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Abstract

This article concerns tests for the two-sample location problem when data dimension

is larger than the sample size. Existing multivariate-sign-based procedures are not

robust against high dimensionality, producing tests with type I error rates far away from

nominal levels. This is mainly due to the biases from estimating location parameters.

We propose a novel test to overcome this issue by using the “leave-one-out” idea. The

proposed test statistic is scalar-invariant and thus is particularly useful when different

components have different scales in high-dimensional data. Asymptotic properties of

the test statistic are studied. Compared with other existing approaches, simulation

studies show that the proposed method behaves well in terms of sizes and power.

Keywords: Asymptotic normality; High-dimensional data; Large p, small n; Spatial

median; Spatial-sign test; Scalar-invariance.

1 Introduction

Assume that {Xi1, · · · ,Xini
} for i = 1, 2 are two independent random samples with sample

sizes n1 and n2, from p-variate distributions F (x − θ1) and G(x − θ2) located at p-variate

centers θ1 and θ2. We wish to test

H0 : θ1 = θ2 versus H1 : θ1 6= θ2. (1)
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Such a hypothesis test plays an important role in a number of statistical problems. A

classical method to deal with this problem is the famous Hotelling’s T 2 test statistic T 2
n =

n1n2

n
(X̄1 − X̄2)

TS−1
n (X̄1 − X̄2), where n = n1 + n2, X̄1 and X̄2 are the two sample means

and Sn is the pooled sample covariance. However, T 2
n is undefined when the dimension of

data is greater than the within sample degrees of freedom, say a so-called “large p, small n”

case which is largely motivated by the identification of significant genes in microarray and

genetic sequence studies (e.g., see Kosorok and Ma 2007 and the references therein).

The “large p, small n” situation refers to high-dimensional data whose dimension p

increases to infinity as the number of observations n →∞. With the rapid development of

technology, various types of high-dimensional data have been generated in many areas, such

as hyperspectral imagery, internet portals, microarray analysis and DNA. Like the Hotelling’s

T 2 test mentioned above, traditional methods may not work any more in this situation since

they assume that p keeps unchanged as n increases. This challenge calls for new statistical

tests to deal with high-dimensional data, see Dempster (1958), Bai and Saranadasa (1996),

Srivastava (2009) and Chen and Qin (2010) for two-sample tests for means, Ledoit and Wolf

(2002), Schott (2005), Srivastava (2005), Chen et al. (2010) and Zou et al. (2014) for testing

a specific covariance structure, Goeman et al. (2006), Zhong et al. (2011) and Feng et al.

(2013) for high-dimensional regression coefficients.

Under the equality of two covariance matrices, say Σ1 = Σ2 = Σ, Bai and Saranadasa

(1996) proposed a test statistic based on the squared Euclidean distance, ||X̄1 − X̄2||2. The

key feature of Bai and Saranadasa’s proposal is to use the Euclidian norm to replace the

Mahalanobis norm since having S−1
n is no longer beneficial when p/n → c > 0. Chen and

Qin (2010) considered removing
∑ni

j=1 XT
ijXij for i = 1, 2 from ||X̄1 − X̄2||2 because these

terms impose demands on the dimensionality. However, both these two methods are not

scalar-invariant. In practice, different components may have completely different physical or

biological readings and thus certainly their scales would not be identical. For example, in

Nettleton et al. (2008), the authors pointed out that “it is well known that different genes

exhibit different levels of variation. If this heterogeneity of variance is not accounted for,

genes with larger variability can dominate the results of the proposed test.” As a result,

prior to analysis the authors applied scaling, which is equivalent to standardizing that data

for each gene to a common variance.
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Note that both of Bai and Saranadasa’s (1996) and Chen and Qin’s (2010) tests take

the sum of all p squared mean differences without using the information from the diagonal

elements of the sample covariance, i.e., the variances of variables, and thus their test power

would heavily depend on the underlying variance magnitudes. To address this issue, Srivas-

tava and Du (2008) proposed a scalar-transformation-invariant test under the assumption of

the equality of the two covariance matrices. Srivastava et al. (2013) further extended this

approach to unequal covariance matrices and revealed that their test has certain advantages

over Chen and Qin’s (2010) test by asymptotic and numerical analysis. Park and Ayyala

(2013) considered a similar setting with the idea of leave-one-out cross validation as em-

ployed in Chen and Qin (2010). Recently, Feng et al. (2014) and Gregory et al. (2014) also

considered cases where heteroscedasticity is present. Both two papers addressed the issues

of non-negligible bias-terms due to the plug-in of variance estimators, while the latter one

considered a higher-order expansion for bias-correction.

Although essentially nonparametric in spirit, the statistical performance of the moment-

based tests mentioned above would be degraded when the non-normality is severe, especially

for heavy-tailed distributions. This motivates us to consider using multivariate sign-and/or-

rank-based approaches to construct robust tests for (1). Many nonparametric methods

have been developed, as a reaction to the Gaussian approach of Hotelling’s test, with the

objective of extending to the multivariate context the classical univariate rank and signed-

rank techniques. Essentially, these methods belong to three main groups. The first of these

groups relies on componentwise rankings (see, e.g., the monograph by Puri and Sen 1971),

but suffers from a severe lack of invariance with respect to affine transformations, which

has been the main motivation for the other two approaches. The second group uses the

concept of interdirections (Peters and Randles 1990; Randles 1992), while the third one

(Hettmansperger and Oja 1994; Möttönen and Oja 1995; Randles 2000) is closely related

with the spatial signs and ranks along with the use of the so-called spatial median. See Oja

and Randles (2004) and Oja (2010). This work belongs to the third group with emphasis on

the applicability and effectiveness in high-dimensional environment.

Most of the tests proposed in the works mentioned above are based on spatial-signs

and ranks of the norms of observations centered at θ (an estimate in practice), with test

statistics that have structures similar to T 2
n . Those statistics are distribution-free under
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mild assumptions, or asymptotically so. Please refer to Chapter 11 of Oja (2010) for a

nice overview. Among them, due to its simplicity and effectiveness, the test entirely based

on spatial-signs is of particular interest and has been detailedly discussed. In this paper,

we focus on this type of test and show that some “off-the-shelf” modifications for high-

dimensional data are not robust against high dimensionality in the sense that they would

produce tests with type I errors far away from nominal levels. This is mainly due to additional

biases yielded by using the estimation of location parameter to replace the true one. In the

next section, we develop a novel remedy that is robust against high dimensionality. We

show that the proposed test statistic is asymptotically normal under elliptical distributions.

Simulation comparisons show that our procedure performs reasonably well in terms of sizes

and power for a wide range of dimensions, sample sizes and distributions. Recently, Wang

et al. (2014) proposed a high-dimensional nonparametric multivariate test for mean vector

based on spatial-signs. However, their focus is on one-sample problem and thus their method

is significantly different from our proposal as we will explain in a later section.

2 Multivariate-sign-based high-dimensional tests

2.1 The proposed test statistic

We develop the test for (1) under the elliptically symmetric assumption which is com-

monly adopted in the literature of multivariate-sign-based approaches (Oja 2010). Assume

{Xi1, . . . ,Xini
}, i = 1, 2 be two independently and identically distributed (i.i.d.) random

samples from p-variate elliptical distribution with density functions det(Σi)
−1/2gi(||Σ−1/2

i (x−
θi)||), i = 1, 2, where θi’s are the symmetry centers and Σi’s are two positive definite sym-

metric p×p scatter matrices. The spatial sign function is defined as U(x) = ||x||−1xI(x 6= 0).

Denote εij = Σ
−1/2
i (Xij − θi). The modulus ||εij|| and the direction uij = U(εij) are in-

dependent, and the direction vector uij is uniformly distributed on the p-dimensional unit

sphere. It is then well known that E(uij) = 0 and cov(uij) = p−1Ip.

In traditional fixed p circumstance, the following so-called “inner centering and inner
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standardization” sign-based procedure is usually used (cf., Section 11.3 of Oja 2010)

Q2
n = p

2∑
i=1

niÛ
T
i Ûi, (2)

where Ûi = n−1
i

∑ni

j=1 Ûij, Ûij = U(S−1/2(Xij − θ̂)), θ̂ and S−1/2 are Hettmansperger and

Randles’s (2002) estimates (HRE) of location and scatter matrix so that

2∑
i=1

ni∑
j=1

Ûij = 0 and pn−1

2∑
i=1

ni∑
j=1

ÛijÛ
T
ij = Ip.

Q2
n is affine-invariant and can be regarded as a nonparametric counterpart of T 2

n by using

the spatial-signs instead of the original observations Xij’s. However, when p > n, Q2
n is not

defined as the matrix S−1/2 is is not available in high-dimensional settings. Though there

has been a growing body of research in large-scale covariance matrix estimation under cer-

tain assumptions of sparseness (e.g., Bickel and Levina 2008; Cai and Liu 2011), obtaining a

sparse estimator of scatter matrix in the robust context appears to be even more complicated

and has not been thoroughly addressed in the literature. More importantly, the effectiveness

of Mahalanobis distance-based tests is adversely impacted by an increased dimension even

p < n, reflecting a reduced degree of freedom in estimation when the dimensionality is close

to the sample size. The contamination bias, which grows rapidly with p, would make the

Mahalanobis distance-based tests unreliable for a large p. Bai and Saranadasa (1996) pro-

vided certain asymptotic justifications and Goeman et al. (2006) contained some numerical

evidence. Please refer to numerical comparison in Section 3 and some technical discussion

in Appendix F of the Supplemental Material.

Alternatively, we develop a scalar-transformation-invariant test on the line of Srivastava

et al. (2013), which is able to integrate all the individual information in a relatively “fair”

way. To this end, we suggest to find a pair of diagonal matrix Di and vector θi for each

sample that simultaneously satisfy

1

ni

ni∑
j=1

U(εij) = 0 and
p

ni

diag

{
ni∑

j=1

U(εij)U(εij)
T

}
= Ip, (3)

where εij = D
−1/2
i (Xij − θi). (Di, θi) can be viewed as a simplified version of HRE with-

out considering the off-diagonal elements of S. We can adapt the recursive algorithm of
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Hettmansperger and Randles (2002) to solve (3). That is, repeat the following three steps

until convergence:

(i) εij ← D
−1/2
i (Xij − θi), j = 1, · · · , ni;

(ii) θi ← θi +
D

1/2
i

∑ni
j=1 U(εij)∑n

j=1 ||εij ||−1 ;

(iii) Di ← pD
1/2
i diag{n−1

i

∑ni

j=1 U(εij)U(εij)
T}D1/2

i .

The resulting estimators of location and diagonal matrix are denoted as θ̂i and D̂i, i = 1, 2,

respectively. We may use the sample mean and sample variances as the initial estimators.

It appears that we can construct Q2
n with a pooled sample estimate, (θ̂, D̂), obtained

by using (3). However, this would yield a bias-term which is not negligible (with respect to

the standard deviation) when n/p = O(1) because we replace the true spatial median with

its estimate. It seems infeasible to develop a bias-correction procedure as done in Zou et

al. (2014) because the bias term depends on the unknown quantities Σi’s. Please refer to

Appendix C in the Supplemental Material for the closed-form of this bias and associated

asymptotic analysis. In fact, the test statistic proposed by Wang et al. (2014) is essentially

in a similar fashion to Q2
n. However, their method does not suffer from additional biases

because in a one-sample problem we do not need the estimate of spatial median.

To overcome this difficulty, we propose the following test statistic

Rn = − 1

n1n2

n1∑
i=1

n2∑
j=1

UT (D̂
−1/2
1,i (X1i − θ̂2,j))U(D̂

−1/2
2,j (X2j − θ̂1,i)),

where θ̂i,j and D̂i,j are the corresponding location vectors and scatter matrices using “leave-

one-out” samples {Xik}k 6=j. Intuitively, if θ1 6= θ2, both U(D̂
−1/2
1,i (X1i−θ̂2,j)) and U(D̂

−1/2
2,j (X2j−

θ̂1,i)) would deviate from 0 to certain degree and thus a large value of Rn leads to reject the

null hypothesis. As shown later, E(Rn) ∝ (θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) (approximately

speaking), and hence Rn can well reflect the difference between two locations and is basically

all we need for testing. A derivation in Appendix A shows that under H0 the expectation of

Rn is asymptotically negligible compared to its standard deviation. This feature is particular

useful in the construction of the test because we do not need to estimate its expectation. The

following proposition shows that the proposed test statistic Rn is invariant under location

shifts and the group of scalar transformations.
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Proposition 1 Define X̃ij = D1/2Xij+c, where c is a constant vector, D = diag{d2
1, · · · , d2

p},
and d1, · · · , dp are non-zero constants. Denote the corresponding test statistic with X̃ij as

R̃n. Then, we have R̃n = Rn.

2.2 Asymptotic results

Next, we study the asymptotic behavior of Rn under the null and local alternative hypotheses.

Let Ri = D
−1/2
i ΣiD

−1/2
i , ci = E(||D−1/2

i (Xij − θi)||−1),

A1 = c2c
−1
1 Σ

1/2
1 D

−1/2
2 D

−1/2
1 Σ

1/2
1 ,

A2 = c1c
−1
2 Σ

1/2
2 D

−1/2
1 D

−1/2
2 Σ

1/2
2 ,

A3 = Σ
1/2
1 D

−1/2
1 D

−1/2
2 Σ

1/2
2 ,

and σ2
n =

(
2

n1(n1−1)p2 tr(A
2
1) + 2

n2(n2−1)p2 tr(A
2
2) + 4

n1n2p2 tr(A
T
3 A3)

)
. From the proof of The-

orem 1, we can see that var(Rn) = σ2
n(1 + o(1)). We need the following conditions for

asymptotic analysis:

(C1) n1/(n1 + n2) → κ ∈ (0, 1) as n →∞;

(C2) tr(AT
i AjA

T
l Ak) = o(tr2{(A1 + A2 + A3)

T (A1 + A2 + A3)}) for i, j, l, k = 1, 2, 3;

(C3) n−2/σn = O(1) and log p = o(n);

(C4) (tr(R2
i )− p) = o(n−1p2).

Remark 1 To appreciate Condition (C2), consider the simple case D1 = D2 = Ip, c1 = c2,

thus the condition becomes tr(ΣiΣjΣkΣl) = o(tr2((Σ1 + Σ2)
2)), i, j, k, l = 1, 2, which is

the same as condition (3.8) in Chen and Qin (2010). To better understand Condition (C3),

consider Σ1 and Σ2 with bounded eigenvalues which leads to σ2
n = O(n−2p). Thus, the

condition becomes p = O(n2), which allows dimensionality to increase as the square of

sample size. Certainly, when p is larger than n2, there would be another bias-term in Rn

which is difficult to calculate and deserves a future research.

The Condition (C4) is used to get the consistency of the diagonal matrix estimators.

If Ri = Ip, i = 1, 2, the module and the direction of D
−1/2
i (Xij − θi) are independent and
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accordingly it is easy to obtain the consistence of the diagonal matrix. However, the module

and the direction of D
−1/2
i (Xij − θi) are not independent in general case. Consider a simple

setting, tr(R2
i ) = O(p) (Srivastava and Du 2008). This condition reduces to p/n → ∞.

When the correlation between each components becomes larger, the dimension is required

to be higher to reduce the difference between the module ||εij|| and εT
ijRiεij. See more

information in the proof of Theorem 1 in Appendix A. ¤

The following theorem establishes the asymptotic null distribution of Rn.

Theorem 1 Under Conditions (C1)-(C4) and H0, as (p, n) →∞, Rn/σn
d→N(0, 1).

We propose the following estimators to estimate the trace terms in σ2
n

t̂r(A2
1) =

p2ĉ2
2ĉ
−2
1

n1(n1 − 1)

n1∑

k=1

n1∑

l 6=k

(
ŨT

1lD̂
−1/2
2 D̂

1/2
1 Ũ1k

)2

,

t̂r(A2
2) =

p2ĉ2
1ĉ
−2
2

n2(n2 − 1)

n1∑

k=1

n2∑

l 6=k

(
ŨT

2lD̂
−1/2
1 D̂

1/2
2 Ũ2k

)2

,

̂tr(AT
3 A3) =

p2

n1n2

n1∑

l=1

n2∑

k=1

(
ŨT

1lŨ2k

)2

,

where Ũij = U(D̂
−1/2
i,j (Xij − θ̂i,j)) and ĉi = n−1

i

∑ni

j=1 ||D̂−1/2
i,j (Xij − θ̂i,j)||.

Proposition 2 Suppose Conditions (C1)-(C4) hold. Then, we have

̂tr(AT
i Ai)

tr(AT
i Ai)

p→ 1, i = 1, 2, 3, as (p, n) →∞.

As a consequence, a ratio-consistent estimator of σ2
n under H0 is

σ̂2
n =

2

n1(n1 − 1)p2
t̂r(A2

1) +
2

n2(n2 − 1)p2
t̂r(A2

2) +
4

n1n2p2
̂tr(AT

3 A3).

This result suggests rejecting H0 with α level of significance if Rn/σ̂n > zα, where zα is the

upper α quantile of N(0, 1).

Next, we consider the asymptotic distribution of Rn under the alternative hypothesis

(C5) (θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) = O(c−1

1 c−1
2 σn).
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This assumption implies that the difference between θ1 and θ2 is not large relative to

c−1
1 c−1

2 σn so that a workable expression for the variance of Rn can be derived and thus leads

to an explicit power expression for the proposed test. It can be viewed as a high-dimensional

version of the local alternative hypotheses.

Theorem 2 Under Conditions (C1)-(C5), as (p, n) → ∞, (Rn − δn)/σ̃n
d→N(0, 1), where

δn = c1c2(θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) and

σ̃2
n = σ2

n +
c2
2

n1p
(θ1 − θ2)

TD
−1/2
2 R1D

−1/2
2 (θ1 − θ2) +

c2
1

n2p
(θ1 − θ2)

TD
−1/2
1 R2D

−1/2
1 (θ1 − θ2).

Theorems 1 and 2 allow us to compare the proposed test with some existing work, such

as Chen and Qin (2010) and Srivastava et al. (2013), in terms of the limiting efficiency. We

consider the following local alternatives

H1 : c1c2(θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) = $σn

with some constant $ > 0. Accordingly, the asymptotic power of our proposed spatial-sign-

based test (abbreviated SS) under this local alternative is

βSS(||θ1 − θ2||) = Φ(−zασn/σ̃n + δn/σ̃n),

where Φ is the standard normal distribution function. In order to obtain an explicit ex-

pression for comparison use, we assume that F = G and λmax(p
−1Ri) = o(n−1). Then,

D1 = D2 = D, R1 = R2 = R and c1 = c2 = c0. As a consequence, σ̃n = σn(1 + o(1)) and

the asymptotic power becomes

βSS(||θ1 − θ2||) = Φ

(
−zα +

c2
0pnκ(1− κ)(θ1 − θ2)

TD−1(θ1 − θ2)√
2tr(R2)

)
.

In comparison, by Srivastava et al. (2013) we can show that the asymptotic power of

their proposed test (abbreviated as SKK hereafter) is

βSKK(||θ1 − θ2||) = Φ

(
−zα +

npκ(1− κ)(θ1 − θ2)
TD−1(θ1 − θ2)

E(||εij||2)
√

2tr(R2)

)
.

Thus, the asymptotic relative efficiency (ARE) of SS with respect to SKK is

ARE(SS, SKK) = c2
0E(||εij||2) ≈ {E(||εij||−1)}2E(||εij||2),
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where we use the fact that c0 = E(||εij||−1)(1 + o(1)) under Condition (C4) (see the proof

of Theorem 1).

It can be also shown that for multivariate normal distributions ARE(SS, SKK) → 1 as

p →∞ (see Appendix E in the Supplemental Material). Hence, the SS test is asymptotically

as efficient as Srivastava et al.’s (2013) test in such settings. When the dimension p is not very

large, it can be expected that the proposed test, using only the direction of an observation

from the origin, should be outperformed by the test constructed with original observations

like that of Srivastava et al. (2013). However, as p →∞, the disadvantage diminishes.

On the other hand, if Xij’s are generated from the multivariate t-distribution with ν

degrees of freedom (ν > 2),

ARE(SS, SKK) =
2

ν − 2

(
Γ((ν + 1)/2)

Γ(ν/2)

)2

.

The ARE values for ν = 3, 4, 5, 6 are 2.54, 1.76, 1.51, and 1.38, respectively. Clearly, the SS

test is more powerful than SKK when the distributions are heavy-tailed (ν is small), which

is verified by simulation studies in Section 3.

In contrast, Chen and Qin (2010) showed that the power of their proposed test (abbre-

viated as CQ) is

βCQ(||θ1 − θ2||) = Φ

(
−zα +

npκ(1− κ)||θ1 − θ2||2
E(||εij||2)

√
2tr(Σ2)

)
.

As shown by Srivastava et al. (2013), this quantity, βCQ, can be much smaller than βSKK

in the cases that different components have different scales because the CQ test is not

scalar-invariant. To appreciate the effect of scalar-invariance, we consider the multivariate

normality assumption and Σi be diagonal matrices. The variances of the first p/2 components

are τ 2
1 and the variances of the other components are τ 2

2 . Assume θ1k − θ2k = ζ, k =

1, · · · , bp/2c, where θik denotes the k the component of θi, i = 1, 2. In this setting,

βSS(||θ1 − θ2||) = βSKK(||θ1 − θ2||) = Φ

(
−zα +

n
√

pκ(1− κ)ζ2

2
√

2τ 2
1

)
,

βCQ(||θ1 − θ2||) = Φ

(
−zα +

n
√

pκ(1− κ)ζ2

2
√

τ 4
1 + τ 4

2

)
.

Thus, the ARE of the proposed test (so as SKK) with respect to the CQ test is
√

τ 4
1 + τ 4

2 /(
√

2τ 2
1 ).

It is clear that the SS and SKK are more powerful than CQ if τ 2
1 < τ 2

2 and vice versa. This
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ARE has a positive lower bound of 1/
√

2 when τ 2
1 >> τ 2

2 , and it can be arbitrarily large if

τ 2
1 /τ 2

2 is close to zero. This property shows the necessity of a test with the scale-invariance

property.

2.3 Bootstrap procedure and computational issue

The proposed SS test is based on the asymptotic normality; a good approximation requires

that both n and p are large. As shown in Section 3, when p is not large enough (as in Table

1), the empirical size is a little larger than the nominal one. In contrast, when p is too large

compared to n, our proposed test is somewhat conservative. The reason is that Condition

(C3) basically prevents us from using the asymptotic normality for the case that p grows in a

too fast rate of n. To address this issue, we propose the application of a bootstrap procedure

for finite-sample cases.

The procedure is implemented as follows. We firstly calculate the based samples X̂ij =

Xij − θ̂i,j, i = 1, 2. Then two bootstrap samples {X∗
ij}ni

j=1 are drawn from {X̂ij}ni
j=1, i = 1, 2,

respectively. A bootstrap test statistic R∗
n is accordingly built from the bootstrap sample

({X∗
1j}n1

j=1, {X∗
2j}n2

j=1

)
. When this procedure is repeated many times, the bootstrap critical

value z∗α is the empirical 1−α quantile of the bootstrap test statistic. The test with rejection

region Rn ≥ z∗α is our proposal. We recommend to use this bootstrap method when either p

is not large (say, p ≤ 50) or p is very large compared to n (in a rate of O(n2) or faster). We

will study the effectiveness of this bootstrap method by simulation in the next section.

The leave-one-out procedure seems complex but basically computes fast. Today’s com-

puting power has improved dramatically and it is computationally feasible to implement

the SS test. For example, it takes 1.5s to calculate Rn/σ̃n in FORTRAN using Inter Core

2.2 MHz CPU with n1 = n2 = 50 and p = 1440. The leave-one-out estimator essentially

requires O(pn) computation and thus the calculation of Rn is of order O(pn3). Also note

that computing the estimates of the trace terms needs O(pn2) computation and thus the

complexity of the entire procedure is O(pn3). In contrast, the SKK test requires O(p2n)

computation. When p is large but n is small, such as n1 = n2 = 50, p = 1440, our method is

even faster than Srivastava et al.’s (2013) test. The FORTRAN code for implementing the

procedure is available in the Supplemental Material.
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3 Numerical studies

3.1 Monte Carlo simulations

Here we report a simulation study designed to evaluate the performance of the proposed

SS test. All the simulation results are based on 2,500 replications. The number of variety

of multivariate distributions and parameters are too large to allow a comprehensive, all-

encompassing comparison. We choose certain representative examples for illustration. The

following scenarios are firstly considered.

(I) Multivariate normal distribution. Xij ∼ N(θi,Ri).

(II) Multivariate normal distribution with different component variances. Xij ∼ N(θi,Σi),

where Σi = D
1/2
i RiD

1/2
i and Di = diag{d2

i1, · · · , d2
ip}, d2

ij = 3, j ≤ p/2 and d2
ij = 1,

j > p/2.

(III) Multivariate t-distribution tp,4. Xij’s are generated from tp,4 with Σi = Ri.

(IV) Multivariate t-distribution with different component variances. Xij’s are generated

from tp,4 with Σi = D
1/2
i RiD

1/2
i and d2

ij’s are generated from χ2
4.

(V) Multivariate mixture normal distribution MNp,γ,9. Xij’s are generated from γfp(θi,Ri)+

(1−γ)fp(θi, 9Ri), denoted by MNp,γ,9, where fp(·; ·) is the density function of p-variate

multivariate normal distribution. γ is chosen to be 0.8.

First, we consider the low dimensional case p < n and compare the SS test with the tradi-

tional spatial-sign-based test (abbreviated as TS). We choose R1 = R2 = (ρjk), ρjk = 0.5|j−k|.

Without loss of generality, under H1, we fix θ1 = 0 and choose θ2 as follows. The percentage

of θ1l = θ2l for l = 1, · · · , p are chosen to be 95% and 50%, respectively. At each percentage

level, two patterns of allocation are explored for the nonzero θ2l: the equal allocation and

linear allocation where all the nonzero θ2l are linearly increasing allocations. To make the

power comparable among the configurations of H1, we set η =: ||θ1 − θ2||2/
√

tr(Σ2
1) = 0.1

throughout the simulation. Two combinations of (n, p) are considered: (ni, p) = (50, 40)

and (ni, p) = (75, 60). Tables 1 reports the empirical sizes and power comparison at a 5%
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nominal significance level under various scenarios. From Table 1, we observe that the sizes

of the SS test are generally close to the nominal level under all the scenarios, though in some

cases the SS appears to be a little liberal. In contrast, the sizes of the TS test are much

smaller than 5%, i.e., too conservative. Our SS test is clearly more powerful than the TS

test in most cases. Such finding is consistent with that in Bai and Saranadasa (1996) that

demonstrated classical Mahalanobis distance may not work well because the contamination

bias in estimating the covariance matrix grows rapidly with p. When p and n are comparable

in certain sense, having the inverse of the estimate of the scatter matrix in constructing tests

would be no longer beneficial.

Table 1: Empirical size and power (%) comparison of the proposed SS test and the traditional

spatial sign test (TS) at 5% significance under Scenarios (I)-(V) when p < n

Size Power

Equal Allocation Linear Allocation

(ni, p) (50, 40) (75, 60) (50, 40) (75, 60) (50, 40) (75, 60)

SS TS SS TS SS TS SS TS SS TS SS TS

Scenario %

(I) 6.5 0.8 4.8 1.7 50% 45 6.6 69 10 45 5.5 64 10

– – – – 95% 69 16 86 21 46 17 72 25

(II) 6.4 1.5 4.6 1.8 50% 93 18 99 35 92 18 100 33

– – – – 95% 100 55 100 72 100 60 100 78

(III) 6.3 1.1 4.8 1.1 50% 72 11 92 21 70 11 91 25

– – – – 95% 93 39 99 56 79 41 96 57

(IV) 4.5 2.6 5.5 1.4 50% 96 31 99 59 97 36 99 58

– – – – 95% 100 58 100 78 100 63 100 77

(V) 6.4 1.7 4.9 1.6 50% 78 14 95 28 77 12 94 28

– – – – 95% 96 43 100 63 83 46 98 67

Next, we consider the high-dimensional cases, p > n, and compare the SS with the tests

proposed by Chen and Qin (2010) (CQ), Srivastava et al. (2013) (SKK) and Gregory et al.
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(2014) (GCT). Due to the fact that the SKK procedure uses the estimate of tr(R2) under

normality assumption which has a considerable bias under non-normal distribution as shown

by Srivastava et al. (2011), we replace it by the the estimator proposed by Srivastava et al.

(2014). GCT is implemented using the function GCT.test in the R package “highD2pop” .

We consider the cases with unequal correlation matrices: R1 = (0.5|j−k|) and R2 = Ip. The

sample size ni is chosen as 25, 50 and 100. Three dimensions for each sample size p = 120, 480

and 1440 are considered. Table 2 reports the empirical sizes at a 5% nominal significance

level. The empirical sizes of SS, SKK and CQ tests are converging to the nominal level as

both p and n increase together under all the scenarios. There is some slight size distortion

(tends to be larger than 5%) for the CQ test when p is small or moderate. In contrast, our

proposed SS test seems to be somewhat conservative when p/n is very large, such as p = 480

or 1440 and ni = 25. This is because the ratio of σ̂2
n/σ

2
n tends to be slightly larger than one

in such cases. The empirical sizes of GCT tends to be a little smaller than the nominal level

when p/n is large, especially under the non-normal cases.

To get a broader picture of goodness-of-fit of using the asymptotic normality for Rn/σ̂n,

Figure 1 displays the normal Q-Q plots with various combinations of sample size and dimen-

sion. Here we only present the results of Scenarios (I), (III) and (V) since the results for the

other scenarios are similar. There is a general convergence of our test statistic to N(0, 1) as

n and p increase simultaneously.

For power comparison, we consider the same configurations of H1 as before, except that

η =: ||θ1 − θ2||2/
√

tr(Σ2
1) + tr(Σ2

2) = 0.1. Three combinations of (ni, p) are used: (25,120),

(50,480) and (50,1440). The results of empirical power are given in Table 3. The results of

comparison with Feng et al. (2014) are all reported in the Supplemental Material. Generally,

under Scenarios (I) and (II), SKK has certain advantages over SS as we would expect, since

the underlying distribution is multivariate normal. The SS also offers quite satisfactory

performance though its sizes are often a little smaller than SKK as shown in Table 2. Under

Scenario (I), the variances of components are identical and thus the superior efficiency of

CQ is obvious. However, under Scenario (II), both SKK and SS outperform CQ uniformly

by a quite large margin of power, which again concurs with the asymptotic comparison in

Section 2.2.
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Table 2: Empirical size comparison at 5% significance under Scenarios (I)-(V) when p > n

p

Scenario 120 480 1440

ni SS SKK CQ GCT SS SKK CQ GCT SS SKK CQ GCT

(I) 25 4.0 9.1 5.6 3.6 3.0 6.8 5.7 4.3 1.8 1.4 4.6 2.0

50 5.3 8.2 5.4 3.8 4.9 7.4 5.6 4.2 4.4 5.0 7.0 3.4

100 4.8 6.2 7.0 4.2 5.1 5.3 5.4 4.2 4.8 6.7 3.8 3.5

(II) 25 4.2 9.1 5.5 2.6 3.0 6.8 5.8 4.3 1.8 1.5 6.8 5.7

50 5.7 8.1 5.2 3.4 3.9 7.3 5.4 5.1 4.4 5.0 7.2 4.6

100 4.8 6.2 6.5 4.1 4.9 5.1 6.4 4.4 3.8 6.7 4.4 4.1

25 3.8 5.0 5.7 2.1 2.8 1.7 6.8 1.0 1.6 0.0 4.4 0.2

(III) 50 5.8 5.7 5.1 2.6 4.7 3.9 6.0 2.6 4.4 1.6 6.0 2.5

100 4.0 4.8 6.1 3.0 4.6 4.9 6.3 3.4 4.2 3.6 4.6 3.9

25 3.4 4.9 4.2 1.6 2.0 2.0 5.4 1.6 1.3 0.0 6.3 1.7

(IV) 50 4.8 5.8 5.2 2.5 4.8 5.0 6.6 3.5 3.2 1.4 6.0 4.0

100 4.2 5.2 6.6 3.0 5.2 6.2 4.2 4.0 3.6 3.7 4.7 3.2

25 3.2 3.7 6.0 1.3 2.7 1.4 4.5 1.7 1.1 0.0 5.4 1.6

(V) 50 5.6 7.0 7.1 3.3 4.9 4.4 6.2 2.6 4.2 1.0 5.9 2.5

100 4.5 5.9 7.0 3.5 5.1 4.7 5.7 3.1 4.9 3.2 5.4 4.2

Under the other elliptical scenarios (III), (IV) and (V), the SS test is clearly more efficient

than the CQ, SKK and GCT tests, and the difference is quite remarkable. Certainly, this

is not surprising as neither tp,4 nor MNp,γ,9 distribution belongs to the linear transformation

model on which the validity of CQ depends much. Because the variance estimator in GCT

usually leads to an overestimation under the alternative, especially for the sparse cases, the

power of GCT is not as good as the other scalar-invariant tests. In addition, the power of

the four tests is mainly dependent on ||θ1 − θ2|| as analyzed in Section 2 and thus should

be invariant (roughly speaking) for different patterns of allocation and different percentage

levels of true null.
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Table 3: Empirical power comparison at 5% significance under Scenarios (I)-(V) when p > n

Scenario % p = 120, ni = 25 p = 480, ni = 50 p = 1440, ni = 50

SS SKK CQ GCT SS SKK CQ GCT SS SKK CQ GCT

Equal Allocation

(I) 50% 31 43 38 26 73 81 79 73 77 82 84 80

95% 38 51 45 16 76 83 79 62 78 83 84 75

(II) 50% 74 85 38 66 100 100 80 100 99 100 85 100

95% 83 91 44 29 100 100 84 98 100 100 86 100

(III) 50% 59 41 41 26 97 75 78 67 97 60 85 69

95% 67 48 49 13 100 79 82 56 98 63 85 61

(IV) 50% 76 69 43 49 100 96 82 90 100 92 87 88

95% 83 84 50 15 100 97 84 78 100 94 87 85

(V) 50% 65 39 40 23 99 76 76 73 99 63 84 75

95% 74 47 47 12 100 80 81 61 100 67 85 68

Linear Allocation

(I) 50% 32 42 39 28 72 81 77 72 77 82 84 79

95% 33 43 38 12 73 80 77 52 76 82 84 71

(II) 50% 75 84 39 64 100 100 79 100 99 100 86 100

95% 76 85 39 18 100 100 81 93 100 100 85 100

(III) 50% 57 40 40 23 97 75 79 69 98 61 86 67

95% 60 42 44 9.1 99 75 80 49 98 62 85 62

(IV) 50% 82 71 45 41 100 96 81 89 98 92 87 91

95% 93 62 44 10 100 95 83 63 100 95 84 82

(V) 50% 65 39 41 21 99 77 76 67 98 64 85 71

95% 66 39 41 8.5 99 77 78 50 98 65 85 67
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Figure 1: Normal Q-Q plots of our SS test statistics under Scenarios (I), (III) and (V).

Next, to study the effect of correlation matrix on the proposed test and to further

discuss the application scope of our method, we explore another four scenarios with different

correlations and distributions. The following moving average model is used:

Xijk = ||ρi||−1(ρi1Zij + ρi2Zi(j+1) + · · ·+ ρiTi
Zi(j+Ti−1)) + θij

for i = 1, 2, j = 1, · · · , ni and k = 1, · · · , p where ρi = (ρi1, . . . , ρiTi
)T and {Zijk} are i.i.d.

random variables. Consider four scenarios for the innovation {Zijk}:

(VI) All the {Zijk}’s are from N(0, 1);

(VII) the first p/2 components of {Zijk}p
k=1 are from centralized Gamma(8,1), and the others

are from N(0, 1).

(VIII) All the {Zijk}’s are from t3;
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(IX) All the {Zijk}’s are from 0.8N(0, 1) + 0.2N(0, 9).

The coefficients {ρil}Ti
l=1 are generated independently from U(2, 3) and are kept fixed once

generated through our simulations. The correlations among Xijk and Xijl are determined by

|k−l| and Ti. We consider the “full dependence” for the first sample and the “2-dependence”

for the second sample, i.e. T1 = p and T2 = 3, to generate different covariances of Xij. For

simplicity, set η =: ||θ1 − θ2||2/
√

tr(Σ2
1) + tr(Σ2

2) = 0.05 and (ni, p) = (50, 480).

Table 4 reports the empirical sizes and power of SS, SKK, CQ and GCT. Even under the

last three non-elliptical scenarios, the SS test can maintain the empirical sizes reasonably

well. Again, the empirical sizes of CQ tend to be larger than the nominal level. The empirical

sizes of GCT deviate much from the nominal level, making its power unnecessarily high. In

general, the SS test performs better than the CQ and SKK test in terms of power for the

three non-normal distributions, especially under the 95% pattern. This may be explained

as the proposed test, using only the direction of an observation from the origin but not

its distance from the origin, would be more robust in certain degrees for the considered

heavy-tailed distributions.

Next, we compare the SS test with a nonparametric method proposed by Biswas and

Ghosh (2014) (abbreviated as BG). The samples are generated from Scenarios (I)-(V) with

R1 = (0.5|j−k|) and R2 = σ2R1. Note that the null hypothesis of the BG test is the equality

of two distributions rather than the equality of two location parameters. Thus, under H0,

we set σ2 = 1. Under H1, consider θ1 = 0, θ2 = (θ, . . . , θ). Table 5 reports the empirical

size and power comparison with (θ, σ2) = (2.5, 1) or (1,1.2) when (ni, p) = (50, 240). The

empirical sizes of BG appears to be a little larger than the nominal level. The general

conclusion is that our SS test significantly outperforms the BG test when the two location

parameters are different. This is not surprising to us because the BG test is an omnibus one

which is also effective for the difference in scale or shape parameters. When both location

and scale parameters are different, the BG test performs better than our test under normality

assumption (Scenarios (I) and (II)), while our SS test is more efficient under the other three

non-normal scenarios.

We also study how our method is compared with some variants of the Hotelling’s T 2 test.

One variant is Chen et al.’s (2011) regularized Hotelling’s T 2 test (abbreviated as RHT) which
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Table 4: Empirical size and power comparison at 5% significance under Scenarios (VI)-(IX)

with p = 480, n1 = n2 = 50

Size Power

Equal Allocation Linear Allocation

SS SKK CQ GCT SS SKK CQ GCT SS SKK CQ GCT

Scenario %

(VI) 6.2 4.7 5.0 24.8 50% 42 44 43 74 44 46 44 79

– – – – 95% 61 48 47 83 59 45 43 66

(VII) 6.1 7.2 7.8 23.4 50% 64 56 45 87 79 67 46 93

– – – – 95% 99 90 50 98 100 96 47 85

(VIII) 5.3 6.0 6.5 23.3 50% 42 45 45 77 44 47 45 80

– – – – 95% 58 53 49 83 55 49 46 66

(IX) 5.1 5.3 8.2 25.9 50% 44 44 45 77 45 44 44 78

– – – – 95% 61 51 49 82 58 48 46 67

uses S+ ζIp instead of S with a sufficiently small value of ζ. Chen et al.’s (2011) suggested a

resampling procedure to implement the RHT. This method is implemented using the “RHT”

R package with the false alarm rate 0.05. Another natural variant is to use a sparse estimate

of Σ to replace S. Here we consider the banding estimator proposed by Bickel and Levina

(2008) and denote the resulting test as the sparse Hotelling’s T 2 test (abbreviated as SHT).

It is easy to see that the normalized n1n2

n
(X̄1− X̄2)

TΣ−1(X̄1− X̄2) is asymptotically normal

as (n, p) → ∞. As shown in Appendix F, this asymptotic normality does not hold well

even when an optimal estimator of Σ is used in high dimensional settings. Thus, we also

consider to use the bootstrap procedure for the SHT (denoted as SHTB). For simplicity,

the correlation matrices are fixed as R1 = R2 = (0.5|j−k|)1≤j,k≤p. We choose the banding

parameter as five, resulting in a nearly “oracle” estimator of Σ. Table 6 reports the empirical

sizes of SS, RHT, SHT and SHTB when (ni, p) = (50, 240). We observe that the RHT is

rather conservative in this high-dimensional setting even with a bootstrap procedure, while

the empirical sizes of SHT are much larger than the nominal level as we have explained before.
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Table 5: Empirical size and power comparison with of SS and Biswas and Ghosh’s (2014)

test (BG) at 5% significance under Scenarios (I)-(V) when n1 = n2 = 50, p = 240.

Scenario (µ, σ2) = (0, 1) (µ, σ2) = (2.5, 1) (µ, σ2) = (1, 1.2)

SS BG SS BG SS BG

(I) 5.7 8.0 100 96 54 100

(II) 5.7 7.0 100 25 35 100

(III) 5.3 8.1 100 8.7 45 19

(IV) 5.3 9.0 99 9.0 22 19

(V) 5.5 7.2 100 8.4 40 13

Fortunately, the SHTB can well maintain the significant level. For power comparison, we

consider two cases for θ2. Half random: the last p/2 components of θ2 are generated from

N(0, 1) and the others are zero; Sparse random: the last 5% components of θ2 are generated

from N(0, 1) and the others are zeros. The power results with η = ||θ2||2/
√

tr(Σ2
1) = 0.1

are also tabulated in Table 6. Our SS test has superior efficiency under all the scenarios,

which further concurs with our previous claim that having the inverse of the estimate of the

scatter matrix in high-dimensional settings may not be beneficial.

Finally, we evaluate the performance of the bootstrap procedure (denoted as SSB) sug-

gested in Section 2.3. Table 7 reports the empirical sizes of the SSB. The data generation

mechanism is the same as that in Table 2. Clearly, this bootstrap procedure is able to im-

prove the SS test with asymptotic in terms of size-control in the sense that its empirical

sizes are closer to the nominal level. In this table, the power values of SS and SSB with

(ni, p) = (25, 480) are also presented, from which we can see that SSB performs better than

SS in all cases because the latter is conservative in this setting of (ni, p) .

We conducted some other simulations with various alternative hypotheses, p and nominal

size, to check whether the above conclusions would change in other cases. These simulation

results, not reported here but available from the authors, show that the SS test works well

for other cases as well in terms of its sizes, and its good power performance still holds for

other choices of alternatives.

20



Table 6: Empirical size and power comparison of SS, Chen et al.’s (2011) regularized

Hotelling’s T 2 test (RHT) and a variant of RHT (SHT) at 5% significance under Scenarios

(I)-(V) when n1 = n2 = 50, p = 240. SHTB denotes the SHT using the bootstrap

Size Power

Half Random Sparse Random

Scenario SS RHT SHT SHTB SS RHT SHTB SS RHT SHTB

(I) 5.7 1.4 54.6 5.4 49 15 10 49 19 7.4

(II) 5.7 0.3 54.5 5.2 97 15 17 96 25 10

(III) 5.3 0.0 67.3 5.4 84 2.3 7.9 85 6.9 8.3

(IV) 5.3 0.0 61.0 6.2 96 4.1 10 93 9.2 8.9

(V) 5.5 0.0 75.9 6.1 92 1.0 10 91 5.3 9.3

3.2 A real-data example

Here we demonstrate the proposed methodology by applying it to a real dateset. The colon

data (Alon, et al. 1999) contains the expression of the 2000 genes with highest minimal inten-

sity across the 62 tissues. (http://microarray.princeton.edu/oncology/affydata/ index.html)

There are 22 normal colon tissues and 40 tumor colon tissues. We want to test the hypoth-

esis that the tumor group have the same gene expression levels as the normal group. Figure

2 shows the p-values of normality test and standard deviations of each variables of these

two samples. From the above two figures of Figure 2, we observe that most variables of the

tumor colon issues are not normal distributed. Thus, we could expect that SS test would

be more robust than CQ and SKK tests. Furthermore, from the bottom panels of Figure 2,

the standard deviations of each variables of these two samples are range from 15.9 to 4655,

which illustrates that a scalar-invariant test is needed. Thus, we apply SS and SKK tests

to this data sets. The p-values of our SS test with asymptotic normality and the bootstrap

procedure are 0.0093 and 0.001, respectively. These results suggest the rejection of the null

hypothesis; The gene expression levels of tumor group are significantly different from the

normal group. However, the p-value of SKK test is about 0.18 for this dataset and thus

cannot detect the difference between these two groups at 5% significance level. It is again
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Table 7: Empirical size and power of the SS test using the bootstrap at 5% significance

under Scenarios (I)-(V)

Size Power

(ni, p) (25,20) (50,40) (25,240) (25,480) (25, 480)

Scenario SS SSB SS SSB SS SSB SS SSB SS SSB SS SSB

(I) 6.0 4.4 6.5 4.2 3.6 4.2 3.0 4.6 24 30 28 31

(II) 6.0 4.6 6.4 5.3 2.1 4.2 3.0 4.5 75 80 78 81

(III) 5.7 5.2 6.3 5.5 3.2 4.1 2.8 4.5 55 80 52 67

(IV) 4.7 5.1 4.5 4.8 3.4 4.1 2.0 4.7 80 88 91 95

(V) 5.8 4.7 6.4 4.7 3.2 4.5 2.7 5.0 64 88 64 72

consistent with our preceding theoretical and numerical analysis.

4 Discussion

Our asymptotic and numerical results together suggest that the proposed spatial-sign test is

quite robust and efficient in testing the equality of locations, especially for heavy-tailed or

skewed distributions. It should be pointed out that when the data come from some light-

tailed distributions, the SS is expected to be outperformed by the SKK test. This drawback

is certainly inherited from the spatial-sign-based nature of SS and shared by all the sign-or

rank- based procedures.

Our analysis in this paper shows that the spatial-sign-based test combined with the data

transformation via the estimated diagonal matrix leads to a powerful test procedure. The

analysis also shows that the data transformation is quite crucial in high-dimensional data.

This confirms the benefit of the transformation discovered by Srivastava et al. (2013) for

L2-norm-based tests. In a significant development in another direction that using the max-

norm rather than the L2-norm, Cai et al. (2014) proposed a test based on the max-norm

of marginal t-statistics. See also Zhong et al. (2013) for a related discussion. Generally

speaking, the max-norm test is for more sparse and stronger signals whereas the L2 norm
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Figure 2: The p-values of normality test and standard deviation of each variables of the two

samples.

test is for denser but fainter signals. Developing a spatial-sign-based test for sparse signals is

of interest in the future study. Besides the spatial-sign-based sphericity test, there are some

other tests based on spatial-signed-rank or spatial-rank in the literatures, such as Hallin and

Paindaveine (2006). Deriving similar procedures for those tests are highly nontrivial due to

their complicated construction and deserves some future research.

In our tests, we standardize the data for each variable to a common scale to account for

heterogeneity of variance. On the other hand, Dudoit et al. (2002) standardized the gene

expression data so that the observations (arrays) have unit variance across variables (genes).

They pointed out that scale adjustments would be desirable in some cases to prevent the

expression levels in one particular array from dominating the average expression levels across
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arrays. This way of standardization in high-dimensional settings warrants future study.
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Appendix

This appendix contains six parts but we only present here the Appendix A which gives the

succinct proofs of Theorems 1-2. Some additional simulation results, technical arguments in

Section 2 and the proofs of Lemmas 1,2,4,6 and 7 can be found in the Appendices B-F in

the Supplemental Material. The proofs of Lemmas 3 and 5 are given below because they are

the core of the technical arguments and may be interesting in their own rights.

Appendix A: The proofs of Theorems 1-2

Before proving the two main theorems in Section 2, we present several necessary lemmas.

Lemma 1 For any matrix M, we have E(uT
ijMuij)

2 = O
(
p−2tr(MTM)

)
, i = 1, 2, j =

1, · · · , ni.

Define Di = diag{d2
i1, d

2
i2, · · · , d2

ip}, i = 1, 2 and di = (di1, di2, · · · , dip), ηi = (θT
i , di)

T .

Let the corresponding estimator be η̂i = (θ̂
T

i , d̂i)
T .

Lemma 2 Under Condition (C4), we have max1≤j≤p(d̂ij − dij) = Op(n
−1/2
i (log p)1/2).

We denote Uij = U(D
−1/2
i (Xij − θi)), Ûij = U(D̂

−1/2
i (Xij − θi)), rij = ||D−1/2

i (Xij −
θi)|| = ||R−1/2

i εij||, r̂ij = ||D̂−1/2
i (Xij−θi)||, and r∗ij = ||εij|| for j = 1, . . . , ni, i = 1, 2. Define

µ̂i = θ̂i − θi and µ̂i,j = θ̂i,j − θi, i = 1, 2. The following lemma provides an asymptotic

expansion for θ̂i. Note that given D̂i, the estimator µ̂i is the minimizer of the following
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objective function

L(µ) = ||D̂−1/2
i (Xij − θi − µ)||

or the estimator θ̂i is equivalent to solve the equation

ni∑

k=1

U(D̂
−1/2
i (Xik − θ)) = 0. (A.1)

Lemma 3 Under Conditions (C1), (C3) and (C4), µ̂i, i = 1, 2 admits the following asymp-

totic representation

µ̂i =
1

ni

c−1
i D

1/2
i

ni∑
j=1

Uij + op(bn,p,i),

where ci = E(r−1
ij ) and bn,p,i = c−1

i n−1/2.

Proof. We first show that ||µ̂i|| = Op(bn,p,i). Note that the objective function L(µ) is a

strictly convex function in µ. Thus as long as we can show that it has b−1
n,p,i-consistent local

minimizer, it must be b−1
n,p,i-consistent global minimizer. The existence of a b−1

n,p,i-consistent

local minimizer is implied by that fact that for an arbitrarily small ε > 0, there exist a

sufficiently large constant C, which does no depend on n or p, such that

lim inf
n

P

(
inf

u∈Rp,||u||=C
L(bn,p,iu) > L(0)

)
> 1− ε. (A.2)

Next, we prove (A.2). Consider the expansion of ||D̂−1/2
i (Xij − θi − bn,p,iu)||,

||D̂−1/2
i (Xij − θi − bn,p,iu)|| = ||D̂−1/2

i (Xij − θi)||{1− 2bn,p,ir̂
−1
ij uT D̂

−1/2
i Ûij + b2

n,p,ir̂
−2
ij uT D̂−1

i u}1/2.

Because bn,p,ir̂
−1
ij uT D̂

−1/2
i Ûij = Op(n

−1/2) and b2
n,p,ir̂

−2
ij uT D̂−1

i u = Op(n
−1), we can see that

||D̂−1/2
i (Xij − θi − bn,p,iu)||

= ||D̂−1/2
i (Xij − θi)|| − bn,pu

T D̂
−1/2
i Ûij + b2

n,p(2r̂ij)
−1uT D̂

−1/2
i (Ip − ÛijÛ

T
ij)D̂

−1/2
i u + Op(c

−1
i n−3/2).
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So, it can be easily seen

ci(L(bn,p,iu)− L(0))

= ci

ni∑
j=1

{||D̂−1/2
i (Xij − θi − bn,p,iu)|| − ||D̂−1/2

i (Xij − θi)||}

= −n−1/2uT D̂
−1/2
i

n∑
i=1

Ûij + c−1
i n−1

i uT D̂
−1/2
i

{
ni∑

j=1

(2r̂ij)
−1

(
Ip − ÛijÛ

T
ij

)}
D̂
−1/2
i u + Op(n

−1/2).

(A.3)

First, as E(||n−1/2
i

∑n
i=1 Ûij||2) = 1 and var(||n−1/2

i

∑n
i=1 Ûij||2) = O(1), we know that

||n−1/2
i

∑n
i=1 Ûij|| = Op(1), and accordingly

∣∣∣∣∣−n−1/2uT D̂
−1/2
i

n∑
i=1

Ûij

∣∣∣∣∣ ≤ ||D̂−1/2
i u||||n−1/2

i

n∑
i=1

Ûij|| = Op(1).

Define A = n−1
i

∑ni

j=1(2r̂ij)
−1ÛijÛ

T
ij. After some tedious calculation, we can obtain that

E(tr(A2)) = O(c2
i n
−1)). Then E(uT D̂

−1/2
i AD̂

−1/2
i u)2 ≤ E((uT D̂−1

i u)2tr(A2)) = O(c2
i n
−1),

which leads to uT D̂
−1/2
i AD̂

−1/2
i u = Op(cin

−1/2). Thus, we have

n−1
i uT D̂

−1/2
i

{
ni∑

j=1

r̂−1
ij

(
Ip − ÛijÛ

T
ij

)}
D̂
−1/2
i u = n−1

i uT D̂
−1/2
i

ni∑
j=1

r̂−1
ij D̂

−1/2
i u + Op(cin

−1/2),

where we use the fact that n−1
i

∑ni

j=1 r̂−1
ij = ci + Op(cin

−1/2). By choosing a sufficiently large

C, the second term in (A.3) dominates the first term uniformly in ||u|| = C. Hence, (A.2)

holds and accordingly µ̂i = Op(bn,p,i).

Finally, by a first-order Taylor expansion of (A.1), we have

ni∑
j=1

(Ûij − r̂−1
ij D̂

−1/2
i µ̂i))

{
1 + r̂−1

ij ÛT
ijD̂

−1/2
i µ̂i + Op(n

−1)
}

= 0,

and then
{

n−1
i

ni∑
j=1

r̂ij + Op(cin
−1/2)

}
D̂
−1/2
i µ̂i −

(
n−1

i

ni∑
j=1

r̂ijÛijÛ
T
ij

)
D̂
−1/2
i µ̂i

=

(
n−1

i

ni∑
j=1

Ûij

)
(1 + Op(n

−1)).
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Thus,

µ̂i =(ci + Op(cin
−1/2))−1D̂

−1/2
i

(
n−1

i

ni∑
j=1

Ûij

)
(1 + Op(n

−1))

=c−1
i D̂

1/2
i

(
n−1

i

ni∑
j=1

Ûij

)
+ op(bn,p,i)

=c−1
i D

1/2
i

(
n−1

i

ni∑
j=1

Uij

)
+ c−1

i D̂
1/2
i

(
n−1

i

ni∑
j=1

Ûij − n−1
i

ni∑
j=1

Uij

)

+ c−1
i (D̂

1/2
i −D

1/2
i )

(
n−1

i

ni∑
j=1

Uij

)
+ op(bn,p,i)

.
=c−1

i D
1/2
i

(
n−1

i

ni∑
j=1

Uij

)
+ B1 + B2 + op(bn,p,i).

Next, we will show that B1 = op(bn,p,i) and B2 = op(bn,p,i). By the Taylor expansion,

U(D̂
−1/2
i (Xij − θi)) =Uij + {Ip −UijU

T
ij}(D̂−1/2

i −D
−1/2
i )D

1/2
i Uij

+
1

2r2
ij

||(D̂−1/2
i −D

−1/2
i )(Xij − θi)||Uij + op(n

−1).

Thus,

n−1
i

ni∑
j=1

Ûij − n−1
i

ni∑
j=1

Uij =n−1
i

ni∑
j=1

{Ip −UijU
T
ij}(D̂−1/2

i −D
−1/2
i )D

1/2
i Uij

+ n−1
i

ni∑
j=1

1

2r2
ij

||(D̂−1/2
i −D

−1/2
i )(Xij − θi)||2Uij + op(n

−1)

.
=B11 + B12 + op(n

−1),

and according to Lemma 2,

E(||B11||2) ≤ C(log p/n)1/2E||n−1
i

ni∑
j=1

Uij||2 = O((log p)1/2n−3/2) = o(n−1),

E(||B12||2) ≤ C(log p/n)1/2E||n−1
i

ni∑
j=1

Uij||2 = O((log p)1/2n−3/2) = o(n−1),

by Condition (C3). So, B1 = op(bn,p,i). Similar to B1, we can also show that B2 = op(bn,p,i),

from which the assertion in this lemma immediately follows. ¤
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Similar to Lemma 3, we also have

θ̂i,l = θi +
1

ni − 1
c−1
i D

1/2
i

ni∑

j 6=l

Uij + op(bn,p,i), i = 1, 2.

The next lemma measures the asymptotic difference between U(D̂
−1/2
k,i (Xki− θ̂3−k,j)) and

Uki, k = 1, 2.

Lemma 4 Under H0 and Condition (C1), for k = 1, 2,

U(D̂
−1/2
k,i (Xki − θ̂3−k,j)) =Uki − 1

rki

[Ip −UkiU
T
ki]D

−1/2
k µ̂3−k,j + [Ip −UkiU

T
ki](D̂

−1/2
k,i D

1/2
k − Ip)Uki

− 1

rki

[Ip −UkiU
T
ki](D̂

−1/2
k,i −D

−1/2
k )µ̂3−k,j

+
1

2r2
ki

||(D̂−1/2
k,i −D

−1/2
k )(Xki − θ)− D̂

−1/2
k,i µ̂3−k,j||2Uki + op(n

−1).

Next, we will give an asymptotic equivalence to Rn under H0.

Lemma 5 Under H0 and Conditions (C1)-(C4), Rn = Zn + op(n
−2), where

Zn =

∑n1

i=1

∑n1

i6=j uT
1iA1u1j

n1(n1 − 1)
+

∑n2

i=1

∑n2

i6=j uT
2iA2u2j

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1 uT
1iA3u2j

n1n2

.
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Proof. By Lemma 2,

U(D̂
−1/2
1,i (X1i − θ̂2,j))

T U(D̂
−1/2
2,j (X2j − θ̂1,i))

=UT
1iU2j − 1

r1i

µ̂T
2,j[Ip −U1iU

T
1i]D

−1/2
1 U2j − 1

r1i

µ̂T
2,j[Ip −U1iU

T
1i](D̂

−1/2
1,i −D

−1/2
1 )U2j

+ UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)[Ip −U1iU

T
1i]U2j

+
1

2r2
1i

||(D̂−1/2
1,i −D

−1/2
1 )(X1i − θ)− D̂

−1/2
1,i µ̂2,j||2UT

1iU2j

− 1

r2j

UT
1i[Ip −U2jU

T
2j]D

−1/2
2 µ̂1,i +

1

r1ir2j

µ̂T
2,j[Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
1 D

−1/2
2 µ̂1,i

+
1

r2j

UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)[Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
2 µ̂1,i

+
1

r1ir2j

µ̂T
2,j[Ip −U1iU

T
1i](D̂

−1/2
1,i −D

−1/2
1 )[Ip −U2jU

T
2j]D

−1/2
2 µ̂1,i

− 1

2r2
1ir2j

||(D̂−1/2
1,i −D

−1/2
1 )(X1i − θ)− D̂

−1/2
1,i µ̂2,j||2UT

1i[Ip −U2jU
T
2j]D

−1/2
2 µ̂1,i

− 1

r2j

U(D̂
−1/2
1,i (X1i − θ̂2,j))

T [Ip −U2jU
T
2j](D̂

−1/2
2,j −D

−1/2
2 )µ̂1,i

+
1

2r2
2j

||(D̂−1/2
2,j −D

−1/2
2 )(X2i − θ)− D̂

−1/2
2,j µ̂1,i||2U(D̂

−1/2
1 (X1i − θ̂2,j))

TU2j + op(n
−2),

which implies that

Rn =
1

n1n2

n1∑
i=1

n2∑
j=1

1

r1i

µ̂T
2,j[Ip −U1iU

T
1i]D

−1/2
1 U2j +

1

n1n2

n1∑
i=1

n2∑
j=1

1

r2j

UT
1i[Ip −U2jU

T
2j]D

−1/2
2 µ̂1,i

− 1

n1n2

n1∑
i=1

n2∑
j=1

(
UT

1iU2j +
1

r1ir2j

µ̂T
2,j[Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
1 D

−1/2
2 µ̂1,i

)

− 1

n1n2

n1∑
i=1

n2∑
j=1

UT
1i[Ip −U1iU

T
1i](D̂

−1/2
1 D

1/2
1 − Ip)U2j + Qn + op(n

−2),

where Qn denote the rest parts of Rn. For simplicity, we only show that

1

n1n2

n1∑
i=1

n2∑
j=1

UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)[Ip −U1iU

T
1i]U2j = op(σn),
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and we can show that the other parts in Qn are all op(σn) by using similar arguments.

1

n1n2

n1∑
i=1

n2∑
j=1

UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)[Ip −U1iU

T
1i]U2j

=
1

n1n2

n1∑
i=1

n2∑
j=1

UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)U2j +

1

n1n2

n1∑
i=1

n2∑
j=1

UT
1i(D̂

−1/2
1,i D

1/2
1 − Ip)U1iU

T
1iU2j

.
=Gn1 + Gn2.

Next we will show that E(G2
n1) = o(σ2

n).

E
(
G2

n1

)
=

1

n2
1n

2
2

n1∑
i=1

n2∑
j=1

E

((
UT

1i(D̂
−1/2
1,i D

1/2
1 − Ip)U2j

)2
)

=
1

n2
1n

2
2

n1∑
i=1

n2∑
j=1

E




(
uT

1iΣ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 − Ip)D

−1/2
2 Σ

1/2
2 u2j

)2

(1 + uT
1i(R1 − Ip)u1i)(1 + uT

2j(R2 − Ip)u2j)




≤ 1

n2
1n

2
2

n1∑
i=1

n2∑
j=1

{
E

(
uT

1iΣ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 − Ip)D

−1/2
2 Σ

1/2
2 u2j

)2

+ CE

((
uT

1iΣ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 − Ip)D

−1/2
2 Σ

1/2
2 u2j

)2

uT
1i(R1 − Ip)u1i

)

+ CE

((
uT

1iΣ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 − Ip)D

−1/2
2 Σ

1/2
2 u2j

)2

uT
2j(R2 − Ip)u2j

)}
,

where the last inequality follows by the Taylor expansion. Define H = Σ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 −

Ip)D
−1/2
2 Σ

1/2
2 and then according to Lemma 2, tr(E(H2)) = o(tr(AT

3 A3)) and tr(E(H4)) =

o(tr((AT
3 A3)

2)) = o(tr2(AT
3 A3)) by Condition (C2). By the Cauchy inequality, we have

E
(
uT

1iΣ
1/2
1 D

−1/2
1 (D̂

−1/2
1,i D

1/2
1 − Ip)D

−1/2
2 Σ

1/2
2 u2j

)2

= p−2tr(H2) = o(p−2tr(R1R2)),

E((uT
1iHu2j)

2uT
1i(R1 − Ip)u1i) ≤ (E(uT

1iHu2j)
4E((uT

1i(R1 − Ip)u1i)
2)1/2

≤ (p−4tr(E(H4))p−2(tr(R1 − Ip)))
1/2,

E((uT
1iHu2j)

2uT
2j(R2 − Ip)u2j) ≤ (E(uT

1iHu2j)
4E((uT

2j(R2 − Ip)u2j)
2)1/2

≤ (p−4tr(E(H4))p−2(tr(R2 − Ip)))
1/2.

30



So we obtain that Gn1 = op(σn) by Condition (C4). Taking the same procedure, we can also

show that Gn2 = op(σn). Moreover,

1

n1n2

n1∑
i=1

n2∑
j=1

r−1
2j UT

1i[Ip −U2jU
T
2j]D

−1/2
2 µ̂1,i

=
1

n1n2(n1 − 1)

n1∑
i=1

n2∑
j=1

r−1
2j UT

1i[Ip −U2jU
T
2j]D

−1/2
2 D

1/2
1 c−1

1

n1∑

l 6=i

U1l(1 + op(1))

=
1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

UT
1i

(
1

n2

n2∑
j=1

r−1
2j [Ip −U2jU

T
2j]

)
D
−1/2
2 D

1/2
1 c−1

1 U1l(1 + op(1))

=
1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

c2c
−1
1 UT

1iD
−1/2
2 D

1/2
1 U1l(1 + op(1)),

and

Jn1 =
1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

c2c
−1
1

uT
1iΣ

1/2
1 D

−1/2
1 D

−1/2
2 Σ

1/2
1 u1l

(1 + uT
1i(R1 − Ip)u1i)1/2(1 + uT

1l(R1 − Ip)u1l)1/2

=
1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

c2c
−1
1 uT

1iΣ
1/2
1 D

−1/2
1 D

−1/2
2 Σ

1/2
1 u1l

+
1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

c2c
−1
1 uT

1iCniΣ
1/2
1 D

−1/2
1 D

−1/2
2 Σ

1/2
1 u1lu

T
1i(R1 − Ip)u1i

.
=Jn11 + Jn12,

where Cni is a bounded random variable between −1 and −(uT
1iR1u1i)

2. By the same argu-

ments as Gn1, we can show that Jn12 = op(σn). Thus,

1

n1n2

n1∑
i=1

n2∑
j=1

r−1
2j UT

1i[Ip −U2jU
T
2j]D

−1/2
2 µ̂1,i =

1

n1(n1 − 1)

n1∑
i=1

n1∑

l 6=i

uT
1iA1u1l + op(σn).
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Similarly,

1

n1n2

n1∑
i=1

n2∑
j=1

1

r1i

µ̂T
2,j[Ip −U1iU

T
1i]D

−1/2
1 U2j =

1

n2(n2 − 1)

n2∑
i=1

n2∑

l 6=i

uT
2iA2u2l + op(σn),

1

n1n2

n1∑
i=1

n2∑
j=1

1

r1ir2j

µ̂T
2,j[Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
1 D

−1/2
2 µ̂1,i

=
1

n1n2

n1∑
i=1

n2∑
j=1

uT
1iA3u2j + op(σn),

1

n1n2

n1∑
i=1

n2∑
j=1

UT
1iU2j =

1

n1n2

n1∑
i=1

n2∑
j=1

uT
1iA3u2j + op(σn).

Finally, under H0,

Rn =

∑n1

i6=j uT
1iA1u1j

n1(n1 − 1)
+

∑n2

i6=j uT
2iA2u2j

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1 uT
1iA3u2j

n1n2

+ op(σn).

It can be easily verified that E(Zn) = 0 and

var(Zn) =
2

n1(n1 − 1)p2
tr(A2

1) +
2

n2(n2 − 1)p2
tr(A2

2) +
4

n1n2p2
tr(AT

3 A3).

By Condition (C3), var(Zn) = O(n−2). Consequently, we have Rn = Zn + op(n
−2). ¤

Now, to prove Theorem 1, it remains to show that Zn is asymptotically normal. Clearly,

Zn is essentially a two-sample U -statistic with order two. However, the standard CLT for U -

statistics (Serfling 1980) is not directly applicable because the conditional variance of kernel

function is zero. However, the martingale central limit theorem (Hall and Hyde 1980) can

be used here. We require some additional lemmas stated as follows.

Let Yi = u1i for i = 1, . . . , n1 and Yj+n1 = u2j for j = 1, . . . , n2 and for i 6= j,

φij =





n−1
1 (n1 − 1)−1YT

i A1Yj, i, j ∈ {1, 2, . . . , n1},
−n−1

1 n−1
2 YT

i A3Yj, i ∈ {1, 2, . . . , n1}, j ∈ {n1 + 1, . . . , n},
n−1

2 (n2 − 1)−1YT
i A2Yj, i, j ∈ {n1 + 1, n1 + 2, . . . , n}.

Define Znj =
∑j−1

i=1 φij for j = 2, 3, . . . , n, Snm =
∑m

j=1 Znj and Fnm = σ{Y1,Y2, . . . ,Ym}
which is the σ-algebra generated by {Y1,Y2, . . . ,Ym}. Now

Zn = 2
n∑

j=2

Znj.
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We can verify that for each n, {Snm,Fnm}n
m=1 is the sequence of zero mean and a square

integrable martingale. In order to prove the normality of Zn, it suffices to show the following

two lemmas. The proofs of these two lemmas are straightforward but the calculation involved

is rather tedious, and thus they are included in Appendix D of the Supplemental Material.

Lemma 6 Suppose the conditions given in Theorem 1 all hold. Then,

∑n
j=2 E[Z2

nj|Fn,j−1]

σ2
n

p→ 1

4
.

Lemma 7 Suppose the conditions given in Theorem 1 all hold. Then,

σ−2
n

n∑
j=2

E[Z2
njI(|Znj| > εσn|)|Fn,j−1]

p→ 0.

Proof of Theorem 1: Based on Corollary 3.1 of Hall and Heyde (1980), Lemmas 6-7, it can

be concluded that Zn/σn
d→N(0, 1). By combining Lemma 5, we can obtain the assertion of

this theorem immediately. ¤

Proof of Theorem 2 Similar to Lemma 4, we can obtain that

U(D̂
−1/2
1,i (X1i − θ̂2,j))

=U1i − 1

r1i

[Ip −U1iU
T
1i]D

−1/2
1 µ̂2,j +

1

r1i

[Ip −U1iU
T
1i]D

−1/2
1 (θ1 − θ2)

− 1

r1i

[Ip −U1iU
T
1i](D̂

−1/2
1,i −D

−1/2
1 )µ̂2,j +

1

r1i

[Ip −U1iU
T
1i](D̂

−1/2
1,i −D

−1/2
1 )(θ1 − θ2)

+
1

2r2
1i

||(D̂−1/2
1,i −D

−1/2
1 )(X1i − θ2)− D̂

−1/2
1 µ̂2,j||2U1i + op(n

−1).

Thus, taking the same procedure as Lemma 5, we obtain that

Rn =
1

n1n2

n1∑
i=1

n2∑
j=1

1

r1ir2j

(θ1 − θ2)
TD

−1/2
1 [Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
2 (θ1 − θ2) + Zn

+
1

n1n2

n1∑
i=1

n2∑
j=1

1

r2j

UT
1i[Ip −U2jU

T
2j]D

−1/2
2 (θ1 − θ2)

+
1

n1n2

n1∑
i=1

n2∑
j=1

1

r1i

UT
2j[Ip −U1iU

T
1i]D

−1/2
1 (θ2 − θ1) + op(n

−2).
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By the same arguments as Lemma 5, we can show that

1

n1n2

n1∑
i=1

n2∑
j=1

1

r1ir2j

(θ1 − θ2)
TD

−1/2
1 [Ip −U1iU

T
1i][Ip −U2jU

T
2j]D

−1/2
2 (θ1 − θ2)

= c1c2(θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) + op(σn),

1

n1n2

n1∑
i=1

n2∑
j=1

1

r2j

UT
1i[Ip −U2jU

T
2j]D

−1/2
2 (θ1 − θ2)

=
1

n1

n1∑
i=1

c2u
T
1iΣ

1/2
1 D

−1/2
1 D

−1/2
2 (θ1 − θ2) + op(σn),

1

n1n2

n1∑
i=1

n2∑
j=1

1

r1i

UT
2j[Ip −U1iU

T
1i]D

−1/2
1 (θ2 − θ1)

=
1

n2

n2∑
i=1

c1u
T
2iΣ

1/2
2 D

−1/2
2 D

−1/2
1 (θ2 − θ1) + op(σn).

Thus, we can rewrite Rn as follows

Rn =Zn + c1c2(θ1 − θ2)
TD

−1/2
1 D

−1/2
2 (θ1 − θ2) +

1

n1

n1∑
i=1

c2u
T
1iΣ

1/2
1 D

−1/2
1 D

−1/2
2 (θ1 − θ2)

+
1

n2

n2∑
i=1

c1u
T
2iΣ

1/2
2 D

−1/2
2 D

−1/2
1 (θ2 − θ1) + op(σn),

and

var(Rn) =

(
σ2

n +
c2
2

n1p
(θ1 − θ2)

TD
−1/2
2 R1D

−1/2
2 (θ1 − θ2)

+
c2
1

n2p
(θ1 − θ2)

TD
−1/2
1 R2D

−1/2
1 (θ1 − θ2)

)
(1 + o(1)).

Next, taking the same procedure as in the proof of Theorem 1, we can prove the assertion.

¤

References

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., Levine, A. J. (1999), “Broad
Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues
Probed by Oligonucleotide Arrays,” Proceedings of the National Academy of Sciences of U.S.A., 96,
6745–6750.

Anderson, T. W. (2003), An Introduction to Multivariate Statistical Analysis, Hoboken, NJ: Wiley, .

Bai, Z. and Saranadasa, H. (1996), “Effect of High Dimension: by an Example of a Two Sample Problem,”
Statistica Sinica, 6, 311–329.

34



Bickel, P. and Levina, E. (2008), “Regularized Estimation of Large Covariance Matrices,” The Annals of
Statistics, 36, 199–227.

Biswas, M. and Ghosh. A. K. (2014), “A Nonparametric Two-Sample Test Applicable to High Dimensional
Data,” Journal of Multivariate Analysis, 123, 160–171.

Cai, T. T. and Liu, W. (2011), “Adaptive Thresholding for Sparse Covariance Matrix Estimation,” Journal
of the American Statistical Association, 106, 672–684.

Cai, T. T., Liu, W. and Xia, Y. (2014), “Two-Sample Test of High Dimensional Means under Dependence,”
Journal of the Royal Statistical Society: Series B, 76, 349–372.

Chen, L. S., Paul, D., Prentice, R. L. and Wang, P. (2011), “A Regularized Hotelling’s T 2 Test for Pathway
Analysis in Proteomic Studies,” Journal of the American Statistical Association, 106, 1345–1360.

Chen, S. X. and Qin, Y-L. (2010), “A Two-Sample Test for High-Dimensional Data with Applications to
Gene-Set Testing,” The Annals of Statistics, 38, 808–835.

Chen, S. X., Zhang, L. -X. and Zhong, P. -S. (2010), “Tests for High-Dimensional Covariance Matrices,”
Journal of the American Statistical Association, 105, 810–815.

Dempster, A. P. (1958), “A High Dimensional Two Sample Significance Test,” The Annals of Mathematical
Statistics, 29, 995–1010.

Dudoit, S., Fridlyand, J. and Speed, T. P. (2002), “Comparison of Discrimination Methods for the Classi-
fication of Tumors using Gene Expression Data,” Journal of the American statistical association, 97,
77–87.

Feng, L., Zou, C., Wang, Z. and Chen, B. (2013), “Rank-based Score Tests for High-Dimensional Regression
Coefficients,” Electronic Journal of Statistics, 7, 2131–2149.

Feng, L., Zou, C., Wang, Z. and Zhu, L. X. (2014), “Two Sample Behrens-Fisher Problem for High-
Dimensional Data,” Statistica Sinica, To appear.

Goeman, J., Van De Geer, S. A. and Houwelingen, V. (2006), “Testing Against a High-Dimensional Alter-
native,” Journal of the Royal Statistical Society, Series B, 68, 477–493.

Gregory, K. B., Carroll, R. J., Baladandayuthapani, V. and Lahiri, S. N. (2014), “A Two-Sample Test For
Equality of Means in High Dimension,”, Journal of the American Statistical Association, To appear.

Hall, P. G. and Hyde, C. C. (1980), Martingale Central Limit Theory and its Applications, New York:
Academic Press.

Hallin, M. and Paindaveine, D. (2006), “Semiparametrically Efficient Rank-based Inference for Shape. I:
Optimal Rank-Based Tests for Sphericity,” The Annals of Statistics, 34, 2707–2756.

Hettmansperger, T. P. and Oja, H. (1994), “Affine Invariant Multivariate Multisample Sign Tests,” Journal
of the Royal Statistical Society, Series B, 56, 235–249.

Hettmansperger, T. P. and Randles, R. H. (2002), “A Practical Affine Equivariant Multivariate Median,”
Biometrika, 89, 851–860.

Kosorok, M. and Ma, S. (2007), “Marginal Asymptotics for the ‘Large p, Small n’ Paradigm: with Appli-
cations to Microarray Data,” The Annals of Statistics, 35, 1456-1486.

Ledoit, O. and Wolf, M. (2002), “Some Hypothesis Tests for the Covariance Matrix when the Dimension
is Large Compared to the Sample Size,” The Annals of Statistics, 30, 1081–1102.
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