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In this file, we present the proof of Theorems 1-3.

APPENDIX A: PROOF OF THEOREM 1

We first give a sketch of the proof of Theorem 1. V,,(A; B) is a V-statistic. Denote the corresponding
U-type statistic of V,,(A; B) as Uy, (A; B). We derive the asymptotic distribution of U,,(A; B) in Lemma
2. The proof of Lemma 2 requires Lemma 1 which establishes the joint distribution of the components
in Uy (A; B). Lemma 3 quantifies the asymptotic bias of V;,(A; B) with respect to U,,(A; B) from which
we can prove Theorem 1.

Denote U, (A; B) = S,1(A; B) + S,,.2(A; B) — 25, 3(A; B), where

~ 1
Su(A; B) =— > Kn(AT Xy = B)Ky(ATX; = B)|| Xy — XY - Yil,
Pifs(B) 17

- 1
Sn2(A;B) =——— > Ku(ATXy — B)Kn(ATX, — B)|| X — X

Pn fO (B) k#£l

1 N 3
X > Kn(ATXy — B)Kn(ATX, — B)|Yy — Y| = Sp22(A; B) Sy 24(4; B),
Pnfo (B) k£l
N 1 1
Sn,3(A; B) YN Z 5 Z Kn(A'X;, — B)Kj(ATX;, — B)K),(ATX;, — B)
/o (B) k#l#m  (iy,62,i3)€(k,l,m)

”Xil - X12|||Y;1 - Y13|)

where P? = n!/(n — d)!.
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2 X. CHEN, R. D. Cook AND C. Zou

Furthermore, let Sy, ;(A; B) be the same form of S, ;(A, B), replacing fo(B) with fo(B) and accord-
ingly

N

1 A gn,Za: (Aa B)gn,2y(A§ B) Sn,S (A, B)
(B) ’

Un(A»B):Qi Sn,l(AvB)+ —2

n 17 (B) n(B)

where we denote 7, (B) = fo(B)/fo(B). It is well known that 7, (B) — 1 in probability under the
conditions.

»  The following lemma establishes the joint distribution of S,, ;(A; B) and 7,,(B), which allows us to
further derive the distribution of U, (B).

LEMMA 1. Under Conditions 1-5,

~ A~ A~

nhfo(B) Y2 1 - o
—D HS"’I(A; B), Sn22(A; B), Spay(A; B), Sp 3(A; B),nn(B)} — M} — N5(0,%) in distribution,

where i = {E(| Py — P |[|Q1 — Qa|), tras s E(| P1 — Po|||Q1 — Q3)), 1}, B = (vi;)55 with

s o =AE{E*(|[X - P|||Y = Q|| 2)}, va1 =4E{E(|X — P||[Y —= Q| | Z)E(| X — P||| 2)},
vs1 =4E{E(|X - P[IY = Q[ | Z)E([|Y = Q| | Z2)},

v =2E{E(|X = P|lY = Q|| 2)E(| X — A|lY — Q2| | 2)}
+2E{E(|X - P|lY - Q[ | 2)E([|X — A[[|@1 — Q2| | 2)}
+2E{E(|X = P||Y = Q|| 2)E(|[Pr — P2[[]Y —@1| | Z2)},

o  vs1 =2E([|P1 — Pf[|Q1 — Q2]),

voy =4E {E*(| X — P||| 2)}, vs2 = 4E{E(|X — P|| | 2)E([Y - Q| | Z)},

vep =2E{E(|X — P1[[|[Y — Q2| | Z)E(| X — P|| | Z2)}
+2E{E(|X - P| | 2)E(|X — P1[[|@1 — Q2| [ 2)}
+2E{E([|X = P| | Z)E(|P\ — R|[[Y — Q1] | 2)},

s sy =2E(||PL — Py|), vs3 =4E{E*([Y = Q|| 2)},

vg3 =2E{E(|X — P1[[|[Y — Q2| | Z)E([Y — Q| | 2)}
+2E{E(Y - Q|| 2)E([|X — P|Q1 — Q2| | Z2)}
+2E{E(lY - Q|| 2)E(|P1 — P2[[|]Y —@1] | Z2)},

vs3 =2E(|Q1 — Q2]),

o v =E{E*(|X = P[|[Y — Qa| | 2)} + E{E*(| X — P[|Q1 — Q2| | 2)}
+E{E*(|P. - R|[|lY — Q1| | 2)}
+2E{E([|X — Pi[[Y — Q2| | Z)E([|X — P1[[|Q1 — Q2] | 2)}
+2E{E(|X = P(l|]Y — Q2| | Z)E(| P1 — P2[[|lY —@1] | Z2)}
+2E{E([|X — P1[[|Q1 — Q2| | 2)E(|Pr — P2[[|Y — Q1] | 2)},

s v =E{E(|X = P|Y — Q2| | 2)} + E{E(|X — P[||@1 — Q2| | 2)}

+ E{E([|[Pr — Po[||Y = Q1| Z2)}, vss = 1.

[}

Proof. Firstly, {S,.1(A; B), Sn.2:(A; B), Sn.ay(A; B), Sn3(A; B),1,(B)}T can be viewed as a five-
dimensional U-statistic of order three. Thus, by the standard central limit theory of multivariate U-
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statistic, it remains to evaluate its asymptotic expectation and covariance. Denote Zj, = (X}, Y%). Note

E{Sn1(4; B)} =f4*(B)E{Kn(AT X}, — B)Ky(ATX, — B)|| X}, — X,|||Yx — Y3} eo
=fo 2(B)E[E{Ky(AT X}, — B)Kp(ATX; — B)| Xy — Xi|[|Ys = Yi| | Zk, ATX; = t}]
—F2(B)E{K (AT X — }/Kh (t = B)|| Xk — ull[Yi — v S50 (w0 | £) fo(t)dtdudy
=f,%(B)E{K,(AT X}, — B)}A;.

By Condition 5 and Taylor expansion,

1
A=z [ 1% =ullVe=ol [ K)o B+ hoydhodude .

g/ 15 — ull[Ye — vl {f1(w, v, B) + Coh?} dudv

)

<fo(B)E(|[ Xy — PlI[Yx = Q| | Z1) + Cohq/ 1 Xk = ull[Yy, = v|dudv,

where (P, Q) ~ ff(l)T(’;;)(-,‘ | B). Thus,

E{5:,1(4; B)} = E(| P — P[[|Q1 — Q2)

<5 (B)E{KW(ATX, — B)VE(|Xe — P[Ye— Q| Z) — E(IP — Pall|Q1 — Qal) .
+ CEf N (B / E{llu— Plljv— Q| (u,v)}dudy
—0(h),

where we use similar techniques to those in calculating A;. Similarly, we can obtain
E{gn,Zx(A; B)} =pa + O(h9),
E{Sn,Qy(A§ B)} =py + O(R9), 75
E{S,,3(4; B)} =E(|P1 — P[||Q1 — Qs]) + O(h?),

from which we finish the calculation of the asymptotic expectations.
Next, we handle the asymptotic variances. Take S, 1 (A; B) for example and the calculation for the
other terms is similar. By using the standard result of U -statistics, we know

var(Su1(4, B)} = SvarlB{H,(4; B) | Z)] + Of(nh®) 2},

where H,,(A; B) denotes the kernel function of U-statistic S’ml (A; B). It can be verified that 80
E{Hu(4; B) | Zi} = Kn(AT Xy, = B) { {7 (B)E(|| X — P[[|Yi — Q| | Z) + O(h)}.
Consequently,
- 4
var{Sn1(AB)} = g P {KRATX, — BYEX(| X — Pll[Yi = QI | Z1) } {1+ 0(1)}
0
4D

= i B {E*(IX = PIIY = QI | 2)} {1+ o(1)}. (A1)
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4 X. CHEN, R. D. Cook AND C. Zou
Similarly, we can compute the asymptotic covariance terms in the following way
cov{S, 1(4; B), Sn2:(A; B)}
4 _
= —COV[E{Hn1 (A, B) | Zi}, E{Ha2:(A, B) | Z4}] + O{(nh) %}

— 2EIE{Hy1(A, B) | Z} E{Hu (A, B) | Zy}] + of(nh?) 1)
_ @E {Kg(ATXk — B)E(| Xk — P|||Ys — Q|| Ze)E(| Xy — P| | Zk)} +o{(nh?)~"}
— iy P {KEAT X0 = BYE(IX, — PIIYL — Q1| Z0E(IX. = Pl | 2} + of(nh®) ™)
= i EABUX = PIIY = Q1| 2)B(IX = Pl | 2)}+ of(uh) 1,

from which we can complete the proof of this lemma. m

LEMMA 2. Under Hy and Conditions 1-4,

nh?fo(B)

D Un(A; B) — papiyNG + 2N3(N3 — pzNa — pyN1) + NiNa in distribution,

where (N1, Na, N3, Ny) are normally distributed with mean zero and covariance matrix V' given by

v, Apiaty — Wafty + 20240y 2t
V= Atz iy dvy 4vy iz + 2#5#9@ 241y
4Va:/~Ly + 2/‘%/13/ 47/ny + 2#5:“/:0 A S/J/a::uy
241g 211y 3fta by 1

Proof. Under the null hypothesis,

1= (fhafhys By fhys Hatly, 1) T{L + O(R9)},

and X becomes

v,y vy iy dvy iy 2v,0y + 2ux,u§ + QVyui 2 gy
AV iy 4vy Atz fiy Avg puy + 2:“/%//@ 2/1a
Avyfig Apig iy 4vy vy iz + 2/142/% 241y
2y + 2 liZ + 20y 112 A pty + 202y Ay pie + 202 g V4 Bt iy
2410 pty 241g 241y 3z y 1

where v44 reduces to v, v, + v, “5 + vy U2+ 2v, /Ji + 2vy p2 + 2/1926;@. It can be easily seen that

(1a My P -2, O)TE(L Ky Moz -2, O) =0,

where (1, fuy, fiz, —2,0) is the gradient of the function g(u1,us,us,us,us) = (w1 + ugus/ué —
2uy/us) evaluated at (ppfiy, fa, fby, Hafly, 1). Thus, the first-order multivariate Delta-theorem is not
valid. We consider to apply a second-order multivariate Delta-theorem.
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Let v, = {S,1(A; B), Sn.2:(A; B), Sn.ay(A; B), 8,.3(A; B),n,(B)} 7. First, obtain the Hessian ma-

trix of g(u1, u2, u3, s, us) evaluated at (fizfty, bz, [y, Halby, 1)

0 0 0 0 O

0 0 1 0—2p

01 0 0-—2u

0 0 0 0 2

0 =2y =24z 2 24ty

As a consequence,

nhd
nhiU,(A; B) = —(m = W) H (v, — 1) + 0p(1),

where we use the fact that 7,,(B) — 1 in probability, the condition nh¥/2+24 _, () and the Slutsky theo-
rem. By Lemma 1, we can obtain the assertion by some calculation immediately. |
The following lemma characterizes the difference between U, (A; B) and V,,(A; B).
LEMMA 3. Under Conditions 1-4,
2D . e
nh?{V,,(A; B) — Un(A; B)} — —mE(HPl — P|||Q1 — Q2]), in probability.

Proof. Simple algebra leads to
Sni = (1—n"1)S,1(4;B),
Sn,Z = (1 - n71)2gn,2x(A; B)gn,Qy(A; B)7
1
nh? fo(B)
where Sy,.1(4; B) = h¥{nfo(B)} 2, K2 (A" X}, — B)Ky(ATX; — B)|| X} — X |[[Yy — Y. Sim-
ilar to the proof of Lemma 1, it can be verified that S,, 1(A; B) — DE(||P1 — P»|||Q1 — Q2|) in proba-

bility. By using the fact that S,, ;(A; B) — Si(A; B) (i = 1,2, 3) in probability, which can be seen from
Lemma 5, we can obtain the assertion immediately. |

Sns={1-3n""4+0(n"?)}S,3(4; B) + Sn1(4; B),

Proof of Theorem 1 Combining Lemmas 2-3, the assertion follows immediately. |

APPENDIX B: PROOF OF THEOREMS 2-3

To prove Theorems 2-3, we need the following lemma from Hall (1984). Define G, (z,y) =
E{Hn(Xh‘r)Hn(ley)}

LEMMA 4. Assume H,, is symmetric, E{H,(X1,X2|X1)} =0 almost surely and
E{H2(X1, X2)} < oo for each n. If

[B{G}(X1, X2)} + 07 B{H, (X1, X2)}|/[E{H}(X1, X2)}]* — 0, (A2)

asn — oo, then Uy =3 1 i j<n H,(X;, X;) is asymptotically normal with zero mean and variance
given by C2E{H2(X1, X2)}.

The following lemma establishes the uniform convergence of S, ;(A; B) (i = 1,2, 3) which also plays
important role in the proof of Theorems 2-3.
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6 X. CHEN, R. D. Cook AND C. Zou
LEMMA 5. Suppose Conditions 1-4 hold. Then,

sup |fo(B) — fo(B)| = O{h? + (nh®) "2 logn}, almost surely,
BeR4

13 sup |Sn.i(4; B) — Si(A; B)| = O{h? + (nh?)~"Y2logn} (i = 1,2, 3), almost surely.
BeR4

Proof. The first part is a well-known result concerning the uniform convergence rate of kernel density
estimators; see Silverman (1978) or Gine and Guillou (2002). We present the proof only for the case of

Sn,1(A, B) since the proofs for the other two cases are very similar.
By similar arguments used in (A.1) and Condition 5, we can verify that

140

2
7 sup. [E {Kh(ATXk ~ BYKW(ATX, - B)|| X — Xi|Vi — Yl|} ]
BeR

=D swp [o(B)E {E(1X - PIIY =@l | 2)}] {1 +0(h).

Therefore, by invoking similar arguments to those of theorem 37 in Pollard (1984), page 34,

sup |8, 1(A; B) — E{S,1(A; B)}| = O{(nh%)~2logn}.
BeRd

On the other hand, expanding E{S,, 1(A, B)} in a Taylor series with Lagrange form of the remainder
1s term and using conditions, we have that

sup |E{Sn1(4;B)} — S1(A; B)| = O(hY),
BeR4

which completes the proof. |
By this lemma, Proposition 2 holds immediately.

Proof of Theorem 2 U,,(A; B) can be rewritten as

Un(4; B) = 7 (13) {12(B)801(A: B) + Sp20(4; B)Sn2(A; B) = 20(B)Sra(A; B) |
1

150 =
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First of all, we observe that

7a(B) S, ( — Y 5 J[ EuATX, - B)

]#k#l#m r=j,k,l,m

1 h -
T uhifo(B) {nfo ZKh (ATX; — B)Sp1 + 48, 31(4, B)}

+ Op{n_l + (nh®)7?},

. 45, 32(A, B)
Sn,2x(A;B)Sn 2y A B Z Lg H Kh ATX B) 7d7 155
ﬁék;ﬁl#m r=j3,k,l,m nh fO(B)
+ Op{n™" + (nh")7?},
1 (B)Sh3( > Ly [] EwATX,.-B)

pn JFkFElIFEm r=j3,k,l,m
1 —

t o O 2 KnATX = BN - XillYi — Yl + Op(n7)
0 k#l£m re(k,l,m)

uniformly in B, where

, h
Sn31(A; B) = BB > KPATXp - B)ER(ATX, - B)Ky(AT X, — B)|| Xy, — X[[Vi = Vi, w0
0 k#l#m
, he
Sn32(A;B) = STE) Y KR(ATXy — B)ER(ATX, — B)Kp(AT X, — B)|| Xi — Xil|[Yi — Yo,
0 k#l#m
and
1
Ll(Zj,Zk,Zl,Zm) = 6 Z HX Xl2|||Y;1 - Z2|
(i17i2)e(j7kvl7m)
1
Lo(Zj, Zi, 21, Zm) = 6 Z 1 X3, — X, [[1Yig — Y|,
(i1,82,13,i4) €(5,k,l,m)
1
Ls(Zj Zn: 20 Zm) = 57 >, 1 Xa = XY = Y.

(i1,i2,i3)€(J4,k,l,m)

By similar arguments in the proof of Lemma 1, it can be verified that under Ho, all the
hi{nfo(B)} 1>, K}H(ATX; — B)Sn.1, Sn31(A, B) and Sy, 32(A, B) uniformly converge to Djiy iy
Additionally, we can have
he T
BB S Y Kw(ATX, — B)|| Xk — Xi|[|Yk — Y| — 3Dprapsy.
k#l#m re(k,lm)

uniformly in B. ~
As a consequence, U, (A; B) can be further decomposed as 170
Dpizpty + Op{h? + (nh?)~*logn},

(45 ) = Tu(A B) + s
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and furthermore by Lemma 3

Vi(A; B) = T,,(A; B) + Diigpiy + Op{h? + (nh®) "2 logn},

1
nhdfo(B)

uniformly in B. Let (o(B) = fo(B)/S2(A; B). It remains mainly to derive the asymptotic distribution
s of Tp(A) = [ T,(A; B)(o(B)dB which can be re-written as a U-statistic of order four with the kernel
function v, (Z1, ..., Z4)

_ 1
L) = Y atLa-2iy) [ [] KaATX, - Bo(B)B
Pnjotktiem r=jihm
1
=— Y wZ D, 21, Zm).
Pn jsiztm

Next, we will show that 7,,(A) is asymptotically normal by using Lemma 4. First of all,
w Y (Z1,..., Zs) is symmetric, 0, = E{vs(Z1,...,Z;)} = O{(nh®)~'} (by Lemma 2 and Delta theo-
rem) and E{v,(Z1,...,2Z, | Z1)} = Op(h9). Say, T,,(A) is a degenerate U-statistic. The limit distribu-
tion of a degenerate U -statistics when its kernel function is fixed is a linear combination of independent,
centered x? distributions, and cannot be derived using classical martingale methods. However, in certain
cases in which the kernel function of the U-statistic depends on n, a normal distribution can result (c.f.,
185 Hall 1984)
Let us define the projection of 7},(A) to be W,,(A) given by

Wn(A T) Z {7h2 Z],Zk) 0 }

2/ 1<j<k<n

where Yh2(Z;, Zy) = E{w(Z;, Zy, Z1, Zm) | Z;j, Z}. The remaining proof consists of two parts: (i)
show that W,,(A) is asymptotically normal by Lemma 4; (ii) verify that

~ 2
B{Wa(4) + 6, — Tu(4)}
var{W,(A)}

— 0. (A.3)

190 Define

W, (A T Z wo(Zj, Zi) — 2%1

2 <k<
where 1,1(Z;) = E{y1.(Z;, Z1, Zi, Zm) | Z;}. Wa(A) is a U-statistic, based on the kernel
H(Z;, Z1) = m2(Zjs Zk) — {m(Z5) + 1 (Zk)} + On.

Obviously, E{H(Z;, Zy)} = 0 and E{H(Z;,Z;) | Z;} = 0. To show the asymptotic normality of
W, (A), it suffices to check the other conditions in Lemma 4.
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Next, we will verify that E{H2(Z1, Z2)} ~ h~?. Note that

Yh2(Zj, Zy,) (A4) s

1
—6/{E(le—P2H|Q1—Q2)+HXj—XkH\Yj—Yk’+E(HXJ'—P1H’YJ—Ql\)
E(| Xy — Pu[[|Ye — Q1) + [|Xj = Xe[|E(|Q1 — Q2]) + E(|P1 — Po))[Y; — Yyl
E([|X; — PL)E(|Ye — Q2|) + E(| Xk — P E(]Y; — Q2|) — | X; — Xil|E(|Y; — Q1)
= E(|X; — PDIY; = Y| = [|X; — Xe[|E(|Yk — @1]) — E([[ Xk — PLDIY; — Yil
—E(|P - X;|)E(|Q1 — Q2]) — E(|| P — Xi|) E(|Q1 — Q2]) — E(|| P — P2||E|Q1 — Yj]) 200
(

— B(|Pr ~ P2)E(Qu — i) }.

E{y2,(Z1, Z5)} may be expanded into several terms, each of which is of O(h~%). We treat only the
first such term. Observe that

(EQP =Pl - Q)P [+ [{ [ KdTa® = By (4Tal® - B)Go(B)aBY
" H Frr (@™, ™) dz® dz® dy® dy @
—p2 / / / K@) E{v+ ATz — 20 /R ¢o(ATzD —vh)dvr
y H Fer @0, y™)da de®dy D dy® gy @

h=2d / / [K@)E @+ 0®)ATe0)d)

T(m&)—w(l))*w(mh

X HfXY y™)dzMdz @ dyMdy@ dw® = O(h~%).

Now, we deal with E{~i,(X1, X2)}. Similar to the arguments above, the integrand can be expanded 210
into several terms, and each of these shown to be of order h~3¢. We shall illustrate the purpose in the
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cause of the first of these terms.

(E(P=PliRr =@ [ [ { [ KaaTa = By (AT — B)Gu(BraB Y

X HfXY y N dz W dz ) dy™ dy )
4
i / / / K(W)K v+ AT(® —20)/h)¢o(ATa) — oh)d]
% HfXY NdaM dz® dy™ dy? duw?

2
h~ddpd / / [K@E(@w+uw®)(AT2)d )
AT (22 (1)) 2 (2)

x H Fxy (@D, y Mz dz@dy® dy@ dw® = o(h=34).

Similarly, we can show that E{~?,(Z;)} = O(h*?) and E{~},(Z;)} = O(h*). This implies that

{h2(Z1, Z2)} | [E{nia(Z1, Z2)})? — O

20 by the condition nh?? — co. Finally, let us handle the E{G?2(Z1, Z»)}, where

Gu(x,y) = E{H,(Z1,2)H,(Z1,y)}.

Again, we focus on E{v2(Z1, x)v2(Z1,y)} because the other terms involved in E{G?(Z, Z)} are
of smaller order.

Note that

EZ17Z2[Ez§1){7h2( 70 7)) e (28 AR YL
2
225 =//{/fx,y(x§”,y§”)m( AR Zl)Wa(Zfl),Z2)d95§1)dy§1)}

> H fxy(z dx(l)d:v(z)dy( )dy( )
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This integral may be expanded into several terms, each of which is of order h~¢. We treat only the first
such term

(E(A - Plle -l [ - / /x;w [ BATal? - B) R (ATa) — B)a(B)aB

2
x / Ky (AT — BYR(ATa® — B)G(BYB fx v (2o} yda "}

X H Fxy (@™, ¢y de® dz® dy® dy@

s / / / o / K)K{v+ AT = 20)/mco(AT2D — vh)do

/ K{v+ AT — 20y /K {v + AT(2® — 20)/h}¢o(AT2® — vh)dv

2
X fX,Y(«fgr),ZA dxl dy(l)} H )dx( )dx(? )dy(l)dy( )
r=1

~h4dp2dpd / / { / /v K ) K (v +wi)¢o(ATzM)du
(1)

AT(@@) W) =w® AT (5D 1))y

2
/K(v + wgl))K(v + w®) ¢ (AT 2! )dvay(xg ), y% ))dxgl)dygl)wgl)}
X H fxy(x ydz M dz® dyD dy@ dw® = O(h=9).

Thus, the condition (A.2) holds for H,,(Zy, Z»). By Lemma 4, nh%?W,,(A) is asymptotically normal
with zero mean and variance

Vig =2 lim hE{v2, (X1, X2)}. (A.5)

Furthermore, by noticing that E{2n " 3" y11(Z;)}* = O(n~'h*?) and 6,, = O(h*9), 6W,,(A) and
Wn(A) are asymptotically equivalent from which we finish the first part of the proof.
Now, it remains to check (A.3). Wy, (A) + 6,, — T),(A) is itself a U-statistic based on the kernel

ﬁ(Z17227Z3>Z4> :’7h<ZlaZIaZ3aZ4) - Z fth(ZlUZ )+50n
1<y <ip<4
By using similar arguments above, it can be checked that
var{H1(Z1)} = O(h*9),
var{ Hy(Z1, Z5)} = O(h*?),

Var{f{i’)(zb Za, Z3)} = O(h_gd)a
where ﬁr(zl, ..., zr) denotes the conditional expectation of H given X1, ..., X,. By using the standard

result on the variance of U-statistic (Serfling 1980), we have

var{W,(A) 4 0, — T,,(A)} = n*O(n3h* + n?h + nh—2%).
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12 X. CHEN, R. D. Cook AND C. Zou

Recall that var{W,,(4)} = O(n=2h~%), (A.3) follows immediately by using the condition nh?¢ — oo
and nh20t4/2 — .

Finally, by uniformly convergence of .S, 2(A; B) and f(B)

/2 —dj2py _pd)2 , f(B) dy—1

nh¥?T,(A) — h™%%D = nh {/BVn(A,B){O(B)go(B)SM(A;B)dB (nh®) D}
= nh®/? / Tn(A; B)Co(B)dB + h™%20,{h? + (nh®) =12 log n}
= nh¥2T,(A) + 0,(1),

from which we completes the proof of this theorem. |

Proof of Theorem 3

(i) By Lemma 5, it is straightforward to see T,,(A) — [V (A, B) fo(B)/S2(4; B)dB in probability.
Thus, by the conditions the assertion follows immediately.

(ii) The proof of this part is analogous to that of Theorem 2. Here we only highlight the differences be-
tween them. Define G, (t), Gu(t), Gy (t) and G'¢(t) as the gradients of the functions fx ypsx (u, v | t),
Ixpsx(ult), fyipsx(v|t) and fo(t) with respect to ¢, respectively. Similarly, denote the corre-
sponding Hessian matrices by H,,(t), H,(t), H,(t), and H¢(t). By Condition 5, we can expand

Si{PL + (nh¥/2)=1/2A; B} at Ps in a Taylor series with Lagrange form of the remainder term and
obtain

suAB) = [ [ o1 = ol ~ wol{ Frypex o | B) + 6T (o)~ Py
1
+ 521 (A =PI Hu (A = PH a1 { Fryipx (@2, | B) + GL (w2, 2)(A = PE) Tz

1
+ 5»”5’;(14 — P§)Huyu(A - P;)T$2}d$1d$2dyldy2 +o{(nh¥/?)} !

=lizpty + A1 + o{ (nh¥?) 71}

+ 2// 21 = 22| |y1 — y2l Gy o (21, 51) (A = P) T 1 fxyipsx (22, 2 | B)dwidaadydys,

where A; denotes those terms associated with the order (nh®/?)~1.
Similarly,

S2(A, B) =papty + Mo + 241y // 21 — 2| Gy (21) (A = PE) @1 fxpsx (w2 | B)daydas

+ 2pg / / y1 — 121G (21, 51) (A — PE) a1 fypps x (v2 | B)dzrdyrdys + of (nh/?)~1}
S3(A, B) =pzpiy + Az + o{ (nh%?)71}

+Ny// |21 — 22| Gl (21)(A = PE) T2 fxppsx (22 | B)dwidws
+ Mm///|y1 N y2\le(:U1,y1)(A - P:Sr)TxlfYWSX(yQ | B)dx1dy1dys

+ // o1 — @olllyr — y2|Gy o (21, y1) (A — PE) w1 fx v psx (@2, 52 | B)dw1daadyidys.
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Recall the definition of Ly, Lo and L3 in the proof of Theorem 2. By the arguments in Lemma 2, we 250
get

E(n) = [151(4,B) + 5u(4, B) ~ 255(A, B)}o(B)dB + o{(nh) '}
=(nh¥?)715 + o{(nh¥/?)1},
where § = nh®? [(Ay + Az — 2A3) fo(B)dB with

Ay :/"'/le — 2allly1 — y2|{fX,Y\P5X(xlayl | B)xy (A — P§)Hyw(A—Pg) s 285
+ Gy o(@1,51) (A= P 01G] (w2, y2) (A — Pg)Tﬂ«"z}dxldfﬂzdyldyz

Aa =ty [ [ o1 = ol { Fxipox @1 | B (A= PHHL(A - P
+ G (21)(A = P 210G (22) (A — Pg)TxQ}dxld@dB
+ Mz{ / / ly1 — va| fyipsx (v | B)xy (A — P§)Huw(A — Pg) " zadwadyidys
+ Gy () (A= PTGy (w9, y2) (A — Pg)defEld@dyldyz} 20
4 [ [ller = 2261 (A~ PHT a1 xppex (o | Bdarda,

X /// ly1 — y2|GIﬂ,(m1,y1)(A — Pg)TfUlmeSX(yz | B)dx1dyidys

1
As =3 / - / 21 — 2llly1 — vl fx,ypsx (@1, 91 | B)z3 (A - P;)HW(A - P;)Txﬂdxldmdyldw
1
+ Q,Uy // Hxl — ZL’Q||fX|pSX(ZL‘1 | B)ZL‘;—(A - 'P:S'I—)HH(A — P:S-I—)Txgdl‘ldl‘g 295

1
+ 2Hx// 1 — a2l fypsx (1 | B)2d (A — P )Hyw(A — P3) " zadzadyi dys

w [ [l = aallon -

Goo(1,91)(A = P3) 201G (22) (A — PE) 2o fypgx (ys | B)dwidwadydys
+ Gy (@1, 1) (A= PE) T 01G) (3, ys) (A — Pg) T as fxpgx (w2 | B)dzidaadasdyrdys
+ Gy (22)(A = PS) 292G (w3, y3) (A — P3) Tws fx yipsx (T, 41 | B)dxld@dwsdmdys}- 200

Note that G o (2,y) = Gu() fypsx () + Go(y) fx|ps x (x). Accordingly, tedious algebras yield

) :/{/GI(B)ATfo”;SX(x y B)da:}QdB.

The remaining proofs follow exactly same as those of Theorem 2 and thus omitted. The variance Vry is
given by Vp; = 721lim,, o th{'y}%z (X1, X2)}, where 7,212(-, -) is given by (A.4) but the expectations
now are all taken under the alternative hypothesis. [
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APPENDIX C: CROSS VALIDATION BOXPLOTS
Fig. 1 gives the cross validation boxplots based on the simulations leading to Fig. 1 in the paper. On
each replication the data were split randomly into two sets of n/2 observations, with one set being used
to determine A and the other being used for the permutation test.
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Fig. 1. Cross validation boxplots of p-values from the pro-

posed test using directional regression (DR), ordinary least

squares (OLS), principal fitted components (PFC), partial

least squares (PLS) and minimum average variance esti-
mation (MAVE)
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