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SUMMARY

Sufficient dimension reduction in regression strives to reduce the predictor dimension by replacing
the original predictors with some set of linear combinations without loss of information. Numerous di-
mension reduction methods have been invented based on this paradigm. However, little effort has been
devoted to diagnostic studies within the context of dimension reduction. In this paper we introduce meth- 15

ods to check goodness-of-fit for a given dimension reduction subspace. The key idea is to extend the
so-called distance correlation to measure the conditional dependence relationship between the covari-
ates and response given a reduction subspace. Our methods require only minimal assumptions, which
are usually much less restrictive than the conditions needed to justify the original methods themselves.
Asymptotic properties of the test statistic are studied. Numerical examples demonstrate the effectiveness 20

of the proposed approach.

Some key words: Asymptotic Normality; Central subspace; Conditional independence; Distance correlation; Kernel smoothing;
Permutation reduction

1. INTRODUCTION

Let X = (x1, . . . , xp)T ∈ Rp and Y ∈ R. The general goal of a regression of Y on X is inference 25

about the conditional distribution of Y given X . When the dimension of X is not small, it is usually
desirable to reduce its dimensionality as a preliminary step in an analysis. Sufficient dimension reduction
is important in both theory and practice (Cook, 1994, 1998). The basic idea is to replace the predictor
vector with its projection onto a subspace of the predictor space without loss of information on the
conditional distribution of Y given X . If a predictor subspace S ⊆ Rp satisfies 30

Y X | PSX, (1)

where stands for independence and P(·) represents the projection matrix with respect to the standard
inner product, then S is called a dimension reduction subspace. The statement that Y is independent of
X given PSX is equivalent to stipulating that PSX carries all of the regression information that X has
about Y . The central subspace is defined as the intersection of all dimension reduction spaces, which is
also a dimension reduction subspace under mild conditions (Cook, 1998). 35
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Various dimension reduction methods have been developed, including sliced inverse regression (Li,
1991), sliced average variance estimation (Cook & Weisberg, 1991), principal Hessian directions (Li,
1992; Cook, 1998), minimum average variance estimator (Xia et al., 2002), contour regression (Li et al.,
2005), inverse regression estimator (Cook & Ni, 2005), principal fitted components (Cook, 2007), direc-
tional regression (Li & Wang, 2007), likelihood acquired directions (Cook & Forzani, 2009), semipara-40

metric dimension reduction methods (Ma & Zhu, 2012) and direction estimation via distance covariance
(Sheng & Yin, 2013).

All current sufficient dimension reduction methods rely for their validity on various conditions that
may or may not be satisfied in applications. For example, sliced inverse regression and other methods
require the so-called linearity condition, which is essentially uncheckable in practice. A fundamental but45

unexplored question is how to measure the relative worth of dimension reduction methods in the analysis
of a particular dataset. Given an estimate S of a dimension reduction space, we develop a technique for
assessing the worth of S by quantifying deviations from the conditional dependence relationship (1). The
ideal case is that Y and X are independent given PSX . Typically it is not easy and not enough to use
the conditional covariance to measure conditional dependence. Although some efforts have been made50

for model checking (Stute & Zhu, 2005; Xia, 2009), the challenges associated with designing a general
approach to testing (1) are yet to be addressed well.

In this paper, we gauge the conditional dependence of Y and X given PSX by utilizing distance
covariance (Székely et al., 2007; Székely & Rizzo, 2009), which has computationally straightforward
empirical formulas. The asymptotic properties of our test statistic are derived accordingly, so we can then55

use it to compute an empirical p-value and to test the sufficiency of any dimension reduction subspace.
Simulation studies and two real data analysis examples demonstrate the value of our approach.

Distance covariance was introduced into sufficient dimension reduction by Sheng & Yin (2013). Their
methodology seeks directions η ∈ Rp×d that maximizes the marginal distance covariance between Y
and ηTX . Their goal was to estimate the central subspace, while ours concerns diagnostic studies after60

dimension reduction.

2. THEORETICAL DEVELOPMENTS

2·1. Preliminaries on distance covariance
Székely et al. (2007) introduced distance covariance for measuring dependence between two random

vectors. Let ψX(t) and ψY (s) be the characteristic functions of the random vectors X ∈ RdX and Y ∈65

RdY with finite first moments, and let ψX,Y (t, s) be the joint characteristic function of X and Y . The
distance covariance between X and Y is defined as

dcov2(X, Y ) =
∫

RdX+dY

‖ψX,Y (t, s)− ψX(t)ψY (s)‖2ω(t, s)dtds (2)

≡ ‖ψX,Y (t, s)− ψX(t)ψY (s)‖2
ω,

where ω(t, s) is a positive weight function. For a complex valued function ψ, ‖ψ‖2 = ψψ̄ where ψ̄ is the70

conjugate of ψ.
With a properly chosen function ω(t, s), Székely et al. (2007, Remark 3) stated that

dcov2(X, Y ) = S1 + S2 − 2S3,

where S1 = E(‖X1 −X2‖‖Y1 − Y2‖), S2 = E(‖X1 −X2‖)E(‖Y1 − Y2‖), S3 = E(‖X1 −
X2‖‖Y1 − Y3‖), (Xi, Yi) (i = 1, 2, 3) are independent copies of (X, Y ) and ‖ · ‖ denotes the
Euclidean norm.75
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A property of the distance covariance is that dcov(X, Y ) = 0 if and only if X and Y are independent.
A natural estimator of dcov2(X, Y ) is

dcov2
n(X ,Y) = Ŝ1 + Ŝ2 − 2Ŝ3,

where quantities (X ,Y) = {(X1, Y1), . . . , (Xn, Yn)} denote the sample versions of their population
counterparts and Ŝ1, Ŝ2 and Ŝ3 are the usual moment estimators of S1, S2 and S3. Székely et al. (2007)
proposed to use ndcov2

n(X ,Y)/Ŝ2 as a test statistic for independence. 80

2·2. Sufficiency test statistic
Given a basis matrix A ∈ Rp×d, we propose to assess the conditional dependence between Y and X

given ATX by using the p-value from a test of the null hypothesis

H0 : Y X | PSA
X, (3)

where SA = span(A). Extending the distance covariance to a corresponding conditional distance covari- 85

ance will provide a tool for testing the conditional hypothesis (3).
Let ψ

(X)

ATX
(t | B) and ψ

(Y )

ATX
(s | B) be the characteristic functions of X and Y given ATX = B, and

let ψ(X,Y )

ATX
(t, s | B) be the joint characteristic function of X and Y given ATX = B. Using (2) as a guide,

the conditional distance covariance between X and Y given ATX = B can accordingly be defined as
the square root of 90

V (A;B) = ‖ψ(X,Y )

ATX
(t, s | B)− ψ

(X)

ATX
(t | B)ψ(Y )

ATX
(s | B)‖2

ω. (4)

Clearly, V (A;B) = 0 for all B if and only if X and Y are conditionally independent and hence under
hypothesis (3), V (A;B) = 0 by (1). Following an argument of Székely et al. (2007, Remark 3), V (A;B)
can be written as

V (A;B) = E(‖P1 − P2‖|Q1 −Q2|) + E(‖P1 − P2‖)E(|Q1 −Q2|)− 2E(‖P1 − P2‖|Q1 −Q3|)
(5)

≡ S1(A;B) + S2(A;B)− 2S3(A;B), 95

where (Pi, Qi) (i = 1, 2, 3) are independent and identically distributed as ψ
(X,Y )

ATX
(·, · | B), provided that

E(‖P1‖2) < ∞, E(Q2
1) < ∞ and E(‖P1‖Q1|) < ∞, which are assumed throughout this paper. The

(Pi, Qi)’s all depend on B, but we suppress this dependence for notational convenience. Similarly, the
expectations in (5) are to be understood as conditional expectations given B. We next develop a sample
version Vn(A;B) of V (A;B), which can be used to assess the sufficiency of A. 100

Define Vn(A;B) = ‖ψ(X,Y )

n,ATX
(t, s | B)− ψ

(X)

n,ATX
(t | B)ψ(Y )

n,ATX
(s | B)‖2

ω. It is often desirable to re-
duce the dimension of the predictors to no more than three, and a straightforward way to obtain these
sample quantities is by using a kernel-type estimator. Any appropriate linear smoother should work well
for this purpose. In an unpublished 2012 technical report, Póczos and Schneider derived a version of
conditional distance covariance using the k-nearest neighbour method. They proved consistency, but the 105

asymptotic distribution of their estimators is apparently unknown and no formal approach for testing
conditional independence was offered.

Let f0(·) be the density function of ATX . The kernel estimator of f0(B) is given by f̂0(B) =
n−1

∑n
k=1 Kh(ATXk −B), where Kh(·) = K(·/h)/hd denotes a d-dimensional kernel function. Then,
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the kernel empirical characteristic functions can be defined as110

ψ
(X,Y )

nATX
(t, s | B) =

1

nf̂0(B)

n∑

k=1

Kh(ATXk −B) exp(itTXk + isYk),

ψ
(X)

nATX
(t | B) =

1

nf̂0(B)

n∑

k=1

Kh(ATXk −B) exp(itTXk),

ψ
(Y )

nATX
(t | B) =

1

nf̂0(B)

n∑

k=1

Kh(ATXk −B) exp(isYk).

By the arguments in the proof of Theorem 1 in Székely et al. (2007), the sample version of V (A;B),
Vn(A;B), can be expressed as115

Vn(A;B) = Sn,1(A;B) + Sn,2(A;B)− 2Sn,3(A;B),

where

Sn,1(A;B) =
1

n2f̂2
0 (B)

∑

k,l

Kh(ATXk −B)Kh(ATXl −B)‖Xk −Xl‖|Yk − Yl|,

Sn,2(A;B) =
1

n2f̂2
0 (B)

∑

k,l

Kh(ATXk −B)Kh(ATXl −B)‖Xk −Xl‖

× 1

n2f̂2
0 (B)

∑

k,l

Kh(ATXk −B)Kh(ATXl −B)|Yk − Yl|,120

Sn,3(A;B) =
1

n3f̂3
0 (B)

∑

k,l,m

Kh(ATXk −B)Kh(ATXl −B)Kh(ATXm −B)‖Xk −Xl‖|Yk − Ym|

can be calculated in O(n2) time. This is obviously true for Sn,1(A;B) and Sn,2(A;B). For Sn,3, its
summation can be rewritten as a weighted average of the product of sample distances,

∑
k Kh(ATXk −

B)
∑

l Kh(ATXl −B)‖Xk −Xl‖
∑

m Kh(ATXm −B)|Yk − Ym|, from which we see Sn,3 can also
be calculated in O(n2) time.125

We use Vn(A;B) to construct a statistic for testing (3) by first scaling to address asymptotic bias
and then applying a Cramer–von Mises functional, which is known to produce effective tests. By The-
orem 1 in Section 2·3, the asymptotic bias of Vn(A;B) is proportional to µx(B)µy(B)/f0(B), so we
stabilize Vn(A;B) by normalizing by a consistent estimator of µx(B)µy(B)/f0(B). From Lemma 5 in
the Appendix, Sn,2(A;B) → µx(B)µy(B) in probability as n →∞. Consequently, we normalize by130

Sn,2(A;B)/f̂0(B), leading to the test statistic

Tn(A) =
∫

Vn(A;B)
Sn,2(A;B)

f̂0(B)dB,

which can be approximated with Tn(A) ≈ n−1
∑n

i=1 Vn(A;ATXi)/Sn,2(A;ATXi).

2·3. Asymptotic results

Let f
(X)

ATX
(· | B), f

(Y )

ATX
(· | B) and f

(X,Y )

ATX
(·, · | B) denote the conditional density functions of X and135

Y , and the joint density function of X and Y given ATX = B. For the asymptotic analysis, we need the
following regularity conditions.

Condition 1. The density functions above are continuous and bounded away from 0. The support of
ATX , Ω, is bounded and compact in Rd.
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Condition 2. The continuous kernel function K(t) is Lipschitz on [-1,1] and, for some q > d/2, 140

∫
K(t)dt = 1,

∫
tiK(t)dt = 0, 1 ≤ i ≤ q − 1, 0 6=

∫
tqK(t)dt < ∞.

Condition 3. The bandwidth h → 0, nh2d →∞ and nh2q+d/2 log n → 0.

Condition 4. E(‖P‖4) < ∞, E(Q4) < ∞ and E(‖P‖2Q2) < ∞, where (P, Q) ∼ ψ
(X,Y )

ATX
(·, · | B).

Condition 5. Write f1(x, y, t) = f
(X,Y )

ATX
(x, y | t)f0(t) which is q times differentiable with respect to

t and its qth-order derivative is uniformly bounded by a constant C0 which does not depend on t.

Conditions 1 and 5 require that the density functions are positive and sufficiently smooth. Condition 5 145

facilities the control of the remainders of Taylor expansions. We may consider relaxing this condition by
imposing local Lipschitz properties of density functions, which are widely imposed in the literature (Li
et al., 2011). Condition 2 implies that the kernel function is bounded from above, which holds for many
well-known kernel functions. Condition 3 gives the condition on the bandwidth h which is relatively
mild. Condition 4 requires some finite moments, which is a necessary condition for asymptotic normality. 150

We first have the following uniform consistency result for Vn(A;B).

PROPOSITION 1. Under Conditions 1–5,

sup
B∈Rd

|Vn(A;B)− V (A;B)| = O{hq + (nhd)−1/2 log n}, almost surely.

By this proposition, Vn(A;B) is an appealing quantity for assessing (3).
The following theorem establishes the weak convergence of Vn(A;B). Let D =

∫
K2(t)dt, Z = 155

(X, Y ), νx(B) = E
{
E2(‖X − P‖ | Z)

}
, νy(B) = E

{
E2(|Y −Q| | Z)

}
, µx(B) = E(‖P1 − P2‖)

and µy(B) = E(|Q1 −Q2|).
THEOREM 1. Suppose Conditions 1–4 hold. Then as n →∞ under (3),

nhdf0(B)
D

Vn(A;B) → −2µxµy + µxµyN 2
4 + 2N4(N3 − µxN2 − µyN1) +N1N2

in distribution, where (N1,N2,N3,N4) is normally distributed with mean zero and covariance matrix

Λ =




4νx 4µxµy 4νxµy + 2µ2
xµy 2µx

4µxµy 4νy 4νyµx + 2µ2
yµx 2µy

4νxµy + 2µ2
xµy 4νyµx + 2µ2

yµx λ 3µxµy

2µx 2µy 3µxµy 1


 , (6) 160

with

λ = E
{
E2(‖X − P1‖|Y −Q2| | Z)

}
+ E

{
E2(‖X − P1‖|Q1 −Q2| | Z)

}
.

In particular,
{
nhdf0(B)/D

}
E {Vn(A;B)} → µxµy as n →∞.

The unconditional distance covariance ndcov2
n(X ,Y)/Ŝ2 converges in distribution to a weighted sum

of independent chi-squared variables (Székely et al., 2007). Like its unconditional version, Vn(A;B) is
not asymptotically normal. Due to the use of kernel smoothing, the weak convergence rate of Vn(A;B) 165

is of O(nhd) instead of O(n), which is expected due to the use of kernel estimation.
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We next give the null distribution of Tn(A). In preparation, let

L1(Zj , Zk, Zl, Zm) =
1
6

∑

(i1,i2)∈(j,k,l,m)

‖Xi1 −Xi2‖|Yi1 − Yi2 |,

L2(Zj , Zk, Zl, Zm) =
1
6

∑

(i1,i2,i3,i4)∈(j,k,l,m)

‖Xi1 −Xi2‖|Yi3 − Yi4 |,

L3(Zj , Zk, Zl, Zm) =
1
24

∑

(i1,i2,i3)∈(j,k,l,m)

‖Xi1 −Xi2‖|Yi1 − Yi3 |,170

and γh(Zj , Zk, Zl, Zm) = (L1 + L2 − 2L3)
∫ ∏

r=j,k,l,m Kh(ATXr −B)f0(B)/S2(A;B)dB, which
is the kernel function of a U -statistic related to Tn(A).

THEOREM 2. Suppose Conditions 1–5 hold. Then as n →∞ under (3),

nhd/2Tn(A)− h−d/2D → N(0, VT0),

where VT0 = 72 limn→∞ hdE{γ2
h2(Z1, Z2)} with γh2(Z1, Z2) = E{γh(Z1, Z2, Z3, Z4) | Z1, Z2}.

Theorem 2 suggests that the null hypothesis be rejected when
{
nhd/2Tn(A)− h−d/2D

}
/
√

VT0 > zα,175

where zα is the upper α quantile of N(0, 1). E{γ2
h2(Z1, Z2)} is proportional to h−d and thus VT0 is a

positive constant depending on the joint distribution of X and Y as well as K(·). Tn(A) is asymptotically
normal with a faster rate O(nhd/2) than that of Vn(A;B). Under (3), both the asymptotic mean and vari-
ance of nTn(A) are of order O(h−d), which is similar to those in lack-of-test statistics for nonparametric
regression, such as the generalized likelihood ratio statistic in Fan et al. (2001).180

Theorem 2 is proved in the Appendix using the following rationale. The statistic Tn(A) is asymptot-
ically equivalent to T̃n(A), a degenerate U -statistic of order four with kernel function γh(Z1, . . . , Z4).
The limit distribution of a degenerate U -statistic when its kernel function is fixed is a linear combina-
tion of independent, centered χ2

1 distributions, and cannot be derived using classical martingale meth-
ods. However, in certain cases in which the kernel function of the U -statistic depends on n just like185

γh(Z1, . . . , Z4), a normal distribution can be achieved. Theorem 1 is proved by applying the theorems
in Hall (1984) to the projection of T̃n(A).

The following theorem investigates the asymptotic behavior of Tn without requiring (3).

THEOREM 3. Suppose Conditions 1–5 hold.

(i) Under a fixed alternative so that
∫

V (A;B)f0(B)/S2(A;B)dB > 0, nhdTn(A) →∞ in probability;190

(ii) Let PS represent the projection matrix of a sufficient dimension reduction space. Under a local alter-
native A = PT

S + (nhd/2)−1/2∆ for some ∆ ∈ Rp×d,

nhd/2Tn(A)− h−d/2D − δ → N(0, VT1),

in distribution as n →∞, where δ =
∫ {∫

GT
v (B)∆TxfX|PSX(x|B)dx

}2
dB, VT1 =

72 limn→∞ hdE{γ2
h2(Z1, Z2)}, and Gv(t) is the gradient of fY |PSX(v | t) with respect to t.

Theorem 3-(i) shows that under any conditionally dependent alternative, the probability that195

{nhd/2Tn(A)− h−d/2D}/√VT1 > zα tends to one as n →∞. That is, the Tn(A) test of conditional in-
dependence is consistent against all types of conditional dependence. Theorem 3-(ii) guarantees that the
Tn(A) test has nontrivial power against contiguous alternative of order (nhd/2)−1/2. Together with The-
orem 2, Theorem 3-(ii) establishes that the power of Tn(A) is given by Φ{−(VT0/VT1)1/2zα + δ/V

1/2
T1 },
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where Φ is the standard normal distribution function. This result also reveals that the Tn(A) cannot dis- 200

tinguish alternatives of order smaller than (nhd/2)−1/2 from the null, while the test would be consistent
with the contiguous alternatives of order larger than (nhd/2)−1/2.

3. PRACTICAL GUIDELINES

3·1. Permutation test
Similar to its unconditional counterpart in Székely et al. (2007), as shown in Theorem 2, the test statis- 205

tic Tn(A) is not asymptotically free of nuisance parameters under the null hypothesis (3). Its asymptotic
variance depends on the conditional distributions of X and Y given ATX . To implement the proposed
test for small samples, we obtain a reference distribution for Tn(A) using a permutation procedure, the
p-value being the fraction of replicates of Tn(A) under random permutations of the indices of the sample
of Y that are at least as large as the observed statistic. The effectiveness of this permutation procedure is 210

evaluated in Section 4.

3·2. Bandwidth choice
Like many other smoothing-based tests, the performance of the proposed test depends upon the band-

width h. It is widely acknowledged that the optimal h for nonparametric estimation is generally not
optimal for testing (Hart, 1997). Selection of h for optimal power is an open problem (Kulasekera and 215

Wang, 1997). Asymptotically, a range of bandwidths which satisfy Condition 3 could maintain the con-
sistency of the test, while a specific bandwidth may maximize the power. The amount of smoothing
applied will affect the power of the test, but we have observed in our simulations that the observed sig-
nificance changes mildly over a wide range of values for h. In addition, we found that a larger bandwidth
generally leads to better power. This can be understood from part (ii) of Theorem 3. The power function 220

is given in Section 2·3 under the local alternative A = PT
S + (nhd/2)−1/2∆. With a larger bandwidth

h′ > h, the power becomes Φ{−(VT0/VT1)1/2zα + (h/h′)−d/2δ/V
1/2
T1 }, resulting in an improvement.

However, in practice, the condition nh2q+d/2 log n → 0 will be violated if h is too large. In that case, the
conditional distance covariance tends to the unconditional one, which tests the marginal independence of
X and Y rather than the conditional independence. In other words, an inappropriately large h will yield 225

a much larger false alarm rate when X and Y are dependent.
Based on Condition 3 and our numerical experience, we recommend the empirical bandwidth h =

0.5
∑d

i=1 sd(Ui)n−1/(4+d/4), where Ui = βT
i X , βi is the ith column of A, and sd(Ui) is the sample

standard deviation of Ui (i = 1, . . . , d). This formula works well for a wide range of models and sample
sizes as shown in Section 4. How to best utilize the data to select an optimal h for the proposed test 230

warrants attention.

3·3. Assessing fits
An issue could be whether there is sufficient information in the data to contradict a particular estimate

Â. The properties of our proposed method hold straightforwardly if we use cross validation, splitting the
data randomly into two parts with one part used to determine Â and the other part used to compute the 235

statistic Tn(Â) and perform the permutation test.
Our asymptotic results are not strictly applicable when Â is based on the full data because they do

not account for the dependence introduced by using Â instead of a fixed A. Nevertheless, Theorems 2
and 3 suggest that Tn(Â) could still be used to assess the conditional dependence between Y and X

given ÂTX to a useful approximation. Theorem 3-(ii) indicates that if SÂ is in the o{(nhd/2)−1/2}- 240

neighborhood of SA, Tn(Â) would behave approximately as Tn(A), and thus the p-value from Tn(Â)
should still be informative. For example, sliced inverse regression provides a

√
n-consistent estimate of
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the central subspace given that the linearity and coverage conditions hold (Cook, 1998). When Â is not
a consistent estimator, Theorem 3-(i) tells that roughly the p-value from Tn(Â) would be quite small.
In this paper, we make no attempt to provide a formal analysis of Tn(Â), which deserves research. In245

Section 4 we provide numerical support for these indications when the permutation procedure is used to
compute p-values.

We use a toy example to demonstrate the proposed test. Suppose that we are estimating the central
subspace in the single-index model Y = exp(x1 + x2 + x3) + ε, where X = (x1, x2, x3)T ∼ N(0,Σ)
with Σij = 0.5|i−j| for 1 ≤ i, j ≤ 3, and ε is a standard normal variate that is independent of X . The250

central subspace under this model is spanned by (1, 1, 1)T . We generated one set of simulated data with
sample size 100. Given the specific sample, there are various possible methods to get estimates of A. The
estimate using directional regression, denoted as ADR, and the estimate using one-component partial
least squares, denoted as APLS, are (0.55, 0.60, 0.58)T and (0.36, 0.74, 0.57)T. The angles between the
estimates and the central subspace are 2.10 and 15.5 degrees, respectively. In practice we would not255

know these angles since we would not know the central subspace. The statistics based on ADR and APLS

are clearly dependent on the estimates, and thus not directly comparable. We calculated p-values – 0.15
for directional regression and 0.015 for partial least squares, based on 400 permutations, leading to the
conclusion that there is no information in the data to contradict the directional regression estimate, but
the data do cast doubt on the partial least squares estimate.260

4. SIMULATION STUDIES

The first simulation results in this section are intended to support our contention that the permutation
test based on Tn(Â) can be useful for comparing the performance of competing dimension reduction
methods. For each of the following three simulation models (Chen et al., 2010), we ran 1, 000 replica-
tions and 400 permutation samples were used. We also used the Epanechnikov kernel with the empirical265

bandwidth given in Section 3.
We considered the following three models. The first model, Model I is X = Γ(Y + Y 2) + Ψ1/2ε,

where ε ∼ N(0, I10), Y ∼ N(0, 1), Ψij = 0.5|i−j| for 1 ≤ i, j ≤ 10, Γ = (1,−1, . . . , 1,−1)T/
√

10,
and Y ε. The central subspace is the column space of Ψ−1Γ. Model I is an instance of the princi-
pal fitted component model (Cook, 2007; Cook & Forzani, 2008).270

The second model is, Model II, Y = x1/{0.5 + (x2 + 1.5)2}+ 0.2ε, where ε ∼ N(0, 1), X =
(x1, . . . , x10)T ∼ N(0,Σ) with Σij = 0.5|i−j| for 1 ≤ i, j ≤ 10 and X ε. The central subspace is
spanned by the directions β1 = (1, 0, . . . , 0)T and β2 = (0, 1, . . . , 0)T.

The third model, Model III, is Y = (XTβ1)2 + |XTβ2|+ 0.5ε, where ε ∼ N(0, 1), β1 =
(0.5, 0.5, 0.5, 0.5, 0, . . . , 0)T and β2 = (0.5,−0.5, 0.5,−0.5, 0, . . . , 0)T. The predictor vector X =275

(x1, . . . , x10)T is independent of ε and defined as follows: The last nine components (x2, . . . , x10)T ∼
N(0,Σ) with Σij = 0.5|i−j| and the first component x1 = |x2 + x3|+ ζ where ζ is an independent stan-
dard normal variable. The central subspace is spanned by the vectors β1 and β2.

The simulated type I errors for the three models is given in Table 1, under various values of
n, and the nominal type I errors. The empirical levels are close to the nominal level in most280

cases, which shows the effectiveness of the suggested permutation procedure. Next, we evaluate
the power of the proposed method. In Model I we used the alternative Γ′ = Γ + Ψβ, where β =
(1, . . . , 1)T/

√
10. The alternative values of β in Model II were β′1 = (1/

√
10, 0, 3/

√
10, . . . , 0)T

and β′2 = (0, 1/
√

10, 0, 3/
√

10, . . . , 0)T, while the alternative values of β in Model III were β′1 =
(1/
√

2, 1/
√

2, 0, . . . , 0)T and β′2 = (0, 0, 1/
√

2, 1/
√

2, 0, . . . , 0)T. Table 1 presents power results for285

Models I-III when n = 100, 200 and 400. The test has better efficiency with larger n as expected.
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Table 1. Empirical sizes and power (%) of the proposed test using the permutation procedure

Model n 1% 5% 10%
size power size power size power

100 0.8 17.0 6.0 38.9 9.9 50.1
I 200 0.9 49.4 6.0 74.3 10.0 82.1

400 1.1 88.4 5.4 96.8 9.9 98.3

100 1.1 7.1 5.6 21.2 11.0 32.8
II 200 1.1 18.9 5.6 44.4 9.6 57.4

400 0.9 65.0 6.8 87.7 13.6 93.2

100 0.7 7.0 5.6 21.8 9.2 32.9
III 200 0.7 20.0 4.3 45.2 8.6 57.7

400 0.8 62.3 4.8 85.0 9.8 90.9

Table 2. Rejection rates (%) for the proposed test using directional regression (DR), ordinary least
squares (OLS), principal fitted components (PFC), partial least squares (PLS) and minimum average
variance estimation (MAVE)

n Model I Model II Model III
1% 5% 10% 1% 5% 10% 1% 5% 10%

DR 14.8 30.3 41.9 DR 1.8 10.0 18.3 DR 6.5 22.3 35.2
100 PFC 2.7 8.2 12.2 PFC 1.2 5.9 12.0 PFC 9.3 23.9 36.8

OLS 81.6 91.0 93.6 PLS 6.1 18.7 31.0 MAVE 0.7 4.0 8.1

DR 16.3 33.3 42.6 DR 4.1 14.3 24.5 DR 14.8 38.4 52.6
200 PFC 2.5 8.4 13.0 PFC 1.8 9.0 16.6 PFC 28.3 55.2 68.1

OLS 91.4 97.2 98.6 PLS 22.9 47.6 61.0 MAVE 0.2 2.3 6.2

Next, we used the proposed test to compare a few dimension reduction methods under the three models
considered. We compared the results of directional regression, principal fitted components and ordinary
least squares in Model I. These methods are known to produce root-n consistent estimators of the cen-
tral subspace under Model I. The average angles between the central subspace and the estimates from 290

directional regression, principal fitted components and ordinary least squares in Model I are 43.6, 12.7
and 74.2 degrees for n = 100, and 33.3, 8.7 and 68.5 degrees for n = 200. The ordinary least squares
method in Model I has the worst performance, the boxplots of Model I in Fig. 1 showing that the em-
pirical p-values from ordinary least squares are very small for both sample sizes. This can be clearly
seen from Table 2 as the rejection rates for ordinary least squares are all above 80% at 1%, 5% and 10% 295

significance levels.
For Model II, we compared the first two components from directional regression, principal fitted com-

ponents and partial least squares. Here, directional regression gives a root-n consistent estimator of the
central subspace, but the corresponding asymptotic properties of principal fitted components and partial
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Fig. 1. Box-plots of p-values via the proposed test using
directional regression (DR), ordinary least squares (OLS),
principal fitted components (PFC), partial least squares
(PLS) and minimum average variance estimation (MAVE)

least squares are unknown. The average values of the largest principal angles between the central sub-300

space and the estimates using directional regression, principal fitted components and partial least squares
in Model II are 49.5, 31.8 and 75.6 degrees for n = 100; 34.3, 22.4 and 75.0 degrees for n = 200. It ap-
pears that the partial least squares method in Model II is the worst performer. This is also the conclusion
from the boxplots for Model II in Fig. 1 and the rejection rates for partial least squares in Table 2.

For Model III, we compared the first two components from directional regression, principal fitted305

components and minimum average variance estimation (Xia, 2007). The average values of the largest
principal angles between the central subspace and the estimates from directional regression, principal
fitted components and minimum average variance estimation in Model III are 52.7, 60.5 and 32.5 degrees
for n = 100; 39.3, 54.1 and 14.4 for n = 200. In Model III, since x1 is generated as |x2 + x3|+ ζ,
the linearity condition does not hold. Therefore directional regression and principal fitted components310

might not work well here. The boxplots of Model III in Fig. 1 show that the empirical p-values of these
two methods are small compared with the minimum average variance estimation method. Similarly, the
rejection rates for minimum average variance estimation are much smaller than the other two methods
as reflected in Table 2, demonstrating the superiority of minimum average variance estimation for such a
model. In general, the results of our sufficiency test are consistent with theoretical analysis and can well315

reflect the relative goodness-of-fit of a given estimate.
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Fig. 2. Scatter plots of Y versus XTbi, i = 0, 1, 2, 3

We also repeated the simulations leading to Fig. 1 using cross validation. On each replication the data
were split randomly into two sets of n/2 observations each, with one set being used to determine Â and
the other being used for the permutation test. The boxplots of the p-values, which are available in the
Supplement, are very much like those of Fig. 1. 320

To further demonstrate the effectiveness of our method, we simulated one set of data with size 200 from
Model I and drew a 1× 4 plot, with each subplot being of Y versus XTbi, where bi (i = 0, 1, 2, 3), with
Euclidean length one, denote the true direction of the central subspace, and the estimates from principal
fitted components, directional regression and ordinary least squares, respectively. The empirical p-values
were 0.985, 0.988, 0.27, 0 respectively. In Fig. 2, both the plots of the principal fitted components and 325

directional regression are quite close to that with the true direction. In contrast, the plot of the ordinary
least squares solution is far away from the true one, which coincides with the fact that its corresponding
p-value is 0.

5. REAL-DATA ANALYSIS

5·1. Salary data 330

We used our method to assess various dimension reduction methods applied to a regression involving
employee salary in the Fifth National Bank of Springfield. The response variable Y is an employee’s
annual salary. Six predictors are possibly associated with the salary: the employee’s current job level;
the number of years of the employment for a current employee; an employee’s age; the the number of
years for an employee working at another bank prior to the Fifth National; the employee’s gender; and 335

a binary variable indicating whether the employee’s job is computer related. One obvious outlier was
removed from this dataset, leaving 207 observations in the subsequent analysis. The aim of this study is
to understand how an employee’s salary associates with these six predictors.

Ma and Zhu (2012) studied this dataset thoroughly and we calculated p-values based on their se-
lected methods. They constructed estimates using their semi-parametric method, directional regression 340

and minimum average variance estimation. Minimum average variance estimation requires continuous
predictors, however, the gender is a factor. The linearity condition and constant variance condition are not
satisfied in this dataset as discussed by Ma and Zhu (2012). Thus minimum average variance estimation
and directional regression might not work well.

Ma and Zhu (2012) use a quadratic fit to perform a cross-validation procedure to calculate the predic- 345

tion error. They claimed that it fits the data well and the resulting prediction errors for semi-parametric
method, minimum average variance estimation and directional regression are, respectively, 21.3, 23.4 and
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47.0. We uses their estimates in combination with our sufficiency statistics to find the empirical p-values
for these three methods with permutation size 400. The resulting p-values for semi-parametric method,
minimum average variance estimation and directional regression are, respectively, 0.170, 0.394 and 0.350

We can see that our results are in agreement with Ma and Zhu’s prediction errors in this dataset. There is
information in the data to contradict the directional regression estimate since its p-value is essentially 0,
but neither of the other estimates is ruled out.

5·2. Application to linear regression
Our approach is not limited to the sufficient dimension reduction framework. Consider the standard

homoscedastic linear regression framework

Y = a + βTX + ε,

where X ε. Let β̂ denote some estimator of β. Assessing the fit of this model can be considered in two355

stages. The first is to ask if there is information in the data to contradict the conditional independence
statement Y X | β̂TX . Finding no contradictory evidence, the second stage is to ask if the model itself
holds. Our method can check the conditional independence of Y and X given β̂TX . If that check is
passed, a sufficient summary plot (Cook, 1998) of Y versus β̂TX may be adequate for the second stage.

We use ozone concentration data (Cleveland, 1993) to demonstrate how this checking method works.360

In this example, we study the relationship between ozone concentration Y and radiation level, temper-
ature, and wind speed using 111 observations taken daily in New York from May to September 1973.
The ordinary least squares estimate β̂OLS and the one-component partial least squares estimate β̂PLS

were obtained. The empirical p-values based on the statistics Tn(β̂OLS) and Tn(β̂PLS) were computed as
0.102 and 0 respectively based on 400 permutations. We see that ordinary least squares estimate cannot365

be rejected based on the p-value, but there is sufficient information in the data to reject the partial least
squares estimate. The plot of Y versus β̂T

OLSX in left panel of Fig. 3 shows a clear curvature pattern, and
could now be used to guide revision of the model. Partial least squares estimate should be rejected and
the corresponding plot in the right panel of Fig. 3 does not show much useful information compared with
the left one. These data are often studied with a single-index model, and it is known that ordinary least370

squares provides a model–robust estimator under mild conditions (Cook, 1998).
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Fig. 3. Scatter plots of Y vs XTβ̂ for ordinary least squares
and partial least squares
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6. DISCUSSION

Our method addresses a crucial question in sufficient dimension reduction, providing a technique to
assess the relative worth of dimension reduction methods regardless of the assumptions underlying them.
Our method is not designed to compare the average performance of estimators, but should be useful for 375

evaluating the sufficiency of estimates on a particular dataset.
Continuous density functions were required for the asymptotic results of Section 2·3, but the condi-

tional distance covariance V (A;B) does not require densities. Our test statistic Tn(A) seems to work
well even if some of the predictors are discrete. For instance, the regression study in Section 5·1 has dis-
crete predictors and yet our results agree well with those from Ma & Zhu (2012). Nevertheless, it would 380

be useful to develop a modified version of Vn(A,B) that accommodates discrete predictors because the
consistency of kernel-based estimators is not valid without the continuity assumption.

Our goodness-of-fit test is designed to detect any type of deviation from conditional independence (1),
which can be a clear advantage in many regressions. Nevertheless, this general ability means that it may
not be as powerful as tests tailored to detect specific types of conditional dependence. Our approach does 385

not directly apply to dimension reduction for the conditional mean E(Y | X) or conditional variance
var(Y | X) which leads to the statements Y E(Y | X) | PSX or Y var(Y | X) | PSX . The gen-
eral issue is to check the statement as Y f(X) | PSX , where f is a measurable function of X . The
challenge lies in that f(X) may have to be estimated after dimension reduction, as pointed out by Li et
al. (2003). We think this general issue deserves further study. 390
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