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SUMMARY

The presence of outliers poses serious adverse effects to the modeling and prediction in data analysis.
To detect outliers in functional data, we have developed a procedure based on a high-breakdown mean
function estimator. The robust estimator is obtained from a clean subset of observations, excluding po- 15

tential outliers, by minimizing the least trimmed squares of the projection coefficients after functional
principal component analysis. A threshold rule is constructed based on the asymptotic distribution of
the functional-score-based distance. The thresholding robustly controls the false positive rate and detects
outliers effectively. Further power improvement is proposed by adding a one-step reweighting procedure.
The finite sample performance of our method is evaluated through simulations and demonstrates satis- 20

factory false positive and false negative rates compared with that of available outlier detection methods
for functional data.

Some key words: Functional principal component analysis; Least trimmed squares estimator; Masking; Reweighting; Robust-
ness; Swamping

1. INTRODUCTION 25

The analysis of functional data has received substantial attention in recent years due to the increasing
availability and collection of observations in the form of functions. Data of this type arises in many
disciplines, including growth curves in biology (Ramsay & Silverman, 2005), temperature changes in
geosciences (Berkes et al., 2009), and profile monitoring in manufacturing processes (Qiu et al., 2010).
For more examples, see Ramsay et al. (2009). 30

The presence of outlying observations poses serious adverse effects on data analysis, resulting in bi-
ased estimation, misleading inference, and poor prediction. Thus, we are concerned about identifying
outlying functions among a set of functional observations. More specifically, we assume thatN indepen-
dent observations X = {Xi(t), i = 1, . . . , N} are collected from the model

Xi(t) =

{
µi(t) + εi(t), i ∈ ON

µ0(t) + εi(t), i /∈ ON ,
(1) 35
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where ON is the outlier set, and the mean function µi(t) of an outlying observation differs from that of the
majority, µ0(t). εi(t) is the stochastic error with E{εi(t)} = 0 and t ∈ T = [a, b],−∞ < a < b <∞.
A straightforward approach to identifying ON is to apply multivariate outlier detection procedures when
all functions Xi(t) are measured at grid points t1, . . . , tp; see Cerioli et al. (2009) and Cerioli (2010) for
Mahalanobis distance methods. However, functional data are infinite-dimensional; hence, in practice, the40

number of grid points is always larger than that of samples, rendering that methods based on Mahalanobis
distance are typically inapplicable. Filzmoser et al. (2008), Fritsch et al. (2011) and Ro et al. (2015)
designed outlier detection procedures specially for high-dimensional data. However, these methods are
not effective for detecting outliers in (1) because they ignore the smoothness of µi(t) and µ0(t), and
hence would suffer from the curse of dimensionality.45

A more viable direction is to detect outliers through functional data analysis. Hyndman & Ullah (2007)
used a method based on robust principal component analysis and the integrated squared error of a linear
model. Febrero et al. (2008) suggested an approach using the likelihood ratio test and smoothed boot-
strapping to identify functional outliers. However, the method is rather time-consuming, especially when
N is large. López-Pintado & Romo (2009) introduced a notion of band depth which yields a center-50

outward ordering of functional data within a sample set. Some authors have also developed graphical
tools for visualizing functional data and identifying functional outliers, e.g., Hyndman & Shang (2010),
Sun & Genton (2011, 2012), and Genton & Hall (2016). Such graphical approaches are essentially based
on the extension of classical ranks to functional data. However, it is not easy to control the false positive
rates of these approaches, because they lack systematic distributional results. A closely related work is55

Yu et al. (2012) which introduced a test founded on functional principal component analysis to detect
functional outliers. They derived the null distribution of their test statistic and demonstrated its advan-
tages over some others in terms of outlier detection accuracy. Their procedure focused on the stepwise
use of single-case diagnostics, that is, iteratively detecting one outlier and removing it from the remain-
ing set. It is well known from the literature of outlier detection, however, that single-case diagnostics60

suffer from masking and swamping, and that tests based on them lose power in the presence of multiple
outliers (Hawkins, 1980; Barnett & Lewis, 1984).

The goal of this paper is to develop a functional outlier detection procedure based on formal tests with
good performance in controlling false positive rates and also with good power for detecting outliers.
Our procedure improves on currently available methodologies in two aspects. First, we propose a high-65

breakdown estimator of the mean function µ0(t), obtained from a clean subset of observations, which
is assumed to contain only non-outlying observations. The subset can be found by minimizing the least
trimmed square of the functional principal component scores. A computationally efficient procedure
analogous to the fast minimum covariance determinant algorithm in Rousseeuw & Driessen (1999) is
adapted to identify the subset. Second, a threshold rule is constructed based on the asymptotic distribution70

of the functional-score-based distance. We also propose an additional one-step reweighting procedure,
which allows us to control the false positive rate more accurately and to increase the probability of finding
outliers.

2. METHODS AND PROPERTIES

2·1. Least trimmed square of functional scores75

Consider functional observations X = {Xi(t) : i = 1, . . . , N} that follow model (1). Because of the
infinite-dimensional nature of functional data, it is usually important to perform dimension reduction
in functional data analysis. Functional principal component analysis is an essential technique to extrac-
t a few major and typical features from functional data. Similar to Hyndman & Shang (2010) and Yu
et al. (2012), we work on the projections of the functions onto their principal components (Ramsay80
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& Silverman, 2005). Assume that ε(t) is a square integrable random function with covariance function
c(t, s) = E{ε(t)ε(s)} for t, s ∈ T = [a, b]. The spectral decomposition of c(t, s) is

∑∞
k=1 λkvk(t)vk(s),

where λ1 ≥ λ2 ≥ · · · are ordered nonnegative eigenvalues and vk(·)’s are the corresponding orthogonal
eigenfunctions with unit L2 norms, satisfying

∫
T c(t, s)vk(s)ds = λkvk(t) (t ∈ T ; k = 1, 2, . . .). Then,

the random function X(t) can be written as X(t) = µ(t) +
∑∞

k=1 ηkvk(t), where ηk =
∫
T {X(t)− 85

µ(t)}vk(t)dt are uncorrelated random variables, known as functional principal component scores or
loadings, with mean 0 and variance λk. In practice, most important features from a sample of random
functions can usually be explained by the few eigenfunctions with largest eigenvalues.

Given the kth eigenfunction and µ0(t), detecting outliers amounts to performing N hypothesis tests
with the null being E(ηik) = 0, where ηik =

∫
T {Xi(t)− µ0(t)}vk(t)dt (i = 1, . . . , N). In practice, 90

µ0(t) is often unknown. Yu et al. (2012) used pooled observations to estimate µ0(t) by µ̂X (t) =

N−1
∑N

i=1Xi(t), but this estimator may break down in the presence of multiple outliers, so the cor-
responding detection procedure suffers from masking and swamping. In robust statistics, a general ap-
proach to outlier detection is to choose a clean subset of the dataset that is presumably free from outliers,
and then use this subset to obtain robust estimators and test the outlyingness of the remaining observa- 95

tions (Hadi & Simonoff, 1993). To this end, we first propose a clean subset identification method based
on functional principal component scores and accordingly obtain a high breakdown estimator of the mean
function.

Our method can be viewed as an extension of least trimmed squares (Rousseeuw, 1984) to function-
al data. The least trimmed squares method searches for the subset of size h with the smallest sum of 100

squared residuals in a linear model with p covariates, where (N + p+ 1)/2 < h < N . It has several
good features and is widely used as a starting point for two-step estimators (Yohai, 1987; Simpson et al.,
1992). In a similar spirit, our approach identifies a subset of size h that has the smallest sum of h squared
functional principal component scores there.

Let H = {H ⊂ {1, . . . , N} : |H| = h} denote the set containing all index subsets of size h, where 105

|H| is the cardinality of H . For any H ∈ H, let µ̂H(t) denote the sample mean function of the dataset
{Xi(t) : i ∈ H}. Assume that λ̂kR and v̂kR(t) are appropriate initial estimators of λk and vk(t). We
propose a distance to measure the outlyingness

Di(H) =

d∑
k=1

η̂2ik(H)/λ̂kR (i = 1, . . . , N),

based on the functional principal component scores corresponding to the d largest positive eigenvalues,
where η̂ik(H) =

∫
T {Xi(t)− µ̂H(t)}v̂kR(t)dt (k = 1, . . . , d). IfH is a clean set and the ith observation 110

is an outlier, Di(H) is expected to be large. To find a clean set, we can choose H which minimizes the
sum of the distance.

DEFINITION 1. The least trimmed functional scores set is defined by

HLTFS = argmin
H∈H

h∑
i=1

D(i)(H), (2)

where D(1)(H) ≤ · · · ≤ D(h)(H) are the smallest h values among {Di(H) : i = 1, . . . , N}. 115

The mean estimator based on the least trimmed functional scores set is accordingly defined by µ̂HL
(t) =

h−1
∑

i∈HLTFS
Xi(t). When the observation is non-functional, where vk(t) ≡ 1, HLTFS corresponds to

the subset with the smallest variance, and accordingly µ̂HL
reduces to the least trimmed squares estimator

(Rousseeuw & Leroy, 1987).
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We compute the finite-sample breakdown point of µ̂HL
(t) to evaluate its robustness. Generalizing120

the definition of finite-sample breakdown point (Donoho & Huber, 1983) to the functional principal
component analysis framework, the breakdown point of a mean estimator µ̂X (·) is defined as

bN,v(µ̂,X ) = min
1≤j≤N

{
j/N : sup

1≤k≤d
sup
X ′

∥ µ̂X − µ̂X ′ ∥vk= ∞

}
,

where the supremum is taken over all sets of X ′ obtained by arbitrarily changing j functional observa-
tions in X , and ∥µ∥vk = |

∫ b
a µ(t)vk(t)dt|.

THEOREM 1. For any dataset X , bN,v̂R(µ̂HL
,X ) = min(N − h+ 1, h)/N.125

To make the procedure as robust as possible, we take the subset size h = [N/2] + 1 because it yields the
maximal breakdown point, 50%, where [n] denotes the integer part of n. In infinite-dimensional settings,
norms are usually not equivalent. The norm ∥ · ∥vk is chosen here due to the definition of Di(H). This
result may also hold for other norms if we modify the distance Di(H) accordingly.

To facilitate the search forHLTFS, we propose the following construction, which guarantees a decrease130

of the objective function in (2).

THEOREM 2. Let H1 ∈ H. Compute the distance based on H1, Di(H1) for i = 1, . . . , N . If we take
H2 such that {Di(H1) : i ∈ H2} = {D(1)(H1), . . . , D(h)(H1)}, where D(1)(H1) ≤ · · · ≤ D(h)(H1)

are the ordered distances, and compute Di(H2) based on H2, then
∑h

i=1D(i)(H2) ≤
∑h

i=1D(i)(H1).
Equality holds if and only if H1 = H2.135

The fast least trimmed squares algorithm (Rousseeuw & Van Driessen, 2006) can be adapted to find
HLTFS, by replacing the squared residuals with Di(H). Our algorithm is as follows:

Algorithm 1. Least trimmed functional scores

Step 1. Construct a random subset H0 with |H0| = 2.

Step 2. Set h = [N/2] + 1. Based on H0, obtain µ̂H0(t) and compute Di(H0) for i = 1, . . . , N . Take140

H1 such that {Di(H0) : i ∈ H1} = {D(1)(H0), . . . , D(h)(H0)}.

Step 3. From H1, apply the construction in Theorem 2 until convergence and obtain the subset H2.

Step 4. Repeat steps 1–3 m times, say with m = 100, and select the subset with the smallest∑h
i=1D(i)(H2) among all m subsets H2 to be HLTFS.

This is a greedy procedure to find a local minimum from any initial subset. Multiple starting points are145

used to obtain improved solution to the global minimum HLTFS. The algorithm starts from obtaining
a robust estimate of µ0(t) for computing Di(H0), so we take |H0| to be 2. The initial eigenfunctions
v̂kR(·)’s must be specified before the algorithm executes. From Conditions A2 and A3 in the Appendix,
we may expect that the estimation accuracy of λk and vk(·) would not affect the performance of HLTFS

significantly; see Theorem 3. We also observe in our simulations that the number of outlying observations150

included in HLTFS changes mildly over a wide range of vk(·)’s estimation. Hence, we suggest applying
Ro et al. (2015)’s minimum diagonal product to find an initial subset of h observations, HMDP, and
obtain estimators µ̂HMDP

(t) = h−1
∑

i∈HMDP
Xi(t) and

ĉ(t, s) = h−1
∑

i∈HMDP

{Xi(t)− µ̂HMDP
(t)}{Xi(s)− µ̂HMDP

(s)}.
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The corresponding estimators of λk and vk(·), satisfying
∫ b
a ĉ(t, s)v̂kR(s)ds = λ̂kRv̂kR(t), are used as

λ̂kR and v̂kR(·). In fact, the method proposed by Filzmoser et al. (2008) to estimate vk(·) would also 155

yield reasonably good results. See some simulation results in Section 3.
In practice, each function Xi(t) is measured at a set of grid points {tij : j = 1, . . . , pi}. If these sam-

pling points are the same across different functions, i.e., tij = tj and pi = p, then the minimum diagonal
product (Ro et al., 2015) can be applied directly on the N × p observation matrix. If the sampling grid
is sparse or the sampling points are not aligned, the functional data can be smoothed first by applying 160

appropriate smoothing techniques such as the spline method or kernel regression, and then use the in-
terpolated values on an equally-spaced grid of points. With respect to the choice of the number d of
eigenfunctions vk(·) used for projection, there are several approaches in the literature (Yao et al., 2005).
It seems difficult to select d by cross-validation or using an information criterion since there is no re-
sponse in outlier detection. Hence, we include all the functional principal components that can explain a 165

predetermined percentage of total variation, such as 90%. Simulation results show that this choice deliv-
ers reasonably good detection. The performances using percentages from 75% to 95% are quite similar;
see the supplementary material.

2·2. Threshold rule for outlier detection
Outlier detection can be cast as N hypothesis tests, of 170

H0i : E{Xi(t)} = µ0(t) versus H1i : E{Xi(t)} ̸= µ0(t) (i = 1, . . . , N).

To decide whether an observation is an outlier, we propose a threshold rule based on the asymptotic
distribution of the distance

Ti(µ̂, v̂, λ̂) =

d∑
k=1

[∫ b

a
{Xi(t)− µ̂(t)}v̂k(t)dt

]2
/λ̂k,

where µ̂(·), λ̂k and v̂k(·) are estimates of µ0(·), λk and vk(·), and d is fixed.

PROPOSITION 1. Suppose that Conditions A1–A2 hold and µ̂(·) is a consistent estimator of µ0(·). 175

Then for i /∈ ON , as N → ∞, Ti(µ̂, v̂, λ̂) → χ2
d in distribution.

We can expect that this result would roughly hold for the distance constructed based on HLTFS, from
which reliable approximations can be obtained. This can be partially explained by the following theorem
which concerns asymptotic properties of HLTFS.

THEOREM 3. Suppose Conditions A1 and A3 hold, |ON |/N → ρ < 1/2 as N → ∞ and d is fixed. 180

(i) Assume that the true eigenfunctions and eigenvalues are used in Di(H). If the subset H contains
mN ≤ |ON | outliers, there exists a subset H ′ which contains no outlier such that

pr

{
h∑

i=1

D(i)(H
′) >

h∑
i=1

D(i)(H)

}
≤ exp(−CmN ),

where C is a constant depending only on d, λk and the outlying magnitudes are given in Condition
A3.

(ii) Suppose v̂kR and λ̂kR satisfy Condition A2. Then, pr
{∑h

i=1D(i)(H
′) <

∑h
i=1D(i)(H)

}
→ 1 as 185

(mN , N) → ∞, where H and H ′ are defined in (i). Furthermore, if the outlying magnitudes satisfy
Condition A4, then

pr (HLTFS includes mN outliers) → 0, mN , N → ∞. (3)
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In Theorem 3-(i), if the true eigenfunctions are used, we could obtain a non-asymptotic bound on the
probability that the measure of a subset including mN outliers is smaller than that of a clean subset,190

which is exponentially small in mN . That probability would not be large if well-behaved estimates are
used inDi(H), as shown in Theorem 3-(ii). If the subsetH contains more thanmN outliers, we can find a
clean subset which is better thanH with the probability tending to one. Asymptotically speaking, suchH
cannot be HLTFS. The result (3) in (ii) tells us that the probability that

∑h
i=1D(i)(H

′) >
∑h

i=1D(i)(H)
could be uniformly small in H if some stronger conditions are imposed. That is, with high probability,195

HLTFS cannot contain too many outliers.
After obtaining the clean subset HLTFS, we update the estimation of c(t, s) by

ĉHL
(t, s) = h−1

∑
i∈HLTFS

{Xi(t)− µ̂HL
(t)}{Xi(s)− µ̂HL

(s)}.

The corresponding number of principal components, eigenvalues and eigenfunctions are respectively
denoted by dHL

, λ̂′kHL
and v̂kHL

(·). Because the least trimmed functional scores algorithm searches for
a clean subset which has the smallest total variation, λ̂′kHL

would underestimate λk (Pison et al., 2002).200

We may adjust the estimate by λ̂kHL
= θλ̂′kHL

, where the scaling constant θ depending on the values of
h, N , serves to render λ̂kHL

consistent. By Proposition 1, in probability

median1≤i≤NTi(µ̂HL
, v̂HL

, λ̂HL
) → χ2

dHL
(0.5), as N → ∞,

and thus we take

θ =
median1≤i≤NTi(µ̂HL

, v̂HL
, λ̂′HL

)

χ2
dHL

(0.5)
, (4)

where χ2
d(α) is the α upper quantile of the χ2

d distribution.205

Proposition 1 suggests that the ith observation is identified as an outlier if

Ti(µ̂HL
, v̂HL

, λ̂HL
) > χ2

dHL
(α), (5)

where α is a pre-specified significance level. This threshold rule enables us to control the false positive
rate, i.e, the percentage of non-outlying samples incorrectly identified as outliers. Similar to Proposi-
tion 1, we can show that under the alternative H1i, Ti(µ̂HL

, v̂HL
, λ̂HL

) asymptotically has a non-central210

chi-squared distribution with d degrees of freedom and noncentrality parameter
∑d

k=1[
∫
T {µi(t)−

µ0(t)}vk(t)]2/λk.

2·3. One-step refined procedure
A one-step reweighting scheme is usually able to enhance the efficiency of outlier detection procedures

(Cerioli, 2010). We refine the outlier detection rule after using the threshold rule (5). Let HR be the215

subset of observations Xi(t) for which Ti(µ̂HL
, v̂HL

, λ̂HL
) < χ2

dHL
(α′), where α′ is a predetermined

significance level. Based on HR, we update the estimation of c(t, s) by ĉHR
(t, s) and µ0(t) by µ̂HR

. Let
dHR

, λ̂′kHR
and v̂kHR

(·) be the number of principal components, eigenvalue and eigenfunction estimators,
respectively. Similar to (4), a consistent estimate of λk can be obtained by

λ̂kHR
= λ̂′kHR

mediani∈HR
Ti(µ̂HR

, v̂HR
, λ̂′HR

)

χ2
dHR

(0.5)
. (6)220

Then, a refined distance can be constructed as Ti(µ̂HR
, v̂HR

, λ̂HR
). In (6), we use the median of the

distance Ti(µ̂HR
, v̂HR

, λ̂′HR
) in the subset HR rather than the median based on all observations as in (4).
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When outliers are present, using the median among all samples would yield a larger scaling constant and
in turn overestimate the λk. With the help of HR, a more accurate estimate λ̂kHR

is achieved, and real
false alarm rate can be better controlled. The refined procedure fits naturally in our setting as it involves 225

only one additional step, and leads to an increase in the probability of correct identification of outlying
observations. Finally, our proposed method is outlined as follows:

Algorithm 2. Refined least trimmed functional scores

Step 1. Compute the subset HLTFS with |HLTFS| = [N/2] + 1 based on Algorithm 1.

Step 2. Set a significance level α. Compute the distance Ti(µ̂HL
, v̂HL

, λ̂HL
) and identify HR based on 230

the threshold rule (5) with α′, e.g., α′ = α/2.

Step 3. Compute the refined distances, and the ith observation is identified as an outlier if
Ti(µ̂HR

, v̂HR
, λ̂HR

) > χ2
dHR

(α).

The entire outlier detection algorithm runs fast. For instance, when a sample hasN = 500 observations
with 10% outliers, it takes about only 7.6 seconds to run on an Intel i5 CPU using R (R Development 235

Core Team, 2012). The R code is available in the supplementary material.

3. SIMULATION

In this section, we evaluate the performance of our proposed outlier detection procedure through a
simulation study. We first study the accuracy of the subset HLTFS, and then compare the false positive
and false negative rates of Algorithm 2 with some existing methods. All the results in this section are 240

obtained from 1,000 replicated simulations.
Without loss of generality, we fix µ0(t) ≡ 0 and consider the following three different models for εi(t),

namely the trajectories of the Brownian motion, the autoregressive model and the moving average mod-
el. All three processes are realised on a grid of p = 100 or p = 500 equispaced points in T = [0, 1].
The independent increment of the Brownian motion is generated by εi(tj+1)− εi(tj) ∼ N(0, 0.2). 245

The autoregressive model is εi(tj) = εi(tj−1)− 0.9εi(tj−2) + ϵ(tj) and the moving average model
follows εi(tj) = ϵ(tj) + 0.5ϵ(tj−1) + 0.3ϵ(tj−2), where tj = j/p (j = 1, . . . , p) and ϵ(tj) ∼ N(0, 1).
Two classes of outlying functions are investigated: (a) µ(t) = γ sin(2πt)I[1/3,1/2](t); and (b) µ(t) =
γtI[a1/p,a2/p](t), where I(·) is the indicator function and the locations a1 and a2 are randomly sampled
from 1 to p. We generate outliers from a mixture of these two classes, i.e., in one outlier set, the propor- 250

tions of outlying functions from (a) and (b) are ω and 1− ω, respectively. Two cases are explored: (I)
ω = 75%; (II) ω = 25%. We choose the sample sizeN to be 100, 200, 500 and 1000 and the outlier ratio
ρ in the sample to be 0.02, 0.04, 0.1 and 0.2.

Following the basis function method introduced in Ramsay & Silverman (2005), all the observations
in our simulation study are smoothed by 15 Fourier basis functions. Our simulation results indicate that 255

our procedure is not affected much by the type of basis or the number of the basis functions used for
smoothing. In practice, the local polynomial smoothing or spline can be used as well. We find that with
5 to 15 Fourier basis functions, the level of the proposed test can be maintained within an acceptable
range. To provide a better protection against outliers with oscillating mean functions, we use a relatively
large number of bases. In each replication, the number of eigenfunctions, d, is chosen such that 90% of 260

the total variation can be explained by the first d principal components.
We first show that the subsetHLTFS determined by Algorithm 1 is relatively reliable and clean in finite

samples. We compare the numbers of outlying functions contained in HLTFS and HMDP, where HMDP

is the subset chosen by Ro et al. (2015)’s minimum diagonal product algorithm. Figure 1 presents the
numbers of outliers in HLTFS and HMDP under Case (I) with γ = 2, N = 1000 and p = 100, 500. It 265
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Fig. 1. Boxplots of the numbers of outliers contained in
HLTFS (white boxes) and HMDP (grey boxes) under Case

(I) when N = 1000 and γ = 2.

is evident that HLTFS generally outperforms HMDP, and its advantage becomes more pronounced for
larger p or ρ. The performance of HLTFS is affected by different choices of v̂k(·), but the influence is not
significant; see the supplementary material.

Table 1. Empirical false positive rates (%) under Case (I) for different outlier ratios ρ with α =
1%, 5%, 10%, when N = 100, 200, 500, 1000,γ = 2 and p = 500

εi(t) N ρ = 0.04 ρ = 0.1 ρ = 0.2
1% 5% 10% 1% 5% 10% 1% 5% 10%

AR 100 0.9 4.6 10.4 0.7 4.2 9.5 0.6 3.9 9.0
200 0.9 4.8 10.6 0.8 4.5 10.1 0.7 4.2 9.4
500 0.9 4.9 10.6 0.8 4.9 10.4 0.8 4.7 9.9
1000 1.0 5.2 10.9 0.9 5.0 10.6 0.9 4.8 10.2

MA 100 0.7 4.7 10.2 0.6 4.2 9.6 0.5 3.4 8.5
200 0.8 4.8 10.5 0.7 4.5 9.9 0.6 4.0 9.2
500 0.9 4.9 10.6 0.8 4.7 10.3 0.7 4.3 9.4
1000 0.9 5.1 10.9 0.9 4.9 10.5 0.7 4.4 9.7

BM 100 1.5 7.3 14.3 1.5 6.9 13.5 1.5 6.2 12.1
200 1.2 6.0 12.8 1.1 5.8 12.0 1.2 5.5 11.0
500 1.1 6.0 12.3 1.1 5.7 11.7 1.1 5.3 10.9
1000 1.1 5.8 12.1 1.0 5.5 11.5 1.0 5.2 10.8

AR stands for autoregressive, MA for moving average, and BM for Brownian motion.
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Table 2. Empirical false positive (α) and false negative (β) rates (%) under Case (I) for different outlier
ratios ρ with nominal size α = 5%, when γ = 2, N = 200 and p = 500

εi(t) ρ ReLTFS DFOD SFOD RMDP PCOut
α β α β α β α β α β

AR 0.02 5.1 0.1 13.2 86.0 2.7 0.0 4.5 94.3 6.9 89.2
0.04 4.8 2.0 9.8 89.8 2.6 2.1 4.2 94.7 7.1 89.0
0.1 4.5 3.0 9.0 91.3 2.3 23.3 4.1 94.7 7.1 90.0
0.2 4.2 6.7 9.9 89.7 0.5 80.9 4.1 95.1 7.2 90.5

MA 0.02 5.0 8.9 58.3 18.5 2.6 12.3 4.9 45.8 6.7 83.9
0.04 4.9 11.3 61.0 17.1 2.6 15.6 4.7 46.2 6.8 49.7
0.1 4.5 16.1 60.1 15.6 2.2 53.7 4.0 49.4 5.8 14.1
0.2 4.0 29.7 23.6 61.0 1.2 82.0 3.2 58.3 2.7 35.6

BM 0.02 6.6 1.6 0.2 0.0 0.0 14.3 1.6 23.8 10.2 0.0
0.04 6.4 3.8 0.1 10.5 0.0 12.3 1.5 27.7 9.7 0.1
0.1 6.0 5.7 0.1 71.1 0.0 89.5 1.1 39.3 8.0 1.6
0.2 5.7 6.3 0.0 85.8 0.0 92.0 0.8 62.9 6.1 11.3

ReLTFS: our refined least trimmed functional scores method; DFOD: the depth-based functional outlier detection procedure introduced by

Febrero et al. (2008); SFOD: the stepwise functional outlier detection procedure proposed by Yu et al. (2012); RMDP: refined minimum

diagonal product procedure by Ro et al. (2015); PCOut: principal component outlier detection procedure by Filzmoser et al. (2008)

To evaluate outlier detection performance, we compare the false positive and false negative rates,
which correspond to the swamping and masking ratios, respectively. Simulation results, not reported 270

here, show that our one-step refined procedure is generally better at controlling the false positive rate
than the threshold rule (5), consistent with our analysis in Section 2.3, so in this section we focus on
studying the performance of the refined procedure. Table 1 presents the false positive rates of the refined
least trimmed functional scores method under Case (I) with γ = 2 for various combinations of ρ and N .
In most cases, the empirical false positive rates are close to the nominal levels. Results for Case (II) can 275

be found in the supplementary material.
We next compare the proposed outlier detection procedure with existing methods in Febrero et al.

(2008), Yu et al. (2012), Ro et al. (2015) and Filzmoser et al. (2008). The approaches of Febrero et al.
(2008) and Filzmoser et al. (2008) are implemented by the R packages fda.usc and mvoutlier, respective-
ly. 280

Simulation results with α = 5% are reported in Tables 2 and 3. In most cases, our method attains the
nominal false positive rates and also yields smaller false negative rates than other methods. Yu et al.
(2012)’s method does not perform well, as its false positive rates are overly conservative and the false
negative rates increase rapidly when the outlier ratio ρ increases. This is not surprising, since the esti-
mators in Yu et al. (2012) are calculated using all the observations, so the detection procedure suffers 285

severely from masking, in which case, the removal of any single outlier may have little or no effect s-
ince other outliers remain. Accordingly, in the presence of multiple outliers, the estimators of the mean
function and the covariance function will be distorted. Filzmoser et al. (2008)’s method approximately
attains a false positive rate of 5% under the autoregressive and moving average models, but is generally
outperformed by our method in terms of the false negative rates. Under the Brownian motion model, 290

Filzmoser et al. (2008)’s method has performance comparable with our method in terms of false nega-
tive rates but has higher false positive rates. Ro et al. (2015)’s procedure performs similarly to Filzmoser
et al. (2008)’s under the autoregressive and moving average models but has much more conservative false
positive rates under the Brownian motion model. The performances of Febrero et al. (2008)’s method in
false positive rates are not stable: it appears to be liberal under the autoregressive model but conservative 295
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Fig. 2. Empirical false positive rates (α, top) and false neg-
ative rates (β, bottom) of four methods as follows: our
refined least trimmed functional scores method (asterisks
solid red line); Yu et al. (2012) (square dash blue line);
Ro et al. (2015) (circle dot green line) and Filzmoser et al.
(2008) (triangle dot-dash purple line) under Case (I) for
various values of γ, when ρ = 0.1, N = 500 and p = 500.

under the Brownian motion model. For a fixed sample size, its false negative rates increase as the ratio
of the outliers increases, showing that this approach suffers considerably from masking.

Empirical false positive rates and false negative rates under Case (I) are presented in Fig. 2 for ρ = 0.1,
α = 5%, N = 500 and p = 500. Our method has stable false positive rates close to the nominal level,
even when γ varies. It is able to successfully identify true outliers as γ increases and generally performs300

better than the other competitors. Similar conclusions can be drawn from additional simulation results
given in the supplementary material.
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Table 3. Empirical false positive (α) and false negative (β) rates (%) under Case(II) for different outlier
ratios ρ with nominal size α = 5%, when γ = 3.5, N = 200 and p = 500

εi(t) ρ ReLTFS DFOD SFOD RMDP PCOut
α β α β α β α β α β

AR 0.02 5.1 7.7 11.1 87.5 2.7 8.5 4.4 92.8 7.4 83.1
0.04 4.9 9.4 10.1 88.5 2.6 10.3 4.4 93.6 6.9 84.7
0.1 4.6 10.2 9.6 88.7 2.8 11.0 4.4 93.9 6.7 88.5
0.2 4.2 10.6 12.5 85.5 3.1 12.3 4.2 93.9 6.7 89.9

MA 0.02 4.8 16.6 64.0 13.3 2.5 19.0 4.8 42.3 7.2 74.7
0.04 4.8 18.4 51.6 19.3 2.5 21.1 4.8 40.3 7.3 56.8
0.1 4.6 20.9 11.5 66.4 2.6 24.0 4.2 41.7 5.2 43.7
0.2 4.0 23.9 1.9 83.2 2.5 33.4 3.4 44.5 2.9 49.8

BM 0.02 6.6 9.1 0.2 13.5 0.0 26.8 1.6 28.1 10.7 1.1
0.04 6.4 12.6 0.0 31.8 0.0 27.0 1.4 31.3 10.6 1.8
0.1 6.1 14.0 0.0 62.6 0.0 25.9 1.1 36.6 10.2 2.0
0.2 5.7 13.9 0.0 74.3 0.0 47.7 0.9 45.2 8.1 2.6

APPENDIX

We require the following technical conditions. 310

Condition A1. The mean µ0(t) and µi(t) (i ∈ ON ) are all square-integrable, i.e. they lie in L2(T ). The εi(t)
are independent and identically distributed, following a Gaussian process with mean 0 and a square-integrable
covariance function c(t, s).

Condition A2. For each k = 1, . . . , d,

lim sup
N→∞

{
ζNE∥ĉkvk − v̂k∥2

}
<∞, lim sup

N→∞

{
ζNE|λk − λ̂k|2

}
<∞, 315

where ζ−1/2
N logN → 0, ĉk = sgn

{∫
T vk(t)v̂k(t)dt

}
, and vk and λk are orthonormal eigenfunctions and non-

negative eigenvalues of some square-integrable covariance function.

Condition A3. For any i ∈ ON , there exists at least one vk(·) so that its outlying magnitude ∆2
ik ≡[∫

T {µi(t)− µ0(t)}vk(t)dt
]2
> 0. Moreover, assume that the largest and smallest magnitudes are bounded, i.e.,

δL ≤ min
i∈ON

max
1≤k≤d

∆2
ik ≤ max

i∈ON

max
1≤k≤d

∆2
ik ≤ δU .

Condition A4. The outlying magnitudes satisfy 320

δL >
2d(δUλ

−1
d )1/2 +max0<q<1{ψG(q

′)− ψG(q)}
(1− 2ρ)λ−1

1

, (A1)

where ψG(q) =
∫ q

0
G−1

d (z)dz, q′ = {1− q−1 + (2ρq)−1}−1, Gd(·) is the cumulative distribution function of χ2
d.

Condition A1 is quite standard in the literature. It implies the following expansions

c(t, s) =

∞∑
k=1

λkvk(t)vk(s), εi(t) =

∞∑
k=1

ηikυk(t), (A2)

where the sequences {ηik : i = 1, . . . , N, k = 1, 2, . . .} are independent identically distributed normal random 325

variables with mean 0 and variance λk. Condition A2 is to guarantee that λ̂k and v̂k(·) converge as N → ∞. If
the data do not contain outliers and λ̂k and v̂k(·) are the sample estimators, Lemmas 4.3 of Bosq (2000) implies
that this assumption holds for ζN = N . Condition A3 is a fairly common technical assumption in order to help us
distinguish the outliers from normal data. We consider that the outlying magnitude of each outlier is fixed and does
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not depend on N . Because our method relies on the projections, it is mild to assume that for each i ∈ ON there is330

at least one vk so that ∆ik ̸= 0. Condition A4 requires that the smallest magnitude should be sufficiently large to
guarantee identifiability. It is easy to show that when ρ ≤ 0.25, max0<q<1{ψG(q

′)− ψG(q)} = 0 and accordingly
Condition A4 reduces to δL > Cδ

1/2
U for some constantC. When all the ∆ik’s are of similar magnitudes, Condition

A4 is easily satisfied.
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