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TECHNICAL PROOFS

Proof of Theorem 1
Similar to the argument in Ro et al. (2015), which is concerned with the outlier detection in high- 15

dimensional observations, we first prove that bN,v̂R(µ̂HL
,X ) ≥ min(N − h+ 1, h)/N . We show that

there exists a value M , which only depends on v̂R, such that for every X ′ obtained by replacing at most
min(N − h+ 1, h)− 1 observations in X we have ∥µ̂′HL

∥v̂R ≤M , where µ̂′HL
is the least trimmed

functional scores estimator based on X ′. If we take any dataset X ′ by replacing min(N − h+ 1, h)− 1
observations in X , there exists a subset H1 ∈ H containing indices only corresponding to the data points 20

of the original dataset X . Then

∑
i∈H1

Di(H1) =
∑
i∈H1

∑
1≤k≤d

[∫ b

a
{Xi(t)− µ̂H1(t)}v̂kR(t)dt

]2
/λ̂kR

≤
∑
i∈H1

∑
1≤k≤d

2

{∫ b

a
X2

i (t)dt+

∫ b

a
µ̂2H1

(t)dt

}
/λ̂kR

≤ 4hM1

∑
1≤k≤d

λ̂−1
kR,

where M1 = max1≤i≤N

∫ b
a X

2
i (t)dt and the last inequality holds by using Cauchy-Schwartz inequality 25

and the fact
∫ b
a µ̂

2
H1

(t)dt ≤M1.
Suppose that ∥µ̂′HL

∥v̂lR =M for some l and let H2 be the optimal subset corresponding to µ̂′HL
such

that µ̂′HL
= µ̂′(H2) where µ̂′(H2) = h−1

∑
j∈H2

X ′
j . Since h− {min(N − h+ 1, h)− 1} ≥ 1, the set
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H2 contains a subset J0 of size |J0| ≥ 1 corresponding to the original observations of X . Thus we have

∑
i∈H2

Di(H2) =
∑

1≤k≤d

λ̂−1
kR

∑
i∈H2

[∫ b

a
{Xi(t)− µ̂′H2

(t)}v̂kR(t)dt
]2

30

≥
∑

1≤k≤d

λ̂−1
kR

∑
i∈J0

[∫ b

a
{Xi(t)− µ̂′H2

(t)}v̂kR(t)dt
]2

=
∑

1≤k≤d

λ̂−1
kR

∑
i∈J0

[∫ b

a
{Xi(t)− µ̂J0(t)}v̂kR(t)dt

]2

+
∑

1≤k≤d

λ̂−1
kR|J0|

[∫ b

a
{µ̂′H2

(t)− µ̂J0(t)}v̂kR(t)dt
]2

≥|J0|λ̂−1
lR

{∫ b

a
µ̂′H2

(t)v̂lR(t)dt

}2

− 2|J0|λ̂−1
lR

∫ b

a
µ̂′H2

(t)v̂lR(t)dt

∫ b

a
µ̂J0(t)v̂lR(t)dt

≥λ̂−1
lR (M2 − 2hMM

1/2
1 )35

by the definition of M . This implies
∑

i∈H2
Di(H2) >

∑
i∈H1

Di(H1) provided M > hM
1/2
1 +

(h2M1 + hλ̂lRM1
∑d

k=1 λ̂
−1
kR)

1/2, which contradicts the definition of µ̂′HL
. So we conclude that

∥µ̂′HL
∥v̂lR ≤ hM

1/2
1 + (h2M1 + hλ̂lRM1

∑d
k=1 λ̂

−1
kR)

1/2.
On the other hand, to show bN,v̂R(µ̂HL

,X ) ≤ min(N − h+ 1, h)/N , we first prove that
bN,v̂R(µ̂HL

,X ) ≤ (N − h+ 1)/N . If we replace N − h+ 1 data points of X , then the optimal sub-40

set H2 of X ′ would contain at least one outlier, but the least squares method breaks down even with one
single outlier. It then follows that ∥µ̂HL

∥v̂R is not bounded because we can simple replace the observation
Xi(t) by X ′

i(t) = Kv̂kR(t) so that |
∫ b
a X

′
i(t)v̂kR(t)dt |=| K | which can be arbitrarily large. Similarly,

we can easily observe that bN,v̂R(µ̂HL
,X ) ≤ h/N . �

Proof of Theorem 245

First, we have
∑h

i=1D(i)(H2) ≤
∑

i∈H2
Di(H2), as D(i)(H2) (i = 1, . . . , h) is the h smallest dis-

tances based on H2. Then, we can easily find that∑
i∈H2

Di(H2) =
∑
i∈H2

∑
1≤k≤d

η̂2ik(H2)/λ̂kR

=
∑
i∈H2

∑
1≤k≤d

[∫ b

a
{Xi(t)− µ̂H1(t) + µ̂H1(t)− µ̂H2(t)}v̂kR(t)dt

]2
/λ̂kR

=
∑
i∈H2

Di(H1)− h
∑

1≤k≤d

[∫ b

a
{µ̂H1(t)− µ̂H2(t)}v̂kR(t)dt

]2
/λ̂kR50

≤
∑
i∈H2

Di(H1) =

h∑
i=1

D(i)(H1),

from which the theorem follows immediately. �
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Before proving Theorem 3 and Proposition 1, we present the following lemma.

LEMMA 1. Assume that µ̂(·), λ̂k and v̂k(·) are
√
ζN -consistent estimates of µ0(·), λk and vk(·). Then

|Ti(µ̂, v̂, λ̂)−
∑d

k=1 ξ
2
ik| = Op(ζ

−1/2
N logN), uniformly in i. 55

Proof. Without loss of generality, assume that µ0(t) = 0. Recall that εi(t) =
∑

1≤k<∞ λ
1/2
k ξikvk(t)

and ξik = λ
−1/2
k

∫
εi(t)vk(t)dt, (i = 1, . . . , N ; k = 1, 2, . . .) are independent identically distributed s-

tandard normal random variables. It follows that for each k, max1≤i≤N ξ2ik = Op(logN). We denote

ϕik =

∫ b

a
{Xi(t)− µ̂(t)} vk(t)dt,

η̂ik =

∫ b

a
{Xi(t)− µ̂(t)}v̂k(t)dt, (k = 1, . . . , d). 60

Observe that

max
i
η̂2ik ≤ max

i
∥εi(t)− µ̂(t)∥2

≤ 2max
i

{∥εi(t)∥2 + ||µ̂(t)||2} = 2
∞∑
k=1

λk max
i
ξ2ik + 2||µ̂(t)||2.

By assuming that ||µ̂(t)− µ0(t)||2 = op(1), we have ||µ̂(t)||2 = op(1). Also,
∑∞

k=1 λk =
E(||εi(t)||2) <∞, we can claim that maxi ||εi(t)||2 = Op(logN) based on Markov inequality 65

and then maxi η̂
2
ik = Op(logN). Combining the expressions above, we have∣∣∣∣∣

d∑
k=1

max
i

η̂2ik
λ̂k

−
d∑

k=1

max
i

η̂2ik
λk

∣∣∣∣∣ ≤
d∑

k=1

max
i
η̂2ik

∣∣∣λ̂−1
k − λ−1

k

∣∣∣ = Op(ζ
−1/2
N logN),

where we use the inequality |maxi |ai| −maxi |bi|| ≤ maxi |ai − bi|.
Furthermore, we have

max
i

∣∣∣∣∣
d∑

k=1

η̂2ik
λk

−
d∑

k=1

ϕ2ik
λk

∣∣∣∣∣ ≤ max
i

d∑
k=1

1

λk
|η̂ik − ĉkϕik|(|η̂ik|+ |ϕik|)

≤
d∑

k=1

1

λk
∥v̂k(t)− ĉkvk(t)∥ · 2max

i
∥εi(t)− µ̂(t)∥2 70

= Op(ζ
−1/2
N logN),

by the consistency assumption of v̂k(t), where ĉk = sgn
{∫ b

a vk(t)v̂k(t)dt
}

.
Finally, we have

max
i

∣∣∣∣∣
d∑

k=1

ϕ2ik
λk

−
d∑

k=1

ξ2ik

∣∣∣∣∣ ≤ 2max
i

d∑
k=1

∥εi(t)∥vk∥µ̂(t)∥vk +
d∑

k=1

1

λk
∥µ̂(t)∥2vk

≤ 2∥µ̂(t)∥
d∑

k=1

max
i

∥εi(t)∥vk +
d∑

k=1

1

λk
∥µ̂(t)∥2 = op(ζ

−1/2
N logN), 75

from which the lemma follows. �
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Proof of Theorem 3
(i) Denote H = HO ∪ H̄O, where HO is the outlier subset of size mN and H̄O is its complement.

Construct H ′ = H̄O ∪ J , where J contains mN normal observations which are arbitrarily taken from
X \ ON \ H̄O. We can assume that µ0(t) ≡ 0 without loss of generality. Let δlL ≡ min

1≤i≤n
∆2

il > 0 for80

some l. Then

∑
i∈H

[∫ b

a
{Xi(t)− µ̂H(t)}vl(t)dt

]2
−
∑
i∈H′

[∫ b

a
{Xi(t)− µ̂H′(t)}vl(t)dt

]2

≥

∑
i∈HO

{∫ b

a
µi(t)vl(t)dt

}2

− h−1


∫ b

a

∑
i∈HO

µi(t)vl(t)dt


2

+

∑
i∈HO

{∫ b

a
εi(t)vl(t)dt

}2

−
∑
i∈J

{∫ b

a
εi(t)vl(t)dt

}2


+ 2
∑
i∈HO

{∫ b

a
εi(t)vl(t)dt

}{∫ b

a
µi(t)vl(t)dt

}
85

− h−1

{∫ b

a

∑
i∈H

εi(t)vl(t)dt

}2

− 2h−1

{∫ b

a

∑
i∈H

εi(t)vl(t)dt

}
∫ b

a

∑
i∈HO

µi(t)vl(t)dt


≡Ml +R1l +R2l −R3l −R4l.

Using the fact that h−1mN ≤ h−1|ON | ≈ 2|ON |/N → 2ρ and

h−1


∫ b

a

∑
i∈HO

µi(t)vl(t)dt


2

≤ mN

h

∑
i∈HO

{∫ b

a
µi(t)vl(t)dt

}2

,

we can see Ml ≥ (1−mN/h)
∑

i∈HO

{∫ b
a µi(t)vl(t)dt

}2
≥ mNδlL(1− 2ρ).90

For any ϵ > 0, by Hoeffding inequality for Sub-Gaussian variables,

pr(R3l/λl > ϵ) = pr


(
h−1/2

∑
i∈H

ξil

)2

> ϵ

 ≤ 2 exp
(
−ϵ2/2

)
,

pr(R2l/λl > ϵ) = pr

2
∑
i∈HO

ξil∆il > λ
1/2
l ϵ

 ≤ exp

(
− λlϵ

2

8
∑

i∈HO
∆2

il

)
≤ exp

(
− λlϵ

2

8mNδU

)
,

pr(R4l/λl > ϵ) = pr

2
∑
i∈H

ξil
∑
i∈HO

∆il > hλ
1/2
l ϵ

 ≤ exp

(
− hλlϵ

2

8(
∑

i∈HO
∆il)2

)
≤ exp

(
− λlϵ

2

8mNδU

)
,

where ξil (i = 1, . . . , N) are independent and identically distributed N(0, 1) variables. Now, let us deal95

with R1l. Because R1l/λl is equivalent to
∑mN

i=1(Ui1 − Ui2), where Ui1’s and Ui2’s are independent
and identically distributed random variables from χ2

1. Ui1 − Ui2 is thus sub-exponential with parameters
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(2
√
2, 4). By one-sided Bernstein’s inequality for sub-exponential variables,

pr(R1l/λl > mN ϵ) ≤ exp

(
− mN ϵ

2

8 + 4ϵ/3

)
.

Combining all the three exponential inequalities for R1l, R2l and R3l, we have 100

pr (|R1l +R2l −R3l| > mNδlL) ≤ exp (−c1mN ) ,

where c1 is a constant depending only on δL, δU and λl. Accordingly,

pr

{∑
i∈H

Di(H)−
∑
i∈H′

Di(H
′) < 0

}

≤pr

{
d∑

k=1

λ−1
k |R1k +R2k −R3k| >

d∑
k=1

mNδkL(1− 2ρ)/λk

}

≤
d∑

k=1

pr
{
λ−1
k |R1k +R2k −R3k| > mNδkL(1− 2ρ)/λk

}
105

≤ exp(−c2mN ),

where c2 is a constant depending on d, δL, δU and λk’s.

(ii) For simplicity, we assume that d = 1 because the proof for d > 1 is similar.

λ̂
∑
i∈H

Di(H) =
∑
i∈H̄O

{∫ b

a
Xi(t)v̂l(t)dt

}2

+
∑
i∈HO

{∫ b

a
Xi(t)v̂l(t)dt

}2

− h

{∫ b

a
µ̂H(t)v̂l(t)dt

}2

.

Thus, by Lemma 1 110

λ̂

{∑
i∈H

Di(H)−
∑
i∈H′

Di(H
′)

}
=
∑
i∈HO

{∫ b

a
Xi(t)v̂l(t)dt

}2

−
∑
i∈J

{∫ b

a
Xi(t)v̂l(t)dt

}2

− h

{∫ b

a
µ̂H(t)v̂l(t)dt

}2

+ h

{∫ b

a
µ̂H′(t)v̂l(t)dt

}2

≥
∑
i∈HO

[∫ b

a
{εi(t) + µi(t)}vl(t)dt

]2
−
∑
i∈J

{∫ b

a
εi(t)vl(t)dt

}2

− h

{∫ b

a
µ̂H(t)v̂l(t)dt

}2

+Op(ζ
−1/2
N mN logN),

where we have 115

h

{∫ b

a
µ̂H(t)v̂l(t)dt

}2

=h−1

{∫ b

a

∑
i∈H

εi(t)v̂l(t)dt

}2

+ h−1


∫ b

a

∑
i∈HO

µi(t)v̂l(t)dt


2

+ 2h−1

{∫ b

a

∑
i∈H

εi(t)v̂l(t)dt

}
∫ b

a

∑
i∈HO

µi(t)v̂l(t)dt

 .
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It is easy to see

h−1

{∫ b

a

∑
i∈H

εi(t)v̂l(t)dt

}2

= Op(1),

h−1

{∫ b

a

∑
i∈H

εi(t)v̂l(t)dt

}
∫ b

a

∑
i∈HO

µi(t)v̂l(t)dt

 = Op(mNh
−1/2),120

by the weak convergence in {D[0, 1],L2(T )} of the partial sum process
∑

i∈H εi(t). Write

∑
i∈HO

[∫ b

a
{εi(t) + µi(t)}vl(t)dt

]2

=
∑
i∈HO

{∫ b

a
εi(t)vl(t)dt

}2

+
∑
i∈HO

{∫ b

a
µi(t)vl(t)dt

}2

+ 2
∑
i∈HO

{∫ b

a
εi(t)vl(t)dt

}{∫ b

a
µi(t)vl(t)dt

}
,

where we denote the last term as U . Note that since E(U) = 0 and var(U) ≤ 4mNδUE(∥εi(t)∥2) =125

O(mN ), we have U = Op(m
1/2
N ). Combining these results together,

λ̂

{∑
i∈H

Di(H)−
∑
i∈H′

Di(H
′)

}

≥

∑
i∈HO

{∫ b

a
εi(t)vR(t)dt

}2

−
∑
i∈J

{∫ b

a
εi(t)vR(t)dt

}2


+mNδL(1− 2ρ) +Op(m
1/2
N +mNh

−1/2 + ζ
−1/2
N mN logN) +Op(1).

By the fact that the first term in the last inequality can be viewed as mN independent and identically130

distributed variables with zero mean and bounded variances, we have as N → ∞,

pr

{
h∑

i=1

D(i)(H
′) >

h∑
i=1

D(i)(H)

}
≤ pr

{
δL(1− 2ρ) < Op(m

−1/2
N + h−1/2 + ζ

−1/2
N logN) +Op(m

−1
N )
}
→ 0,

provided that mN → ∞ and ζ−1/2
N logN → 0.

Now, let us prove the second part of (ii). To show the the probability tends to zero uniformly in H , the135

key step is to construct an appropriate J . Let yi =
∑d

k=1 λ
−1
k

{∫ b
a εi(t)vk(t)dt

}2
for i ∈ ON and y(1) ≤

· · · ≤ y(|ON |) be the order statistics of yi’s. Similarly, let zi =
∑d

k=1 λ
−1
k

{∫ b
a εi(t)vk(t)dt

}2
for i ∈ X \

ON \ H̄O and z(1) ≤ · · · ≤ z(kN ) be the order statistics of zi’s, where we denote kN = |X \ ON \ H̄O|.
Let J = {i ∈ X \ ON \ H̄O : zi ≤ z(mN )}. Construct H ′

LTFS = H̄O ∪ J . By similar arguments used in
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the proof of the last part and Lemma 1, 140∑
i∈HLTFS

Di(HLTFS)−
∑

i∈H′
LTFS

Di(H
′
LTFS)

≥mN (1− 2ρ)λ−1
1 δL +

d∑
k=1

λ−1
k

∑
i∈HO

{∫ b

a
εi(t)vk(t)dt

}2

−
∑
i∈J

{∫ b

a
εi(t)vk(t)dt

}2


+ 2

d∑
k=1

λ−1
k

∑
i∈HO

{∫ b

a
εi(t)vk(t)dt

}{∫ b

a
µi(t)vk(t)dt

}

− h−1
d∑

k=1

λ−1
k

 ∑
i∈HLTFS

∫ b

a
εi(t)vk(t)dt


2

− 2h−1
d∑

k=1

λ−1
k

 ∑
i∈HLTFS

∫ b

a
εi(t)vk(t)dt


∑

i∈HO

∫ b

a
µi(t)vk(t)dt

+Op(ζ
−1/2
N mN logN) 145

≡mN (1− 2ρ)λ−1
1 δL +R1 +R2 −R3 −R4 +Op(ζ

−1/2
N mN logN).

Unlike the first part, we will provide uniform bounds for the Ri’s which always hold regardless of
HLTFS. First of all,∣∣∣∣∣∣

∑
i∈HLTFS

ξik

∣∣∣∣∣∣ ≤ max
H∈ H

∣∣∣∣∣∑
i∈H

ξik

∣∣∣∣∣ ≤ max


∣∣∣∣∣∣

h∑
j=1

ξ(j)k

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
h−1∑
j=0

ξ(N−j)k

∣∣∣∣∣∣
 ,

where ξ(j)k’s are the order statistics of (ξ1k, . . . , ξNk). By the central limit theorem for L statistics (Cher-
noff et al., 1967), 150

N−1/2


h∑

j=1

ξ(j)k − ψΦ(0.5)

→ N(0, ψ2
σ(0.5))

in distribution, where ψΦ(q) =
∫ q
0 Φ−1(z)dz, ψ2

σ(q) =
∫ q
0

1
(1−u)2

{∫ q
u Φ−1(v)(1− v)dv

}2
du and Φ(·)

is the standard normal distribution function (Serfling, 1980). By symmetry, |
∑

i∈HLTFS
ξik| ≤ Op(N

1/2),
from which we can claim that R3 = Op(1). Similarly,

R4 ≤ O(h−1)Op(N
1/2)mNδ

1/2
U .

Hence, with probability tending to one, R3 +R4 < mN (1− 2ρ)λ−1
1 δL.

Now, let us deal with R1 and R2. We only discuss the case of ρ > 0 here but the case of ρ = 0 can be 155

more easily handled. Two distinguishing cases are: the intermediate case mN/|ON | → 0 and the central
case mN/|ON | → q < 1. In the first case,

R1 ≥ −
∑
i∈J

d∑
k=1

{∫ b

a
λ
−1/2
k εi(t)vk(t)dt

}2

≥ −mNz(mN ) ≥ −mNz(⌈Nβ1⌉),



8 H. REN, N. CHEN AND C. ZOU

for any 0 < β1 < 1 as long as N is sufficiently large. By Cauchy inequality,160

|R2| ≤ 2
(
mNδUλ

−1
d

)1/2 d∑
k=1

∑
i∈HO

ξ2ik

1/2

≤ 2mN

(
δUλ

−1
d

)1/2 d∑
k=1

|ξ|(mN )k

≤ 2mNd
(
δUλ

−1
d

)1/2 |ξ|(⌈Nβ2⌉), (S.1)

for any 0 < β2 < 1 as long as N is sufficiently large, where |ξ|(j)k are the order statistics of
(|ξ|1k, . . . , |ξ||ON |k). By the convergence of sample quantiles, we know that z(⌈Nβ1⌉) → cβ1 and165

ξ⌈Nβ2⌉ → cβ2 in probability, where cβ1 and cβ2 are the β1th and β2th quantiles of χ2
d and absolute normal

distributions, respectively. We can choose β1 and β2 so that cβ1 + 2d(δUλ
−1
d )1/2cβ2 < (1− 2ρ)λ−1

1 δL.
Thus, when mN/|ON | → 0, the assertion holds.

Finally, assume that mN/|ON | → q < 1. By the weak convergence of linear combination of order
statistics again,170

m−1
N

d∑
k=1

λ−1
k

∑
i∈HO

{∫ b

a
εi(t)vk(t)dt

}2

≤ m−1
N

mN∑
i=1

y(i) = ψG(q) +Op(N
−1/2),

m−1
N

d∑
k=1

λ−1
k

∑
i∈J

{∫ b

a
εi(t)vk(t)dt

}2

= ψG(q
′) +Op(N

−1/2).

Similar to (S.1), ∣∣m−1
N R2

∣∣ ≤ 2d
(
δUλ

−1
d

)1/2
+ op(1).

Combining all these results together, the assertion holds provided that

2d
(
δUλ

−1
d

)1/2
+ max

0<q<1

{
ψG(q

′)− ψG(q)
}
< (1− 2ρ)λ−1

1 δL,

i.e., Condition A4 holds. �175

Proof of Proposition 1
This result is a direct corollary of Lemma 1, so the proof is omitted. �

ADDITIONAL SIMULATION RESULTS

We present additional simulation results based on different configurations to further examine the prop-
erties of the proposed method, and also make a comparison with other existing approaches for outlier180

detection. Figure S1 shows boxplots of the numbers of outliers contained in HLTFS and HMDP under
Case (II). Figure S2 presents boxplots of the numbers of outliers contained in HLTFS using estimators
of {vk(·), λk} based on Ro et al. (2015), Filzmoser et al. (2008) and all samples. Tables S1–S3 report
empirical false positive rates under Cases (I) and (II) when N = 100, 200, 500, 1000 with p = 100 or
500, respectively. Figure S3 shows empirical false positive rates and false negative rates under Case (II)185



Projection-based outlier detection in functional data 9

for various values of γ, when ρ = 0.1, N = 500 and p = 500. Figure S4 presents empirical false posi-
tive and false negative rates with various values of mixture ratio ω for generating outliers from the two
classes of functions (a) and (b), under ρ = 0.1, N = 500, γ = 2 and p = 500. Similar conclusions to the
paper can be drawn from these numerical studies: the initial subset HLTFS is reasonably clean; The pro-
posed refined least trimmed functional scores procedure is a promising alternative for functional outlier 190

detection, considering its robustness in terms of the false positive and false negative rates.
Table S4 compares empirical false positive and false negative rates under Case (II) with different

values of total explained variation, when α = 5%, γ = 2, N = 200 and p = 500. It clearly shows that
the performances are quite stable across all scenarios, especially for percentages between 85% and 95%.

Table S5 presents empirical false positive rates based on Yu et al. (2012) under Case (II) when N = 195

200, 500, 1000 and p = 500. From the results in Tables 2–3 in the paper, we observe that Yu et al. (2012)’s
procedure is generally more conservative than the other competitors. This is not surprising to us because
this method stepwisely deletes single observation, by comparing the largest measures with a threshold
obtained from an extreme distribution. It is able to control the family-wise error rate when the dataset
contains no outlier, say the proportion of good datasets that are wrongly declared to contain outliers. 200

However, when the dataset contains some outliers, there is no guarantee to control the false positive
rates. Table S5 tells us that its false positive rates are not consistent across various values of ρ and N and
vary much with different correlation structures either.

Table S6 reports the average computing time of different methods under Case (I) and autoregressive
structure with ρ = 0.1 and γ = 2. We can see that our procedure runs fast and our computing time is less 205

than the refined minimum diagonal product (Ro et al., 2015) and depth-based functional outlier detection
procedures (Febrero et al., 2008).

Table S1. Empirical false positive rates (%) under Case (II) for different outlier ratios ρ with nominal
size α = 1%, 5%, 10%, when N = 100, 200, 500, 1000, γ = 2 and p = 500

εi(t) N ρ = 0.04 ρ = 0.1 ρ = 0.2
1% 5% 10% 1% 5% 10% 1% 5% 10%

AR 100 0.7 4.4 10.1 0.7 4.0 9.3 0.5 3.5 8.4
200 0.9 4.8 10.6 0.8 4.7 10.1 0.7 4.3 9.2
500 0.8 4.9 10.6 0.8 4.7 10.2 0.7 4.4 9.7
1000 1.0 5.1 10.9 0.9 5.0 10.6 0.8 4.8 10.0

MA 100 0.8 4.6 9.9 0.7 4.3 9.3 0.5 3.6 8.4
200 0.8 4.8 10.5 0.8 4.5 10.0 0.6 4.0 9.2
500 0.9 4.9 10.7 0.8 4.7 10.3 0.7 4.3 9.5
1000 0.9 5.1 10.8 0.9 4.8 10.4 0.7 4.4 9.7

BM 100 1.4 7.1 14.4 1.5 6.8 13.4 1.4 6.0 11.9
200 1.2 6.4 13.1 1.1 6.0 12.3 1.1 5.3 11.2
500 1.1 5.9 12.4 1.0 5.6 11.8 1.0 5.2 10.8
1000 1.1 5.8 12.2 1.0 5.6 11.6 0.9 5.1 10.7

AR stands for autoregressive, MA for moving average and BM for Brownian motion.

CASE STUDY 1: OUTLIER DETECTION IN TONNAGE PROFILES

In this section, we apply the proposed methodology to a real dataset taken from an industrial multi-
operation forging process. In this process, a forging machine shown in Fig. S5(a) is comprised of multiple 210

dies, each assigned to perform one operation during a stroke. Tonnage forces exerted on all dies are
measured by four strain sensors that are mounted on four columns of the press. In this sensing system,
each sensor records the tonnage force profile at the predefined equal sampling interval of a rotational
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Fig. S1. Boxplots of the numbers of outliers contained in
HLTFS (white boxes) and HMDP (grey boxes) under Case

(II) when N = 1000 and γ = 2.

crank angle. This results in functional profile data shown in Fig. S5(b). More detailed discussion about
this example can be found in Lei et al. (2010).215

A sample of 496 profiles was collected under different experimental settings, containing 151 normal
profiles collected under the normal production condition, and 5 groups of 69 abnormal profiles. For the
illustration purpose, the average profiles of these six groups are shown in Fig. S5(c). In this example, the
main goal is to set up an efficient classifier which heavily relies on the assumption that sufficient data
from both normal and faulty operations are available that can be used for training classifiers. Here, we220

focus on constructing an outlier detection method, so we do not use the information of faulty classes.
Using this dataset, we define five subsets, each of which includes the normal profiles and one of the five
abnormal profile groups. We would like to automatically identify any abnormal profile observations from
the whole dataset using our proposed detection procedures.

Using subsets 1 and 4, including normal data and corresponding to faults 1 and 4 data, we compare225

our method with the other benchmarks used in the simulation study, including those methods in Febrero
et al. (2008), Yu et al. (2012), Ro et al. (2015) and Filzmoser et al. (2008). The reason for the use
of subsets 1 and 4 is that profile samples corresponding to faults 1, 4 are very similar to the profiles
under the normal operation, thus difficult to separate. The resulting false positive and false negative rates
of the five methods with α = 5% are reported in Table S7. For fault 1, our method, Ro et al. (2015)’s230

method and Filzmoser et al. (2008)’s method are equally effective as they can approximately maintain the
desired level and identify all outliers. Febrero et al. (2008)’s method and Yu et al. (2012)’s method cannot
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Fig. S2. Boxplots of the numbers of outliers contained in
HLTFS using estimators of {vk(·), λk} based on Ro et al.
(2015) (white boxes), Filzmoser et al. (2008) (lightgrey
boxes) and all samples (darkgrey boxes) under Case (I)
(top) and Case (II) (bottom) when N = 500, γ = 2 and

p = 100.

deliver correct detection due to the masking effect. Regarding fault 4, all the methods fail to identify most
outliers as the difference between the normal and faulty profiles in this subset is indeed slight, though our
method can still control the false positive rate. To make this comparison more informative, we select 20 235

most outlying profiles out of all the 69 faulty profiles based on their minimum diagonal product distances
(Ro et al., 2015), and then apply all the five methods to the new dataset, i.e. 151 normal profiles with
20 fault 4 profiles. The detection results are given in the last two columns of Table S7, corresponding
to fault 4*. Now, our method is capable of identifying most outliers and performs better than the others
in terms of false positive and false negative rates. We further zoom in the average profiles for faults 1, 240

4 and normal functional data. Figure S6 shows that there are indeed differences in the mean function
in the time range of [40,100]. The results show that our method does have superior performance in this
challenging case as it is able to capture fine differences.

CASE STUDY 2: OUTLIER DETECTION IN REAL-TIME TRAFFIC SPEED DATA

We also apply the proposed methodology to a real dataset taken from the traffic speed detectors for 245

illustration. This data contains real-time traffic average speed information from some highway locations.
In each location, the speed detector automatically records the speed every five minutes. This results in
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Table S2. Empirical false positive rates (%) under Case (I) for different outlier ratios ρ with nominal
size α = 1%, 5%, 10%, when N = 100, 200, 500, 1000 γ = 2 and p = 100

εi(t) N ρ = 0.04 ρ = 0.1 ρ = 0.2
1% 5% 10% 1% 5% 10% 1% 5% 10%

AR 100 0.7 4.6 9.9 0.7 4.0 9.2 0.6 3.7 8.5
200 0.8 4.8 10.6 0.7 4.3 9.7 0.6 3.8 8.7
500 0.9 4.9 10.6 0.8 4.4 9.8 0.6 4.0 8.8
1000 0.9 5.0 10.8 0.8 4.5 9.9 0.7 4.1 8.9

MA 100 0.7 4.5 9.8 0.6 4.1 9.4 0.6 3.8 8.6
200 0.8 4.8 10.4 0.8 4.6 10.1 0.6 4.1 9.1
500 0.8 4.7 10.4 0.8 4.5 9.9 0.7 4.0 9.2
1000 0.9 5.0 10.7 0.8 4.6 10.1 0.7 4.2 9.4

BM 100 1.6 7.1 14.1 1.5 6.6 13.2 1.4 5.8 11.6
200 1.3 6.4 13.0 1.3 6.0 12.3 1.2 5.6 11.3
500 1.2 6.1 12.5 1.1 5.7 11.7 1.0 5.3 10.9
1000 1.1 5.9 12.2 1.1 5.6 11.6 1.0 5.2 10.8

Table S3. Empirical false positive rates (%) under Case (II) for different outlier ratios ρ with nominal
size α = 1%, 5%, 10%, when N = 100, 200, 500, 1000, γ = 2 and p = 100

εi(t) N ρ = 0.04 ρ = 0.1 ρ = 0.2
1% 5% 10% 1% 5% 10% 1% 5% 10%

AR 100 0.8 4.7 10.5 0.7 4.3 9.6 0.6 3.6 8.6
200 0.9 4.9 10.5 0.8 4.5 9.7 0.6 3.9 8.6
500 0.9 5.0 10.8 0.8 4.6 10.1 0.6 4.1 9.1
1000 0.9 5.1 10.8 0.8 4.7 10.2 0.6 4.1 9.2

MA 100 0.7 4.4 9.9 0.7 4.2 9.4 0.5 3.5 8.2
200 0.8 4.8 10.5 0.7 4.4 9.9 0.6 3.8 8.8
500 0.8 4.8 10.6 0.7 4.4 9.9 0.6 3.9 9.0
1000 0.9 5.0 10.7 0.8 4.7 10.2 0.6 4.1 9.2

BM 100 1.5 6.9 13.7 1.4 6.4 13.0 1.5 6.0 11.6
200 1.2 6.4 13.1 1.2 6.0 12.2 1.1 5.4 11.2
500 1.1 6.0 12.3 1.1 5.7 11.7 1.0 5.1 10.7
1000 1.1 5.9 12.3 1.0 5.6 11.6 0.9 5.1 10.7

time-dependent functional data. A sample of 31 original speed records was collected in May from one
highway location. To reduce the measurement noise, firstly we smooth the data with the window size
of half hour shown in the left panel of Fig. S7. In this case, we focus on detecting the abnormal speed250

curves. Here, the proposed method is applied to this dataset. The identified abnormal speed curves are
corresponding to the days 1,10,11,17,18,19,28,29 and 31, which are either the weekends or the holidays
in May. Meanwhile, we put the normal mean speed function and outlier mean speed function in the right
panel of Fig. S7. Because we do not know the true outliers, we cannot compare the efficiency of our
procedure with other related methods. However, from our result, our detection results appear reasonable255

and credible; the average speed curves in weekends or holidays are distinguished from those in weekdays.
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Fig. S3. Empirical false positive rates (α, top) and false
negative rates (β, bottom) of four methods as follows: our
refined least trimmed functional scores method (asterisks
solid red line); Yu et al. (2012) (square dash blue line);
Ro et al. (2015) (circle dot green line) and Filzmoser et al.
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Table S4. Empirical false positive (α) and false negative (β) rates (%) under Case (II) with various
values of total explained variation, when α = 5%, γ = 2, N = 200 and p = 500

εi(t) ρ 75% 85% 90% 95%
α β α β α β α β

AR 0.02 4.4 8.1 4.5 7.7 4.9 6.7 5.9 6.4
0.04 4.3 11.2 4.5 10.0 4.8 9.6 5.7 9.2
0.1 4.2 11.2 4.3 10.4 4.5 10.1 5.3 9.6
0.2 3.9 12.0 4.1 11.4 4.2 11.1 4.6 10.6

d = 9 d = 11 d = 12 d = 14

MA 0.02 4.3 20.0 4.5 16.3 4.9 15.7 6.1 14.0
0.04 4.1 23.1 4.4 19.3 4.8 18.4 5.9 17.0
0.1 3.9 23.5 4.1 21.3 4.5 20.0 5.5 18.8
0.2 3.6 26.7 3.7 24.6 4.0 23.1 4.7 21.4

d = 9 d = 11 d = 12 d = 14

BM 0.02 6.9 51.8 6.8 17.3 6.6 10.3 6.5 6.1
0.04 6.6 47.6 6.6 18.2 6.4 12.1 6.4 7.5
0.1 6.4 40.6 6.3 19.9 6.0 14.0 5.9 8.9
0.2 6.3 31.8 5.8 18.0 5.6 13.9 5.4 9.2

d = 3 d = 4 d = 5 d = 7
d: is the median of the empirical numbers of the eigenfunctions to explain the corresponding percentages of total variation

Table S5. Yu et al. (2012)’s empirical false positive rates (%) under Case (II) for various values of
outlier ratio ρ with nominal size α = 10%, 15%, 20%, when N = 200, 500, 1000 and p = 500

εi(t) N ρ = 0.04 ρ = 0.1 ρ = 0.2
10% 15% 20% 10% 15% 20% 10% 15% 20%

AR 200 5.0 8.0 11.6 5.3 8.6 12.4 1.1 1.7 2.5
500 2.1 3.0 3.8 2.0 3.0 3.9 0.5 0.8 1.1

1000 1.0 1.4 1.8 0.6 1.2 1.8 0.2 0.3 0.4

MA 200 5.2 8.2 11.6 5.2 8.6 12.8 2.2 3.5 5.1
500 2.1 3.1 4.0 1.2 2.1 3.1 1.0 1.4 1.9

1000 0.9 1.3 1.7 0.5 0.8 1.2 0.4 0.5 0.7

BM 200 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table S6. Computing time (sec.) for various sample size N , with the outlier ratio ρ = 0.1, p = 500 and
α = 5%.

N ReLTFS DFOD SFOD RMDP PCOut
100 1.67 63.16 0.86 15.30 0.12
200 2.79 187.40 0.23 24.71 0.20
500 7.63 1087.43 1.18 55.96 0.74
1000 16.11 4043.30 1.95 94.02 1.29

ReLTFS: our refined least trimmed functional scores method; DFOD: the depth-based functional outlier detection procedure introduced by

Febrero et al. (2008); SFOD: the stepwise functional outlier detection procedure proposed by Yu et al. (2012); RMDP: refined minimum

diagonal product procedure by Ro et al. (2015); PCOut: principal component outlier detection procedure by Filzmoser et al. (2008)
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Table S7. False positive (α) and false negative (β) rates (%) of the five related methods for outlier
detection of faults 1 and 4 in the forging example

Method Fault 1 Fault 4 Fault 4*
α β α β α β

ReLTFS 6.7 0.0 4.0 91.3 4.0 5.0
DFOD 0.0 91.3 0.7 97.1 0.7 90.0
SFOD 0.0 100.0 0.0 100.0 0.0 100.0
RMDP 4.6 0.0 2.7 97.1 2.7 85.0
PCOut 8.8 0.0 22.5 89.9 12.6 100.0
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Fig. S6. Left panel: Average profiles of Normal (solid black
curve), Faults 1 (dash orange curve) and 4 (dot blue curve).
Middle panel: Average normal profile (dash red curve) and
69 fault 1 profiles zoomed-in between 40 and 100 (grey
curves). Right panel: Average normal profile (dash red
curve) and 69 fault 4 profiles zoomed-in between 40 and

80 (grey curves).
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Fig. S7. Left panel: 31 smoothed speed curves in May;
Right panel: Average speed curves from normal (solid
curve) and outlier (dash curve) days. The detected outli-

er days are weekends and holidays.


