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SUMMARY 5

This article concerns tests for sphericity when data dimension is larger than the sample size. The exist-
ing multivariate-sign-based procedure (Hallin & Paindaveine, 2006) for sphericity is not robust against
high dimensionality, producing tests with type I error rates much larger than nominal levels. This is
mainly due to bias from estimating the location parameter. We develop a correction that makes the ex-
isting test statistic robust against high dimensionality. We show that the proposed test statistic is asymp- 10

totically normal under elliptical distributions. The proposed method allows dimensionality to increase as
the square of sample size. Simulations show that it has good size and power for a wide range of settings.

Some key words: Asymptotic normality; Large p, small n; Spatial median; Spatial sign; Sphericity test.

1. INTRODUCTION

High-dimensional data have dimension p that increases to infinity as the number of observations n → 15

∞. Traditional statistical methods may fail in this situation since they are often based the assumption
that p remains constant. This challenge calls for new research on properties of traditional methods, see
Chen et al. (2009) and Hjort et al. (2009), for instance, and new statistical approaches to deal with high-
dimensional data. Some new methods were proposed by Chen & Qin (2010) for a two-sample test for
means, Ledoit & Wolf (2002), Schott (2005) and Chen et al. (2010) for testing a specific covariance 20

structure, and Tang & Leng (2010) and the references therein for variable selection.
Sphericity assumptions play a key role in a number of statistical problems. The need to test the spheric-

ity come from domains of application such as geostatistics, paleomagnetic studies, animal navigation,
astronomy, wind direction data and microarray analysis. See Tyler (1987), Baringhaus (1991), Marden
& Gao (2002) or Sirkiä et al. (2009) for references. Given the interest in both high-dimensional data and 25

testing sphericity, the asymptotic and finite-sample properties of sphericity tests in the high-dimensional
setting are worthy of careful investigation.

Because of its importance for applications, testing sphericity has a long history and has generated
a considerable body of literature which we only very briefly review. Let X1, . . . , Xn, denote a p-
dimensional sample of size n. The distribution of a p-dimensional random vector X is called spherical 30

if for some θ ∈ Rp, the distribution of X − θ is invariant under orthogonal transformations. For multi-
normal variables, sphericity is equivalent to the covariance matrix of X , Σ, being proportional to the
identity matrix Ip. Thus, the approaches, such as the likelihood ratio test (Mauchly, 1940), based on the
covariance matrix are quite popular. John (1971; 1972) considered the testing problem in the normal
distribution case and showed that the statistic 35
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provides the locally most powerful invariant test for sphericity under the multivariate normality assump-
tion, where S is the regular sample covariance matrix and Ip is the identity matrix. This test is valid
only under multivariate normality. In the wider elliptical model one can use a modification of John’s test
statistic, QM = QJ/κ̂, where κ̂ is the estimated kurtosis based on the standardized fourth moment of the40

marginal distribution (Muirhead & Waternaux, 1980).
Ledoit & Wolf (2002) evaluated QJ when the dimension p increases at the same rate as n, so that

p/n → c for a finite c. Chen et al. (2010) developed a high-dimensional test based on QJ, and showed
that their proposed test statistic is asymptotically normal by assuming that the data has the structure
Xi = ΓZi + µ, where Γ is a p×m matrix, m ≥ p, and Zi = (Zi1, . . . , Zim)T is a random vector such45

that

E(Zi) = 0, var(Zi) = Im, E(Z4k
il ) = m4k ∈ (0,∞),
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whenever
∑q

k=1 αk ≤ 4k. Here k, k1, . . . , kq are positive integers. The data structure (2) generates a rich
collection of Xi from Zi with a given covariance Σ. For example, the distributions in the so-called inde-
pendent component model lie in the family given by (2); see Example 2.6 in Oja (2010) and references50

therein. It is difficult, however, to justify this model. The condition that power transformations of differ-
ent components of Zi are uncorrelated is almost equivalent to saying that Zi1, . . . , Zim are independent
and thus not easily met in practice. For instance, it can be verified that a random vector from the multi-
variate t distribution or mixtures of multivariate normal distributions does not satisfy (2). Moreover, the
statistical performance of this test would be degraded when the non-normality is severe, especially for55

heavy-tailed distributions; see Section 3. This motivates us to consider using multivariate-sign-and/or-
rank-based covariance matrices to construct robust tests for sphericity.

This approach has been adopted by Tyler (1987), Ghosh & Sengupta (2001), Marden & Gao (2002),
Hallin & Paindaveine (2006), and Sirkiä et al. (2009), among others. Most of the tests proposed by these
researchers are based on the signs and the ranks of the norms of the observations centered at θ, with60

test statistics that have structures similar to QJ. These statistics are distribution-free under sphericity and
elliptical distributional assumptions, or asymptotically so. Hallin & Paindaveine (2006) or Oja (2010,
Chapter 9) gave a nice overviews of this topic. Among them, the test entirely based on multivariate signs,
also called spatial-sign by some authors, is of particular interests due to its simplicity and effectiveness,
and has been discussed in detail by Marden & Gao (2002), Hallin & Paindaveine (2006), and Sirkiä65

et al. (2009). In this paper, we focus on this type of test. The existing calibration method is not robust
against high dimensionality in the sense that it would produce tests with type I error rates much larger
than nominal levels. This is mainly due to biases in estimating the location parameter. In the next section,
we develop a bias-correction to the existing test statistic that makes it robust against high dimensionality.
We show that the proposed test statistic is asymptotically normal for elliptical distributions. Simulation70

comparisons show that our procedure has good size and power for a wide range of dimensions, sample
sizes and distributions. Finite sample studies also show that the proposed method works reasonably well
when the underlying distribution is not elliptical, especially for the observations from the data structure
(2). All the proofs are given in the online Supplementary Material.

2. HIGH-DIMENSIONAL TEST FOR SPHERICITY USING MULTIVARIATE SIGNS75

2·1. Inference based on sign covariance matrix
Let X1, . . . , Xn be a random sample from a p-variate elliptical distribution with density function

det(Σp)−1/2gp{||Σ−1/2
p (X − θp)||}, where ||X|| = (XT X)1/2 is the Euclidean length of the vector X ,

θp is the symmetry center and Σp is a positive definite symmetric p× p scatter matrix. The matrix Σp de-
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scribing the covariances between the p variables, can be expressed as Σp = σpΛp, where σp = σ(Σp) is a 80

scale parameter and Λp = σ−1
p Σp is a shape matrix. The scale parameter is assumed to satisfy σ(Ip) = 1

and σ(aΣp) = aσ(Σp) for all a > 0. We wish to test the null hypothesis H0 : Σp = σIp. Under the
assumption of ellipticity, finite second order moments need not exist and sphericity is equivalent to
Λp = Ip. If one wishes to test the hypothesis H0 : Λp = V , one can use the standardized observations
V −1/2Xi instead of the original ones. In the following we assume that the shape matrix is standardized 85

so that tr(Λp) = p.
The multivariate sign function is defined as U(X) = ||X||−1XI(X 6= 0). The observed signs

for the Xi’s are Ui = U(Xi − θp). Accordingly, the sign covariance matrix is defined by Ωn,p =
n−1

∑n
i=1 UiU

T
i (Hallin & Paindaveine, 2006). Under the null hypothesis, we have E(Ωn,p) = Ip/p.

The sign test statistic can be defined by mimicking John’s test (1) with Ωn,p (Hallin & Paindaveine, 90

2006; Sirkiä et al., 2009)

QS = ptr
[{tr(Ωn,p)}−1Ωn,p − p−1Ip

]2 = ptr
(
Ωn,p − p−1Ip

)2
.

It can be shown that when p is fixed, under the null hypothesis,

n(p + 2)QS/2 → χ2
(p+2)(p−1)/2 (3)

in distribution as n →∞. See Hallin & Paindaveine (2006) for the proof.
In high-dimensional settings, p diverges to infinity as n →∞, so χ2

p is asymptotically normal with 95

mean p and variance 2p, we may expect that

{var(QS)}−1/2 {QS − E(QS)} → N(0, 1) (4)

in distribution as n →∞ and p →∞. In what follows, we will show that the above convergence in law
is essentially correct under mild conditions. However, the main impact of high dimensionality on the
validity of the sign-based test does not stem from the difference between two asymptotic calibrations of 100

QS, (3) and (4). In the foregoing discussion, the true location parameter θp is used in the definition of
the sign vector, but in practice θp usually must be replaced by an estimator θ̂n,p. Any root-n consistent
estimator would be adequate, but in the literature the rotation-equivariant spatial median (Möttönen &
Oja, 1995) which minimizes the criterion function L(θ) =

∑n
i=1 ||Xi − θ|| is usually recommended.

Taking the gradient of the objective function, one sees that θ̂n,p is the solution to the equation 105

n∑

i=1

U(Xi − θ) = 0. (5)

When p is fixed, replacing θp with θ̂n,p does not affect the asymptotic properties of QS. However, as
we will show in the next section, this substitution would yield a bias-term which is not negligible when
n/p = O(1). Even worse, when n/p = o(1), the test based on (3) or (4) would have asymptotic size 1
under H0. We will propose a simple remedy to address this problem. 110

2·2. A bias-correction sign-based procedure
The test statistic QS can be rewritten as

QS =
p

n
+

n(n− 1)
n2

p
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(UT
i Uj)2 − 1,

so, we consider the modified test statistic
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Substituting the spatial median θ̂n,p into Ui, the test statistic becomes115

Q̃ =
p

n(n− 1)

∑

i6=j

(ÛT
i Ûj)2 − 1,

where Ûi = U(Xi − θ̂n,p).

PROPOSITION 1. The test statistic Q̃ is invariant under rotations.

The value of Q̃ remains unchanged for Zi = aOXi + c where a is a constant, c is a vector of constants
and O is an orthogonal matrix. Thus, without loss of generality, we assume that θp = 0 in what follows.
It is easy to see that E(Q′

S) = 0 under H0. However, in high-dimensional settings, E(Q̃) is not negli-120

gible with respect to var1/2(Q̃). Before proceeding, we state a necessary assumption which is required
throughout this paper. Let Ri = ||Xi − θp||.

Assumption 1. The moments E(R−k
i ) for k = 1, . . . , 4 exist for large enough p;

E(R−k
i )/{E(R−1

i )}k → dk ∈ [1,∞), k = 2, 3, and 4 as p →∞, where the dk are constants.

This assumption ensures the validity of second-order expansions we use and the existence of our bias-125

correction term. The moments E(R−k
i ) may not exist for a fixed p. For example, for standard multivariate

normal and t distributions, E(R−2
i ) is equal to 1/(p− 2) and thus the second moment exists only when

p > 3. In the Supplementary Material, we verify this assumption for three commonly used elliptical
distributions, the multivariate normal, the multivariate t distribution, and mixtures of multivariate normal
distributions. We also formulate this assumption using the gp that fixes the distribution of the modulus130

Ri. The existence of E(R−k
i ) is guaranteed if rp−1−kgp(r) is bounded for r ∈ (0, ε).

We define

δn,p =
1
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)
, (6)

and σ̃2
0 = 4(p− 1)/{n(n− 1)(p + 2)}. From the proof of Theorem 1 in Appendix 1, we know that135

E(Q̃) = pδn,p + o(n−1), var(Q̃) = σ̃2
0 + o(n−2).

Clearly, if n < p, using the normal calibration like (4) for Q̃ would result in a bias term which cannot be
ignored, producing type I error rates much larger than nominal levels. Hence, the key for our proposal is
to correct this bias through approximating E(Q̃). The following theorem establishes the asymptotic null
distribution of Q̃.

THEOREM 1. Under H0 and Assumption 1, if p = O(n2), then (Q̃− pδn,p)/σ̃0 → N(0, 1) in distri-140

bution as p →∞, n →∞.

The unknown quantities in δn,p are E(R−2
i )/{E(R−1

i )}2 and E(R−3
i )/{E(R−1

i )}3. A straightfor-
ward approach is to consider moment estimators. We let R̂i = ||Xi − θ̂n,p|| and R̂i∗ = R̂i + θ̂T

n,pÛi −
2−1R̂−1

i ||θ̂n,p||2. Then R̂i∗ can be seen as a second-order approximation of Ri; see Lemmas 1 and 2.
Using R̂i∗ instead of R̂i would further reduce the bias in estimation of E(R−2

i )/{E(R−1
i )}2. Then the145

test statistic (Q̃− pδ̂n,p)/σ̃0 converges to N(0, 1) under H0 as long as np(δ̂n,p − δn,p) = op(1), where
δ̂n,p is the estimator of δn,p by using nk−1

∑n
i=1 R̂−k

i∗ /(
∑n

i=1 R̂−1
i∗ )k to replace E(R−k

i )/{E(R−1
i )}k in
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(6). The proposed test with level of significance α rejects H0 if (Q̃− pδ̂n,p)/σ̃0 > zα where zα is the
1− α quantile of N(0, 1).

Although Theorem 1 allows the dimensionality to increase at the rate of the square of the 150

sample size, in practice how large p is allowed to increase would depend mainly on the rate
of ratio-consistency of n

∑n
i=1 R̂−2

i∗ /(
∑n

i=1 R̂−1
i∗ )2 to ensure np(δ̂n,p − δn,p) = op(1). Suppose that

n
∑n

i=1 R̂−2
i∗ /(

∑n
i=1 R̂−1

i∗ )2 = E(R−2
i )/{E(R−1

i )}2{1 + Op(an)}. It can be shown that under the null
hypothesis and Assumption 1, an = n−1/2. Also, n2

∑n
i=1 R̂−3

i∗ /(
∑n

i=1 R̂−1
i∗ )3 → E(R−3

i )/{E(R−1
i )}3

in probability. Thus, without imposing any other conditions, the bias-corrected method is valid 155

when p = o(n3/2). In certain cases, an can be improved. For example, under the condition
var(R−k

i )/{E(R−k
i )}2 = o(p−1/2) for k = 1, 2, we can get an = o(n−1 + n−1/2p−1/4). In such cases,

p = O(n2) can be allowed. The multinormal distribution clearly satisfies this condition because we can
show that var(R−k

i )/{E(R−k
i )}2 = O(p−1). Technical details can be found in the Supplemental Mate-

rial. 160

Remark 1. When Xi comes from the normal distribution, limp→∞E(R−k
i )/{E(R−1

i )}k = 1 under
the null hypothesis. In this case, δn,p can be simplified as δn,p ≈ n−2 + 2n−3. We find that using this
δn,p works almost as well as using δ̂n,p in all the considered cases. Hence, it is recommended in practice
when one wishes to reduce computational effort.

Next, we consider the asymptotic distribution of Q̃ under the alternative H1 : Λp = Ip + Dn,p. Define 165

σ̃2
1 = σ̃2

0 + n−2p−2
{
8ptr(D2

n,p) + 4tr2(D2
n,p)

}
+ 8n−1p−2

{
tr(Λ4

p)− p−1tr2(Λ2
p)

}
.

THEOREM 2. Suppose that ntr(D2
n,p)/p = O(1) and p = O(n2). Under H1 and Assumption 1, {Q̃−

tr(D2
n,p)/p− pδn,p}/σ̃1 → N(0, 1) in distribution as p →∞, n →∞.

A direct application of Theorem 2 is the consistency of the proposed test.

COROLLARY 1. Suppose the assumptions in Theorem 2 hold. If ntr(D2
n,p)/p →∞ , the test σ̃−1

0 (Q̃−
pδn,p) > zα is consistent against H1 as p →∞ and n →∞. 170

Because p−1tr(D2
n,p) measures the departure from the null hypotheses for the sphericity hypothesis,

this corollary ensures that as long as p−1tr(D2
n,p) is not shrinking faster than n−1, the tests are asymptot-

ically optimal; the consistency rates implied in Corollary 1 by ntr(D2
n,p)/p →∞ indeed in general are

suboptimal. Neither John’s test nor the sign-based test described here is asymptotically optimal because
that their consistency rates are suboptimal. Under certain assumptions like multivariate normality, some 175

rate-optimal tests can be constructed; see Onatski et al. (2011).
The following corollary provides the limiting efficiency comparison with Chen et al. (2010)’s test

under multivariate normality. We consider the sequences of local alternatives H1 : Λp = Ip + Dn,p in
which C1 ≤ ntr(D2

n,p)/p ≤ C2 with two positive constants C1 and C2.

COROLLARY 2. Suppose the assumptions in Theorem 2 hold. Under multinormal distributions, the 180

sign-based test Q̃ is asymptotically as efficient as Chen et al. (2010)’s test.

When the dimension p is fixed, it can be expected that the proposed test, using only the direction of an
observation from the origin, should be outperformed by the test constructed with original observations
like that of Chen et al. (2010). However, as p →∞ as n →∞, the disadvantage diminishes. Theoreti-
cally comparing the proposed test with Chen et al. (2010)’s test under general multivariate distributions 185

turns out to be difficult. This is because the asymptotic validity of Chen et al. (2010)’s test relies on model
(2), while an elliptical assumption is required in Theorems 1 and 2. Thus, in Section 3, we compare these
two methods using simulation.
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3. NUMERICAL STUDIES

Three well-known multivariate elliptical distributions are considered: (I) the standard multivariate190

normal; (II) the standard multivariate t with four degrees of freedom, tp,4; and (III) mixtures of two
multivariate normal densities κfp(µ, Ip) + (1− κ)fp(µ, 9Ip), where fp(·; ·) is the p-variate multivariate
normal density. The value κ is chosen to be 0.8. The model (2) is also included, allowing us to have a more
broader picture of the robustness and efficiency of the proposed method. Following Chen et al. (2010),
we choose Γ = Ip and for each Zi, p independent identically distributed random variables Zij’s are195

generated. Two distributions for the Zij are considered: (IV) the standardized Gamma(4, 0.5) distribution
considered by Chen et al. (2010); (V) the standardized t distribution with four degrees of freedom,
t4. The random vectors generated from scenarios (IV) and (V) are not elliptically distributed, while
neither scenario (II) nor (III) corresponds to model (2); see the proof in the Supplementary Material.
Only scenario (I) satisfies both the elliptical assumption and the form of model (2).200

The settings of the combinations of p and n in Chen et al. (2009) are adopted here. The sample size
n is chosen as 20, 40, 60 and 80. Dimensions p = 38, 55, 89, 181, 331 and 642 are considered for each
sample size. Set A = diag(21/21[vp], 1p−[vp]), where [x] denotes the integer truncation of x. To evaluate
the size and power of the sphericity test, we generate multivariate random vectors from scenarios (I)-
(V) say, Yis, and then obtain the observations Xi = AYi. Three levels of v were considered: 0, 0.125205

and 0.25. We compare the proposed test, called the bias-corrected sign test hereafter, with three testing
methods for sphericity: the sign test (3) studied by Hallin & Paindaveine (2006); the test proposed by
Ledoit & Wolf (2002); and the sphericity test proposed by Chen et al. (2010).

Tables 1 and 2 report empirical sizes and power under scenarios (I)-(III) with n = 40, 80 and p =
55, 181, 642. The complete simulation results can be found in the supplementary Material. For each210

experiment we run 2,500 replications. Ledoit & Wolf’s (2002) test is not included in Table 2 because it is
applicable only for normal distribution and it encounters serious size distortion. Table 1 shows the sign-
based test without the bias-correction has type I error rates much larger than nominal levels, especially
for large p and small n. This is consistent with the asymptotic analysis in Section 2. For this reason we
do not report its results in Table 2.215

Table 1. Empirical sizes and power (%) of four tests at 5% significance for multivariate normal random
vectors (scenario I). TBCS: the proposed bias-corrected sign test; THP: the sign test (3) studied by Hallin
& Paindaveine (2006); TLW: Ledoit & Wolf’s (2002) test; TCZZ: Chen et al. (2010)’s test.

v TLW TCZZ THP TBCS TLW TCZZ THP TBCS TLW TCZZ THP TBCS

p = 55 p = 181 p = 642
0.000 4.8 5.6 17 4.9 4.8 5.8 74 4.9 5.8 6.2 100 5.1

n = 40 0.125 44 44 65 41 50 50 98 47 50 52 100 49
0.250 68 69 84 64 72 72 99 68 74 74 100 72
0.000 4.6 5.5 9.0 4.7 4.9 6.0 31 5.2 5.2 5.2 100 5.1

n = 80 0.125 87 87 90 84 93 92 99 91 95 95 100 94
0.250 99 99 99 99 100 100 100 100 100 100 100 100

Under scenario (I), the empirical sizes of the tests converge to the nominal level as p and n increase
together. Ledoit & Wolf’s (2002) test performs best in both terms of size and power, as we could expect
because it is based on normality. The bias-corrected sign test has similar empirical sizes. The power of
the proposed test is largely dependent on the sample size and levels of v as they determine tr(D2

n,p). Chen
et al. (2010)’s test outperforms the bias-corrected sign test in terms of power in most cases, but when220

n and p increase the advantage tends to vanish. When n = 80 and p ≥ 181, the two tests are largely
comparable and the difference is at least partly due to the unequal size of the test. This can be understood
from Corollary 2.
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Table 2. Empirical size and power (%) at 5% significance for multivariate t random vectors (scenario
II) and mixtures of multivariate normal random vectors (scenario III)

Scenario (II) Scenario (III)
n = 40 n = 80 n = 40 n = 80

v TCZZ TBCS TCZZ TBCS TCZZ TBCS TCZZ TBCS

0.000 12 4.7 14 5.1 16 5.4 16 5.4
p = 55 0.125 34 39 61 84 37 40 57 82

0.250 46 65 76 98 44 64 75 98
0.000 12 5.9 14 4.4 15 5.0 16 4.5

p = 181 0.125 36 47 63 92 38 46 60 92
0.250 47 69 79 99 44 69 79 100
0.000 12 6.6 13 5.7 16 6.2 16 5.4

p = 642 0.125 35 50 61 94 35 50 62 94
0.250 46 71 77 100 45 72 79 100

Table 2 gives simulation values with the other two elliptical distributions. The proposed test can
achieve the nominal size, but Chen et al. (2010)’s test has considerable bias in size. Even worse, the 225

empirical sizes of Chen et al. (2010)’s test hardly improve when n and/or p increase. The bias-corrected
sign test is more efficient under H1 in both scenarios in the sense that even when the observed size is
much smaller than that of Chen et al. (2010)’s test, the empirical power increases much faster with v
increases. When n = 80, the proposed test performs uniformly much better than Chen et al. (2010)’s
test, and the difference is quite remarkable. Certainly, this is not surprising as neither tp,4 nor mixture of 230

multivariate normal distributions belongs to model (2) on which the validity of Chen et al.’s (2010) test
depends much.

Empirical sizes and power under scenarios (IV) and (V) are given in the Supplementary Material.
Although our test is not asymptotically justified under model (2), it is quite robust to the two distributions
that belong to that model. Its sizes are close to nominal and even closer than those of Chen et al. (2010)’s 235

test. With respect to the performance under alternatives, our test has quite good power and generally
performs similarly to Chen et al. (2010)’s test, although its sizes are usually smaller. These results suggest
that the proposed test is quite robust and efficient in testing sphericity, especially for heavy-tailed or
skewed distributions.

4. CONCLUDING REMARKS 240

The bias-correction procedure takes advantage of the relatively simple form of multivariate-sign-based
tests for sphericity. However we believe that this procedure can be extended to more general elliptical
distributions with Σp = diag{σ11, . . . , σpp} with unknown σii’s. Moreover, Theorem 1 is established
under p = O(n2). The issue preventing p from growing faster than n2 is that a higher-order expansion is
required for bias-correction. 245

Hallin & Paindaveine (2006) proposed a family of signed-rank test statistics based on the sign vectors
Ui and ranks of the moduli Ri. Their tests appear to be asymptotically optimal at given target densities.
Deriving similar bias-corrected procedures for those tests is hard due to their complicated construction
and deserves some future research. Furthermore, tests based on symmetrised- spatial-signs and spatial-
ranks derived in Sirkiä et al. (2009) also warrant future study in a high-dimensional setting. 250

Supplementary Material
The Supplementary Material contains the proofs of Theorems 1 and 2, the calculation of E(∆i),

additional simulation results and some other technical details.
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