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CHANGE-POINT DETECTION IN MULTINOMIAL DATA
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We consider a sequence of multinomial data for which the prob-
abilities associated with the categories are subject to abrupt changes
of unknown magnitudes at unknown locations. When the number of
categories is comparable to or even larger than the number of subjects
allocated to these categories, conventional methods such as the clas-
sical Pearson’s chi-squared test and the deviance test may not work
well. Motivated by high-dimensional homogeneity tests, we propose a
novel change-point detection procedure that allows the number of cat-
egories to tend to infinity. The null distribution of our test statistic is
asymptotically normal and the test performs well with finite samples.
The number of change-points is determined by minimizing a penal-
ized objective function based on segmentation, and the locations of
the change-points are estimated by minimizing the objective function
with the dynamic programming algorithm. Under some mild condi-
tions, the consistency of the estimators of multiple change-points is
established. Simulation studies show that the proposed method per-
forms satisfactorily for identifying change-points in terms of power
and estimation accuracy, and it is illustrated with an analysis of a
real data set.

1. Introduction. Change-point detection plays a critical role in data
processing, modeling, estimation, and inference. Although most of the litera-
ture focuses on continuous data, in many data generation and collection pro-
cesses, the observations either are measured on a discrete scale or naturally
have some categorical structures. For such categorical data, there are rather
limited approaches to change-point detection (Braun, Braun and Müller,
2000). The standard procedure is to apply binary segmentation and per-
form homogeneity tests on two contiguous samples under multinomial as-
sumptions (Srivastava and Worsley, 1986; Horváth and Serbinowska, 1995).
Classical methods, such as Pearson’s chi-squared test and the deviance test,
work well when each category contains sufficient amount of data. Howev-
er, in modern applications, it is possible that the number of categories is
comparable to or even larger than the number of subjects. For example, in
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the digitized text era, the word composition in different corpuses collected
over time often experiences multiple abrupt changes. One may be interested
in detecting such change-points that split the text data into segments for
gaining more insights. The number of words can be very large, while the
count for each word is often small or even zero. As a result, classical test
statistics are typically not well-defined due to sparse contingency tables and
the asymptotic theory developed for a fixed number of categories is generally
not applicable.

In a sequence of multinomial data with the number of categories tending
to infinity, we are interested in detecting changes in the probabilities asso-
ciated with the categories over time. Specifically, we collect T independent
observations with p possible outcomes, Xt = (Xt1, . . . , Xtp)

⊤, t = 1, . . . , T .
We assume that Xt follows a multinomial distribution, Xt ∼ Multi(nt,q

(t)),
where nt trials are conducted at time point t and the probabilities of out-

comes q(t) = (q
(t)
1 , . . . , q

(t)
p )⊤ satisfy

∑p
j=1 q

(t)
j = 1. Following the modern

terminology of “large p, small n” problems (Chen and Qin, 2010), we use p
to denote the number of outcomes which can be very large, i.e., p → ∞. We
consider the change-point model,

(1) Xt ∼
{

Multi(nt,q0), for t = 1, . . . , τ∗,
Multi(nt,q1), for t = τ∗ + 1, . . . , T,

where τ∗ > 0 is an unknown change-point and ql = (ql1, . . . , qlp)
⊤ for l = 0, 1.

Our goal is to test whether there exists a change-point, with H0 : τ∗ = T
versus H1 : τ

∗ < T , and to further estimate τ∗ if H0 is rejected.
This change-point detection problem is essentially related to a two- or

multi-sample comparison with categorical data, for which a homogeneity
test is typically used to examine whether all the T (T ≥ 2) multinomial
distributions are the same. Toward this goal, Pearson’s chi-squared statistic
(Agresti, 2013) can be constructed,

KT =
T∑
t=1

p∑
j=1

(Xtj − nt
∑T

t=1Xtj/N)2

nt
∑T

t=1Xtj/N
,

where Xtj is the j-th component of Xt and N =
∑T

t=1 nt. Under the null hy-
pothesis H0 : q1 = · · · = qT , KT follows a χ2

(p−1)(T−1) distribution for a fixed
p as N → ∞. When we allow p → ∞, in the context of one-sample homo-
geneity test, Holst (1972) and Morris (1975) developed asymptotic theory for
Pearson’s chi-squared test. Moderate and large deviation theorems for Pear-
son’s chi-squared statistic and the likelihood ratio statistic in multinomial
distributions are given in Kallenberg (1985). When all p, n1, . . . , nT → ∞,
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KT is related to the class of multi-dimensional decomposable statistics whose
asymptotic normality after suitable normalization is also established; for ex-
ample, see Ivchenko and Levin (1976) and Bykov and Ivanov (1991). More
recently, Baranov and Baranov (2005) considered the T -sample homogene-
ity problem. However, these existing methods are not readily applicable to
our change-point problem in (1) as detailed in the following. First, the test
statistic KT is not well-defined if some category does not contain any ob-
servation when p is large but N is small. Further, it is difficult to verify the
imposed conditions, and the asymptotic result only allows p to grow at a lin-
ear rate of nt. Second, it is required to estimate certain normalizing param-
eters which involve complicated asymptotic expansions of mixed moments
of Poisson distributed variables. The normality property with plugged-in es-
timators is not guaranteed from asymptotic viewpoints. Third, the theory
of decomposable statistics is not directly applicable, when the number of
observations T in (1) diverges to infinity.

To overcome these drawbacks, we develop a novel testing procedure that
is capable of accommodating large p. Based on the martingale central limit
theorem, the proposed test statistic is shown to be asymptotically normal.
Our method includes the two- and multi-sample homogeneity tests as spe-
cial cases. Furthermore, we form an objective function based on segmenta-
tion when searching for multiple change-points, and determine the number
of change-points by minimizing its penalized version. The locations of the
change-points can be estimated via dynamic programming in conjunction
with utilization of the intrinsic order structure of the objective function.

The remainder of this article is organized as follows. In Section 2, we
present the new test statistic and its theoretical properties. In Section 3,
we develop the estimation procedure for multiple change-points. Section 4
provides extensive simulation studies and a real data example as an illustra-
tion. Section 5 concludes with some remarks, and all technical proofs and
additional numerical studies are delineated in the Supplementary Material.

2. Change-point test and estimation.

2.1. Test statistic. We are interested in testing the null hypothesis H0 :
Xt ∼ Multi(nt,q0), for t = 1, . . . , T , against the alternative in (1) with τ∗ <
T . We allow p → ∞ and consider the triangular arrays ql = (ql1, . . . , qlp)

⊤

for l = 0, 1, where we omit its dependence on p for simplicity. Let N =∑T
t=1 nt → ∞ as p → ∞, while T can either be fixed or diverge to infinity.
If τ is the true change-point (τ < T ), it is equivalent to testing whether

the two groups, segmented by τ , come from the same multinomial distri-
bution. Let Z0τ =

∑τ
t=1Xt ∼ Multi(N0τ ,q0) and Z1τ =

∑T
t=τ+1Xt ∼



4 WANG, ZOU AND YIN

Multi(N1τ ,q1), where N0τ =
∑τ

t=1 nt and N1τ =
∑T

t=τ+1 nt. Based on the
L2-norm, an intuitive test statistic can be constructed as

Lτ =

p∑
j=1

N0τN1τ

N

(
Z0τj

N0τ
− Z1τj

N1τ

)2

,(2)

where Z0τj and Z1τj are the j-th components of Z0τ and Z1τ , respectively.
This statistic is similar to Pearson’s chi-squared statistic for testing the
homogeneity of two multinomial samples Z0τ and Z1τ , which is given by

K2,τ =

p∑
j=1

N0τN1τ

N

(
Z0τj

N0τ
− Z1τj

N1τ

)2
(∑T

t=1Xtj

N

)−1

.(3)

In contrast, Lτ in (2) removes the component-wise standardization terms
q̂j ≡

∑T
t=1Xtj/N, j = 1, . . . , p, to circumvent the cases with q̂j = 0 in the

large p but small N situation, such that Lτ is always well-defined. More-
over, by removing such terms, it can further relax the dimensionality and
allow p to grow at a faster rate than the sample size. On the other hand,
removing the q̂j ’s is reasonable when they are of similar order in magni-
tudes. In the literature, a common assumption is that all the proportions
are spread-out and diminishing, i.e., max1≤j≤p q0j → 0 as p → ∞, where qlj
is the j-th component of ql; see for example, Holst (1972), Morris (1975) and
Baranov and Baranov (2005). However, in practice, there may be spikes at
certain proportions if a large number of categories are involved, say some of
the q̂j ’s are large relative to others. For example, in the modern e-commerce,
there are always best-sellers among similar products under certain subcate-
gories, whose sales (reflecting buyers’ tendency) are much more outstanding
than nonpopular ones. In the word composition in a writer’s work, func-
tion words and certain content words, such as pronouns, could appear more
frequently than others in the writing.

To strike a balance between Lτ and K2,τ , we replace the assumption that
max1≤j≤p q0j → 0 by a more relaxed one.

(A1) For l = 0, 1, there exists a set Bl ⊂ {1, . . . , p} such that max
j∈Bl

qljap → 0

with a−1
p = O(1) as p → ∞. Further let Al = {1, . . . , p}\Bl be the

complement of Bl and assume that min
j∈Al

qljap > ε for some ε > 0 as

p → ∞.

Assumption (A1) divides p categories into two disjoint subsets Al and Bl

according to the magnitudes of their corresponding probabilities, either “sig-
nificant” or “diminishing”, while changes may occur in either subset (more
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precisely, on some categories in either set). It requires that these two subsets
can be separated by ap at the population level. When ap is bounded away
from zero, there are finite elements in Al and maxj∈Bl

qlj → 0.
Change-point detection using all the proportions in Lτ may cause diffi-

culty in the interpretation and degrade the performance due to the fact that∑
j∈A0

N0τN1τ
N

(
Z0τj

N0τ
− Z1τj

N1τ

)2
may dominate

∑
j∈B0

N0τN1τ
N

(
Z0τj

N0τ
− Z1τj

N1τ

)2
.

To improve the detection power in high-dimensional settings, screening meth-
ods (Fan and Lv, 2008) can be used to select potential interesting features
for further analysis. We first separate out the proportions not less than
the order O(a−1

p ) from {1, . . . , p}, possibly before and after the change, i.e.,
A = A0 ∪ A1, by using

Â = {j : q̂jap > Cε} for some C > 0.(4)

We then construct two individual test statistics on both Â and {1, . . . , p}\Â ≡
B̂, and finally combine these two parts together.

Let

Lτj =
N0τN1τ

N

(
Z0τj

N0τ
− Z1τj

N1τ

)2

and Rτj = Lτj/q̂j .

We propose to run over all possible change-points as

Qp,Â =
∑
τ∈T

∑
j∈B̂

(
Lτj − L

(0)
τj

)
+ epI

(
max
τ∈T

max
j∈Â

Rτj > rp

)
(5)

≡ Sp,Â + Ep,Â ,

where I(·) is the indicator function, and

L
(0)
τj =

N0τN1τ

N

(
Z0τj

N2
0τ

+
Z1τj

N2
1τ

)
is a bias-correction term to make the expectation of Sp,Â negligible com-

pared to
√

Var(Sp,Â ). In Ep,Â , the second term of (5), ep is a large enough

constant and rp is chosen to be slightly larger than the maximum noise level
such that Ep,Â is zero under H0 with high probability but diverges quickly

under H1 with some j ∈ A . Note that for Â and B̂ we use the max-
norm and L2-norm based test statistics, respectively. It is widely acknowl-
edged that the max-norm test is more suitable for sparse and strong signals,
whereas the L2-norm test is for dense but faint signals (Chen and Qin, 2010;
Fan, Liao and Yao, 2015). Similar to the power-enhancement test statistic
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proposed by Fan, Liao and Yao (2015), the advantage of using Qp,Â would
be more transparent by examining its asymptotic behavior in Section 2.2.
We use the trimmed summation, say T = [⌈a(T − 1)⌉ , ⌈b(T − 1)⌉] with fixed
constants 0 < a < b < 1 (for example, a = 0.1 and b = 0.9), to avoid some
technical difficulties when T → ∞, where ⌈x⌉ denotes the smallest integer
not less than x; for example, see Perron and Vogelsang (1992).
Remark 1 Conventionally, Mp,Â ≡ maxτ∈T

∑
j∈B̂ Lτj is used as the

change-point test statistic rather than Sp,Â (Csörgö and Horváth, 1997).
However, it is recognized the rate of convergence of the maximum statistic
is slow; see Section 1.3 of Csörgö and Horváth (1997). Consequently, the
asymptotic quantiles do not work well with the typical values of nt and T
in real applications. In contrast, Sp,Â (also Qp,Â ) is asymptotically normal
under some mild conditions and thus can greatly facilitate the construc-
tion of the test. Our numerical analysis demonstrates that the power of
Sp,Â is at least comparable to that of Mp,Â . In fact, Mp,Â and Sp,Â can
be respectively viewed as the CUSUM and Shiryaev–Roberts procedures
(Srivastava and Wu, 1993).

When the null hypothesis is rejected, the change-point τ∗ can be naturally
estimated by

(6) τ̂∗ =

{
argmaxτ∈T maxj∈Â Rτj , if Ep,Â = ep,

argmaxτ∈T
∑

j∈B̂(Lτj − L
(0)
τj ), otherwise.

Under certain conditions, we can establish the consistency of this estimator.

2.2. Null distribution of the test statistic. We begin with the separation
consistency of our procedure (4).

Theorem 1. Suppose that Assumption (A1) holds, and if Na−2
p (log ap)

−1 →
∞ as (p,N) → ∞, then

(i) under H0, Pr(Â = A0) → 1 for any 0 < C < 1.
(ii) under H1, Pr(Â = A0 ∪ A1) → 1 for any 0 < C < min(κ0, 1− κ0)/2,

where κ0 is the limit of N0τ∗/N , i.e., N0τ∗/N → κ0 as N → ∞.

By Theorem 1, we conclude that Pr(Qp,Â ≤ x) = Pr(Qp,A ≤ x) + o(1)
for any x, and hence it suffices to study the asymptotic behavior of Qp,A .
The following assumptions are needed for further theoretical development.

(A2) There exist 0 < ρ, ρ < ∞, such that ρ ≤ N0τ/N1τ ≤ ρ for any τ ∈ T .
(A3) For l = 0, 1,N−2(

∑
j∈B q2lj)

−1 → 0 andN−1(
∑

j∈B q3lj)(
∑

j∈B q2lj)
−2 →

0, as (p,N) → ∞.
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(A4) Assume (
∑

j∈B q40j)(
∑

j∈B q20j)
−2 → 0, as p → ∞.

(A5) Assume Na−2
p {log(Tap)}−1 → ∞, as (p,N) → ∞.

Remark 2 Assumption (A2) is a technical condition that requires the
pre- and post-τ sample sizes to be comparable. Assumptions (A3) and (A4)
are mild. For example, if qlj ≍ p−1 for j = 1, . . . , p; l = 0, 1, i.e., there exist
0 < C,C < ∞ such that C ≤ pqlj ≤ C, then

∑p
j=1 q

r
lj ≍ p−r+1 for r = 2, 3, 4.

Consequently, (A3)–(A4) are satisfied if p/N2 → 0 which is faster than the
linear rate, p/N = O(1), as in Baranov and Baranov (2005). Assumption
(A5) imposes a condition on ap, which holds trivially when ap is bounded
away from zero.

Theorem 2. Suppose that H0 and Assumptions (A1)–(A2) hold.

(i) The expectation and variance of Sp,A are given by

E(Sp,A ) = o
{√

Var(Sp,A )
}
,

Var(Sp,A ) =
(
2
∑
τ<τ ′

N0τN1τ ′

N0τ ′N1τ
+ ΛT

)
· 2
∑
j∈B

q20j{1 + o(1)},

respectively, as (p,N) → ∞, where ΛT = ⌈b(T − 1)⌉ − ⌈a(T − 1)⌉+1.
(ii) Suppose further Assumptions (A3)–(A4) hold, then as (p,N) → ∞,

Sp,A√
Var(Sp,A )

D→ N(0, 1).

(iii) Suppose further Assumption (A5) holds, and if rp{log(Tap)}−1 → ∞,
then as (p,N) → ∞,

Qp,A√
Var(Sp,A )

D→ N(0, 1).

Theorem 2 (ii) establishes the asymptotic normality of Sp,A under the
null hypothesis and Theorem 2 (iii) reveals that Sp,A and Qp,A would
have the same asymptotic null behavior given an appropriate sequence of
rp. The proof is outlined in the Supplementary Material with key step-
s described as follows. In fact, the observations can be decomposed into
Xtj =

∑N0t
i=N0,t−1+1 Yij for j = 1, . . . , p, t = 1, . . . , T , with the convention of

N00 = 0 and N0T = N , where {(Yi1, . . . , Yip)⊤}Ni=1 are independent and fol-
low the multinomial distribution, Multi

(
1, (q01, . . . , q0p)

⊤). It can be shown
that Sp,A − E(Sp,A ) is asymptotically equivalent to a martingale difference
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sequence and consequently the assertion is proved by applying the martin-
gale central limit theorem; e.g., see Corollary 3.1 of Hall and Heyde (1980).
Note that

∑
j∈B Lτj essentially shares a form similar to the high-dimensional

two-sample test statistic (Bai and Saranadasa, 1996; Chen and Qin, 2010).
However, their results are not directly applicable to Sp,A because the un-
observable variables Yij ’s do not satisfy the data structure that the validity
of asymptotic normality relies upon. In addition, the treatment on the sum-
mation of dependent statistics Lτj for τ ∈ T is nontrivial.

The variance of Sp,A depends on the unknown quantities
∑

j∈B q20j . There-

fore, we need to find a ratio-consistent estimator of
∑

j∈B q20j in order to use
the asymptotic normality result in practice. Given A , we propose to use

UN,A =
N

N − 1

∑
j∈B

(
q̂2j −

1

N
q̂j

)
,(7)

for which the ratio-consistency property holds as shown in the following
proposition.

Proposition 1. Suppose that H0 and Assumption (A3) hold, then as
(p,N) → ∞,

UN,A /
∑
j∈B

q20j
P→ 1.

By Slutsky’s theorem, we obtain that as (p,N) → ∞,

Qp,A√
2cN,TUN,A

D→ N(0, 1),

where cN,T = 2
∑

τ<τ ′ N0τN1τ ′/(N1τN0τ ′) + ΛT . As a result, we reject H0

at an α level of significance if Qp,Â

/√
2cN,TUN,Â exceeds zα, where zα is

the upper αth quantile of the standard normal distribution.

2.3. Consistency of the test and estimator. We investigate the asymp-
totic behavior of our test under the alternative hypothesis, i.e., the one
change-point model in (1). We consider a local alternative hypothesis with
δj = q0j − q1j for j = 1, . . . , p, and assume that the true change-point is not
at the boundary, i.e., τ∗ = ⌈γ(T − 1)⌉ for 0 < γ < 1. It is well recognized
that change-point tests do not usually work well when the change-point is
at the boundary (Chen and Gupta, 2000).

Theorem 3. Suppose that Assumptions (A1), (A2), and (A5) hold,
N0τ∗/N → κ0, rp{log(Tap)}−1 → ∞ and epT

−1 → ∞, as (p,N) → ∞.
If the shift sizes δj’s satisfy either of the following two conditions:
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(i) N
∑

j∈B δ2j

(
max
l=0,1

∑
j∈B q2lj

)−1/2
→ ∞,

(ii) Nδ2j′r
−1
p → ∞ for some j′ ∈ A ,

then

Qp,Â√
2cN,TUN,Â

P→ ∞.

This theorem entails the rationale for the combination of Sp,Â and Ep,Â .
Suppose that ap is bounded away from zero, and rp is chosen as log T log log T .
When the signal under the alternative is dense, say the changes occur main-
ly in B such that condition (i) is satisfied, Qp,Â is as powerful as Sp,Â . For

example, if qlj ≍ p−1 for l = 0, 1 and j ∈ B, this result demonstrates our
test has non-trivial power under the contiguous alternatives of O(N−1p−1/2)
in terms of

∑
j∈B δ2j . On the other hand, in sparse alternatives where most

of the proportions do not change over time but some of δj ’s are particular-
ly large so that Nδ2j′/(log T log log T ) → ∞ for some j′ ∈ A , Qp,Â would
also be powerful due to the dominance of Ep,Â . In such situations, our pro-
posed test is consistent against the contiguous alternative of order larger
than N−1/2(log T log log T )1/2 which is a nearly optimal rate for the change
detection with a fixed p. The statistic Qp,Â gains strength by borrowing in-
formation from the pre-separation and thus it is able to balance the detection
between the sparse and dense signals.

A by-product of the proof of this theorem is the consistency of our change-
point estimator defined in (6).

Corollary 1. Suppose that Assumptions (A1)–(A3), and (A5) hold,
and N0τ∗/N → κ0 as N → ∞.

(i) If there exists some j′ ∈ A such that Nδ2j′r
−1
p → ∞, then

Pr(|τ̂∗ − τ∗| < ζA ,T ) → 1,

where ζA ,T > 0 satisfies that (N0,τ∗±ζA ,T
−N0τ∗)δ

2
j′ → ∞.

(ii) If all δj = 0 for j ∈ A but N
∑

j∈B δ2j

(
max
l=0,1

∑
j∈B q2lj

)−1/2
→ ∞,

then
Pr(|τ̂∗ − τ∗| < ζB,T ) → 1,

where ζB,T > 0 satisfies that

(N0,τ∗±ζB,T
−N0τ∗)

∑
j∈B

δ2j

/√
max
l=0,1

∑
j∈B

q2lj → ∞.
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2.4. A special case: two-sample homogeneity test. The proposed Qp,Â
includes the two-sample homogeneity test as a special case,

H0 : q0 = q1 versus H1 : q0 ̸= q1,

where the two groups X0 ∼ Multi(n0,q0) and X1 ∼ Multi(n1,q1) are inde-
pendent. The test statistic can be formulated as

Qp,Â =
∑
j∈B

(
Lj − L

(0)
j

)
+ epI

(
max
j∈Â

Lj

q̂j
> rp

)
,

where Lj = n0n1/N(X0j/n0 − X1j/n1)
2, L

(0)
j = X0j/n

2
0 + X1j/n

2
1, N =

n0+n1, and X0j , X1j , q̂j are the j-th component of X0,X1 and (X0+X1)/N
respectively. A direct application of Theorem 2 yields the following corollary.

Corollary 2. Suppose that H0 and Assumptions (A1), (A3)–(A4) and

(A5) with T = 1 hold, and n0/N → κ0 ∈ (0, 1) as N → ∞, then Qp,Â /
√

2UN,Â
D→

N(0, 1) as (p,N) → ∞, where UN,Â = N/(N − 1)
∑

j∈B

(
q̂2j −N−1q̂j

)
.

Chen and Zhang (2013) proposed a graph-based test for two-sample com-
parison with categorical data when the contingency table is sparsely popu-
lated. Their method utilizes similarity information on the sample space and
thus may improve power in certain cases. Compared with our proposal, the
graph-based test is more computationally intensive, and it requires permuta-
tion procedures because the asymptotic null distribution of the test statistic
depends on some nuisance parameters that cannot be estimated easily.

3. Multiple change-point estimation. To extend the proposed method
to multiple change-points, we assume

Xt ∼ Multi(nt,ql), τ∗l < t ≤ τ∗l+1, l = 0, 1, . . . , L∗,

where L∗ is the true number of change-points (L∗ ≥ 1), τ∗l ’s are the locations
of these change-points with the convention of τ∗0 = 0 and τ∗L∗+1 = T , and
ql is the vector of probabilities of outcomes for segment l + 1 satisfying
ql ̸= ql+1.

Intuitively, the binary segmentation for a single change-point discussed
earlier can be applied recursively to detect multiple change-points. Although
binary segmentation is computationally efficient and roughly linear with
sample size, it only provides an approximate solution and may lead to
poor estimation of the number and locations of multiple change-points; see
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Fryzlewicz (2014) and the references therein for variants of binary segmenta-
tion. In contrast, we define an objective function based on segmentation and
minimize its penalized version, which can be viewed as a global procedure
(Killick, Fearnhead and Eckley, 2012).

We first generalize Assumption (A1) to the multiple change-points setting:

(B1) For any l = 0, 1, . . . , L∗, there exists a nonempty set Bl ⊂ {1, . . . , p}
such that maxj∈Bl

qlj → 0 as p → ∞, where qlj is the j-th component
of ql. Further let Al = {1, . . . , p}\Bl be the complement of Bl and
assume that minj∈Al

qlj > ε for some ε > 0 as p → ∞.

For ease of discussion, Assumption (B1) simply considers ap bounded away
from zero which may be the case of the most interest. We introduce τ∗A ,1, . . . , τ

∗
A ,A∗

as all possible change-points at which changes could occur only in set A .
Within each range (τ∗A ,a, τ

∗
A ,a+1], a = 0, 1, . . . , A∗, with the convention of

τ∗A ,0 = 0 and τ∗A ,A∗+1 = T , we then let τ∗B,a,1, . . . , τ
∗
B,a,B∗

a
be the remaining

possible change-points at which changes could occur only in set B. Note
that A∗ +

∑A∗

a=0B
∗
a = L∗ and we allow that A∗ and B∗

a’s could be 0. In line
with the argument in Section 2, the penalized objective functions for A and
B should not be the same. Define

Â = {j : q̂j > Cε for some C > 0} and B̂ = {1, 2, . . . , p}\Â ,

as (4) in Section 2. We propose a two-step detection procedure as follows.
Step 1: For a candidate set of A change-points, τ1 < · · · < τA, we define

the objective function,

SÂ (τ1, . . . , τA) =

A∑
a=0

τa+1∑
t=τa+1

∑
j∈Â

{Xtj − ntX̄j(τa, τa+1)}2

ntq̂j
,

where τ0 = 0, τA+1 = T and X̄j(τa, τa+1) =
∑τa+1

t=τa+1Xtj/
∑τa+1

t=τa+1 nt. The
A change-points τa’s can then be estimated by

(τ̂A,1, . . . , τ̂A,A) = argmin
τ1<···<τA

SÂ (τ1, . . . , τA).

To determine A, we observe that SÂ (τ̂A,1, . . . , τ̂A,A) is a nonincreasing func-
tion in A. Hence we can add a penalty for large A to strike a balance between
the value of the objective function and the number of change-points. We de-
termine A by minimizing

SPen
A = SÂ (τ̂A,1, . . . , τ̂A,A) +Aξp,N ,(8)
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with respect to A ≥ 0, where ξp,N is chosen to be slightly larger than the
maximum variation level (no change) so that SÂ (τ̂A,1, . . . , τ̂A,A) would be
dominated by Aξp,N under overfitting models with high probability. We

denote the resulting estimators as Â and (τ̂Â,1, . . . , τ̂Â,Â) if Â > 0.

Step 2: The whole sampling range can then be divided into Â+ 1 subin-

tervals, (τ̂Â,a, τ̂Â,a+1], a = 0, 1, . . . , Â with the convention of τ̂Â,0 = 0 and
τ̂Â,Â+1 = T . In the (a+ 1)-th subinterval, we introduceBa candidate change-

points τ
(a)
1 < · · · < τ

(a)
Ba

and consider the following objective function,

SB̂

(
τ
(a)
1 , . . . , τ

(a)
Ba

)
=

Ba∑
b=0

τ
(a)
b+1∑

t=τ
(a)
b +1

∑
j∈B̂

{
Xtj − ntX̄j

(
τ
(a)
b , τ

(a)
b+1

)}2/
nt,

where τ
(a)
0 = τ̂Â,a and τ

(a)
Ba+1 = τ̂Â,a+1. Similarly, we let(

τ̂
(a)
Ba,1

, . . . , τ̂
(a)
Ba,Ba

)
= argmin

τ
(a)
1 <···<τ

(a)
Ba

SB̂

(
τ
(a)
1 , . . . , τ

(a)
Ba

)
and then minimize

SPen
Ba

= SB̂

(
τ̂
(a)
Ba,1

, . . . , τ̂
(a)
Ba,Ba

)
+Ba{Q̂B̂(τ̂Â,a, τ̂Â,a+1) + ηp,N}(9)

with respect to Ba ≥ 0, where

Q̂B̂(τ̂Â,a, τ̂Â,a+1) =

τ̂Â,a+1∑
t=τ̂Â,a+1

∑
j∈B̂

Xtj

/ τ̂Â,a+1∑
t=τ̂Â,a+1

nt

together with ηp,N serve the purpose of penalization. We denote the final

estimators as B̂a and
(
τ̂
(a)

B̂a,1
, . . . , τ̂

(a)

B̂a,B̂a

)
if B̂a > 0 for a = 0, 1, . . . , Â.

Remark 3 In the low-dimensional situation such as SÂ (τ̂A,1, . . . , τ̂A,A),
the total variation reduced due to adding a redundant change-point is of
the same order of the maximum noise level and thus can be dominated by
ξp,N in SPen

A . However, this is not directly applicable in the high-dimensional

setting. The reduction of the objective function SB̂

(
τ
(a)
1 , . . . , τ

(a)
Ba

)
caused

by adding a new point includes two terms, the expectation and the vari-
ation, while the latter in fact vanishes compared to the former. In SPen

Ba
,

Q̂B̂(τ̂Â,a, τ̂Â,a+1) is an approximation to the expectation term and ηp,N
is chosen to be slightly larger than the maximum variation level. Howev-

er, SB̂

(
τ̂
(a)
Ba,1

, . . . , τ̂
(a)
Ba,Ba

)
+BaQ̂B̂(τ̂Â,a, τ̂Â,a+1) is no longer a nonincreasing
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function in Ba, so that standard techniques in establishing consistency, e.g.,
Yao (1988) and Bai and Perron (1998), become invalid. In fact, our theoret-
ical derivations are almost completely different and highly nontrivial.

The minimization problems in (8) and (9) can be solved via the dynamic
programming (DP) algorithm (Hawkins, 2001) or the pruned exact linear
time (PELT) algorithm (Killick, Fearnhead and Eckley, 2012). Finding the
exact solutions is straightforward and fast; the computational cost is linear
in p and could possibly be close to linear in T when using the PELT. In the
worst scenario that the “pruned” part is negligible, the total complexity is
O(pT 2) which is equivalent to using the standard DP algorithm.

To study the consistency of our two-step detection procedure, we first
extend Theorem 1 to the case of L∗ > 1.

Corollary 3. Suppose that Assumption (B1) holds and, as (N,T ) →
∞, N0τ∗l

/N → κl for l = 0, 1, . . . , L∗ with κ0 < κ1 < · · · < κL∗. Then, we

have Pr(Â = A ) → 1 for any 0 < C < minl<L∗{κl+1 − κl}/L∗ with the
convention of κL∗+1 = T .

Let λA ,T = min0≤a≤A∗(τ∗A ,a+1 − τ∗A ,a), λB,T = min0≤l≤L∗(τ∗l+1 − τ∗l ),

∆A = min1≤a≤A∗
∑

j∈A (qτ∗A ,a,j
−qτ∗A ,a−1,j

)2/q
(κ)
j , ∆B = min1≤l≤L∗

∑
j∈B(qlj−

ql−1,j)
2 and n = min1≤t≤T nt, where q

(κ)
j =

∑L∗

l=0(κl+1 − κl)qlj . Two addi-
tional assumptions are required for the theoretical development.

(B2) If A∗ > 0, as (p,N, T ) → ∞,

λ2
A ,Tn

2N−1∆A

max {log T, n−1(log T )2}
→ ∞.

(B3) If B∗
a > 0, as (p,N, T ) → ∞,

λ2
B,Tn

2N−1∆B

max
{
(maxl

∑
j∈B q2lj)

1/2 log T, n−1/2(log T )1/2, n−1(log T )2
} → ∞.

Assumptions (B2) and (B3) impose theoretical requirements for the smallest
signal strength and distance between two change-points so that the change-
points are asymptotically distinguishable. It is intuitive that if two successive
distributions are very different, then we do not need a large λT to locate the
change-point. Theorem 4 firstly establishes the consistency of the estimated
change-points for set A , and Theorem 5 then does for set B.
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Theorem 4. Suppose that Assumptions (B1) and (B2) hold, the upper
bound on L∗ is bounded, and N0τ∗l

/N → κl as (N,T ) → ∞. If ξp,N is chosen

such that ξp,N/max{log T, n−1(log T )2} → ∞, then

Pr
(
Â = A∗; |τ̂Â,a − τ∗A ,a| ≤ δA ,T , a = 0, 1, . . . , A∗

)
→ 1,

as (p,N, T ) → ∞, provided that δ2A ,Tn
2N−1∆A /ξp,N → ∞.

Theorem 5. Suppose the conditions in Theorem 4 and Assumption (B3)
hold. If ηp,N is chosen such that

max
{(

max
l

∑
j∈B

q2lj
)1/2

log T, n−1/2(log T )1/2, n−1(log T )2
}
η−1
p,N → 0,

then

Pr
(
B̂a = B∗

a; |τ̂ (a)
B̂a,b

− τ∗B,a,b| ≤ δB,T , b = 0, 1, . . . , B∗
a

)
→ 1,

as (p,N, T ) → ∞, provided that δ2B,Tn
2N−1∆B/ηp,N → ∞ and

∆A /max{log T, n−1(log T )2}
∆B/max{(maxl

∑
j∈B q2lj)

1/2 log T, n−1/2(log T )1/2, n−1(log T )2}
→ ∞.

(10)

The condition in (10) requires that the signal strength in set A dominates
that in set B. This ensures that the difference between the estimated change-
point τ̂Â,a and the true one, τ∗A ,a, would not affect the detection performance
in B. Intuitively speaking, this condition can be easily satisfied because the
changes in a low-dimensional environment are always more detectable than
those in a high-dimensional setting.

Theorems 4 and 5 can be shown using a concentration inequality for
degenerate U -statistics on the basis of an independent vector-valued sample,
see Section 3.4.3 of Giné and Nickl (2016). As the concentration inequality
is sharp, the rate of δ·,T given in the theorems is “near-optimal” and cannot
be improved beyond the degree of (log T )c for some c > 0.

Choices of ξp,N and ηp,N depend on n and maxl q
⊤
lql. To guarantee a

reasonable detection precision, n cannot be too small, and of course the
larger the better. For practical use, we suggest to choose ξp,N and ηp,N so that

the conditions ξp,N/ log T → ∞ and ηp,N/
{(

maxl q
⊤
lql

)1/2
log T

}
→ ∞
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are roughly satisfied. Empirically, we recommend ξp,N = cξ(log T )
1.5 and

ηp,N = cηŪ
1/2
t (log T )1.1, where Ūt = T−1

∑T
t=1 Ut and

Ut =
1

nt(nt − 1)

∑
j∈B̂

(X2
tj −Xtj).

Note that Ūt can be regarded as an approximation to the lower bound of
maxl q

⊤
lql. A slightly conservative choice helps to prevent underfitting, as one

is often reluctant to miss any important change-point. Our simulation results
indicate that cξ = 2 and cη = 1.2 provide reasonably good performance in
most cases.

4. Numerical studies.

4.1. Two-sample homogeneity test. To evaluate the performance of our
proposed test and the change-point detection procedure, we first consider the
two-sample homogeneity problem and compare it with some “off-the-shelf”
procedures. A natural benchmark is the classical Pearson’s chi-squared test
which is modified by removing all the terms with q̂j = 0 to accommodate
large p,

Wp =
n0n1

N

p∑
j=1,q̂j ̸=0

(X0j

n0
− X1j

n1

)2/
q̂j .

The critical value is approximated by χ2
α,p̃−1, the upper αth quantile of the

χ2-distribution with degrees of freedom p̃ − 1, where p̃ =
∑p

j=1 I(q̂j ̸= 0).
Another alternative is the well-known Hellinger test,

Hp =
4n0n1

N

p∑
j=1

(√X0j

n0
−
√

X1j

n1

)2
,

which rejects the null hypothesis if Hp > χ2
α,p̃−1. All simulation results are

based on 5,000 replications.
Table 1 presents the empirical sizes at a 5% significance level under

the null hypothesis H0 : q0 = {ω/d1⊤d, (1− ω)/(p− d)1⊤p−d}⊤ and different
(p,N)-settings, where 0 < ω < 1, d is an integer and 1d stands for the d-
dimensional vector with all components being 1. We set n0 = n1 = N/2. If
d ≪ p, this null model means that A ≈ {1, . . . , d}. To obtain a reasonable
estimator Â in practice, we consider the curve of the cumulative sum of
the decreasingly ordered q̂j ’s, with an expectation that there would be a



16 WANG, ZOU AND YIN

relatively slow growth after d. Thus, we can maximize the angle between
the two contiguous slopes of the piecewise linear curve,

d̂ = argmax
i=1,...,p−1

−1− q̂(i)q̂(i+1)√
1 + q̂2(i)

√
1 + q̂2(i+1)

,

where q̂(1) ≥ · · · ≥ q̂(p) are the ordered values of q̂j ’s. We observe that the
sizes of the proposed Qp,Â test are generally close to the nominal level under
all the scenarios. In contrast, both Wp and Hp work well under relatively
small p settings as expected, but encounter serious size distortion under
“small N , large p” scenarios.

Table 1

Comparison of empirical sizes (%) at a 5% significance level for the two-sample
homogeneity test under H0 : q0 = {ω/d1⊤d, (1− ω)/(p− d)1⊤p−d}⊤ and different

(p,N)-settings, with ω = 0.5 and d = 6.

p

N Test 10 20 50 100 200 500 1000 2000 5000

500 Qp,Â 5.36 5.40 5.44 5.12 6.02 5.72 5.34 5.42 5.76

Hp 5.20 6.84 47.50 99.12 100.00 100.00 100.00 100.00 100.00

Wp 4.44 4.42 3.28 1.18 0.12 0.00 0.00 0.00 0.00

1000 Qp,Â 5.84 6.50 5.24 5.88 5.78 5.66 5.50 5.10 5.02

Hp 5.24 5.86 15.48 76.36 100.00 100.00 100.00 100.00 100.00

Wp 4.98 4.70 4.02 3.16 1.24 0.04 0.00 0.00 0.00

To evaluate power of the three tests, we consider two alternative hypothe-
ses:

(i) dense but faint signals,

q1 = {ω/d1⊤d, (1+s)(1−ω)/(p−d)1⊤⌊(p−d)/2⌋, (1−s)(1−ω)/(p−d)1⊤⌊(p−d)/2⌋}
⊤,

where ⌊x⌋ denotes the largest integer not greater than x;
(ii) sparse but strong signals,

q1 = {(1 + s)ω/d1⊤⌊d/2⌋, (1− s)ω/d1⊤⌊d/2⌋, (1− ω)/(p− d)1⊤p−d}⊤.

We choose p = 500, 1000, and for each p, let N = 500, 1000. Figure 1 shows
the relationship between empirical power and s. Our Qp,Â test is clearly
more powerful than Wp. The empirical sizes of Hp deviate far from the
nominal level as shown in Table 1, which renders unnecessarily high power
for Hp. Overall, our Qp,Â test is demonstrated to maintain the test size as
well as attaining high power.
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Fig 1. Comparison of empirical power at a 5% significance level for the two-sample
homogeneity test under different (p,N)-settings and the alternative hypothesis (i)
with ω = 0.3 and the alternative hypothesis (ii) with ω = 0.7, where d = 6. Here
Qp is short for Qp,Â .

4.2. Change-point problem. When the number of categories, p, is fixed,
Srivastava and Worsley (1986) and Horváth and Serbinowska (1995) studied
change-point tests with multinomial data based on Pearson’s chi-squared s-

tatistic. In particular, Srivastava and Worsley (1986) proposed to useW
(SW)
p =

maxτ K2,τ and gave a conservative approximation of the null distribution
based on an improved Bonferroni inequality. Horváth and Serbinowska (1995)

developed a weighted version, W
(HS)
p = maxτ N0τN1τ/N

2K2,τ , and showed

under some conditions W
(HS)
p

D→ sup0≤t≤1

∑p−1
j=1 B

2
j (t), where {Bj(t), 0 ≤

t ≤ 1}, 1 ≤ j ≤ p− 1, are independent Brownian bridges. To accommodate
large p, we replace K2,τ and p by

K̃2,τ =

p∑
j=1,q̂0j ̸=0

N0τN1τ

N

(Z0τj

N0τ
− Z1τj

N1τ

)2/
q̂0j

and p̃ =
∑p

j=1 I(q̂0j ̸= 0), respectively. As pointed out by Aue et al. (2009),

(W
(HS)
p̃ −p̃/4)/

√
p̃/8

D→ N(0, 1) when p is large. For fairness, we use the same
trimmed summation or maximization in these competitors as our Qp,Â , i.e.,

T = [⌈a(T − 1)⌉ , ⌈b(T − 1)⌉].
We again consider H0 : q0 = {ω/d1⊤d, (1− ω)/(p− d)1⊤p−d}⊤. For simplic-

ity, we fix nt = n = N/T for t = 1, . . . , T , and set a = 0.1 and b = 0.9 in
the proposed test. Table 2 presents the empirical sizes at a 5% significance
level under various scenarios with T = 100. The results with T = 10 and
significance levels of 1% and 10% are reported in the Supplementary Mate-
rial. We observe that the empirical sizes of our test are close to the nominal

level, while both W
(SW)
p̃ and W

(HS)
p̃ encounter serious size distortion in most

cases. Note that it is unnecessary for n to be sufficiently large compared to
p.

For power comparison of the three tests, we consider T = 100, n = 20
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Table 2

Comparison of empirical sizes (%) at a 5% significance level for the change-point
test under H0 : q0 = {ω/d1⊤d, (1− ω)/(p− d)1⊤p−d}⊤ and different (p,N)-settings

when T = 100.

ω = 0.3 ω = 0.5 ω = 0.7

p n Qp,Â W
(SW)
p̃ W

(HS)
p̃ Qp,Â W

(SW)
p̃ W

(HS)
p̃ Qp,Â W

(SW)
p̃ W

(HS)
p̃

500 10 5.48 1.50 0.54 5.96 3.58 0.12 5.62 6.46 0.02

20 5.44 1.90 3.46 5.42 3.52 1.70 5.98 6.40 0.44

50 5.34 2.70 8.84 5.64 2.60 7.34 5.96 4.24 4.44

1000 10 5.80 1.02 0.02 5.76 3.36 0.00 6.14 6.88 0.00

20 5.12 1.74 0.42 5.52 3.44 0.14 5.76 6.68 0.04

50 5.34 2.16 4.42 5.40 3.08 2.42 5.68 6.14 0.56

and the locations of change-points at τ∗ = 20, 50. We examine the previous
two alternatives (i) and (ii) for q1. Figure 2 depicts the power curves of

the three tests, Qp,A , W
(SW)
p̃ and W

(HS)
p̃ , versus s. As s increases, the power

curve of the proposed procedure increases much more sharply than the other
two, especially in the sparse signal scenario. We also observe that the power
becomes larger when τ∗ moves closer to T/2, which coincides with Corollary
1. Overall, Qp,Â performs better than the other two competitors in terms
of attaining high power while maintaining the test size, and the advantage
becomes more pronounced for larger p. Such findings are consistent with
our theoretical analysis that Pearson’s chi-squared test may not work well
because the contamination bias in estimating the marginal proportions grows
rapidly with p. When p and N are comparable, the inverse of the estimated
proportions in the test statistic would no longer bring in benefit.

In Figure 3, we make comparisons with three other approaches: one is the
maximum of Lτ , i.e., Mp = maxτ

∑p
j=1 Lτj ; and the other two correspond

to the summation and maximum of the Hellinger test statistics, H
(sum)
p =∑

τ Hτ and H
(max)
p = maxτ Hτ , where

Hτ =
4N0τN1τ

N

p∑
j=1

(√Z0τj

N0τ
−
√

Z1τj

N1τ

)2
.

However, it is difficult to obtain approximate threshold values for these tests.
For fairness, we perform a size-corrected power comparison in the sense that
the actual threshold values are found through simulations so that these tests
approximately maintain a type I error rate of 0.05. Both the Mp and Qp,Â
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Fig 2. Comparison of empirical power for the proposed Qp,Â test, W
(SW)
p̃ by

Srivastava and Worsley (1986) and W
(HS)
p̃ by Horváth and Serbinowska (1995) un-

der the alternative hypothesis (i) with ω = 0.3, and the alternative hypothesis (ii)
with ω = 0.7, where d = 6.

tests outperform H
(sum)
p in most cases, because

∑
j Lτj possesses certain

advantage over Hτ as conveyed by Figure 1. The performances of the two∑
j Lτj-based methods are comparable in the dense signal setting, while

the Mp test appears to be slightly more powerful when τ∗ is small. In the
sparse signal setting, the Mp test breaks down even when τ∗ = ⌊T/2⌋, which
demonstrates the benefit of the power-enhancement term Ep,Â in our test
statistic Qp,Â . Besides, the advantages of using Qp,Â are obvious: its null
distribution is asymptotically normal and the asymptotic test has excellent
finite-sample performance as shown by Table 2.

Once the null hypothesis is rejected, we estimate the change-point under
the alternatives (i) and (ii). As shown in Table 3, the biases appear to be
negligible for all the change-points, and as expected the standard deviations
increase as p becomes large and decrease as N becomes large. Overall, the
proposed estimators are consistent and work well in most cases.

4.3. Multiple change-point detection. To assess our approach for detect-
ing multiple change-points, we consider two different data generation pro-
cesses. The first one assumes that changes only occur on B and the change-
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Fig 3. Comparison of size-corrected empirical power under the alternative hypothe-
ses (i) and (ii).

points are generated as {τ∗1 , . . . , τ∗L∗}/T = {0.25, 0.5, 0.75}. For each l =
0, 1, . . . , L∗, let A = {1, . . . , d},B = {d+ 1, . . . , p} and

ql =
{ω
d
1⊤d,

(1− ω)s

p− d
1⊤p−d,Bl

+
1− ω − (1−ω)sp0

p−d

p− d− p0
1⊤p−d,B\Bl

}⊤
,

where Bl is a randomly chosen subset of B with a cardinality of p0 =
0.01(p− d) and 1p−d,Bl

is a (p− d)-dimensional vector with elements taking
a value of 1 if belonging to Bl and 0 otherwise. The second data genera-
tion allows changes to occur on both A and B, and the change-points are
designed as {τ∗1 , . . . , τ∗L∗}/T = {0.2, 0.4, 0.6, 0.8}. Further let

ql =
(ωl

d
1⊤d,

1− ωl

p− d
1⊤p−d

)⊤
for l = 0, 1, 4,

q2 =
{ω2

d
1⊤d,

(1 + sB)(1− ω2)

p− d
1⊤⌊ p−d

2 ⌋,
(1− sB)(1− ω2)

p− d
1⊤⌊ p−d

2 ⌋
}⊤

and

q3 =
{(1 + sA )ω3

d
1⊤⌊ d

2⌋
,
(1− sA )ω3

d
1⊤⌊ d

2⌋
,
(1 + sB)(1− ω3)

p− d
1⊤⌊ p−d

2 ⌋,

(1− sB)(1− ω3)

p− d
1⊤⌊ p−d

2 ⌋
}⊤

,
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Table 3

Simulation study on the consistency of our change-point detection procedure with
the mean and standard deviation (in parentheses) of |τ̂∗ − τ∗|’s under alternatives

(i) and (ii). Note that New, SW, HS and Hel refer to the estimators by our
method, argmaxτ K2,τ (Srivastava and Worsley, 1986), argmaxτ N0τN1τK2,τ

(Horváth and Serbinowska, 1995) and Hellinger’s argmaxτ Hτ , respectively.

Alternative (i) Alternative (ii)

p = 500 p = 1000 p = 500 p = 1000

τ∗ = 20 τ∗ = 50 τ∗ = 20 τ∗ = 50 τ∗ = 20 τ∗ = 50 τ∗ = 20 τ∗ = 50

New 1.70(6.14) 0.75(2.23) 5.41(12.7) 1.67(3.39) 1.70(3.30) 0.93(1.79) 1.88(3.92) 0.97(1.85)
SW 2.68(3.32) 2.68(7.22) 4.24(3.71) 13.2(14.9) 2.29(7.67) 2.20(6.14) 3.81(12.1) 2.92(8.37)
HS 5.21(3.78) 9.60(1.21) 12.9(4.91) 10.0(1.69) 16.0(5.36) 9.23(1.35) 16.8(4.21) 9.27(1.15)
Hel 1.01(1.62) 0.64(1.31) 12.6(5.57) 1.47(2.02) 26.7(6.35) 1.34(1.90) 27.9(4.07) 0.89(1.21)

where ω1 = ω2 = ω3. It covers both cases of sparse signals on A and dense
signals on B. We take p = 1000 and T = 100 for illustration.

To evaluate the finite-sample performance, we introduce the distance be-
tween the estimated change-point set and the true one, representing the
over- and under-segmentation error respectively (Zou et al., 2014),

OE = sup
r=1,...,L∗

inf
l=1,...,L̂

|τ̂l − τ∗r | and UE = sup
l=1,...,L̂

inf
r=1,...,L∗

|τ̂l − τ∗r |,

for which a desirable estimator should be able to strike a balance. In addition,
the estimation error on the number of change-points, #E = |L̂−L∗|, is also
examined. Table 4 presents the mean and standard deviation of #E, OE and
UE, based on 2,000 replications. It can be seen that all the three error values
are small, and the performances are generally stable. This demonstrates that
the proposed global estimator in conjunction with the use of the empirical

ξp,N = cξ(log T )
1.5 and ηp,N = cηŪ

1/2
t (log T )1.1 (with cξ = 2.0 and cη = 1.2)

can deliver satisfactory detection performance in the presence of multiple
change-points.

4.4. Real data application. We illustrate the proposed method with the
Entree Chicago Recommendation Data from the University of California at
Irvine Machine Learning Repository. This data set contains user interactions
with the entree Chicago restaurant recommendation system, which recom-
mended restaurants based on cuisine, price, style, atmosphere etc. to users,
from September, 1996 to April, 1999. We focus on the end point of each user
interaction, which is represented by the numeric ID of the Chicago restau-
rant that the user last visited. There are T = 134 weekly records, a total
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Table 4

Performance evaluation on detection of multiple change-points with the standard
deviations given in parentheses. We set ω = 0.3 and s = 10 in data generation 1
and ω0 = 0.3, ω1 = ω2 = ω3 = 0.7, ω4 = 0.5 and sA = sB = 0.9 in data generation
2, and d = 6 in both settings. Note that #E = |L̂− L∗|, and OE and UE represent

over- and under-segmentation errors, respectively.

Data generation 1 Data generation 2

n #E OE UE #E OE UE

50 0.29(0.61) 0.77(1.22) 2.53(5.29) 1.51(1.36) 15.7(6.40) 6.86(7.05)
100 0.13(0.40) 0.09(0.34) 1.21(4.14) 0.82(0.64) 16.4(6.62) 3.34(5.48)
200 0.10(0.35) 0.00(0.05) 1.08(4.29) 0.37(0.63) 0.49(1.93) 2.23(4.42)
500 0.08(0.30) 0.00(0.00) 1.00(4.07) 0.29(0.59) 0.03(0.25) 1.46(3.38)

of N = 43, 573 user interactions and p = 617 restaurants. We are interested
in testing whether the proportions allotted to all the restaurants based on
users’ final choices changed over time. Figure 4 (a) depicts the sample size
nt by weeks, and Figure 4 (b) shows the scatter plot of the proportions of
two randomly chosen restaurants over time. The heatmaps of the frequencies
and proportions of the user interactions in all the restaurants for 134 weeks
are given in Figures 4 (c)–(d), respectively.

Figure 5 gives an empirical way to quantify the sparsity pattern A . In
particular, Figure 5 (a) shows the estimated proportions q̂j ’s, j = 1, . . . , p,
for all samples, and Figure 5 (b) exhibits the sorted q̂j ’s. The top-ranked q̂j ’s
are much larger than the average level, 1/p ≈ 1.62×10−3. Further, the zoom-
in plot (c) suggests that we may simply select restaurants with the largest
10 q̂j ’s as Â because those ten proportions are all larger than 0.01 and they
occupy 12.63% of the market by users’ tendency among all 617 restaurants.
As a result, Assumption (A1) or (B1) appears to be satisfied for this ex-
ample. Based on our testing procedure, (Sp,Â − ΛT )/

√
2cN,TUN,A = 9.21,

which is highly significant compared with the standard normal null distribu-
tion. Subsequently, we perform the multiple change-point detection. Lavielle
(2005) suggested an intuitive method by first plotting the segmentation cost
function versus the number of change-points and then finding an “elbow” in
the plot, which would suggest the most suitable segmentation. The intuition
is that as more true change-points are detected the cost function would con-
tinue to decrease, while at the same time it is likely to be detecting more
false positives and thus the cost function may start to decrease slowly or
level off. Figures 6 (a)–(b) present the plots of the penalized objective func-
tion based on segmentation, corresponding to equations (8)–(9), versus the
number of change-points L. Figure 6 (a) clearly suggests that the model
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Fig 4. Description of the raw data over time. (a): Sample size over time; (b):
Scatter plot of the proportions of two randomly chosen restaurants over 134 weeks;
(c): Heatmap of user interactions of 617 restaurants with brightness representing
the frequency of users’ final choices; (d): Heatmap of the proportions allotted in all
the restaurants with time.

with three change-points fit the data best on Â , and the identified change-
points are weeks 53, 54 and 90. Figure 6 (b) reveals that the model with two
change-points fits the data best on B̂ in the sampling range [55, 90), and the
identified change-points are weeks 62 and 63. Figure 6 (c) presents the plot

of SB̂(τ̂
(2)
L,1, . . . , τ̂

(2)
L,L) + LQ̂B̂(55, 90) versus the number of change-points L,

which verifies the segmentation result in Figure 6 (b) as the rate of decline
changes more sharply at the point L = 2. No change-points are found on B̂
in other sampling ranges, and thus in total five change-points are detected,
i.e., weeks 53, 54, 62, 63 and 90. Our result delivers piecewise “stable” seg-
mentations, i.e., within each segmentation users’ tendency towards different
types of restaurants can be regarded as unchanged. By identifying which
restaurants become more preferable or less preferable at a change-point, we
could explore potential factors, such as the food flavor, restaurant atmo-
sphere and service quality, that may affect customers’ choices, which would



24 WANG, ZOU AND YIN

0 200 400 600
0

0.005

0.01

0.015

0.02
(a)

0 200 400 600

0

5

10

15

20
10-3 (b)

0 10 20
0.005

0.01

0.015

0.02
(c)

Fig 5. Estimation of the sparsity pattern. (a): Scatter plot of the estimated propor-
tions q̂j’s for j = 1, . . . , p; (b)–(c): Plots of the estimated proportions in a decreasing
order, i.e., q̂(j)’s, for j = 1, . . . , p and j = 1, . . . , 20, respectively.
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Fig 6. (a)–(b): Plots of the penalized objective function based on segmentation, cor-
responding to equations (8)–(9), versus the number of change-points L, respectively.

(c): Plot of SB̂(τ̂
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L,1, . . . , τ̂

(2)
L,L) + LQ̂B̂(55, 90) versus the number of change-points

L.

in turn help to promote the development of catering industry.

5. Concluding remarks. A new approach to change-point detection is
developed based on the estimated sparsity patterns, which gives a general yet
tractable high-dimensional analogue to the classical Pearson’s chi-squared
statistic. The modified Pearson’s chi-squared statistic in conjunction with
the summation procedure is demonstrated to work well when the number
of categories is large and the contingency table is sparse. A limitation of
our method is the separation assumption that the estimators need to satis-
fy, which is a rather general issue in sparse estimation (Fan and Lv, 2008).
In practice, it remains difficult to be assured that all significant propor-
tions are distinguishable from the whole set. Nevertheless, our empirical
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studies suggest that asymptotic p-values behave reasonably well even when
the assumption may be possibly violated. In the analysis following change-
point detection, it is important to incorporate knowledge on the discovered
change-points to improve variable selection, inference, and prediction.
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Horváth, L. and Serbinowska, M. (1995). Testing for Changes in Multinomial Ob-
servations: The Lindisfarne Scribes Problem. Scandinavian Journal of Statistics 22
371–384.

Ivchenko, G. and Levin, V. (1976). Asymptotic Normality of a Class of Statistics in the
Multinomial Scheme. Theory of Probability & Its Applications 21 188–192.

Kallenberg, W. C. M. (1985). On Moderate and Large Deviations in Multinomial
Distributions. The Annals of Statistics 13 1554–1580.

Killick, R., Fearnhead, P. and Eckley, I. A. (2012). Optimal Detection of Change-
points With a Linear Computational Cost. Journal of the American Statistical Associ-
ation 107 1590–1598.

Lavielle, M. (2005). Using Penalized Contrasts for the Change-Point Problem. Signal
Processing 85 1501–1510.

Morris, C. (1975). Central Limit Theorems for Multinomial Sums. The Annals of Statis-
tics 3 165–188.

Perron, P. and Vogelsang, T. J. (1992). Testing for a Unit Root in a Time Series
With a Changing Mean: Corrections and Extensions. Journal of Business & Economic
Statistics 10 467–470.

Srivastava, M. S. and Worsley, K. J. (1986). Likelihood Ratio Tests for a Change
in the Multivariate Normal Mean. Journal of the American Statistical Association 81
199–204.

Srivastava, M. S. and Wu, Y. (1993). Comparison of EWMA, CUSUM and Shiryayev-
Roberts Procedures for Detecting a Shift in the Mean. The Annals of Statistics 21
645–670.

Yao, Y.-C. (1988). Estimating the Number of Change-Points via Schwarz’ Criterion.
Statistics & Probability Letters 6 181–189.

Zou, C., Yin, G., Feng, L. and Wang, Z. (2014). Nonparametric Maximum Likelihood
Approach to Multiple Change-Point Problems. The Annals of Statistics 42 970–1002.

Guanghui Wang, Changliang Zou
Institute of Statistics and LPMC
Nankai University
China
E-mail: ghwang.nk@gmail.com

nk.chlzou@gmail.com

Guosheng Yin
Department of Statistics and Actuarial Science
The University of Hong Kong
Hong Kong
E-mail: gyin@hku.hk


