60.4 (.54) 26.5 (.20) 27.2 (.18) 61.1 (.55) 28.9 (.23)
δ6 = 0.50; δ8 = 0.25; δ10 = 0.50 20.6 (.15) 18.1 (.13) 17.1 (.11) 21.6 (.16) 20.2 (.16) 19.0 (.15)
δ6 = 0.25; δ8 = 0.75; δ10 = 0.50 6.96 (.03) 6.95 (.03) 6.49 (.03) 10.3 (.04) 9.86 (.03) 9.55 (.03)
Even components shift 0.25 15.9 (.11) 23.8 (.18) 17.2 (.11) 20.9 (.11) 27.6 (.18) 21.9 (.12)
Even components shift 0.50 4.60 (.02) 6.50 (.03) 4.90 (.02) 7.50 (.02) 9.22 (.04) 7.78 (.02)
Odd components shift 0.25 17.1 (.11) 24.4 (.20) 17.9 (.12) 20.2 (.10) 26.8 (.17) 21.3 (.11)
Odd components shift 0.50 4.75 (.02) 6.64 (.03) 5.03 (.02) 7.33 (.02) 9.63 (.04) 7.67 (.04)
Even (odd) components shift 0.50 (0.25) 13.7 (.09) 24.3 (.19) 16.8 (.11) 17.7 (.09) 27.4 (.18) 21.0 (.11)
Even (odd) components shift 0.25 (0.50) 12.2 (.07) 22.5 (.17) 15.1 (.10) 16.4 (.09) 25.8 (.16) 18.8 (.10)

RMI 0.164 0.251 0.040 0.165 0.180 0.030
Control limit 34.75 3.749 4.950 34.75 3.749 4.950

MEWMA charts when r changes, p = 15 (plot (a)), and p = 30 (plot (b)). In this

example, we choose δ = 0.25, σ = 0.5, N=50,000 in plot (a), N = 100, 000 in plot (b),

and q = p in the LEWMA chart. From the plots, we can see that (i) for small r (e.g.,

r ≤ 2), the LEWMA and REWMA charts have similar performance and both signif-

icantly outperform the MEWMA chart, (ii) for moderate r (e.g., 2 < r ≤ p/2), the

LEWMA chart performs the best, and (iii) for large r (e.g., r > p/2), the MEWMA

chart performs slightly better than the LEWMA and both of them are much better

than the REWMA chart. These findings confirm our statement made earlier that the
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LEWMA chart is effective when the sparsity condition holds and it offers a protection

against various OC conditions.
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Figure 2: RRLI comparison (in log-scale) of the LEWMA, REWMA and MEWMA
charts when p = 15 (plot (a)) and p = 30 (plot (b)). In the plots, r denotes the
number of shifted components.

We now compare the proposed diagnostic procedure (9) with the existing step-

down procedure. The step-down procedure depends heavily on the pre-specified type

I error probability, which is set to be 0.10 here for illustration. The following three

schemes are considered: the MEWMA chart with the step-down procedure (denoted

as “step-down”), the MEWMA chart with procedure (9) (denoted as “MEWMA-

(9)”), and the LEWMA chart with procedure (9) (denoted as “LEWMA-(9)”). Sim-

ulation results in the settings of Tables 1 and 2 are presented in Table S2 (given in

the online supplemental materials) and Table 3, respectively. In the two tables, the

columns labelled “C” present relative frequencies that the diagnostic procedures iden-

tify shifted measurement components correctly, and the columns labelled “I” denote

relative frequencies that at least one shifted component is missed and at least one

identified shifted component is false. So, for a given diagnostic procedure, it performs

better in a given case if its value in column “C” is larger and its value in column “I” is

smaller. The results show that the proposed LASSO-based approach has comparable
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diagnostic ability to that of the step-down procedure. In many situations, especially

when the dimension p is large (cf., Table 3), the LASSO-based approach outperforms

the step-down procedure. For instance, in the first row of Table 3, the relative fre-

quency of the MEWMA-(9) scheme is π̂ = 0.54 (SE=
√

π̂(1 − π̂)/10000 = 0.005) for

identifying shifted measurement components correctly. As a comparison, the cor-

responding relative frequency and its standard error of the step-down scheme are

0.07 and 0.003, respectively. So, the MEWMA-(9) scheme is significantly better in

this case. After taking into account its computational advantage, we think that the

LASSO-based approach provides a reasonable diagnosis tool for MSPC.

Table 3: Diagnostic results of the proposed procedure (9) and the step-down procedure
in the case when p = 15, λ = 0.2, and IC ARL=500. In the table, columns labeled “C”
present relative frequencies of identifying shifted measurement components correctly,
and the columns labelled “I” denote relative frequencies that at least one shifted
components is missed and at least one identified shifted component is false. For a
given entry with relative frequency π̂, its standard error can be computed by the
formula

√
π̂(1 − π̂)/10000.

shifts step-down MEWMA-(9) LEWMA-(9)

C I C I C I
δ1 = 0.50 0.07 0.08 0.54 0.11 0.55 0.13
δ1 = 1.00 0.07 0.04 0.57 0.08 0.61 0.06
δ3 = 0.50 0.05 0.09 0.53 0.12 0.55 0.12
δ3 = 1.00 0.07 0.06 0.58 0.08 0.61 0.07
δ1 = 0.50; δ2 = 0.25 0.07 0.22 0.34 0.24 0.32 0.28
δ1 = 0.50; δ2 = 0.50 0.07 0.13 0.40 0.18 0.37 0.22
δ1 = 0.50; δ2 = 0.75 0.07 0.23 0.19 0.26 0.22 0.27
δ1 = 0.50; δ3 = 0.25 0.06 0.28 0.22 0.37 0.27 0.34
δ1 = 0.50; δ3 = 0.50 0.06 0.36 0.24 0.34 0.29 0.32
δ1 = 0.50; δ3 = 0.75 0.06 0.36 0.16 0.35 0.20 0.32
δ3 = 0.50; δ8 = 0.25 0.05 0.44 0.15 0.35 0.20 0.34
δ3 = 0.50; δ8 = 0.50 0.06 0.34 0.27 0.29 0.30 0.30
δ3 = 0.50; δ8 = 0.75 0.07 0.35 0.23 0.29 0.27 0.29
δ1 = 0.50; δ2 = 0.25; δ3 = 0.25 0.08 0.32 0.19 0.30 0.18 0.34
δ1 = 0.25; δ2 = 0.25; δ3 = 0.50 0.06 0.48 0.04 0.36 0.06 0.36
δ2 = 0.50; δ3 = 0.25; δ8 = 0.25 0.06 0.55 0.11 0.42 0.12 0.43
δ2 = 0.25; δ3 = 0.25; δ8 = 0.50 0.05 0.59 0.05 0.43 0.07 0.42
δ7 = 0.50; δ8 = 0.25; δ9 = 0.50 0.05 0.51 0.05 0.42 0.06 0.44
δ7 = 0.25; δ8 = 0.75; δ9 = 0.50 0.09 0.30 0.28 0.25 0.24 0.30
δ6 = 0.50; δ8 = 0.25; δ10 = 0.50 0.04 0.62 0.08 0.47 0.13 0.43
δ6 = 0.25; δ8 = 0.75; δ10 = 0.50 0.07 0.55 0.12 0.43 0.09 0.47
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In the previous examples, the IC and OC distributions are assumed multivariate

normal and the IC parameters are all known. In the online supplementary materials,

a numerical example is presented to study the performance of the three control charts

LEWMA, MEWMA and REWMA when these assumptions are violated, which shows

that the three control charts are all affected by violations of the assumptions and their

sensitivity to the violations is comparable.

4 An Application

We illustrate the proposed method using a dataset from an aluminum smelter that

produces metallic aluminum from dissolved alumina through a chemical reaction pro-

cess. The dataset contains five variables–the contents of SiO2, Fe2O3, MgO, CaO,

and Al2O3 (labeled as X1, X2, X3, X4, and X5) in the cryolite/alumina mixture that

goes through the chemical reaction process. These measures are important to the

quality of metallic aluminum produced. More detailed information about this data

can be found in Qiu and Hawkins (2001) and Zamba and Hawkins (2006).

The dataset has 189 vectors. Figure 3 shows the time series of the raw data.

Similar to Qiu and Hawkins (2001), we first pre-whiten the dataset by removing sub-

stantial autocorrelation in the original measurements. Then, since our method relies

on the joint normality of the 5 variables, we transform X1 and X5 to the log scale, as

was done in Zamba and Hawkins (2006). For the transformed data, Mardia’s multi-

variate normality test (Mardia 1970) gives the p-value of about 0.27, which suggests

that the multivariate normality assumption is valid in this case. Some summary

statistics of the transformed data are presented in Table S3 included in the online

supplementary materials, which shows that the correlation matrix Σ̂ contains several

large entries. Therefore, multivariate control charts should be more appropriate to

23



use in this example than univariate control charts.
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Figure 3: The raw aluminum smelter data.

We then apply the three control charts LEMMA, REWMA and MEWMA to

this dataset. In the LEMMA chart, we set λ = 0.2, q = 5, and IC ARL=500. Its

control limit is computed to be L = 5.143, using estimated IC parameters from the

first 75 vectors of the data. Note that a calibration sample of this size is smaller

than one would like to fully determine the IC measurement distribution. Based on

the simulation results shown in Figure S1 in the online supplementary materials, the

actual IC ARLs of the three procedures could be quite different from their nominal IC

ARLs in such cases. So, this example is just for illustrating the use of the proposed

method in a real-world setting. In practice, a larger calibration sample (say 500

vectors; cf., Figure S1) is desired. Figure 4 shows the resulting LEWMA chart (solid

curve connecting the dots), along with its control limit (solid horizontal line). The

corresponding REWMA chart (dashed curve connecting little circles), MEWMA chart

(dotted curve connecting little diamonds), and their control limits (horizontal dashed

and dotted lines, respectively) are also presented in the figure. All three charts

signal at the 83rd observation and remain above their control limits in the remainder

of the sequence, but the LEMMA chart gives a more convincing evidence of the

shift because its charting statistic values after the 83rd observation are much higher

than its control limit, compared to the other two charts. We also applied the anti-

rank CUSUM chart proposed by Qiu and Hawkins (2001) to this dataset; with a

reference value of 0.5, that chart does not give a signal until the 91st observation.
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We think that the anti-rank chart is relatively inefficient here because it does not

use the normality assumption that approximately is satisfied for the transformed

data. Then, we use the proposed diagnostic procedure (9) to identify the shifted

variables, after the change-point estimate of τ̂ = 81 is obtained. Table 4 tabulates

the resulting five LASSO estimates µ̂γ̃j
, for j = 1, . . . , 5, and the corresponding values

of Dj = 2(X̄81,83 − µ̂γ̃j
)′Σ−1(X̄81,83 − µ̂γ̃j

) + 2 ln(5) · j (denoted as D-value in Table

4). These values indicate that the shift may have occurred in the last two variables

CaO and Al2O3.
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Figure 4: LEWMA, REWMA and MEWMA control charts for monitoring the alu-
minum smelting process. The solid, dashed and dotted horizontal lines indicate their
control limits, respectively.

Table 4: Diagnostic results of procedure (9) about the aluminum smelter data.
j µ̂γ̃j

D-value
1 0.000 0.000 0.000 0.000 -2.383 17.332
2 0.000 0.000 0.000 0.977 -2.970 13.914
3 0.248 0.000 0.000 1.134 -3.112 15.388
4 0.799 0.000 -0.423 1.747 -3.671 14.552
5 1.263 0.778 -1.184 1.984 -3.689 16.094
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5 Concluding Remarks

In this paper, we have proposed a new framework for MSPC using LASSO estima-

tors. A LASSO-based multivariate test statistic is proposed, and it is combined with

a multivariate EWMA procedure for Phase II process monitoring. Because of certain

good properties of the LASSO estimators, the proposed control chart has a balanced

protection against various shifts. We also proposed a LASSO-based diagnostic proce-

dure that is convenient to use. Numerical studies show that the proposed monitoring

and diagnosis approaches would be effective in industrial applications.

The current version of the proposed LEWMA chart is designed for detecting mean

shifts only, and it is based on the assumptions that the multivariate observations are

independent of each other, they follow normal distributions, and their IC distribu-

tion is known. We believe that, after certain modifications to the LASSO penalized

likelihood function (2), the proposed method should be able to handle cases in which

monitoring both the mean vector and the covariance matrix is of interest (cf., e.g.,

Huwang et al. 2007). In such cases, we would face a much higher dimensional prob-

lem (i.e., [p(p+3)/2]-dimensional case); we expect that the potential improvement by

LEWMA, compared to its peers, would be even larger. In addition, the multivariate

normality assumption could be readily relaxed to the elliptical distribution assump-

tion (cf., Liu and Singh 1993). It requires much future research to (i) further extend

the proposed approach to nonparametric multivariate SPC cases (cf., Liu 1995; Qiu

and and Hawkins 2001, 2003) and (ii) accommodate possible correlation among ob-

servations observed at different time points. Future research includes a self-starting

version of the LEWMA chart (cf., Hawkins and Maboudou-Tchao 2007) and a study

of its properties in cases when the IC parameters in the measurement distribution are

unknown (cf., Jones et al. 2001).
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Supplemental file for the paper titled “Multivariate

Statistical Process Control Using LASSO”

1 Some Supplemental Simulation Results

In Table 1 of the printed paper, λ is fixed at 0.2 for all three charts MEWMA,

REWMA, and LEWMA. To diminish the possible effect of λ on the performance of

the three charts, we also compute the optimal OC ARLs with respect to λ (i.e., the

smallest OC ARLs when λ changes) for all three charts in the cases considered in

Table 1. The results are presented in Table S1.

Table S1: Optimal OC ARL values of control charts MEWMA, REWMA, and
LEWMA, in the case when p = 5 and IC ARL=500. Numbers in parentheses are
standard errors. They are shown as “.00” when they are smaller than 0.01.

shifts MEWMA REWMA LEWMA

X1 X2 X3 X4 X5 q = 3 q = 5
0.91 0.00 0.00 0.00 0.00 14.7 (.06) 12.8 (.05) 13.0 (.05) 13.2 (.05)
0.00 0.36 0.00 0.00 0.00 14.5 (.06) 12.2 (.05) 12.8 (.05) 13.1 (.05)
0.00 0.00 0.48 0.00 0.00 14.8 (.06) 12.5 (.05) 13.2 (.05) 13.5 (.05)
0.00 0.00 0.00 0.34 0.00 14.7 (.06) 12.3 (.05) 12.9 (.05) 13.3 (.05)
0.00 0.00 0.00 0.00 0.46 15.0 (.06) 12.7 (.05) 13.4 (.05) 14.0 (.05)
0.36 0.36 0.00 0.00 0.00 13.3 (.05) 12.3 (.05) 12.2 (.05) 12.5 (.05)
0.54 0.00 0.54 0.00 0.00 11.9 (.04) 12.0 (.04) 11.6 (.04) 11.7 (.04)
0.32 0.00 0.00 0.32 0.00 13.4 (.05) 12.0 (.04) 12.3 (.05) 12.4 (.05)
0.49 0.00 0.00 0.00 0.49 12.0 (.04) 11.6 (.04) 11.5 (.04) 11.6 (.04)
0.00 0.54 0.54 0.00 0.00 8.35 (.03) 11.4 (.04) 8.40 (.03) 8.44 (.03)
0.00 1.60 0.00 1.60 0.00 3.07 (.01) 7.93 (.03) 3.21 (.01) 3.18 (.01)
0.00 0.28 0.00 0.00 0.28 11.9 (.04) 10.2 (.04) 10.7 (.04) 10.9 (.04)
0.00 0.00 0.28 0.28 0.00 11.9 (.04) 10.2 (.04) 10.8 (.04) 10.9 (.04)
0.00 0.00 1.26 0.00 1.26 3.89 (.01) 7.68 (.02) 4.03 (.01) 4.01 (.01)
0.00 0.00 0.00 0.56 0.56 8.05 (.03) 11.3 (.04) 8.07 (.03) 8.14 (.03)
0.01 -0.15 0.07 0.17 -0.09 13.2 (.05) 10.9 (.04) 11.6 (.04) 11.7 (.04)
0.07 -0.13 -0.40 0.19 0.35 9.79 (.03) 11.5 (.04) 9.71 (.03) 9.79 (.03)
0.40 0.63 -0.57 0.47 -0.68 4.62 (.01) 9.01 (.04) 4.85 (.01) 4.82 (.01)
-1.11 0.26 -0.17 0.34 -0.04 11.1 (.05) 12.9 (.07) 11.7 (.05) 11.4 (.05)
2.51 7.11 7.05 7.11 7.08 1.00 (.00) 7.45 (.02) 2.40 (.00) 1.09 (.00)

RMI 0.086 0.556 0.100 0.045
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In the printed paper, we compare the proposed diagnostic procedure (9) with the

existing step-down procedure in the setting of Table 2, and the results are presented

in Table 3. In Table S2, we provide the comparison results in the setting of Table 1.

All labels in Table S2 are the same as those in Table 3 of the printed paper.

Table S2: Diagnostic results of the proposed procedure (12) and the step-down pro-
cedure in the case when p = 5, λ = 0.2, and IC ARL=500. In the table, columns
labeled “C” present relative frequencies of identifying shifted measurement compo-
nents correctly, and the columns labelled “I” denote relative frequencies that at least
one shifted component is missed while at least one identified shifted component is
false.

shifts step-down LEWMA-(9) MEWMA-(9)

X1 X2 X3 X4 X5 C I C I C I
0.91 0.0 0.0 0.0 0.0 0.36 0.02 0.51 0.01 0.48 0.02
0.0 0.36 0.0 0.0 0.0 0.30 0.24 0.43 0.23 0.43 0.21
0.0 0.0 0.48 0.0 0.0 0.34 0.16 0.47 0.13 0.45 0.12
0.0 0.0 0.0 0.34 0.0 0.30 0.25 0.44 0.22 0.43 0.22
0.0 0.0 0.0 0.0 0.46 0.33 0.17 0.46 0.13 0.44 0.13
0.36 0.36 0.0 0.0 0.0 0.22 0.44 0.18 0.38 0.18 0.38
0.54 0.0 0.54 0.0 0.0 0.34 0.29 0.26 0.27 0.26 0.27
0.32 0.0 0.0 0.32 0.0 0.20 0.46 0.15 0.40 0.16 0.39
0.49 0.0 0.0 0.0 0.49 0.30 0.33 0.24 0.29 0.24 0.30
0.0 0.54 0.54 0.00 0.0 0.37 0.31 0.39 0.28 0.39 0.28
0.0 1.60 0.0 1.60 0.0 0.57 0.07 0.58 0.05 0.57 0.05
0.0 0.28 0.0 0.0 0.28 0.23 0.44 0.24 0.41 0.25 0.41
0.0 0.0 0.28 0.28 0.0 0.23 0.44 0.23 0.40 0.26 0.41
0.0 0.0 1.26 0.0 1.26 0.56 0.11 0.54 0.06 0.51 0.08
0.0 0.0 0.0 0.56 0.56 0.37 0.30 0.40 0.27 0.39 0.27
0.01 -0.15 0.07 0.17 -0.09 0.01 0.00 0.01 0.00 0.01 0.00
0.07 -0.13 -0.40 0.19 0.35 0.01 0.00 0.01 0.00 0.01 0.00
0.40 0.63 -0.57 0.47 -0.68 0.00 0.00 0.04 0.00 0.04 0.00
-1.11 0.26 -0.17 0.34 -0.04 0.03 0.00 0.03 0.00 0.03 0.00
2.51 7.11 7.05 7.11 7.08 0.85 0.00 0.89 0.00 0.88 0.00
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In all the simulation examples in the printed paper, it is assumed that the IC and

OC distributions are multivariate normal and the IC parameters are known. Next,

we study the performance of LEWMA when these assumptions are violated. To this

end, we use the example of Table 1 in which p = 5 and the nominal IC ARL=500.

First, we consider the case when the IC and OC distributions are multivariate normal,

but the IC mean and covariance matrix are unknown and need to be estimated from

an IC dataset. Figure S1(a) shows the IC ARLs, computed from 20,000 replicated

simulations, of the three control charts LEWMA, MEWMA and REWMA when the

IC parameters are computed from an IC dataset with varying sample size. From the

plot, it can be seen that (i) when the sample size of the IC dataset is relatively small,

the actual IC ARLs of the three charts are all quite far away from the nominal level

500, (ii) when the sample size of the IC dataset increases, such biases decrease, and

(iii) the biases in IC ARL of the three charts are similar, although MEWMA has a

little larger bias when the sample size of the IC dataset is larger than 200. Next,

we consider a case when the IC distribution is not normal, which is described below.

Multivariate observations are generated in the same way as those in the example of

Table 1 except that the first two components of the observations are first transformed

by the function ψ−1
d (Φ(·)) and then normalized to have mean 0 and standard deviation

1, where Φ(·) is the standard normal cumulative distribution function (CDF) and

ψ−1
d (·) is the inverse of the chi-square CDF with d degrees of freedom. Therefore,

the first two components of the multivariate observations would follow a normalized

chi-square distribution with d degrees of freedom. When d is larger, this distribution

is closer to the standard normal distribution. Figure S1(b) shows the IC ARLs,

computed from 20,000 replicated simulations, of the three control charts in this case.

From the plot, we can see that the three charts are affected similarly by the violation

of the normality assumption.
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Figure S1: (a): IC ARLs of the LEWMA, REWMA and MEWMA charts when p = 5
and the IC mean and covariance matrix are estimated from an IC sample. (b): IC
ARLs of the three charts when p = 5 and the first two components of the observations
follow a normalized chi-square distribution with d degrees of freedom. In both cases,
the nominal IC ARL is fixed at 500.

Table S3 below presents some summary statistics of the transformed and pre-

whitened aluminum smelter data.

Table S3: Table S3. Summary statistics of the transformed, pre-whitened aluminum
smelter data

X1 X2 X3 X4 X5

Sample means
-0.1083 0.0162 0.0573 -0.0085 1.0893

Sample standard deviations
0.1727 0.3307 0.5313 0.1897 0.0336

Sample correlation matrix Σ̂

1.0000 0.2629 -0.0912 -0.0704 -0.0432
0.2629 1.0000 -0.7201 -0.0667 0.3150
-0.0912 -0.7201 1.0000 -0.1895 -0.0051
-0.0704 -0.0667 -0.1895 1.0000 -0.3000
-0.0432 0.3150 -0.0051 -0.3000 1.0000
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2 Some Technical Details

In this part, we provide proofs of propositions in Section 2 of the printed paper. For

ease of presentation, we will use the following notation. Assume that M is a matrix

with p columns, and D is a subset of {1, 2, . . . , p}. Then, matrix MD consists of all

columns of M whose indices are in D. Similarly, βD denotes a vector consisting of

elements of a p-dimensional vector whose indices are in D. Moreover, M(i,j) denotes

the (i, j)-th element of matrix M.

Proof of Proposition 1

(i) Since P (T̃γin
≥ 0) = 1−P (µ̂γin

= 0), to prove part (i) of Proposition 1, we only

need to show that

[1 − P (µ̂γ2n
= 0)]/[1 − P (µ̂γ1n

= 0)] → 0.

Rewrite (3) as

PL(α) = (Σ− 1

2

√
nX̄ − Σ− 1

2

√
nΛα)′(Σ− 1

2

√
nX̄ − Σ− 1

2

√
nΛα) + nγ

p∑

i=1

|α(i)|.

(A.1)

It is straightforward to verify that (A.1) satisfies the setup of the LASSO optimization

in Knight and Fu (2000). Hence, by using (10) in Knight and Fu (2000) or the

Karush-Kuhn-Tucker (KKT) optimality condition (cf., Osborne et al. 2000), we have

the conclusion that µ̂γin
= 0 if and only if

| − 2(
√
nΛ)Σ−1(

√
nX̄)| ≤ nγin, (A.2)

where “≤” holds for each component. Let R = 2(
√
nΛΣ−1/2)(

√
nΣ−1/2X̄). Then,

under H0, the i-th component of |R| can be expressed as |R(i)| = |ciaibi|, where

ci = 2[Σ(i,i)]
1

2 [(Σ−1)(i,i)]
1

2 , and ai and bi are standard Normal random variables. Thus,

5



we have

P (µ̂γ1n
6= 0)

P (µ̂γ2n
6= 0)

≥ P (|R(j)| > nγ1n, for some j)
∑p

i=1 P (|R(i)| > nγ2n)

>
P (|aj| >

√
nγ1n/mini |ci|) · P (|bj| >

√
nγ1n/mini |ci|)

p · [P (|bj| >
√
nγ2n/maxi |ci|) + P (|aj| >

√
nγ2n/maxi |ci|)]

= C
γ1n

γ2n

expnγ2n/(2maxi |ci|)−nγ1n/ mini |ci|(1 + o(1)) → ∞,

where C is a positive constant. In the above expression, we have used the facts that

1 − Φ(t) ≈ φ(t)
t

for large t and the conditions that nγin → ∞ for i = 1, 2, where

Φ(·) and φ(·) are the cumulative distribution function and the density function of the

standard Normal distribution.

(ii) Apparently, under H1, P (T̃γin
≥ 0) → 1 if and only if P (µ̂γi

= 0) → 0. By

(A.2) and the facts that Λ = Op(n
t) and Σ−1√n(X̄ − µ) ∼ N(0,Σ−1), we obtain

the necessary and sufficient condition that n−2tγin → 0 in part (ii) of Proposition 1.

Next, we show that

(
µ̂γin

)
a

= X̄a +Op(n
−1/2)

P
[(

µ̂γin

)
b
= 0

]
→ 1, for i = 1, 2,

where βa and βb are sub-vectors of a p-dimensional vector β consisting of the first

p0 and the remaining p − p0 elements, respectively. These results can be obtained

in a similar way to Theorems 1-3 in Wang and Leng (2007), or to Theorems 1-3 in

Fan and Li (2001). The only difference is that µ is of order o(1) here. The technical

arguments in the proof of Theorems 1-3 in Wang and Leng (2007) continue to hold in

the current setting, and we only need to change the condition to n−s+ 1

2γin → 0 in the

current setting (cf., the last term of (A.2) in Wang and Leng 2007). For simplicity,

details of these arguments are omitted here. Based on these results, it can be easily

checked that

T̃γin
= n(X̄

′
a, 0

′
b)Σ

−1X̄(1 + op(1)), i = 1, 2,

which implies that, under H1, T̃γ1n
and T̃γ2n

converge to infinity with the same rate

O(n1+2t). �
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To prove Proposition 2, we first give the following two lemmas.

Lemma 1 When γ ∈ [γ̃K , γ̃0] decreases, l(µ̂γ) strictly decreases, and T̃γ strictly in-
creases.

Proof. Let Y = Σ− 1

2

√
nX̄, Z = Σ− 1

2

√
nΛ and ζ = nγ. For the LASSO objective

function (A.1), the LARS-LASSO transition points are assumed to be ζ̃0 > ζ̃1 > . . . >

ζ̃K = 0. For any ζ ∈ (ζ̃m+1, ζ̃m), where 0 ≤ m ≤ K−1, by the definition of transition

points, B(ζ) and S(ζ) do not change with ζ and take the values of, say B(ζ) = Bm

and S(ζ) = Sm. Then, by Lemma 1 in Zou et al. (2007), we have

α̂ζBm
= (Z′

Bm
ZBm

)−1(Z′
Bm

Y − ζ

2
SmBm

). (A.3)

Similar to the proof of Theorem 3 in Zou et al. (2007), we have

l(µ̂γ) = (Σ− 1

2

√
nX̄ − Σ− 1

2

√
nΛα̂γ)

′(Σ− 1

2

√
nX̄ − Σ− 1

2

√
nΛα̂γ)

= Y ′(I − HBm
)Y +

ζ2

4
S ′

mBm
(Z′

Bm
ZBm

)−1SmBm
,

where HBm
= ZBm

(Z′
Bm

ZBm
)−1Z′

Bm
. Thus, l(µ̂γ) is strictly increasing in interval

(ζ̃m+1, ζ̃m). By the continuity property of LASSO solutions (cf., Lemma 4 of Zou et

al. 2007), we have the conclusion that l(µ̂γ) monotonically decreases as γ decreases.

For T̃γ , when ζ ∈ (ζ̃m+1, ζ̃m), it is easy to check that

T̃nζ =
(α̂′

ζBm
Z′

Bm
Y )2

α̂
′
ζBm

(Z′
Bm

ZBm
)α̂ζBm

.

After substituting (A.3) into the above equation and certain additional mathematical

manipulations, we have

∂T̃nζ

∂ζ
=

1

2
ζα̂′

ζBm
Z′

Bm
Y

[S′
mBm

(Z′
Bm

ZBm
)−1Z′

Bm
Y ]2 − Y ′HBm

Y × [S′
mBm

(Z′
Bm

ZBm
)−1SmBm

]

[α̂′
ζBm

(Z′
Bm

ZBm
)α̂ζBm

]2
.

Using the Cauchy-Schwarz inequality, it is straightforward to see that

[S ′
mBm

(Z′
Bm

ZBm
)−1Z′

Bm
Y ]2 ≤ Y ′HBm

Y × [S′
mBm

(Z′
Bm

ZBm
)−1SmBm

],

and the probability of attaining the equality is zero. Note that

2α̂′
ζBm

Z′
Bm

Y − α̂
′
ζBm

(Z′
Bm

ZBm
)−1α̂ζBm

= l(0) − l(µ̂γ) > 0,

we have α̂
′
ζBm

Z′
Bm

Y > 0. Therefore, T̃nζ strictly increases when γ decreases. �
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Lemma 2 Under the conditions in Proposition 2, with probability tending to 1,

(
µ̂γ̃

mlast
p0

)

a

=

X̄a + Op(n
−1/2) and

(
µ̂γ̃

mlast
p0

)

b

= 0, where

(
µ̂γ̃

mlast
p0

)

a

and

(
µ̂γ̃

mlast
p0

)

b

denote parts

of µ̂γ̃
mlast

p0

with the first p0 and the remaining p− p0 elements, respectively.

Proof. Similar to Theorems 2-3 in Wang and Leng (2007), we can show µ̂γn
has the

oracle property that, if nγn → ∞ and n−s+ 1

2γn → 0, then with probability tending

to 1,
(
µ̂γn

)
a
−µa = X̄a +Op(n

−1/2) and
(
µ̂γn

)
b
= 0. Hence, there exists at least one

γ∗n ∈ (γ̃K , γ̃0) such that µ̂γ∗

n
satisfies the oracle property. If γ̃mlast

p0

= γ∗n, then the results

are obvious. Next, we show that γ̃mlast
p0

≤ γ∗n with probability tending to 1. Since the

“one at a time” condition holds almost everywhere, if γ̃mlast
p0

> γ∗n, then we have

γ∗n ∈ (γ̃mlast
p0

+1, γ̃mlast
p0

). Therefore, at the transition point γ̃mlast
p0

+1, an index is removed

from Bmlast
p0

. On the other hand, it is easy to see that l(µ̂γ̃
mlast

p0
+1

) ≥ |Op(n
1+2s)| while

l(µ̂γ∗

n
) ∼ |Op(1)|. By the fact that l(µ̂γ) is strictly decreasing as γ decreases, as

shown in Lemma 1 above, we have the conclusion that, with probability tending to 1,

γ̃mlast
p0

≤ γ∗n. Similarly, the monotonic property of l(µ̂γ) would lead to the conclusion

that B(γ̃mlast
p0

) = B(γ∗n), i.e,

(
µ̂γ̃

mlast
p0

)

b

= 0. By (A.3) and the facts that γ̃mlast
p0

≤ γ∗n

and n−s+ 1

2 γ̃mlast
p0

→ 0, we have

(
µ̂γ̃

mlast
p0

)

a

= X̄a +Op(n
−1/2). �

Proof of Proposition 2

Under the null hypothesis, suppose there are two constants c1 and c2 such that

P
(
nX̄

′
Σ−1X̄ > c1

)
= P

(
T̃γ̃

mlast
p0

> c2

)
= α0,

where α0 is a pre-specified type I error probability. Then, by Lemmas 1 and 2, and

the fact that γ̃mlast
p0

< γ̃K , it follows that c1 > c2 and thus there exists ε > 0 so that

c1 − (c2 + ε) > 0. Under the alternative hypothesis, by Lemma 2 and the Taylor

expansions, after certain high-order terms are ignored, we have

T̃γ̃
mlast

p0

= nX̄
′
Σ−1X̄(1 + op(1)).
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Then, under H1, with probability tending to 1, we have

P
(
nX̄

′
Σ−1X̄ < c1

)

P
(
T̃γ̃

mlast
p0

< c2

) =
P

(
nX̄

′
Σ−1X̄ < c1

)

P
(
nX̄

′
Σ−1X̄ < c2(1 + op(1))

)

≥ P (V < c2 + ε)

P (V < c2(1 + op(1)))
P (U < c1 − (c2 + ε))

≈ exp
{(√

c2 + ε−√
c2

)
(nµ′Σ−1µ)

1

2 − ε

2

}
P (U < c1 − (c2 + ε)) ,

where U and V are respectively distributed as χ2
p−1 and the non-central chi-square

distribution χ2
1(nµ′Σ−1µ). In the above expression, we have used the fact that

nX̄
′
Σ−1X̄ can be partitioned into two independent parts U and V . By noting that

the probability Pr {U < c1 − (c2 + ε)} is a value greater than zero for the fixed ε, it

follows that P
(
nX̄

′
Σ−1X̄ < c1

)
/P

(
T̃γ̃

mlast
p0

< c2

)
→ ∞, which completes the proof.

�

Proof of Proposition 3

Note that
√

2−λ
λ[1−(1−λ)2j ]

U j ∼ N(0,Σ) under the IC condition. Thus, to prove

Proposition 3, it is equivalent to show that the distributions of T̃γ̃
mlast

i

, for i ≥ 1, do

not depend on n. According to the LARS-LASSO algorithm of Efron et al. (2004), the

distribution of LASSO solution path (cf., (4)) does not depend on n, using (A.1) and

the fact that the distributions of
√
nX̄ and

√
nΛ are free of n under the IC condition.

Consequently, the distributions of
√
nµ̂γ̃

mlast
i

=
√
nΛα̂γ̃

mlast
i

, for i = 1, . . . , p, are free

of n. By the fact that T̃γ̃
mlast

i

= (
√
nµ̂

′
γ̃

mlast
i

Σ−1√nX̄)2/(
√
nµ̂

′
γ̃

mlast
i

Σ−1√nµ̂γ̃
mlast

i

), we

complete the proof. �
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