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SUMMARY

Outlier detection is an integral component of statistical modeling and estimation. For high dimension- 10

al data where the dimension increases with sample size, classical methods based on the Mahalanobis
distance are typically inapplicable. We propose an outlier detection procedure that replaces the classical
minimum covariance determinant estimator with a high-breakdown minimum diagonal product estima-
tor. The cutoff value is obtained through the asymptotic distribution of the distance, which enables us to
control the type I error and deliver robust outlier detection. Simulation studies show that the proposed 15

method behaves well in high dimensional data.
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1. INTRODUCTION

Outlier detection plays a critical role in data processing, modeling, estimation, and inference. Rapid
development in technology has led to emergence of high dimensional data from fields such as genomics, 20

biomedical imaging, tomography, signal processing and finance. Conventional outlier detection methods
do not work well for such data, in which the dimensionality may be very large.

For multivariate data, let Y = {Y1, . . . , Yn} ⊂ Rp be independent and identically distributed p-
dimensional random vectors with mean µ = (µ1, . . . , µp)

T and a positive definite covariance matrix
Σ whose entries are (σjk)j,k=1,...,p. Conventional outlier detection methods often rely on a distance mea- 25

sure to characterize how far a particular data point is from the center of the data. The usual measure of
outlyingness for an individual Yi = (yi1, . . . , yip)

T is the Mahalanobis distance,

d2i (µ,Σ) = (Yi − µ)TΣ−1(Yi − µ). (1)

It is critical to obtain reliable estimates of µ and Σ, as well as to determine the threshold for di(µ,Σ) to
classify whether an observation is an outlier (Cerioli et al., 2009). 30

In robust statistics, estimation of the multivariate location parameter µ and covariance matrix Σ is
challenging, as many classical methods break down in the presence of n/(p+ 1) outliers. One high-
breakdown approach is the minimum volume ellipsoid method of Rousseeuw (1985), which searches for
the ellipsoid with the smallest volume that covers h data points, with n/2 < h < n. However, it appears
to be more advantageous to replace the minimum volume ellipsoid by the minimum covariance determi- 35

nant estimator, which identifies the subset containing h observations such that the classical covariance
matrix has the lowest determinant. Furthermore, Rousseeuw and Van Driessen (1999) developed a so-
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called fast minimum covariance determinant algorithm, which is computationally more efficient than all
existing minimum volume ellipsoid algorithms. To determine the cutoff value for outlying points, Hardin
and Rocke (2005) provided a distributional result for the Mahalanobis distance in (1) based on the min-40

imum covariance determinant estimator. Along similar lines, Cerioli (2010) developed a multivariate
outlier test, which performs well in terms of both the test size and power.

However, when the dimension of the data is higher than the sample size, the aforementioned methods
are infeasible. Even for p < n, as p increases, traditional measures for outlier detection based on the
Mahalanobis distance may become degenerate, and the contamination bias, which grows rapidly with45

p, would make the minimum covariance determinant unreliable for a large p (Adrover and Yohai, 2002;
Alqallaf et al., 2009; Yu et al., 2012). This drawback has also been revealed by some high-dimensional
location tests (Srivastava and Du, 2008; Chen and Qin, 2010). Filzmoser et al. (2008) suggested a proce-
dure that uses the properties of principal component analysis to identify outliers in a transformed space.
Fritsch et al. (2011) modified the minimum covariance determinant approach by adding a regularization50

term to ensure that the estimation is well-posed in high-dimensional settings. However, there is no dis-
tributional result in Fritsch et al. (2011) and, as a consequence, it is not easy to find appropriate cutoff
values in practice to attain a desired false alarm rate.

To overcome the difficulties involved in high-dimensional data, we modify the Mahalanobis distance
so that it only contains the diagonal elements of the covariance matrix,55

d2i (µ,D) = (Yi − µ)TD−1(Yi − µ), (2)

where D = diag(σ11, . . . , σpp). We can rewrite (2) as
∑p

j=1(yij − µj)
2/σjj , so the information on out-

lyingness can be extracted from each individual marginally. The modified Mahalanobis distance (2) is
invariant under a group of scalar transformations. Based on (2), we propose a high-breakdown minimum
diagonal product estimator and develop the algorithm and threshold rule for outlier identification.60

2. METHODS AND PROPERTIES

2·1. Minimum Diagonal Product Estimator
Let Y1, . . . , Yn ∼ Np(µ,Σ), and denote the covariance matrix by Σ ≡ (σjk) (j, k = 1, . . . , p), the

diagonal matrix by D = diag(σ11, . . . , σpp); and thus the correlation matrix is R = D−1/2ΣD−1/2 ≡
(ρjk). When µ and Σ are known, we can make an orthogonal transformation and rewrite the modified65

Mahalanobis distance in (2) as its canonical form d2i (µ,D) =
∑p

k=1 λkξ
2
k , where {λk : k = 1, . . . , p}

are the eigenvalues of the correlation matrixR, and {ξk : k = 1, . . . , p} are independent standard normal
variables. Given the true parameters µ and D,

d2i (µ,D)− p

{2tr(R2)}1/2
→ N(0, 1), p→ ∞, (3)

which directly follows the Hájek–Šidák central limit theorem based on Conditions 1–2 in the Appendix.70

See equation (3.6) in Srivastava and Du (2008) for details.
Outlier detection can be cast as n hypothesis tests with H0i : Yi ∼ Np(µ,Σ) (i = 1, . . . , n). However,

the least squares estimators of µ and Σ may break down in the presence of outliers. Distance-based
methods, such as (2), require robust and consistent estimation of µ andD. If the asymptotic distribution in
(3) is used, consistent estimation of tr(R2) is needed to determine the cutoff value of outlying distances,75

and also may fail when the data include outlying observations.
The minimum covariance determinant approach aims to find a subset of observations whose sample

covariance matrix has the smallest determinant, which, however, may not be reliable or well-defined for
high-dimensional data. Our approach searches for a subset of h observations such that the product of
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the diagonal elements of the sample covariance matrix is minimal, which involves only the p marginal 80

variances. Let H =
{
H ⊂ {1, . . . , n} : |H| = h

}
be the collection of all subsets of size h. For any H ∈

H, let µ̂(H) and Σ̂(H) denote the sample mean and sample covariance of {Yi : i ∈ H}, respectively.

DEFINITION 1. The minimum diagonal product estimator is defined by

µ̂MDP = µ̂(HMDP), HMDP = argmin
H∈H

det[diag{Σ̂(H)}], (4)

where diag{Σ̂(H)} is the diagonal matrix of Σ̂(H). 85

If the minimization in (4) yields multiple solutions, we arbitrarily choose one to compute the mini-
mum diagonal product estimator. In the one-dimension setting with p = 1, det[diag{Σ̂(H)}] reduces to
(h− 1)−1

∑h
i=1{yi1 − µ̂(H)}2, and thus the minimization seeks the smallest variance that covers h ob-

servations, and accordingly µ̂MDP is equivalent to the least trimmed squares estimator (Rousseeuw and
Leroy, 1987). 90

The diagonal matrix D can be estimated by

D̂MDP = c× diag{Σ̂(HMDP)}, (5)

where c is a scale factor, depending on h and n, to ensure the consistency of D̂MDP for multivariate
normal data. Similar to its counterpart in the minimum covariance determinant (Pison et al., 2002),
c can be determined as follows. We first calculate the modified Mahalanobis distances using the raw 95

estimators of µ and D, i.e., di(µ̂RAW, D̂RAW), where µ̂RAW = µ̂MDP and D̂RAW = diag{Σ̂(HMDP)}.
From Proposition 1, median1≤i≤n d

2
i (µ̂MDP, D̂MDP) = p+ op(1) as p→ ∞, and thus we take

c =
median1≤i≤n d

2
i (µ̂RAW, D̂RAW)

median1≤i≤n d2i (µ̂MDP, D̂MDP)
≈ median1≤i≤n d

2
i (µ̂RAW, D̂RAW)

p
.

The minimum diagonal product estimator has two important properties. First, the location estima-
tor µ̂MDP and the diagonal matrix estimator D̂MDP are scalar equivariant, but not affine equivari- 100

ant. Second, to study the global robustness of the minimum diagonal product estimator, we com-
pute its finite-sample breakdown point (Donoho and Huber, 1983). The finite-sample breakdown
point εn of an estimator T is the smallest fraction of observations from Y that need to be replaced
by arbitrary values to carry the estimate beyond all bounds. Formally, it is defined as εn(T,Y) =
min1≤k≤n

{
k/n : supY ′ ∥ T (Y)− T (Y ′) ∥= ∞

}
, where the supremum is taken over all possible col- 105

lections of Y ′ obtained from Y by replacing k data points by arbitrary values. Let m(Y) denote the
cardinality of the largest subset of Y satisfying that all the elements are the same with respect to at least
one component. It is usually required that m(Y) < h (Agulló et al., 2008).

THEOREM 1. For any data Y ⊂ Rp with m(Y) < h and p > 1,

εn(µ̂MDP,Y) = min{n− h+ 1, h−m(Y)}/n. (6) 110

For the case with p = 1, (6) reduces to the breakdown point of the least trimmed squares estimator
(Hössjer, 1994). If Y is continuous, then for any component of Y there would be no pair of values equal
with probability 1. This implies that m(Y) = 1, and thus εn(µ̂MDP,Y) = min(n− h+ 1, h− 1)/n,
which does not depend on p. It follows that h = [n/2] + 1 yields the maximal breakdown point 50% for
data with m(Y) = 1, where [a] denotes the integer part of a. 115
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2·2. Algorithm
We adapt the fast minimum covariance determinant algorithm in Rousseeuw and Van Driessen (1999)

to obtain the minimum diagonal product estimator. The construction in the following theorem guarantees
the decrease of the objective function.

THEOREM 2. Let H1 be a subset of {1, . . . , n} with |H1| = h, and let T1 = h−1
∑

i∈H1
Yi,120

S1 = h−1
∑

i∈H1
(Yi − T1)(Yi − T1)

T, and D1 = diag(S1). If det(D1) ̸= 0, define the distance based
on T1 and D1, di(T1, D1), for i = 1, . . . , n. If we take H2 such that {di(T1, D1) : i ∈ H2} =
{d(1)(T1, D1), . . . , d(h)(T1, D1)}, where d(1)(T1, D1) ≤ · · · ≤ d(h)(T1, D1) are the ordered distances,
and compute T2 and D2 based on H2, then det(D2) ≤ det(D1), and the equality holds if and only if
T1 = T2 and D1 = D2.125

The procedures in the fast minimum covariance determinant algorithm can be applied here, by replac-
ing the Mahalanobis distance with the modified version (2). The algorithm starts from a random subset
containing (p+ 1) data points, while such initial subsets may not be available in high-dimensional set-
tings. In fact, the initial subsets are used to estimate the variance of each univariate variable and hence
we simply take their size to be 2. Our algorithm is described as follows:130

Algorithm 1. Minimum diagonal product

Step 1. Construct a number of (say, m = 100) initial subsets H(0) with |H(0)| = 2.

Step 2. Apply the construction in Theorem 2 to each initial subset till convergence and obtain m
diagonal product values.

Step 3. Select the subset with the minimum diagonal product value.135

The algorithm is not permutation invariant. Hubert et al. (2012) presented a deterministic algorithm
without using random subsets, which is faster. Their method computes a small number of deterministic
initial estimators, followed by the second step in Algorithm 1. This idea could also be adapted to the
present problem and warrants further investigation.

2·3. Minimum Diagonal Product Distance and Threshold140

After calculating di(µ̂MDP, D̂MDP), we develop a threshold rule to determine whether an individual
is an outlier.

PROPOSITION 1. Assume that Conditions 1, 3 and 4 hold. Under the null hypothesis that there is no
outlier in the data,

max
1≤i≤n

∣∣∣∣∣ d2i (µ̂, D̂)

{2tr(R2)}1/2
− d2i (µ,D)

{2tr(R2)}1/2

∣∣∣∣∣ = op(1), n, p→ ∞, (7)145

where µ̂ is the sample mean vector and D̂ is the diagonal matrix of the sample covariance.

Although (7) presupposes that the parameters µ and D are estimated by a sample without outliers,
it is also expected to be roughly valid for the distance di(µ̂MDP, D̂MDP), where µ̂MDP and D̂MDP are
reliable approximations to those obtained from a clean sample. This proposition in conjunction with (3)
suggests that we could use normal distributions to construct a threshold rule.150

In (3), tr(R2) needs to be estimated in order to obtain the cutoff value. Let tr(R2)n = tr(R2
n)−

p2/n, where Rn is the sample correlation matrix. When there is no outlier, under Conditions 1 and 3,
p−1{tr(R2)n − tr(R2)} → 0 in probability as n, p→ ∞ (Bai and Saranadasa, 1996). This motivates us
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to use the estimator

tr(R2)MDP = tr(R̂2
RAW)− p2/h, (8) 155

where R̂RAW is the correlation matrix associated with Σ̂(HMDP).
At a significance level α, using the asymptotic distribution in (3) with robust estimators instead, the

ith observation is identified as an outlier if

d2i (µ̂MDP, D̂MDP) > p+ zα{2ĉp,ntr(R2)MDP}
1/2, (9)

where zα is the upper αth quantile of the standard normal distribution and ĉp,n is an adjustment coefficient 160

that converges to one under Condition 3. Srivastava and Du (2008) showed by simulation that using the
adjustment quantity ĉp,n = 1 + tr(R̂2

RAW)/p3/2 leads to faster convergence to normality.

2·4. Refined Algorithm
To enhance efficiency, a one-step reweighting scheme is often used in practice (Cerioli, 2010). We

refine the identification rule after obtaining a relatively reliable non-outlier subset based on the initial 165

minimum diagonal product detection method. To estimate the parameters using the reweighted observa-
tions, the first and second moments of the reweighted variables are needed. Assuming the parameters µ
and D to be known, we define the weight wi = 0 if d2i (µ,D) > aδ, and wi = 1 otherwise, where aδ is
the upper δth quantile of the distribution of d2i (µ,D). By (3), we set aδ = p+ zδ{2tr(R2)}1/2.

PROPOSITION 2. Assume that Conditions 1 and 2 hold. Under the null hypothesis that there is no 170

outlier in the data, E(yik | wi = 1) = µk, and

var(yik | wi = 1) = σkk

[
1− 2ϕ(zδ)(R

2)kk
(1− δ){2tr(R2)}1/2

+ o(1)

]
≡ σkkτkk, k = 1, . . . , p,

where (R2)kk is the kth diagonal element ofR2 and ϕ is the standard normal probability density function.

This proposition elaborates on how to obtain approximately unbiased estimators of µ and D from
the observations Yi for which wi = 1. Let µ̃ and D̃0 be the sample mean and the diagonal matrix of 175

the sample covariance Σ̃ based on those observations, respectively. Let D̃ = τ−1/2D̃0τ
−1/2 be the re-

fined estimators, where τ = diag(τ11, . . . , τpp), and accordingly, a refined distance can be constructed as
di(µ̃, D̃). However, it is not easy to obtain a consistent estimator of (R2)kk in high-dimensional settings.
As it can be verified that

median1≤i≤n d
2
i (µ, τ

1/2Dτ1/2)

median1≤i≤n d2i (µ,D)
=

[
1 +

ϕ(zδ){2tr(R2)}1/2

p(1− δ)

]
{1 + o(1)} , p→ ∞, 180

we have

d2i (µ̃, D̃) ≈ d2i (µ̃, D̃0)

1 + ϕ(zδ){2tr(R2)}1/2/{p(1− δ)}
. (10)

In other words, we replace the p scaling factors τkk with 1 + ϕ(zδ){2tr(R2)}1/2/{p(1− δ)}, which can
be estimated more easily. Furthermore, tr(R2) can be updated as tr(R2)w = tr(R̃2)− p2/nw, where R̃
is the correlation matrix associated with Σ̃ and nw =

∑n
i=1wi. 185

To derive a reliable finite-sample detection rule based on the minimum diagonal product distances,
we replace wi by w̃i which is defined as: w̃i = 0 if (9) holds, and w̃i = 1 otherwise. Finally, the refined
procedure for outlier detection is summarized as follows.

Algorithm 2. Refined minimum diagonal product
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Step 1. Set a significance level α, and compute the estimators (4) and (5) with h = [n/2] + 1.190

Step 2. Calculate the distance di(µ̂MDP, D̂MDP) and assign a weight to each observation according to
(9) based on an appropriately chosen δ, e.g., δ = α/2.

Step 3. Obtain µ̃ and D̃0.

Step 4. Compute the refined distance by (10), and test each observation at the significance level α with
the rejection region d2i (µ̃, D̃) > p+ zα{2c̃p,ntr(R2)w}1/2, where c̃p,n = 1 + tr(R̃2)/p3/2.195

The refined procedure runs fast; for instance, when n = 100 and p = 400, it only takes about two
seconds to finish it, using an Intel i7-2630 CPU and FORTRAN. The R and FORTRAN codes for imple-
menting the procedure are available in the Supplementary Material.

3. SIMULATION

In the simulation study, we fix the sample size n = 100. Each dataset is composed of n− n∗ observa-200

tions from Np(0, R) and n∗ observations from a p-variate location-shift model, Yi ∼ Np(kbi, R), where
k is a constant and the bi are p-dimensional independent random vectors with a unit L2 norm. As all
the considered methods are scalar-invariant, the covariance matrix Σ = R is used. We consider autore-
gressive correlation with ρjk = 0.5|j−k| and moving average structures. The moving average model is
constructed by yij =

∑L
k=1 ηkzi(j+k−1)/(

∑L
k=1 η

2
k)

1/2 for i = 1, . . . , n and j = 1, . . . , p, where ηk and205

{zik} are independent U(0, 1) and N(0, 1) variables, respectively. The lag, L, determines the sparseness
of R. We allow L to grow by setting L = [p1/2]. This rate of L would result in a sparse matrix R, so
that Condition 1, on which the validity of asymptotic normality (3) relies, is satisfied. If we use a rate
of L = O(p), the corresponding correlation matrix is not sparse, and Condition 1 would not hold, so
our approach would not perform well, especially in terms of type I errors. We explore two cases for the210

outliers: (I): bi is a normalized p-vector consisting of p independent random variables from U(0, 1); and
(II): bi is a normalized p-vector in which only p/5 random components are from U(0, 1) and all the
others are zero. All the simulation results are based on 1,000 replications.

We first show that the estimator tr(R2)MDP in (8) performs well with finite samples. The contamina-
tion rate n∗/n is set as 0.2 or 0.4, whereas the dimension is p = 100 or 200. We compare tr(R2)MDP215

and tr(R2)R-MCD, where tr(R2)R-MCD is calculated based on the regularized minimum covariance
determinant procedure (Fritsch et al., 2011). Figure 1 presents box-plots of tr(R2)MDP/tr(R

2) and
tr(R2)R-MCD/tr(R

2) under Case (I) with the autoregressive structure and k = 20. Clearly, tr(R2)MDP
is accurate and generally outperforms tr(R2)R-MCD regardless of how large the proportion of outliers is.
The advantage of tr(R2)MDP becomes more pronounced for larger p and n∗.220

The outlier identification performance is evaluated by the type I error rate, the proportion of good
observations which are incorrectly classified as outliers; and the type II error rate, the proportion of con-
taminated observations which are incorrectly labeled as good ones. These error rates reflect the swamp-
ing probability and masking probability, respectively. Under the same settings as before, the nominal
significance level α is chosen to be 0.01, 0.05 and 0.1, and k = 10 and k = p1/2 are considered with225

the autoregressive and moving average models, respectively. Table 1 presents the type I error rate of the
refined minimum diagonal product method under Case (I) for various combinations of n∗ and p. The
empirical type I error rates are close to the nominal levels in most cases.

We next compare the proposed outlier detection procedure with existing methods, including those in
Filzmoser et al. (2008) and Fritsch et al. (2011). We also consider another alternative, the Stahel–Donoho230

method: first constructing the initial subset based on the Stahel–Donoho outlyingness (Maronna and
Yohai, 1995; Van Aelst et al., 2012) and then applying the procedure in Fritsch et al. (2011). In both the
Fritsch et al. (2011) and Stahel–Donoho methods, the size of the elemental subset for estimation is chosen
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Fig. 1. Comparison of box-plots of tr(R2)MDP/tr(R
2) using the minimum diagonal product esti-

mator and tr(R2)R-MCD/tr(R
2) using the regularized minimum covariance determinant estimator
for different paired values of (p, n∗).

Table 1. Average type I errors (%) under Case (I) for various values of p, n∗ and α when n = 100

Correlation p n∗ = 10 n∗ = 20
α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

AR 50 2.4 6.9 11.7 1.7 5.3 9.2
100 2.0 6.5 11.1 1.5 5.0 8.9
200 1.6 6.2 10.9 1.2 4.7 8.6
400 1.3 5.7 10.5 0.9 4.2 8.2

MA 50 2.0 6.5 11.0 1.5 4.9 8.4
100 1.8 6.2 10.4 1.2 4.4 8.1
200 1.6 5.5 9.7 1.2 4.3 7.7
400 1.3 5.0 9.0 1.0 3.7 7.0

AR stands for autoregressive and MA for moving average.

to be the same as that in our method, i.e., h = [n/2] + 1. There seems to be no direct method to determine
the cutoff value in the procedure of Fritsch et al. (2011), because the distribution of the regularized 235

Mahalanobis distance in high-dimensional settings is not clear. Hence, we use the simulation to find the
cutoff value so that a desired type I error is achieved by assuming Y from the univariate standard normal
distribution. Although the iterated reweighted minimum covariance determinant in Cerioli (2010) has
been shown to possess good finite-sample properties, it is not considered here as a benchmark because
the method is not designed for high-dimensional cases. Our simulation studies, not reported here, show 240

that when the dimension is relatively small, say p ≤ 20, Cerioli’s (2010) method outperforms the others
in most cases in terms of both the type I and type II errors. The type I error rates of our method are higher
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Table 2. Average type I (α) and type II (β) errors (%) under Cases (I)-(II) for various values of p with a
nominal size of α = 0.05, when n = 100 and n∗ = 10

Case Correlation p R-MDP PCOut R-MCD SDM
α β α β α β α β

(I) AR 50 6.9 0.2 6.0 0.2 4.8 5.2 11.0 0.0
100 6.5 1.7 5.4 1.5 12.6 3.0 7.8 0.4
200 6.2 7.9 5.5 3.6 13.1 9.2 13.5 1.1
400 5.7 23.4 5.5 11.6 22.7 14.0 7.1 10.7

MA 50 6.5 31.1 8.0 25.7 11.7 19.9 32.6 3.6
100 6.2 20.2 6.3 23.5 34.6 0.4 14.9 1.7
200 5.5 10.1 5.5 19.2 30.8 0.0 25.7 0.3
400 5.0 4.7 5.4 7.9 41.7 0.0 12.7 0.1

(II) AR 50 6.7 0.0 6.7 0.3 5.4 0.4 6.9 1.7
100 6.4 0.4 6.4 47.2 13.4 0.0 12.2 4.0
200 6.3 4.4 7.1 78.3 10.7 1.5 10.4 6.7
400 5.9 19.6 7.5 86.7 17.7 5.4 8.3 12.8

MA 50 6.7 22.4 7.4 2.1 7.8 3.4 16.0 0.3
100 6.3 10.5 6.1 5.0 21.4 0.0 30.3 0.0
200 5.8 2.1 5.7 27.2 26.2 0.0 15.0 0.1
400 5.1 0.3 5.8 43.4 42.1 0.0 41.2 0.0

R-MDP: our refined minimum diagonal product method; PCOut: the principal component outlier detection procedure by Filzmoser et al. (2008);

R-MCD: the regularized minimum covariance determinant method by Fritsch et al. (2011); and SDM: first constructing the initial subset based

on the Stahel–Donoho outlyingness and then applying R-MCD.

Table 3. Average type I (α) and type II (β) errors (%) under Case (III) with ψ = 2, when n = 100 and
n∗ = 10

p R-MDP PCOut R-MCD SDM
α β α β α β α β

50 6.9 8.9 7.7 17.2 4.6 7.3 7.6 3.1
100 6.4 0.4 6.6 48.7 16.0 0.0 9.0 0.2
200 6.1 0.0 5.5 38.9 20.5 0.0 13.9 0.0
400 5.7 0.0 4.8 9.4 18.0 0.0 8.4 0.0

than the nominal size because both the asymptotic distribution in (3) and the consistency of the estimator
of tr(R2) rely on the condition that p is sufficiently large.

Simulation results with nominal size α = 0.05 and n∗ = 10 are summarized in Table 2. Again, k = 10245

and k = p1/2 are considered under the autoregressive and moving average models, respectively. In most
cases, the proposed method can maintain the desired type I error rate and also yield small type II error
rates. In contrast, the Fritsch et al. (2011) and Stahel–Donoho methods do not work well, as their type I
error rates deviate greatly from the nominal level. Filzmoser et al.’s (2008) method also approximately
attains a type I error rate of 0.05 and has comparable performance with our method under Case (I).250

However, our method performs better than Filzmoser et al.’s (2008) method under Case (II); the type II
error rate of the latter increases fast when the dimension p increases.
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Table 4. Average type I (α) and type II (β) errors (%) under Case (IV)
Autoregressive Moving average

p R-MDP PCOut R-MDP PCOut
α β α β α β α β

50 6.7 0.3 5.2 0.0 6.7 0.0 4.8 0.0
100 6.6 1.8 4.8 0.1 6.5 0.3 4.2 0.0
200 6.2 8.4 5.0 0.2 6.2 5.1 4.5 0.1
400 5.7 23.7 5.2 1.0 5.6 22.0 4.9 0.6

It is instructive to consider a radial contamination scheme (Cerioli, 2010), denoted as Case (III): the
data are composed of n− n∗ observations from N(0, R) and the remaining n∗ from N(0,Σ), where all
the diagonal components of Σ are ψ and the off-diagonal components are the same as those of R, and 255

R is chosen to have an autoregressive structure. The simulation results with ψ = 2 are summarized in
Table 3, which shows that the proposed method performs generally better than Filzmoser et al.’s (2008)
method in terms of the type II errors as p increases. Both the Fritsch et al. (2011) and Stahel–Donoho
procedures are able to identify the outliers, but their type I errors are unsatisfactory in most cases.

The advantage of our procedure over Filzmoser et al.’s (2008) method is partially due to the fact that 260

the shift directions of those outlying observations Yi are not the same. In such cases, dimension reduction
by principal component analysis seems to be not very useful. In contrast, if bi = b for all the outliers,
the information of outlyingness can be well captured by the first several components, and thus Filzmoser
et al.’s (2008) method based on principal component analysis would be more powerful. To gain more
insight into this, Table 4 shows the comparison results under such a scenario, Case (IV). In this scenario, 265

all the settings are the same as those in Case (I) of Table 2, except that the outlying observations are
generated through Yi ∼ N(kb,R), where b is a normalized p-vector consisting of p independent random
variables from U(0, 1). The advantage of Filzmoser et al.’s (2008) method is obvious. This suggests that
projection-based methods would be a better choice if additional information indicates that the data can
be regarded as variables from a mixture distribution with only a few mixture components. 270

Some additional simulation results in the Supplementary Material lead to similar conclusions.
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APPENDIX

Condition 1. For i = 1, 2, 3, 4, 0 < lim
p→∞

tr(Ri)/p <∞.

Condition 2. The eigenvalues λi of the correlation matrix R satisfy lim
p→∞

max
1≤i≤p

λi/p
1/2 = 0. 280

Condition 3. The dimension p grows with sample size n at a rate of p = O(n1/ζ), 1/2 < ζ ≤ 1.

Condition 4. For some 0 < γ < ζ/2, lim
p→∞

max
1≤i≤p

λi/p
γ <∞.

Conditions 1–2 are imposed to guarantee the asymptotic convergence of the proposed distance (2). Since we
apply the central limit theorem for the sum of p correlated variables, some conditions onR are inevitable. Condition
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2 is used to satisfy the Hájek–Šidák condition. If all the eigenvalues of R are bounded, Condition 1 is trivially285

true for any p. If the correlation matrix contains many large entries, Condition 1 may not hold and neither does
the asymptotic normality of (2). Thus, asymptotic normality relies on how strong the dependencies among the
variables are; certain sparseness on R is needed. Stronger Conditions 2 and 4 are required to obtain Proposition 1,
which is a uniform convergence result. Condition 3 includes the cases n ≤ p, n/p→ r, 0 ≤ r ≤ 1 and n > p, but
n/p→ r, 1 ≤ r <∞.290
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